BUH100/D [ETC]

SWITCHMODE? NPN Silicon Planar Power Transistor ; 开关模式? NPN硅平面功率晶体管\n
BUH100/D
型号: BUH100/D
厂家: ETC    ETC
描述:

SWITCHMODE? NPN Silicon Planar Power Transistor
开关模式? NPN硅平面功率晶体管\n

晶体 开关 晶体管
文件: 总12页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
BUH100  
SWITCHMODEt NPN Silicon  
Planar Power Transistor  
POWER TRANSISTOR  
10 AMPERES  
700 VOLTS  
The BUH100 has an application specific state–of–art die designed  
for use in 100 Watts Halogen electronic transformers.  
This power transistor is specifically designed to sustain the large  
inrush current during either the start–up conditions or under a short  
circuit across the load.  
100 WATTS  
This High voltage/High speed product exhibits the following main  
features:  
Improved Efficiency Due to the Low Base Drive Requirements:  
High and Flat DC Current Gain h  
FE  
Fast Switching  
Robustness Thanks to the Technology Developed to Manufacture  
this Device  
ON Semiconductor Six Sigma Philosophy Provides Tight and  
Reproducible Parametric Distributions  
CASE 221A–09  
TO–220AB  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
700  
700  
10  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Base Breakdown Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
V
CBO  
V
V
CES  
EBO  
Collector Current — Continuous  
— Peak (1)  
I
C
10  
20  
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
4
10  
Adc  
B
I
BM  
*Total Device Dissipation @ T = 25_C  
P
100  
0.8  
Watt  
W/_C  
_C  
C
D
*Derate above 25°C  
Operating and Storage Temperature  
T , T  
J
–65 to 150  
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance  
— Junction to Case  
— Junction to Ambient  
_C/W  
R
R
1.25  
62.5  
θ
JC  
JA  
θ
Maximum Lead Temperature for Soldering Purposes:  
1/8from case for 5 seconds  
T
L
260  
_C  
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 2  
BUH100/D  
BUH100  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
400  
700  
10  
460  
860  
12.5  
Vdc  
Vdc  
CEO(sus)  
Collector–Base Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
Emitter–Base Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
µAdc  
µAdc  
µAdc  
µAdc  
CE  
CEO  
B
Collector Cutoff Current  
(V = Rated V , V = 0)  
@ T = 25°C  
I
100  
1000  
C
CES  
CBO  
@ T = 125°C  
CE  
CES  
EB  
C
Collector Base Current  
(V = Rated V , V = 0)  
@ T = 25°C  
I
100  
1000  
C
@ T = 125°C  
CB  
CBO EB  
C
Emitter–Cutoff Current  
(V = 9 Vdc, I = 0)  
I
100  
EBO  
EB  
C
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage  
@ T = 25°C  
V
V
1
1.1  
Vdc  
C
BE(sat)  
(I = 5 Adc, I = 1 Adc)  
C
B
Collector–Emitter Saturation Voltage  
(I = 5 Adc, I = 1 Adc)  
@ T = 25°C  
0.37  
0.37  
0.6  
0.6  
Vdc  
Vdc  
C
CE(sat)  
@ T = 125°C  
C
B
C
(I = 7 Adc, I = 1.5 Adc)  
@ T = 25°C  
0.5  
0.6  
0.75  
1.5  
C
B
C
@ T = 125°C  
C
DC Current Gain (I = 1 Adc, V = 5 Vdc)  
@ T = 25°C  
h
FE  
15  
16  
24  
28  
C
CE  
C
@ T = 125°C  
C
DC Current Gain (I = 5 Adc, V = 5 Vdc)  
@ T = 25°C  
10  
10  
15  
14.5  
C
CE  
C
@ T = 125°C  
C
DC Current Gain (I = 7 Adc, V = 5 Vdc)  
@ T = 25°C  
8
7
12  
10.5  
C
CE  
C
@ T = 125°C  
C
DC Current Gain (I = 10 Adc, V = 5 Vdc)  
@ T = 25°C  
6
4
9.5  
