BC419143B-DS-001PE [ETC]

BlueCoyreTM4-Flash plug-n-GoTM Data sheet; BlueCoyreTM4 - Flash插件正GoTM数据表
BC419143B-DS-001PE
型号: BC419143B-DS-001PE
厂家: ETC    ETC
描述:

BlueCoyreTM4-Flash plug-n-GoTM Data sheet
BlueCoyreTM4 - Flash插件正GoTM数据表

文件: 总97页 (文件大小:2939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device Features  
_äìÉ`çêÉ»QJcä~ëÜ=mäìÖJåJdç»  
®
ƒ
ƒ
Fully Qualified Bluetooth v2.0+EDR  
Single Chip Bluetooth  
Full Speed Bluetooth Operation with Full Piconet  
Support  
v2.0 + EDR System  
Advance Information Data Sheet For  
BC419143B  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Scatternet Support  
Low Power 1.8V operation  
10 x 10mm 96-ball LFBGA Package  
Minimum External Components  
Integrated 1.8V Regulator  
Dual UART Ports  
April 2006  
RF Plug-n-Go Package  
50Matched Connection to Antenna  
RoHS Compliant  
General Description  
Applications  
The _äìÉ`çêÉ»QJcä~ëÜ=mäìÖJåJdç» is a single  
chip radio and baseband IC for Bluetooth 2.4GHz  
systems. It is implemented in 0.18µm CMOS  
technology.  
ƒ
Automotive  
BC419143B contains 8Mbit of internal Flash memory.  
When used with CSR Bluetooth stack, it provides a  
fully compliant Bluetooth system to v2.0 + EDR of the  
specification for data and voice.  
BlueCore4-Flash Plug-n-Go has the same pinout and  
electrical characteristics as available in  
BlueCore4-ROM Plug-n-Go to enable development of  
custom code before committing to ROM. It also has  
the same pinout as BlueCore2-ROM Plug-n-Go and  
BlueCore2-Flash Plug-n-Go to keep compatibility.  
BlueCore4-Flash Plug-n-Go has been designed to  
reduce the number of external components required  
which ensures production costs are minimised. The  
0.8mm pitch BlueCore4-Flash Plug-n-Go can be  
used on either two or four layer PCB construction.  
The device incorporates auto-calibration and built-in  
self-test (BIST) routines to simplify development, type  
approval and production test. All hardware and  
device firmware is fully compliant with the Bluetooth  
v2.0 + EDR specification.  
SPI  
RAM  
UART/ USB  
Flash  
RF IN  
RF  
OUT  
2.4  
GHz  
Radio  
I/O  
PIO  
Baseband  
DSP  
MCU  
PCM  
XTAL  
System Architecture  
Data Sheet  
Advance InformationCSR PLC2006  
e2006BC419143B-ds-001P© 2006 CSR plc  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 1 of 97  
Contents  
1
2
3
Status Information .......................................................................................................................................... 7  
Key Features .................................................................................................................................................... 8  
Package Information ....................................................................................................................................... 9  
3.1 BC419143B Pinout Diagram ................................................................................................................... 9  
3.2 BC419143B-ANN-E4 Device Terminal Functions ................................................................................. 10  
Electrical Characteristics ............................................................................................................................. 14  
4.1 Power Consumption .............................................................................................................................. 19  
Radio Characteristics - Basic Data Rate ..................................................................................................... 20  
5.1 Temperature +20°C ............................................................................................................................... 20  
5.1.1 Transmitter ................................................................................................................................ 20  
5.1.2 Receiver .................................................................................................................................... 22  
5.2 Temperature -40°C ................................................................................................................................ 24  
5.2.1 Transmitter ................................................................................................................................ 24  
5.2.2 Receiver .................................................................................................................................... 24  
5.3 Temperature -25°C ................................................................................................................................ 25  
5.3.1 Transmitter ................................................................................................................................ 25  
5.3.2 Receiver .................................................................................................................................... 25  
5.4 Temperature +85°C ............................................................................................................................... 26  
5.4.1 Transmitter ................................................................................................................................ 26  
5.4.2 Receiver .................................................................................................................................... 26  
Radio Characteristics - Enhanced Data Rate ............................................................................................. 27  
6.1 Temperature +20°C ............................................................................................................................... 27  
6.1.1 Transmitter ................................................................................................................................ 27  
6.1.2 Receiver .................................................................................................................................... 28  
6.2 Temperature -40°C ................................................................................................................................ 29  
6.2.1 Transmitter ................................................................................................................................ 29  
6.2.2 Receiver .................................................................................................................................... 29  
6.3 Temperature -25°C ................................................................................................................................ 30  
6.3.1 Transmitter ................................................................................................................................ 30  
6.3.2 Receiver .................................................................................................................................... 30  
6.4 Temperature +85°C ............................................................................................................................... 31  
6.4.1 Transmitter ................................................................................................................................ 31  
6.4.2 Receiver .................................................................................................................................... 31  
Device Diagram ............................................................................................................................................ 32  
Description of Functional Blocks ................................................................................................................ 33  
8.1 RF Receiver ........................................................................................................................................... 33  
8.1.1 Low Noise Amplifier .................................................................................................................. 33  
8.1.2 Analogue to Digital Converter ................................................................................................... 33  
8.2 RF Transmitter ....................................................................................................................................... 33  
8.2.1 IQ Modulator ............................................................................................................................. 33  
8.2.2 Power Amplifier ......................................................................................................................... 33  
8.2.3 Auxiliary DAC ............................................................................................................................ 33  
8.3 Balun and Filter ..................................................................................................................................... 33  
8.4 RF Synthesiser ...................................................................................................................................... 33  
8.5 Clock Input and Generation ................................................................................................................... 33  
8.6 Baseband and Logic .............................................................................................................................. 33  
8.6.1 Memory Management Unit ....................................................................................................... 33  
8.6.2 Burst Mode Controller ............................................................................................................... 34  
8.6.3 Physical Layer Hardware Engine DSP ..................................................................................... 34  
4
5
6
7
8
Advance Information  
BC419143B-ds-001Pe  
Page 2 of 97  
© CSR plc 2006  
8.6.4 System RAM ............................................................................................................................. 34  
8.6.5 Flash Memory (8Mbit) ............................................................................................................... 34  
8.6.6 USB .......................................................................................................................................... 34  
8.6.7 Synchronous Serial Interface .................................................................................................... 34  
8.6.8 UART ........................................................................................................................................ 34  
8.7 Microcontroller ....................................................................................................................................... 34  
8.7.1 Programmable I/O .................................................................................................................... 34  
8.7.2 802.11 Co-Existence Interface ................................................................................................. 35  
CSR Bluetooth Software Stacks .................................................................................................................. 36  
9.1 BlueCore HCI Stack ............................................................................................................................. 36  
9.1.1 Key Features of the HCI Stack: Standard Bluetooth Functionality ........................................... 37  
9.1.2 Key Features of the HCI Stack: Extra Functionality .................................................................. 38  
9.2 BlueCore RFCOMM Stack .................................................................................................................... 39  
9.2.1 Key Features of the RFCOMM Stack ....................................................................................... 40  
9.3 BlueCore Virtual Machine Stack ............................................................................................................ 41  
9.4 BlueCore HID Stack .............................................................................................................................. 42  
9.5 Host-Side Software ................................................................................................................................ 43  
9.6 Device Firmware Upgrade ..................................................................................................................... 43  
9.7 BCHS Software ..................................................................................................................................... 43  
9.8 Additional Software for Other Embedded Applications .......................................................................... 43  
9.9 CSR Development Systems .................................................................................................................. 43  
9
10 Enhanced Data Rate ..................................................................................................................................... 44  
10.1 Enhanced Data Rate Baseband ............................................................................................................ 44  
10.2 Enhanced Data Rate π/4 DQPSK .......................................................................................................... 44  
10.3 Enhanced Data Rate 8DPSK ................................................................................................................ 45  
11 Device Terminal Descriptions ...................................................................................................................... 47  
11.1 RF Ports ................................................................................................................................................ 47  
11.1.1 RF Plug-n-Go ............................................................................................................................ 47  
11.1.2 Single-Ended Input (RF_IN) ..................................................................................................... 48  
11.2 External Reference Clock Input (XTAL_IN) ........................................................................................... 49  
11.2.1 External Mode ........................................................................................................................... 49  
11.2.2 XTAL_IN Impedance in External Mode .................................................................................... 49  
11.2.3 Clock Timing Accuracy ............................................................................................................. 49  
11.2.4 Clock Start-Up Delay ................................................................................................................ 50  
11.2.5 Input Frequencies and PS Key Settings ................................................................................... 51  
11.3 Crystal Oscillator (XTAL_IN, XTAL_OUT) ............................................................................................. 52  
11.3.1 XTAL Mode ............................................................................................................................... 52  
11.3.2 Load Capacitance ..................................................................................................................... 53  
11.3.3 Frequency Trim ......................................................................................................................... 54  
11.3.4 Transconductance Driver Model ............................................................................................... 55  
11.3.5 Negative Resistance Model ...................................................................................................... 55  
11.3.6 Crystal PS Key Settings ............................................................................................................ 56  
11.3.7 Crystal Oscillator Characteristics .............................................................................................. 56  
11.4 UART Interface ...................................................................................................................................... 59  
11.4.1 UART Bypass ........................................................................................................................... 61  
11.4.2 UART Configuration While RESET is Active ............................................................................ 61  
11.4.3 UART Bypass Mode ................................................................................................................. 61  
11.4.4 Current Consumption in UART Bypass Mode .......................................................................... 61  
11.5 USB Interface ........................................................................................................................................ 62  