8
C
CE  
C
@ T = 125°C  
C
DYNAMIC SATURATION VOLTAGE  
@ T = 25°C  
V
1.1  
2.1  
1.7  
5
V
V
V
V
Dynamic Saturation  
C
CE(dsat)  
I
= 5 Adc, I = 1 Adc  
B1  
C
Voltage:  
Determined 3 µs after  
rising I reaches  
V
CC  
= 300 V  
@ T = 125°C  
C
B1  
@ T = 25°C  
C
I
= 7.5 Adc, I = 1.5 Adc  
B1  
C
90% of final I  
B1  
V
CC  
= 300 V  
@ T = 125°C  
(See Figure 19)  
C
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
23  
MHz  
pF  
T
(I = 1 Adc, V = 10 Vdc, f = 1 MHz)  
C
CE  
Output Capacitance  
C
100  
150  
ob  
(V = 10 Vdc, I = 0, f = 1 MHz)  
CB  
E
Input Capacitance  
C
1300  
1750  
pF  
ib  
(V = 8 Vdc, f = 1 MHz)  
EB  
http://onsemi.com  
2
BUH100  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 40 µs)  
Turn–on Time  
Turn–off Time  
Turn–on Time  
Turn–off Time  
Turn–on Time  
Turn–off Time  
Turn–on Time  
Turn–off Time  
@ T = 25°C  
t
on  
t
off  
t
on  
t
off  
t
on  
t
off  
t
on  
t
off  
130  
140  
200  
8
ns  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
C
I
= 1 Adc, I = 0.2 Adc  
B1  
@ T = 125°C  
C
C
I
= 0.2 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
6.8  
8.5  
C
V
CC  
@ T = 125°C  
C
@ T = 25°C  
140  
150  
200  
4
C
I
C
= 1 Adc, I = 0.2 Adc  
@ T = 125°C  
B1  
C
I
= 0.4 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
3.4  
4.3  
C
V
CC  
@ T = 125°C  
C
@ T = 25°C  
250  
800  
500  
3.5  
700  
2.5  
C
I
= 5 Adc, I = 1 Adc  
B1  
@ T = 125°C  
C
C
I
B2  
= 1 Adc  
@ T = 25°C  
2.9  
3.6  
C
V
CC  
= 300 Vdc  
@ T = 125°C  
C
@ T = 25°C  
500  
900  
C
I
= 7.5 Adc, I = 1.5 Adc  
B1  
@ T = 125°C  
C
C
I
= 1.5 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
2.1  
2.5  
C
V
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 µH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
150  
180  
250  
6
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
fi  
@ T = 125°C  
C
I
= 1 Adc  
= 0.2 Adc  
= 0.2 Adc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
5.1  
5.8  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
230  
300  
325  
250  
3
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
150  
170  
C
@ T = 125°C  
C
I
C
= 1 Adc  
= 0.2 Adc  
= 0.5 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
2.5  
2.8  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
260  
300  
350  
150  
3.5  
300  
150  
2.5  
350  
C
c
fi  
@ T = 125°C  
C
@ T = 25°C  
t
100  
140  
C
@ T = 125°C  
C
I
C
= 5 Adc  
= 1 Adc  
= 1 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
2.9  
4.6  
C
I
B1  
I
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
220  
450  
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
100  
150  
C
@ T = 125°C  
C
I
I
I
= 7.5 Adc  
= 1.5 Adc  
= 1.5 Adc  
C
Storage Time  
Crossover Time  
@ T = 25°C  
t
si  
2
2.5  
C
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
250  
475  
C
@ T = 125°C  
C
http://onsemi.com  
3
BUH100  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
CE  
= 1 V  
V
CE  
= 3 V  
T = 125°C  
J
T = 125°C  
J
T = -ā20°C  
J
T = -ā20°C  
J
T = 25°C  
J
T = 25°C  
J
10  
10  
1
0.001  
1
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 3 Volt  
100  
10  
1
V
CE  
= 5 V  
I /I = 5  
C B  
T = 125°C  
J
T = -ā20°C  
J