11.5.1 USB Data Connections ............................................................................................................. 62  
11.5.2 USB Pull-Up Resistor ............................................................................................................... 62  
11.5.3 USB Power Supply ................................................................................................................... 62  
Advance Information  
BC419143B-ds-001Pe  
Page 3 of 97  
© CSR plc 2006  
11.5.4 Self-Powered Mode .................................................................................................................. 63  
11.5.5 Bus-Powered Mode .................................................................................................................. 63  
11.5.6 Suspend Current ....................................................................................................................... 64  
11.5.7 Detach and Wake_Up Signalling .............................................................................................. 64  
11.5.8 USB Driver ................................................................................................................................ 65  
11.5.9 USB 1.1 Compliance ................................................................................................................ 65  
11.5.10 USB 2.0 Compatibility ............................................................................................................... 65  
11.6 Serial Peripheral Interface ..................................................................................................................... 66  
11.6.1 Instruction Cycle ....................................................................................................................... 66  
11.6.2 Writing to the Device ................................................................................................................. 67  
11.6.3 Reading from the Device .......................................................................................................... 67  
11.6.4 Multi-Slave Operation ............................................................................................................... 67  
11.7 PCM CODEC Interface .......................................................................................................................... 68  
11.7.1 PCM Interface Master/Slave ..................................................................................................... 68  
11.7.2 Long Frame Sync ..................................................................................................................... 69  
11.7.3 Short Frame Sync ..................................................................................................................... 69  
11.7.4 Multi-slot Operation ................................................................................................................... 70  
11.7.5 GCI Interface ............................................................................................................................ 70  
11.7.6 Slots and Sample Formats ....................................................................................................... 71  
11.7.7 Additional Features ................................................................................................................... 72  
11.7.8 PCM Timing Information ........................................................................................................... 73  
11.7.9 PCM Configuration ................................................................................................................... 76  
11.8 I/O Parallel Ports ................................................................................................................................... 80  
11.8.1 PIO Defaults ............................................................................................................................. 80  
11.9 TCXO Enable OR Function ................................................................................................................... 82  
11.10RESET and RESETB ............................................................................................................................ 83  
11.10.1 Pin States on Reset .................................................................................................................. 84  
11.10.2 Status after Reset ..................................................................................................................... 84  
11.11Power Supply ........................................................................................................................................ 85  
11.11.1 Voltage Regulator (Plug-n-Go) ................................................................................................. 85  
11.11.2 Sequencing ............................................................................................................................... 85  
11.11.3 Sensitivity to Disturbances ........................................................................................................ 85  
11.11.4 VREG_EN Pin .......................................................................................................................... 85  
12 Product Reliability Tests .............................................................................................................................. 86  
13 Product Reliability Tests for BlueCore4-Flash Plug-n-Go Automotive .................................................... 87  
13.1 AEC-Q100 ............................................................................................................................................. 87  
14 Application Schematic .................................................................................................................................. 88  
15 Package Dimensions .................................................................................................................................... 89  
15.1 10 x 10 LFBGA 96-Ball 1.6mm Package .............................................................................................. 89  
16 RoHS Statement with a List of Banned Materials ...................................................................................... 90  
16.1 RoHS Statement .................................................................................................................................... 90  
16.1.1 List of Banned Materials ........................................................................................................... 90  
17 Ordering Information .................................................................................................................................... 91  
17.1 BlueCore4-Flash Plug-n-Go .................................................................................................................. 91  
18 Contact Information ...................................................................................................................................... 92  
19 Document References .................................................................................................................................. 93  
20 Terms and Definitions .................................................................................................................................. 94  
21 Document History ......................................................................................................................................... 97  
Advance Information  
BC419143B-ds-001Pe  
Page 4 of 97  
© CSR plc 2006  
List of Figures  
Figure 3.1  
BlueCore4-Flash Plug-n-Go 10 x 10mm LFBGA Package........................................................... 9  
BlueCore4-Flash Plug-n-Go Device Diagram............................................................................. 32  
BlueCore HCI Stack.................................................................................................................... 36  
BlueCore RFCOMM Stack.......................................................................................................... 39  
Virtual Machine ........................................................................................................................... 41  
HID Stack.................................................................................................................................... 42  
Basic Rate and Enhanced Data Rate Packet Structure.............................................................. 44  
π/4 DQPSK Constellation Pattern............................................................................................... 45  
8DPSK Constellation Pattern...................................................................................................... 46  
Circuit for RF_CONNECT........................................................................................................... 47  
Circuit RF_IN .............................................................................................................................. 48  
TCXO Clock Accuracy ................................................................................................................ 49  
Crystal Driver Circuit................................................................................................................... 52  
Crystal Equivalent Circuit............................................................................................................ 52  
Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency...................... 56  
Crystal Driver Transconductance vs. Driver Level Register Setting ........................................... 57  
Crystal Driver Negative Resistance as a Function of Drive Level Setting .................................. 58  
Universal Asynchronous Receiver.............................................................................................. 59  
Break Signal................................................................................................................................ 60  
UART Bypass Architecture ......................................................................................................... 61  
USB Connections for Self-Powered Mode.................................................................................. 63  
USB Connections for Bus-Powered Mode.................................................................................. 64  
USB_DETACH and USB_WAKE_UP Signal.............................................................................. 65  
SPI Write Operation.................................................................................................................... 67  
SPI Read Operation.................................................................................................................... 67  
BlueCore4-Flash Plug-n-Go as PCM Interface Master............................................................... 68  
BlueCore4-Flash Plug-n-Go as PCM Interface Slave................................................................. 69  
Long Frame Sync (Shown with 8-bit Companded Sample)........................................................ 69  
Short Frame Sync (Shown with 16-bit Sample).......................................................................... 70  
Multi-slot Operation with Two Slots and 8-bit Companded Samples.......................................... 70  
GCI Interface............................................................................................................................... 71  
16-Bit Slot Length and Sample Formats..................................................................................... 72  
PCM Master Timing Long Frame Sync....................................................................................... 74  
PCM Master Timing Short Frame Sync ...................................................................................... 74  
PCM Slave Timing Long Frame Sync......................................................................................... 75  
PCM Slave Timing Short Frame Sync ........................................................................................ 76  
Example TCXO Enable OR Function.......................................................................................... 82  
Application Circuit for Radio Characteristics Specification ......................................................... 88  
BlueCore4-Flash Plug-n-Go 96-Ball LFBGA 1.6mm Package Dimensions................................ 89  
Figure 7.1  
Figure 9.1  
Figure 9.2  
Figure 9.3  
Figure 9.4  
Figure 10.1  
Figure 10.2  
Figure 10.3  
Figure 11.1  
Figure 11.2  
Figure 11.3  
Figure 11.4  
Figure 11.5  
Figure 11.6  
Figure 11.7  
Figure 11.8  
Figure 11.9  
Figure 11.10  
Figure 11.11  
Figure 11.12  
Figure 11.13  
Figure 11.14  
Figure 11.15  
Figure 11.16  
Figure 11.17  
Figure 11.18  
Figure 11.19  
Figure 11.20  
Figure 11.21  
Figure 11.22  
Figure 11.23  
Figure 11.24  
Figure 11.25  
Figure 11.26  
Figure 11.27  
Figure 11.28  
Figure 14.1  
Figure 15.1  
List of Tables  
Table 10.1  
Table 10.2  
Table 10.3  
Table 11.1  
Table 11.2  
Table 11.3  
Table 11.4  
Table 11.5  
Data Rate Schemes.................................................................................................................... 44  
2-Bits Determine Phase Shift Between Consecutive Symbols ................................................... 45  
3-Bits Determine Phase Shift Between Consecutive Symbols ................................................... 46  
External Clock Specifications...................................................................................................... 49  
PS Key Values for CDMA/3G Phone TCXO Frequencies .......................................................... 51  
Crystal Specification ................................................................................................................... 53  
Possible UART Settings.............................................................................................................. 59  
Standard Baud Rates.................................................................................................................. 60  
Advance Information  
BC419143B-ds-001Pe  
Page 5 of 97  
© CSR plc 2006  
Table 11.6  
Table 11.7  
Table 11.8  
Table 11.9  
Table 11.10  
Table 11.11  
Table 11.12  
USB Interface Component Values.............................................................................................. 63  
Instruction Cycle for an SPI Transaction..................................................................................... 66  
PCM Master Timing .................................................................................................................... 73  
PCM Slave Timing ...................................................................................................................... 75  
PSKEY_PCM_CONFIG32 Description....................................................................................... 78  
PSKEY_PCM_LOW_JITTER_CONFIG Description................................................................... 79  
Pin States of BlueCore4-Flash Plug-n-Go on Reset................................................................... 84  
List of Equations  
Equation 11.1  
Equation 11.2  
Equation 11.3  
Equation 11.4  
Equation 11.5  
Equation 11.6  
Equation 11.7  
Equation 11.8  
Equation 11.9  
Load Capacitance....................................................................................................................... 53  
Trim Capacitance........................................................................................................................ 54  
Frequency Trim........................................................................................................................... 54  
Pullability..................................................................................................................................... 54  
Transconductance Required for Oscillation................................................................................ 55  
Equivalent Negative Resistance ................................................................................................. 55  
Baud Rate................................................................................................................................... 60  
PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock....................... 76  
PCM_SYNC Frequency Relative to PCM_CLK.......................................................................... 76  
Advance Information  
BC419143B-ds-001Pe  
Page 6 of 97  
© CSR plc 2006  
Status Information  
1 Status Information  
The status of this Data Sheet is Advance Information.  
CSR Product Data Sheets progress according to the following format:  
Advance Information  
Information for designers concerning CSR product in development. All values specified are the target values of the  
design. Minimum and maximum values specified are only given as guidance to the final specification limits and must  
not be considered as the final values.  
All detailed specifications including pinouts and electrical specifications may be changed by CSR without notice.  
Pre-Production Information  
Pinout and mechanical dimension specifications finalised. All values specified are the target values of the design.  
Minimum and maximum values specified are only given as guidance to the final specification limits and must not be  
considered as the final values.  
All electrical specifications may be changed by CSR without notice.  
Production Information  
Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications.  
Production Data Sheets supersede all previous document versions.  
Life Support Policy and Use in Safety-Critical Applications  
CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done  
at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications.  
RoHS Compliance  
BlueCore4-Flash Plug-n-Go devices meet the requirements of Directive 2002/95/EC of the European Parliament and  
of the Council on the Restriction of Hazardous Substance (RoHS).  
Trademarks, Patents and Licenses  
Unless otherwise stated, words and logos marked with or ® are trademarks registered or owned by CSR plc or its  
affiliates. Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other  
products, services and names used in this document may have been trademarked by their respective owners.  
The publication of this information does not imply that any license is granted under any patent or other rights owned  
by CSR plc.  
CSR reserves the right to make technical changes to its products as part of its development programme.  
While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept  
responsibility for any errors.  
Advance Information  
BC419143B-ds-001Pe  
Page 7 of 97  
© CSR plc 2006  
Key Features  
2 Key Features  
Radio  
Baseband and Software  
ƒ
ƒ
ƒ
Direct 50connection to a common TX/RX antenna  
ƒ
ƒ
Internal programmed 8Mbit flash for complete  
system solution  
Bluetooth v2.0+EDR specification compliant  
48kbyte on-chip RAM allows full speed Bluetooth  
data transfer, mixed voice and data, plus full seven  
slave piconet operation  
Extensive built-in self-test minimises production test  
time  
ƒ
ƒ
No external trimming is required in production  
Antenna matching and filtering within IC  
ƒ
ƒ
Logic for forward error correction, header error  
control, access code correlation, demodulation,  
CRC, encryption bitstream generation, whitening  
and transmit pulse shaping  
Transmitter  
ƒ
ƒ
+6dBm RF transmit power with level control from  
on-chip 6-bit DAC over a dynamic range >30dB  
Transcoders for A-law, µ-law and linear voice from  
host and A-law, µ-law and CVSD voice over air  
Class 2 and Class 3 support without the need for an  
external power amplifier or TX/RX switch  
Physical Interfaces  
ƒ
ƒ
ƒ
ƒ
ƒ
Synchronous serial interface up to 4M baud for  
system debugging  
Receiver  
ƒ
ƒ
Integrated channel filters  
UART interface with programmable baud rate up to  
3M baud with an optional bypass mode  
Digital demodulator for improved sensitivity and  
co-channel rejection  
Full speed USB interface supports OHCI and UHCI  
host interfaces. Compliant with USB v2.0  
ƒ
ƒ
Real time digitised RSSI available on HCI interface  
Fast AGC for enhanced dynamic range  
Synchronous bi-directional serial programmable  
audio interface  
Synthesiser  
Optional I2C™ compatible interface  
ƒ
ƒ
ƒ
Fully integrated synthesiser requires no external  
VCO varactor diode, resonator or loop filter  
Bluetooth Stack  
Compatible with crystals between 8 and 32MHz (in  
multiples of 250kHz) or an external clock  
CSR's Bluetooth Protocol Stack runs on-chip in a variety  
of configurations:  
Accepts 7.68, 14.4, 15.36, 16.2, 16.8, 19.2, 19.44,  
19.68, 19.8 and 38.4MHz TCXO frequencies for  
GSM and CDMA devices with sinusoidal or logic  
level signals  
ƒ
ƒ
ƒ
Standard HCI (UART or USB)  
Fully embedded to RFCOMM  
Customer specific builds with embedded application  
code  
Auxiliary Features  
Package Options  
96-ball LFBGA 10 x 10 x 1.6mm 0.8mm pitch  
ƒ
ƒ
Crystal oscillator with built-in digital trimming  
ƒ
Power management includes digital shutdown, and  
wake up commands with an integrated low power  
oscillator for ultra low Park/Sniff/Hold mode  
ƒ
ƒ
Clock request output to control external clock  
On-chip linear regulator, producing 1.8V output from  
2.2V to 4.2V input  
ƒ
ƒ
ƒ
Power on reset cell detects low supply voltage  
Arbitrary power supply sequencing permitted  
8-bit ADC and DAC available to application  
Advance Information  
BC419143B-ds-001Pe  
Page 8 of 97  
© CSR plc 2006  
Package Information  
3 Package Information  
3.1  
BC419143B Pinout Diagram  
Figure 3.1: BlueCore4-Flash Plug-n-Go 10 x 10mm LFBGA Package  
Advance Information  
BC419143B-ds-001Pe  
Page 9 of 97  
© CSR plc 2006  
Package Information  
3.2  
BC419143B-ANN-E4 Device Terminal Functions  
Radio  
Ball  
Pad Type  
Description  
RF_IN  
D2  
Analogue  
Single ended receiver input  
Bi-directional with  
PIO[0]/RXEN  
PIO[1]/TXEN  
D3  
C4  
programmable strength  
internal pull-up/down  
Programmable input/output line  
Programmable input/output line  
Bi-directional with  
programmable strength  
internal pull-up/down  
BAL_MATCH  
RF_CONNECT  
AUX_DAC  
A1  
B1  
C2  
Analogue  
Analogue  
Analogue  
Tie to VSS_RADIO  
50RF matched I/O  
Voltage DAC output  
Synthesiser and  
Oscillator  
Ball  
Pad Type  
Description  
XTAL_IN  
L3  
L4  
Analogue  
Analogue  
For crystal or external clock input  
Drive for crystal  
XTAL_OUT  
PCM Interface  
Ball  
Pad Type  
Description  
CMOS output, tristatable with  
weak internal pull-down  
PCM_OUT  
G10  
Synchronous data output  
CMOS input, with weak  
internal pull-down  
PCM_IN  
H11  
G11  
H10  
Synchronous data input  
Synchronous data sync  
Synchronous data clock  
Bi-directional with weak  
internal pull-down  
PCM_SYNC  
PCM_CLK  
Bi-directional with weak  
internal pull-down  
USB and UART  
Ball  
Pad Type  
Description  
CMOS output, tri-state with  
weak internal pull-up  
UART_TX  
J10  
UART data output active low  
CMOS input with weak internal  
pull-down  
UART_RX  
UART_RTS  
UART_CTS  
J11  
L11  
K11  
UART data input active low (idle status high)  