T = 25°C  
J
10  
T = -ā20°C  
J
T = 25°C  
J
0.1  
T = 125°C  
J
1
0.01  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 3. DC Current Gain @ 5 Volt  
Figure 4. Collector–Emitter Saturation Voltage  
1.5  
10  
1
I /I = 10  
C B  
I /I = 5  
C B  
1
T = -ā20°C  
J
T = 25°C  
J
T = -ā20°C  
J
T = 25°C  
J
0.5  
0.1  
T = 125°C  
J
T = 125°C  
J
0.01  
0
0.001  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 5. Collector–Emitter Saturation Voltage  
Figure 6. Base–Emitter Saturation Region  
http://onsemi.com  
4
BUH100  
TYPICAL STATIC CHARACTERISTICS  
2
1.5  
T = 25°C  
J
I /I = 10  
C B  
15 A  
10 A  
1.5  
1
8 A  
1
T = -ā20°C  
J
5 A  
3 A  
T = 25°C  
J
0.5  
2 A  
T = 125°C  
J
0.5  
0
V
CE(sat)  
(I = 1 A)  
C
0
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , BASE CURRENT (A)  
B
I , COLLECTOR CURRENT (AMPS)  
C
Figure 8. Collector Saturation Region  
Figure 7. Base–Emitter Saturation Region  
10000  
1000  
900  
800  
700  
600  
T = 25°C  
J
T = 25°C  
J
BVCER @ 10 mA  
f
= 1 MHz  
(test)  
C
ib  
100  
10  
C
ob  
500  
400  
BVCER(sus) @ 500 mA, 25 mH  
1
10  
100  
10  
100  
1000  
()  
10000  
100000  
V , REVERSE VOLTAGE (VOLTS)  
R
R
BE  
Figure 9. Capacitance  
Figure 10. Resistive Breakdown  
http://onsemi.com  
5
BUH100  
TYPICAL SWITCHING CHARACTERISTICS  
2500  
2000  
1500  
1000  
10  
I
= I  
I
= I  
B1 B2  
T = 125°C  
T = 25°C  
J
B1 B2  
J
V
= 300 V  
V
= 300 V  
CC  
CC  
8
PW = 20 µs  
PW = 40 µs  
I /I = 10  
C B  
T = 125°C  
T = 25°C  
J
6
4
J
I /I = 5  
C B  
125°C  
500  
0
2
0
I /I = 10  
C B  
I /I = 5  
C B  
25°C  
0
2
4
6
8
10  
10  
10  
0
1
1
2
4
6
8
10  
10  
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Resistive Switching Time, ton  
Figure 12. Resistive Switch Time, toff  
7
5
3
1
6
5
I
= I  
B1 B2  
I
= I  
B1 B2  
I /I = 10  
B
I /I = 5  
B
C
C
V = 15 V  
CC  
V = 300 V  
V = 15 V  
CC  
V = 300 V  
Z
Z
L = 200 µH  
L = 200 µH  
C
4
3
2
C
T = 125°C  
T = 25°C  
J
T = 125°C  
T = 25°C  
J
1
0
J
J
1
4
7
4
7
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 13. Inductive Storage Time, tsi  
Figure 13 Bis. Inductive Storage Time, tsi  
600  
400  
200  
0
800  
600  
400  
I
= I  
T = 125°C  
T = 125°C  
B1 B2  
J
J
I
= I  
B1 B2  
V = 15 V  
CC  
V = 300 V  
T = 25°C  
J
T = 25°C  
J
V
= 15 V  
V = 300 V  
CC  
Z
Z
L = 200 µH  
C
L = 200 µH  
C
t
t
c
t
c
fi  
t
fi  
200  
0
1
4
7
4
7
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 14. Inductive Storage Time,  
tc & tfi @ IC/IB = 5  
Figure 15. Inductive Storage Time,  
tc & tfi @ IC/IB = 10  
http://onsemi.com  
6
BUH100  
TYPICAL SWITCHING CHARACTERISTICS  
4
3
2
200  
I = 7.5 A  
C
150  
100  
I = 5 A  
C
I = 7.5 A  
C
I
= I  
I = 5 A  
C
Boff B2  
I
= I  
B1 B2  
1
0
50  
0
V = 15 V  
V = 300 V  
CC  
V = 15 V  
V = 300 V  
CC  
T = 125°C  
T = 125°C  
T = 25°C  
J
Z
J
J
Z
L = 200 µH  
T = 25°C  
J
C
L = 200 µH  
C
2
4
6
8
10  
3
4
5
6
7
8
9
10  
h
FE  
, FORCED GAIN  
h
FE  
, FORCED GAIN  
Figure 16. Inductive Storage Time  
Figure 17. Inductive Fall Time  
800  
I = I  
B1 B2  
700  
600  
500  
V
= 15 V  
V = 300 V  
CC  
Z
L = 200 µH  
C
I = 7.5 A  
C
400  
300  
200  
100  
I = 5 A  
C
T = 125°C  
T = 25°C  
J
J
3
4
5
6