UART request to send active low  
UART clear to send active low  
CMOS output, tristatable with  
weak internal pull-up  
CMOS input with weak internal  
pull-down  
USB data plus with selectable internal 1.5kΩ  
pull-up resistor  
USB_DP  
USB_DN  
L9  
L8  
Bi-directional  
Bi-directional  
USB data minus  
Advance Information  
BC419143B-ds-001Pe  
Page 10 of 97  
© CSR plc 2006  
Package Information  
Test and Debug  
Ball  
Pad Type  
Description  
CMOS input with weak internal Reset if high. Input debounced so must be  
pull-down high for >5ms to cause a reset  
RESET  
F9  
CMOS input with weak internal Reset if low. Input debounced so must be low  
pull-up for >5ms to cause a reset  
RESETB  
SPI_CSB  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
G9  
CMOS input with weak internal Chip select for Serial Peripheral Interface,  
C10  
D10  
D11  
C11  
pull-up  
active low  
CMOS input with weak internal  
pull-down  
Serial Peripheral Interface clock  
CMOS input with weak internal  
pull-down  
Serial Peripheral Interface data input  
Serial Peripheral Interface data output  
CMOS output, tristatable with  
weak internal pull-down  
CMOS input with strong  
internal pull-down  
TEST_EN  
E9  
For test purposes only (leave unconnected)  
Not available for BlueCore4-Flash Plug-n-Go  
FLASH_EN  
B10  
No Connect  
Advance Information  
BC419143B-ds-001Pe  
Page 11 of 97  
© CSR plc 2006  
Package Information  
PIO Port  
Ball  
Pad Type  
Description  
Bi-directional with  
PIO[2]  
C3  
programmable strength  
internal pull-up/down  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
Bi-directional with  
programmable strength  
internal pull-up/down  
PIO[3]  
PIO[4]  
PIO[5]  
PIO[6]  
PIO[7]  
PIO[8]  
PIO[9]  
PIO[10]  
PIO[11]  
B2  
H9  
J8  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
K8  
K9  
B3  
B4  
A4  
A5  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
Bi-directional with  
programmable strength  
internal pull-up/down  
AIO[0]  
AIO[1]  
AIO[2]  
K5  
J6  
Bi-directional  
Bi-directional  
Bi-directional  
Programmable input/output line  
Programmable input/output line  
Programmable input/output line  
K7  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 12 of 97  
Package Information  
Power Supplies and  
Control  
Ball  
L7  
Pad Type  
Description  
VREG_IN  
VREG_EN  
Regulator input  
Digital input  
Linear regulator voltage input  
Active high, regulator enable pin with internal  
pull-up  
J2  
VDD_USB  
VDD_PIO  
L10  
A3  
VDD  
VDD  
Positive supply for UART/USB ports  
Positive supply for PIO and AUX DAC(a)  
Positive supply for all other digital  
input/output ports(b)  
VDD_PADS  
VDD_DIG  
E11  
L6  
VDD  
Positive 1.8V supply output for VDD_MEM  
and VDD_CORE  
Regulator output  
VDD  
B11,  
K6  
Positive supply for internal memory and AIO  
ports  
VDD_MEM  
VDD_CORE  
VDD_RADIO  
F11  
E3  
VDD  
VDD  
Positive supply for internal digital circuitry  
Positive supply for RF circuitry  
Positive supply for analogue circuitry and  
1.8V regulated output  
VDD_ANA  
L5  
VDD/Regulator output  
VDD  
VDD_BALUN  
F1  
Positive supply for balun  
A2,  
VSS_PADS  
E10, VSS  
K10  
Ground connection for input/output  
Ground connections for AIO and Extended  
PIO ports  
VSS_MEM  
VSS_CORE  
VSS_RADIO  
D9, J9 VSS  
F10  
VSS  
VSS  
Ground connection for internal digital circuitry  
Ground connections for RF circuitry  
E2,F3,  
G2  
G3, H2  
H3  
Ground connections for VCO and  
synthesiser  
VSS_VCO  
VSS_ANA  
VSS  
VSS  
VSS  
K4  
Ground connection for analogue circuitry  
Ground connection for balun  
G1,J1,  
K1  
VSS_BALUN  
(a)  
Positive supply for PIO[3:0] and PIO[11:8]  
(b)  
Positive supply for SPI/PCM ports and PIO[7:4]  
Unconnected Terminals Ball  
A6, A7, A8, A9, A10, A11, B5, B6, B7,  
Description  
N/C  
B8, B9, C1, C5, C6, C7, C8, C9, D1, E1, Leave unconnected  
F2, H1, J3, J4, J5, J7, K2, K3, L1, L2  
Advance Information  
BC419143B-ds-001Pe  
Page 13 of 97  
© CSR plc 2006  
Electrical Characteristics  
4 Electrical Characteristics  
Absolute Maximum Ratings  
Rating  
Min  
Max  
Storage Temperature  
-40°C  
+125°C  
Supply Voltage: VDD_MEM, VDD_RADIO, VDD_ANA,  
VDD_BAL and VDD_CORE  
-0.4V  
2.2V  
Supply Voltage: VDD_PADS, VDD_PIO and VDD_USB  
Supply Voltage: VREG_IN  
-0.4V  
-0.4V  
3.7V  
5.6V  
Other Terminal Voltages  
VSS-0.4V  
VDD+0.4V  
Recommended Operating Conditions  
Operating Condition  
Min  
Max  
Operating Temperature Range  
Guaranteed RF performance range (a)  
-40°C  
-25°C  
+85°C  
+85°C  
Supply Voltage: VDD_MEM, VDD_RADIO, VDD_ANA  
and VDD_CORE  
1.7V  
1.9V  
Supply Voltage: VDD_PADS, VDD_PIO and VDD_USB  
Supply Voltage: VREG_IN  
1.7V  
2.2V  
3.6V  
4.2V(b)  
(a)  
Typical figures are given for RF performance between -40°C and +85°C.  
(b)  
The device will operate without damage with VREG_IN as high as 5.6V, however the RF performance is not guaranteed  
above 4.2V.  
Advance Information  
BC419143B-ds-001Pe  
Page 14 of 97  
© CSR plc 2006  
Electrical Characteristics  
Input/Output Terminal Characteristics (Supply)  
Linear Regulator  
Min  
Typ  
Max  
Unit  
Normal Operation  
Output Voltage(a) (Iload = 70 mA)  
Temperature Coefficient  
1.70  
1.78  
1.85  
+250  
1
V
ppm/°C  
mV rms  
mV/A  
µs  
-250  
-
-
Output Noise(b) (c)  
-
Load Regulation (Iload < 100 mA)  
Settling Time(b) (d)  
-
-
-
50  
-
50  
Maximum Output Current  
Minimum Load Current  
140  
5
-
-
mA  
-
-
µA  
Input Voltage  
-
-
4.2(e)  
350  
50  
V
Dropout Voltage (Iload = 70 mA)  
Quiescent Current (excluding Ioad, Iload < 1mA)  
Low Power Mode(f)  
-
-
mV  
25  
35  
µA  
Quiescent Current (excluding Ioad, Iload < 100µA)  
Disabled Mode(g)  
4
7
10  
µA  
µA  
Quiescent Current  
1.5  
2.5  
3.5  
(a)  
For optimum performance, the VDD_ANA ball adjacent to VREG_IN should be used for regulator output,  
Regulator output connected to 47nF pure and 4.7µF 2.2ESR capacitors.  
Frequency range is 100Hz to 100kHz.  
(b)  
(c)  
(d)  
(e)  
1mA to 70mA pulsed load.  
Operation up to 5.6V is permissible without damage and without the output voltage rising sufficiently to damage the rest  
of BlueCore4-Flash Plug-n-Go, but output regulation and other specifications are no longer guaranteed at input voltages  
in excess of 4.2V.  
(f)  
Low power mode is entered and exited automatically when the chip enters/leaves Deep Sleep mode.  
Regulator is disabled when VREG_EN is pulled low. It is also disabled when VREG_IN is either open circuit or driven to  
the same voltage as VDD_ANA.  
(g)  
Advance Information  
BC419143B-ds-001Pe  
Page 15 of 97  
© CSR plc 2006  
Electrical Characteristics  
Input/Output Terminal Characteristics (Digital)  
Digital Terminals  
Min  
Typ  
Max  
Unit  
Input Voltage Levels  
2.7V VDD 3.0V  
VIL input logic level low  
-0.4  
-0.4  
-
-
-
+0.8  
+0.4  
V
V
V
1.7V VDD 1.9V  
VIH input logic level high  
0.7VDD  
VDD+0.4  
Output Voltage Levels  
V
OL output logic level low,  
(lo = 4.0mA), 2.7V VDD 3.0V  
OL output logic level low,  
-
-
-
-
-
0.2  
0.4  
-
V
V
V
V
V
-
(lo = 4.0mA), 1.7V VDD 1.9V  
VOH output logic level high,  
(lo = -4.0mA), 2.7V VDD 3.0V  
VOH output logic level high,  
(lo = -4.0mA), 1.7V VDD 1.9V  
Input and Tri-state Current with:  
Strong pull-up  
VDD-0.2  
VDD-0.4  
-
-100  
+10  
-5.0  
+0.2  
-1  
-40  
+40  
-1.0  
+1.0  
0
-10  
+100  
-0.2  
+5.0  
+1  
µA  
µA  
µA  
µA  
µA  
pF  
Strong pull-down  
Weak pull-up  
Weak pull-down  
I/O pad leakage current  
CI Input Capacitance  
1.0  
-
5.0  
USB Terminals  
Min  
Typ  
Max  
Unit  
VDD_USB for correct USB operation  
Input Threshold  
3.1  
3.6  
V
V
IL input logic level low  
-
-
-
0.3VDD_USB  
-
V
V
VIH input logic level high  
Input Leakage Current  
VSS_PADS < VIN < VDD_USB(a)  
CI Input capacitance  
0.7VDD_USB  
-1  
1
-
5
µA  
2.5  
10.0  
pF  
Output Voltage Levels to Correctly Terminated  
USB Cable  
VOL output logic level low  
VOH output logic level high  
0.0  
2.8  
-
-
0.2  
V
V
VDD_USB  
(a)  
Internal USB pull-up disabled  
Advance Information  
BC419143B-ds-001Pe  
Page 16 of 97  
© CSR plc 2006  
Electrical Characteristics  
Power-on Reset  
Min  
1.40  
1.50  
0.05  
Typ  
1.50  
1.60  
0.10  
Max  
Unit  
V
VDD_CORE falling threshold  
VDD_CORE rising threshold  
Hysteresis  
1.60  
1.70  
0.15  
V
V
Auxiliary ADC  
Resolution  
Min  
Typ  
Max  
Unit  
-
-
8
Bits  
Input voltage range  
(LSB size = VDD_ANA/255)  
Accuracy  
0
-
VDD_ANA  
V
INL  
-1  
-
1
1
LSB  
LSB  
(Guaranteed monotonic)  
Offset  
DNL  
0
-
-
-1  
1
LSB  
Gain Error  
-0.8  
-
0.8  
-
%
Input Bandwidth  
Conversion time  
Sample rate(a)  
-
-
-
100  
2.5  
-
kHz  
-
µs  
700  
Samples/s  
(a)  
ADC is accessed through the VM function. The sample rate given is achieved as part of this function.  
Auxiliary DAC  
Min  
-
Typ  
Max  
8
Unit  
Bits  
mV  
Resolution  
-
Average output step size(a)  
Output Voltage  
12.5  
14.5  
17.0  
monotonic(a)  
Voltage range (IO=0mA)  
Current range  
VSS_PADS  
-
-
-
-
-
-
-
-
VDD_PIO  
V
mA  
V
-10.0  
0.1  
Minimum output voltage (IO=100µA)  
Maximum output voltage (IO=10mA)  
High Impedance leakage current  
Offset  
0.0  
0.2  
VDD_PIO-0.3  
VDD_PIO  
V
-1  
-220  
-2  
1
120  
2
µA  
mV  
LSB  
µs  
Integral non-linearity(a)  
Settling time (50pF load)  
-
10  
(a)  
Specified for an output voltage between 0.2V and VDD_PIO -0.2V. Output is high impedance when chip is in Deep Sleep  
mode.  
Advance Information  
BC419143B-ds-001Pe  
Page 17 of 97  
© CSR plc 2006  
Electrical Characteristics  
Crystal Oscillator  
Crystal frequency(a)  
Digital trim range(b)  
Trim step size(b)  
Min  
8.0  
5.0  
-
Typ  
-
Max  
Unit  
MHz  
pF  
32.0  
8.0  
-
6.2  
0.1  
-
pF  
Transconductance  
Negative resistance(c)  
External Clock  
2.0  
870  
-
mS  
1500  
2400  
Input frequency(d)  
7.5  
-
-
40.0  
MHz  
V pk-pk  
ps rms  
kΩ  
Clock input level(e)  
Allowable Jitter  
0.2  
VDD_ANA  
-
-
-
-
15  
-
XTAL_IN input impedance  
XTAL_IN input capacitance  
-
7
-
pF  
(a)  
Integer multiple of 250kHz  
(b)  
The difference between the internal capacitance at minimum and maximum settings of the internal digital trim.  
XTAL frequency = 16MHz; XTAL C0 = 0.75pF; XTAL load capacitance = 8.5pF.  
(c)  
(d)  
Clock input can be any frequency between 8MHz and 40MHz in steps of 250kHz plus CDMA/3G TCXO frequencies of  
7.68, 14.44, 15.36, 16.2, 16.8, 19.2, 19.44, 19.68, 19.8 and 38.4MHz.  
(e)  
Clock input can be either sinusoidal or square wave. If the peaks of the signal are below VSS_ANA or above VDD_ANA.  
A DC blocking capacitor is required between the signal and XTAL_IN.  
Advance Information  
BC419143B-ds-001Pe  
Page 18 of 97  
© CSR plc 2006  
Electrical Characteristics  
4.1  
Power Consumption  
Typical Average Current Consumption  
VDD=1.8V  
Mode  
Temperature = +20°C  
Output Power = +4dBm  
Average  
21  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
SCO connection HV3 (30ms interval Sniff Mode) (Slave)  
SCO connection HV3 (30ms interval Sniff Mode) (Master)  
SCO connection HV3 (No Sniff Mode) (Slave)  
SCO connection HV1 (Slave)  
21  
28  
42  
SCO connection HV1 (Master)  
42  
ACL data transfer 115.2kbps UART no traffic (Master)  
ACL data transfer 115.2kbps UART no traffic (Slave)  
ACL data transfer 720kbps UART (Master or Slave)  
ACL data transfer 720kbps USB (Master or Slave)  
ACL connection, Sniff Mode 40ms interval, 38.4kbps UART  
ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART  
Parked Slave, 1.28s beacon interval, 38.4kbps UART  
Standby Mode (Connected to host, no RF activity)  
Reset (RESET high or RESETB low)  
5
22  
45  
45  
3.2  
0.45  
0.55  
47.0  
15.0  
µA  
Typical Peak Current at +20°C  
Device Activity/State  
Current (mA)  
Peak Current during cold boot (100ms sampling interval)  
Peak TX Current Average across burst)  
Peak RX Current  
-
-
-
-
Average RX Current across burst  
Conditions  
VREG_IN, VDD_PIO, VDD_PADS  
Host Interface  
-
-
-
-
-
-
-
-
Baud Rate  
Clock Source  
Output Power  
Receive Sensitivity  
Device Mode  
Packet Type  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 19 of 97  
Radio Characteristics - Basic Data Rate  
5 Radio Characteristics - Basic Data Rate  
5.1  
Temperature +20°C  
5.1.1 Transmitter  
Radio Characteristics  
VDD = 1.8V  
Temperature = +20°C  
Bluetooth  
Specification  
Min  
Typ  
2.5  
1.5  
Max  
Unit  
dBm  
dB  
Maximum RF transmit power(a) (b)  
-
-
-
-
-6 to +4(c)  
RF power variation over temperature  
range with compensation enabled(±)(d)  
-
RF power variation over temperature  
range with compensation disabled(±)(d)  
-
2.5  
-
-
dB  
RF power control range  
RF power range control resolution(e)  
20dB bandwidth for modulated carrier  
Adjacent channel transmit power  
F = F0 ± 2MHz(f) (g)  
-
-
-
35  
0.5  
780  
-
-
-
16  
-
dB  
dB  
1000  
kHz  
-
-
-
-40  
-45  
-50  
-
-
-
-20  
-40  
-40  
dBm  
dBm  
dBm  
Adjacent channel transmit power  
F = F0 ± 3MHz(f) (g)  
Adjacent channel transmit power  
F = F0 ± > 3MHz(f) (g)  
f1avg Maximum Modulation  
f2max Minimum Modulation  
f1avg/f2avg  
-
-
-
-
-
-
-
-
-
165  
150  
0.97  
6
-
-
-
-
-
-
-
-
-
140<f1avg<175  
115  
kHz  
kHz  
0.80  
±75  
-
Initial carrier frequency tolerance  
Drift Rate  
kHz  
7
20  
kHz/50µs  
kHz  
Drift (single slot packet)  
Drift (five slot packet)  
8
25  
9
40  
kHz  
2
nd Harmonic Content  
rd Harmonic Content  
TBD  
TBD  
-30  
dBm  
dBm  
3
-30  
(a)  
The BlueCore4-Flash Plug-n-Go firmware maintains the transmit power within Bluetooth v2.0+EDR specification limits  
Measurement using PSKEY_LC_MAX_TX_POWER setting corresponding to a PSKEY_LC_POWER_TABLE power  
table entry = 63  
(b)  
(c)  
(d)  
Class 2 RF transmit power range, Bluetooth specification v2.0+EDR  
These parameters are dependent on matching circuit used, and its behaviour over temperature, therefore these  
parameters are not under CSR's direct control  
(e)  
(f)  
Resolution guaranteed over the range -5dB to -25dB relative to maximum power for Tx Level > 20  
Measured at F0 = 2441MHz  
(g)  
BlueCore4-Flash Plug-n-Go guaranteed to meet ACP performance in Bluetooth v2.0+EDR specification, three exceptions  
allowed.  
Advance Information  
BC419143B-ds-001Pe  
Page 20 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
Radio Characteristics  
VDD = 1.8V  
Frequency (GHz)  
0.869 - 0.894(a)  
0.869 - 0.894(b)  
0.925 - 0.960(a)  
1.570 - 1.580(c)  
Temperature = +20°C  
Min  
Typ  
TBD  
TBD  
TBD  
TBD  
Max  
Cellular Band  
GSM 850  
CDMA 850  
GSM 900  
GPS  
Unit  
-
-
-
-
-
-
-
-
Emitted power in cellular  
bands measured at  
unbalanced port of the  
balun. Output power =  
TBDdBm  
GSM 1800 /  
DCS 1800  
1.805 - 1.880(a)  
-
TBD  
-
dBm / Hz  
1.930 - 1.990(d)  
1.930 - 1.990(b)  
1.930 - 1.990(a)  
2.110 - 2.170(b)  
2.110 - 2.170(e)  
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
PCS 1900  
GSM 1900  
CDMA 1900  
W-CDMA 2000  
W-CDMA 2000  
(a)  
Integrated in 200kHz bandwidth and then normalised to 1Hz bandwidth  
Integrated in 1.2MHz bandwidth and then normalised to 1Hz bandwidth  
Integrated in 1MHz bandwidth and then normalised to 1Hz bandwidth  
Integrated in 30kHz bandwidth and then normalised to 1Hz bandwidth  
Integrated in 5MHz bandwidth and then normalised to 1Hz bandwidth  
(b)  
(c)  
(d)  
(e)  
Advance Information  
BC419143B-ds-001Pe  
Page 21 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
5.1.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = +20°C  
Frequency  
(GHz)  
Bluetooth  
Typ  
Max  
Unit  
Specification  
2.402  
2.441  
2.480  
-
-
-
-
-85.0  
-85.0  
-87.0  
0
-
-
-
-
Sensitivity at 0.1% BER  
for all packet types  
70  
20  
dBm  
Maximum received signal at 0.1% BER  
dBm  
Frequency  
(MHz)  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
Continuous power  
required to block  
Bluetooth reception (for  
input power of -67dBm  
with 0.1% BER)  
30-2000  
-
-
0
0
-
-
-10  
-27  
2000-2400  
dBm  
measured at the  
unbalanced port of the  
balun.  
2500-3000  
-
0
-
-27  
C/I co-channel  
-
-
6
-
-
11  
0  
dB  
dB  
Adjacent channel selectivity C/I  
F = F0 + 1MHz(a) (b)  
-5  
Adjacent channel selectivity C/I  
F = F0 - 1MHz(a) (b)  
-
-
-
-
-
-
-4  
-
-
-
-
-
-
0  
dB  
dB  
dB  
dB  
dB  
dB  
Adjacent channel selectivity C/I  
F = F0 + 2MHz(a) (b)  
-38  
-23  
-45  
-44  
-22  
-30  
-20  
-40  
-40  
-9  
Adjacent channel selectivity C/I  
F = F0 - 2MHz(a) (b)  
Adjacent channel selectivity C/I  
F = F0 + 3MHz(a) (b)  
Adjacent channel selectivity C/I  
F = F0 -5MHz(a) (b)  
Adjacent channel selectivity C/I  
(a) (b)  
F = FImage  
Maximum level of intermodulation  
interferers(c)  
-
-
TBD  
TBD  
-
-
-39  
dBm  
Spurious output level(d)  
-
dBm/Hz  
(a)  
Up to five exceptions are allowed in v2.0+EDR of the Bluetooth specification. BlueCore4-Flash Plug-n-Go is guaranteed  
to meet the C/I performance as specified by the Bluetooth specification v2.0+EDR.  
Measured at F = 2441MHz  
(b)  
(c)  
Measured at f1 - f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c., i.e., wanted  
signal at -64dBm.  
(d)  
Measured at unbalanced port of the balun. Integrated in 100kHz bandwidth and normalised to 1Hz. Actual figure is  
typically below -150dBm/Hz except for peaks of -70dbm at 1600MHz, -60dBm inband at 2.4GHz and -70dBm at 3.2GHz.  
Advance Information  
BC419143B-ds-001Pe  
Page 22 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
Radio Characteristics  
VDD = 1.8V  
Frequency (GHz)  
0.824 - 0.849  
0.824 - 0.849  
0.880 - 0.915  
Temperature = +20°C  
Min  
Typ  
0
Max  
Cellular Band  
GSM 850  
Unit  
-
-
-
-
-
-
-10  
-5  
CDMA 850  
GSM 900  
Continuous power in  
cellular bands required to  
block Bluetooth reception  
(for input power of -67dBm  
with 0.1% BER) measured  
at unbalanced port of the  
balun.  
GSM 1800 /  
DCS 1800  
1.710 - 1.785  
1.850 - 1.910  
-
-
0
0
-
-
dBm  
GSM 1900 /  
PCS 1900  
1.850 - 1.910  
1.920 - 1.980  
0.824 - 0.849  
0.824 - 0.849  
0.880 - 0.915  
-
-
-
-
-
-7  
-10  
-2  
-
-
-
-
-
CDMA 1900  
W-CDMA 2000  
GSM 850  
-12  
-7  
CDMA 850  
GSM 900  
Continuous power in  
cellular bands required to  
block Bluetooth reception  
(for input power of -72dBm  
with 0.1% BER) measured  
at unbalanced port of the  
balun.  
GSM 1800 /  
DCS 1800  
1.710 - 1.785  
1.850 - 1.910  
-
-
0
0
-
-
dBm  
GSM 1900 /  
PCS 1900  
1.850 - 1.910  
1.920 - 1.980  
-
-
-12  
-14  
-
-
CDMA 1900  
W-CDMA 2000  
Advance Information  
BC419143B-ds-001Pe  
Page 23 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
5.2  
Temperature -40°C  
5.2.1 Transmitter  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = -40°C  
Bluetooth  
Typ  
Max  
Unit  
Specification  
Maximum RF transmit power(a)  
RF power control range  
RF power range control resolution  
20dB bandwidth for modulated carrier  
Adjacent channel transmit power  
F = F0 ± 2MHz(c) (d)  
-
-
-
-
3.5  
35  
-
-
-
-
-6 to +4(b)  
dBm  
dB  
16  
-
0.5  
780  
dB  
1000  
kHz  
-
-
-40  
-45  
-
-
-20  
-40  
dBm  
dBm  
Adjacent channel transmit power  
F = F0 ± 3MHz  
f1avg Maximum Modulation  
f2max Minimum Modulation  
f2avg/f1avg  
-
-
-
-
-
-
-
165  
151  
0.97  
10  
-
-
-
-
-
-
-
140<f1avg<175  
kHz  
kHz  
115  
0.80  
±75  
-
Initial carrier frequency tolerance  
Drift Rate  
kHz  
7
20  
kHz/50µs  
kHz  
Drift (single slot packet)  
Drift (five slot packet)  
8
25  
12  
40  
kHz  
(a)  
BlueCore4-Flash Plug-n-Go firmware maintains the transmit power to be within the Bluetooth v2.0+EDR specification  
limits  
(b)  
(c)  
Class 2 RF transmit power range, Bluetooth v2.0+EDR specification  
Measured at F0 = 2441MHz  
(d)  
Three exceptions are allowed in Bluetooth v2.0+EDR specification  
5.2.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = -40°C  
Frequency  
(GHz)  
Bluetooth  
Typ  
Max  
Unit  
Specification  
2.402  
2.441  
2.480  
-
-
-
-
-86  
-86  
-
-
-
-
Sensitivity at 0.1% BER  
for all packet types  
-70  
dBm  
dBm  
-88  
Maximum received signal at 0.1% BER  
TBD  
-20  
Advance Information  
BC419143B-ds-001Pe  
Page 24 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
5.3  
Temperature -25°C  
5.3.1 Transmitter  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = -25°C  
Bluetooth  
Typ  
Max  
Unit  
Specification  
Maximum RF transmit power(a)  
RF power control range  
-
-
-
-
3.0  
35  
-
-
-
-
-6 to +4(b)  
dBm  
dB  
16  
-
RF power range control resolution  
20dB bandwidth for modulated carrier  
Adjacent channel transmit power  
F = F0± 2MHz(c) (d)  
0.5  
780  
dB  
1000  
kHz  
-
-
-40  
-45  
-
-
-20  
-40  
dBm  
dBm  
Adjacent channel transmit power  
F = F0± 3MHz(c) (d)  
f1avg Maximum Modulation  
f2max Minimum Modulation  
f2avg/f1avg  
-
-
-
-
-
-
-
165  
151  
0.97  
8
-
-
-
-
-
-
-
140<f1avg<175  
kHz  
kHz  
115  
0.80  
±75  
-
Initial carrier frequency tolerance  
Drift Rate  
kHz  
7
20  
kHz/50µs  
kHz  
Drift (single slot packet)  
8
25  
Drift (five slot packet)  
12  
40  
kHz  
(a)  
BlueCore4-Flash Plug-n-Go firmware maintains the transmit power to be within the Bluetooth specification v2.0+EDR  
limits.  
(b)  
(c)  
Class 2 RF transmit power range, Bluetooth specification v2.0+EDR  
Measured at F0 = 2441MHz  
(d)  
Up to three exceptions are allowed in v2.0+EDR of the Bluetooth specification.  
5.3.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = -25°C  
Frequency  
(GHz)  
Bluetooth  
Typ  
Max  
Unit  
Specification  
2.402  
2.441  
2.480  
-
-
-86  
-86  
-
-
-
-
Sensitivity at 0.1% BER  
for all packet types  
-70  
dBm  
dBm  
-
-87  
Maximum received signal at 0.1% BER  
-
TBD  
-20  
Advance Information  
BC419143B-ds-001Pe  
Page 25 of 97  
© CSR plc 2006  
Radio Characteristics - Basic Data Rate  
5.4  
Temperature +85°C  
5.4.1 Transmitter  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = +85°C  
Bluetooth  
Typ  
Max  
Unit  
Specification  
Maximum RF transmit power(a)  
RF power control range  
-
-
-
-
0
-
-
-
-
-6 to +4(b)  
dBm  
dB  
35  
16  
-
RF power range control resolution  
20dB bandwidth for modulated carrier  
Adjacent channel transmit power  
F = F0± 2MHz(c) (d)  
0.5  
780  
dB  
1000  
kHz  
-
-
-40  
-45  
-
-
-20  
-40  
dBm  
dBm  
Adjacent channel transmit power  
F = F0± 3MHz(c) (d)  
f1avg Maximum Modulation  
f2max Minimum Modulation  
f2avg/f1avg  
-
-
-
-
-
-
-
165  
148  
0.97  
7
-
-
-
-
-
-
-
140<f1avg<175  
kHz  
kHz  
115  
0.80  
±75  
-
Initial carrier frequency tolerance  
Drift Rate  
kHz  
7
20  
kHz/50µs  
kHz  
Drift (single slot packet)  
8
25  
Drift (five slot packet)  
9
40  
kHz  
(a)  
BlueCore4-Flash Plug-n-Go firmware maintains the transmit power to be within the Bluetooth specification v2.0+EDR  
limits  
(b)  
(c)  
Class 2 RF transmit power range, Bluetooth specification v2.0+EDR  
Measured at F0 = 2441MHz  
(d)  
Up to three exceptions are allowed in v2.0+EDR of the Bluetooth specification  
5.4.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Min  
Temperature = +85°C  
Frequency  
(GHz)  
Bluetooth  
Typ  
Max  
Unit  
Specification  
2.402  
2.441  
2.480  
-
-
-81  
-81  
-
-
-
-
Sensitivity at 0.1% BER  
for all packet types  
-70  
dBm  
dBm  
-
-82  
Maximum received signal at 0.1% BER  
-20  
TBD  
-20  
Advance Information  
BC419143B-ds-001Pe  
Page 26 of 97  
© CSR plc 2006  
Radio Characteristics - Enhanced Data Rate  
6 Radio Characteristics - Enhanced Data Rate  
6.1  
Temperature +20°C  
6.1.1 Transmitter  
Radio Characteristics  
VDD = 1.8V  
Temperature = +20°C  
Bluetooth  
Min  
Typ  
Max  
Unit  
Specification  
-6 to +4(b)  
-4 to +1  
10  
Maximum RF transmit power(a)  
Relative transmit power(c)  
Carrier frequency stability(c)  
-
-
-
-
-
-
6
-
-
-
-
-
-
dBm  
dB  
kHz  
%
-1  
3
RMS DEVM  
99% DEVM  
Peak DEVM  
10  
15  
20  
13(e)  
Modulation Accuracy(c) (d)  
20(e)  
%
25(e)  
%
(a)  
BlueCore4-Flash Plug-n-Go firmware keeps RF transmit power within the Bluetooth v2.0+EDR specification limits  
Class 2 RF transmit power range, Bluetooth v2.0+EDR specification  
(b)  
(c)  
(d)  
(e)  
Measurement methods are in accordance with the Bluetooth v2.0+EDR RF Test Specification  
Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the carrier frequency drift.  
The Bluetooth specification values are for 8DPSK modulation (values for the π/4 DQPSK modulation are less stringent)  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
Advance Information  
BC419143B-ds-001Pe  
Page 27 of 97  
© CSR plc 2006  
Radio Characteristics - Enhanced Data Rate  
6.1.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Modulation  
Temperature = +20°C  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
π/4 DQPSK  
8DPSK  
-
-
-
-
-
-
-86  
-79  
-6  
-
-
-
-
-
-
-70  
dBm  
dBm  
dBm  
dBm  
dB  
Sensitivity at 0.01%  
BER(a)  
-70  
π/4 DQPSK  
8DPSK  
-20  
Maximum received  
signal at 0.1% BER(a)  
-7  
-20  
π/4 DQPSK  
8DPSK  
+11  
+19  
+13  
C/I co-channel at 0.1%  
BER(a)  
+21  
dB  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
-
-
-
-
-8  
-2  
-8  
-2  
-
-
-
-
0  
+5  
0  
dB  
dB  
dB  
dB  
C/I F=F0 +1MHz(a) (b)  
(c)  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
C/I F=F0 -1MHz (a) (b) (c)  
+5  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
-
-
-
-
-
-
-
-
-
-
-35  
-35  
-23  
-19  
-43  
-40  
-43  
-38  
-17  
-10  
-
-
-
-
-
-
-
-
-
-
-30  
-25  
-20  
-13  
-40  
-33  
-40  
-33  
-7  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I F=F0 +2MHz(a) (b) (c)  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
C/I F=F0 -2MHz(a) (b) (c)  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
C/I FF0 +3MHz(a) (b) (c)  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
C/I FF0 5MHz(a) (b) (c)  
Adjacent channel  
selectivity  
π/4 DQPSK  
8DPSK  
(a) (b) (c)  
C/I F=FImage  
0  
(a)  
Measurements methods are in accordance with the Bluetooth v2.0+EDR RF Test Specification  
(b)  
Up to five exceptions are allowed in the Bluetooth v2.0 +EDR RF Test Specification.BlueCore4-Flash Plug-n-Go is  
guaranteed to meet the C/I performance as specified by the Bluetooth v2.0 +EDR RF Test Specification  
Measured at F0 = 2405MHz, 2441MHz, 2477MHz  
(c)  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
Advance Information  
BC419143B-ds-001Pe  
Page 28 of 97  
© CSR plc 2006  
Radio Characteristics - Enhanced Data Rate  
6.2  
Temperature -40°C  
6.2.1 Transmitter  
Radio Characteristics  
VDD = 1.8V Temperature = -40°C  
Bluetooth  
Min  
Typ  
Max  
Unit  
Specification  
-6 to +4(b)  
-4 to +1  
10  
Maximum RF transmit power(a)  
Relative transmit power(c)  
Carrier frequency stability(c)  
-
-
-
-
-
-
8
-
-
-
-
-
-
dBm  
dB  
kHz  
%
-1  
3
RMS DEVM  
99% DEVM  
Peak DEVM  
10  
15  
20  
13(e)  
Modulation Accuracy(c) (d)  
20(e)  
%
25(e)  
%
(a)  
BlueCore4-Flash Plug-n-Go firmware keeps RF transmit power within the Bluetooth v2.0+EDR specification limits  
Class 2 RF transmit power range, Bluetooth v2.0+EDR specification  
(b)  
(c)  
(d)  
(e)  
Measurements methods are in accordance with the Bluetooth v2.0+EDR RF Test specification  
Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the carrier frequency drift.  
The Bluetooth specification values are for 8DPSK modulation (values for the π/4 DQPSK modulation are less stringent)  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
6.2.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Modulation  
Temperature = -40°C  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
π/4 DQPSK  
8DPSK  
-
-
-
-
-89  
-82  
-10  
-10  
-
-
-
-
-70  
-70  
-20  
-20  
dBm  
dBm  
dBm  
dBm  
Sensitivity at 0.01%  
BER(a)  
π/4 DQPSK  
8DPSK  
Maximum received  
signal at 0.1% BER(a)  
(a)  
Measurements methods are in accordance with the Bluetooth v2.0 + EDR RF Test Specification  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
Advance Information  
BC419143B-ds-001Pe  
Page 29 of 97  
© CSR plc 2006  
Radio Characteristics - Enhanced Data Rate  
6.3  
Temperature -25°C  
6.3.1 Transmitter  
Radio Characteristics  
VDD = 1.8V Temperature = -25°C  
Bluetooth  
Min  
Typ  
Max  
Unit  
Specification  
-6 to +4(b)  
-4 to +1  
10  
Maximum RF transmit power(a)  
Relative transmit power(c)  
Carrier frequency stability(c)  
-
-
-
-
-
-
7
-
-
-
-
-
-
dBm  
dB  
kHz  
%
-1  
3
RMS DEVM  
99% DEVM  
Peak DEVM  
10  
15  
20  
13(e)  
Modulation Accuracy(c) (d)  
20(e)  
%
25(e)  
%
(a)  
BlueCore4-Flash Plug-n-Go firmware keeps RF transmit power within the Bluetooth v2.0+EDR specification limits  
Class 2 RF transmit power range, Bluetooth v2.0+EDR specification  
(b)  
(c)  
(d)  
(e)  
Measurement methods are in accordance with the Bluetooth v2.0+EDR RF Test Specification  
Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the carrier frequency drift.  
The Bluetooth specification values are for 8DPSK modulation (values for the π/4 DQPSK modulation are less stringent)  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
6.3.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Modulation  
Temperature =-25°C  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
π/4 DQPSK  
8DPSK  
-
-
-
-
-87  
-80  
-10  
-10  
-
-
-
-
-70  
-70  
-20  
20  
dBm  
dBm  
dBm  
dBm  
Sensitivity at 0.01%  
BER(a)  
π/4 DQPSK  
8DPSK  
Maximum received  
signal at 0.1% BER(a)  
(a)  
Measurements methods are in accordance with the Bluetooth v2.0 +EDR RF Test Specification  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
Advance Information  
BC419143B-ds-001Pe  
Page 30 of 97  
© CSR plc 2006  
Radio Characteristics - Enhanced Data Rate  
6.4  
Temperature +85°C  
6.4.1 Transmitter  
Radio Characteristics  
VDD = 1.8V Temperature = +85°C  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
Maximum RF transmit power  
(a)  
-
1
-
-6 to +4(b)  
dBm  
Relative transmit power(c)  
Carrier frequency stability(c)  
-
-
-
-
-
-1  
3
-
-
-
-
-
-4 to +1  
10  
dB  
kHz  
%
RMS DEVM  
99% DEVM  
Peak DEVM  
10  
15  
20  
13(e)  
20(e)  
25(e)  
Modulation Accuracy(c) (d)  
%
%
(a)  
BlueCore4-Flash Plug-n-Go firmware keeps RF transmit power within the Bluetooth v2.0+EDR specification limits  
Class 2 RF transmit power range, Bluetooth v2.0+EDR specification  
(b)  
(c)  
(d)  
(e)  
Measurement methods are in accordance with the Bluetooth v2.0 + EDR RF Test Specification  
Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the carrier frequency drift.  
The Bluetooth specification values are for 8DPSK modulation (values for the π/4 DQPSK modulation are less stringent)  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
6.4.2 Receiver  
Radio Characteristics  
VDD = 1.8V  
Modulation  
Temperature = +85°C  
Bluetooth  
Specification  
Min  
Typ  
Max  
Unit  
π/4 DQPSK  
8DPSK  
-
-
-
-
-84  
-77  
0
-
-
-
-
-70  
-70  
-20  
-20  
dBm  
dBm  
dBm  
dBm  
Sensitivity at 0.01%  
BER(a)  
π/4 DQPSK  
8DPSK  
Maximum received  
signal at 0.1% BER(a)  
-3  
(a)  
Measurements methods are in accordance with the Bluetooth v2.0 + EDR RF Test Specification  
Notes:  
Results shown are referenced to the unbalanced port of the balun.  
Advance Information  
BC419143B-ds-001Pe  
Page 31 of 97  
© CSR plc 2006  
Device Diagram  
7 Device Diagram  
VDD_USB  
VDD_PIO  
AIO[0]  
AIO[1]  
AIO[2]  
RESETB  
RESET  
VSS_PADS  
VDD_PADS  
FLASH_EN  
TEST_EN  
VDD_MEM  
VSS_MEM  
VSS_CORE  
VDD_CORE  
VDD_DIG  
VDD_ANA  
VSS_ANA  
VSS_VCO  
VREG_EN  
VREG_IN  
VSS_RADIO  
XTAL_OUT  
XTAL_IN  
VDD_RADIO  
Figure 7.1: BlueCore4-Flash Plug-n-Go Device Diagram  
Advance Information  
BC419143B-ds-001Pe  
Page 32 of 97  
© CSR plc 2006  
Description of Functional Blocks  
8 Description of Functional Blocks  
8.1  
RF Receiver  
The receiver features a near-zero Intermediate Frequency (IF) architecture that allows the channel filters to be  
integrated onto the die. Sufficient out-of-band blocking specification at the Low Noise Amplifier (LNA) input allows the  
radio to be used in close proximity to Global System for Mobile Communications (GSM) and Wideband Code Division  
Multiple Access (W-CDMA) cellular phone transmitters without being desensitised. The use of a digital Frequency Shift  
Keying (FSK) discriminator means that no discriminator tank is needed and its excellent performance in the presence  
of noise allows BlueCore4-Flash Plug-n-Go to exceed the Bluetooth requirements for co-channel and adjacent  
channel rejection.  
For EDR, an ADC is used to digitise the IF received signal.  
8.1.1 Low Noise Amplifier  
The LNA can be configured to operate in single-ended or differential mode. Single-ended mode is used for Class 1(1)  
Bluetooth operation; differential mode is used for Class 2 operation.  
8.1.2 Analogue to Digital Converter  
The Analogue to Digital Converter (ADC) is used to implement fast Automatic Gain Control (AGC). The ADC samples  
the Received Signal Strength Indicator (RSSI) voltage on a slot-by-slot basis. The front-end LNA gain is changed  
according to the measured RSSI value, keeping the first mixer input signal within a limited range. This improves the  
dynamic range of the receiver, improving performance in interference limited environments.  
8.2  
RF Transmitter  
8.2.1 IQ Modulator  
The transmitter features a direct IQ modulator to minimise the frequency drift during a transmit timeslot, which results  
in a controlled modulation index. Digital baseband transmit circuitry provides the required spectral shaping.  
8.2.2 Power Amplifier  
The internal Power Amplifier (PA) has a maximum output power of +6dBm. This allows BlueCore4-Flash Plug-n-Go  
to be used in Class 2 and Class 3 radios without an external RF PA.  
8.2.3 Auxiliary DAC  
An 8-bit voltage Auxiliary DAC is provided for power control of an external PA for Class 1 operation or any other  
customer specific application.  
8.3  
Balun and Filter  
The Plug-n-Go device incorporates a balun and filter to provide a 50unbalanced antenna port.  
8.4  
RF Synthesiser  
The radio synthesiser is fully integrated onto the die with no requirement for an external Voltage Controlled Oscillator  
(VCO) screening can, varactor tuning diodes, LC resonators or loop filter. The synthesiser is guaranteed to lock in  
sufficient time across the guaranteed temperature range to meet the Bluetooth v2.0 + EDR specification.  
8.5  
Clock Input and Generation  
The reference clock for the system is generated from a TCXO or crystal input between 8MHz and 40MHz. All internal  
reference clocks are generated using a phase locked loop, which is locked to the external reference frequency.  
8.6  
Baseband and Logic  
8.6.1 Memory Management Unit  
The Memory Management Unit (MMU) provides a number of dynamically allocated ring buffers that hold the data that  
is in transit between the host and the air. The dynamic allocation of memory ensures efficient use of the available  
Random Access Memory (RAM) and is performed by a hardware MMU to minimise the overheads on the processor  
during data/voice transfers.  
(1)  
Class 1 operation is not recommended for Plug-n-Go devices and therefore is not recommended for BlueCore4-Flash Plug-n-Go.  
Advance Information  
BC419143B-ds-001Pe  
Page 33 of 97  
© CSR plc 2006  
Description of Functional Blocks  
8.6.2 Burst Mode Controller  
During radio transmission the Burst Mode Controller (BMC) constructs a packet from header information previously  
loaded into memory-mapped registers by the software and payload data/voice taken from the appropriate ring buffer  
in the RAM. During radio reception, the BMC stores the packet header in memory-mapped registers and the payload  
data in the appropriate ring buffer in RAM. This architecture minimises the intervention required by the processor  
during transmission and reception.  
8.6.3 Physical Layer Hardware Engine DSP  
Dedicated logic is used to perform the following:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Forward error correction  
Header error control  
Cyclic redundancy check  
Encryption  
Data whitening  
Access code correlation  
Audio transcoding  
The following voice data translations and operations are performed by firmware:  
ƒ
ƒ
ƒ
ƒ
A-law/µ-law/linear voice data (from host)  
A-law/µ-law/Continuously Variable Slope Delta (CVSD) (over the air)  
Voice interpolation for lost packets  
Rate mismatches  
The hardware suports all optional and mandatory features of Bluetooth v2.0 + EDR including AFH and eSCO.  
8.6.4 System RAM  
48Kbytes of on-chip RAM is provided to support the RISC MCU and is shared between the ring buffers used to hold  
voice/data for each active connection and the general purpose memory required by the Bluetooth stack.  
8.6.5 Flash Memory (8Mbit)  
8Mbits of internal Flash is available on the BC419143B. The Flash memory is provided for system firmware and the  
Kalimba DSP co-processor code implementation.  
8.6.6 USB  
This is a full