7
8
9
10  
h
FE  
, FORCED GAIN  
Figure 18. Inductive Crossover Time, tc  
http://onsemi.com  
7
BUH100  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
CE  
9
8
7
6
5
4
I
C
90% I  
C
t
fi  
dyn 1 µs  
t
si  
dyn 3 µs  
10% I  
C
10% V  
0 V  
V
clamp  
clamp  
t
c
90% I  
B
90% I  
I
B
B1  
3
2
1
0
1 µs  
I
B
3 µs  
TIME  
0
1
2
3
4
5
6
8
7
TIME  
Figure 19. Dynamic Saturation Voltage  
Measurements  
Figure 20. Inductive Switching Measurements  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I PEAK  
C
100 µF  
1 µF  
100 Ω  
3 W  
MTP8P10  
150 Ω  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
R
B1  
MPF930  
I 1  
B
MUR105  
MJE210  
MPF930  
I
+10 V  
out  
I
B
A
I 2  
B
50 Ω  
R
B2  
COMMON  
MTP12N10  
150 Ω  
3 W  
V
(BR)CEO(sus)  
L = 10 mH  
Inductive Switching RBSOA  
L = 200 µH L = 500 µH  
500 µF  
R
= ∞  
= 20 Volts  
= 100 mA  
R
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
B2  
CC  
B2  
B2  
1 µF  
V
V
CC  
V
CC  
I
R
B1  
desired I  
R selected for  
B1  
C(pk)  
-V  
off  
desired I  
B1  
B1  
http://onsemi.com  
8
BUH100  
TYPICAL THERMAL RESPONSE  
1
0.8  
0.6  
0.4  
SECOND BREAKDOWN  
DERATING  
THERMAL DERATING  
0.2  
0
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 21. Forward Bias Power Derating  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
T
may be calculated from the data in Figure 24. At any  
J(pk)  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turn–off with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating area  
(Figure 23). This rating is verified under clamped conditions  
so that the device is never subjected to an avalanche mode.  
breakdown. Safe operating area curves indicate I –V  
C
CE  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate. The data of Figure 22 is  
based on T = 25°C; T  
is variable depending on power  
C
J(pk)  
level. Second breakdown pulse limits are valid for duty  
cycles to 10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
Figure 22 may be found at any case temperature by using the  
appropriate curve on Figure 21.  
100  
12  
GAIN 5  
T
125°C  
L = 2 mH  
C
10  
8
C
1 µs  
1 ms  
5 ms  
10  
1
10 µs  
EXTENDED  
SOA  
DC  
6
4
0.1  
-5 V  
2
0
0 V  
-1.5 V  
600  
0.01  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
200  
300  
400  
500  
700  
800  
V
CE  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 22. Forward Bias Safe Operating Area  
Figure 23. Reverse Bias Safe Operating Area  
http://onsemi.com  
9
BUH100  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
JC  
= 1.25°C/W MAX  
θ
JC  
JC  
0.1  
θ
0.05  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
0.02  
SINGLE PULSE  
t
2
T
- T = P  
C
R (t)  
θ
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1
2
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 24. Typical Thermal Response (ZθJC(t)) for BUH100  
http://onsemi.com  
10  
BUH100  
PACKAGE DIMENSIONS  
TO–220AB  
CASE 221A–09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
2
3
U
H
G
H
J
K
L
N
Q
R
S
T
U
V
Z
L
R
J
V
G
D
N
0.080  
2.04  
http://onsemi.com  
11  
BUH100  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
BUH100/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY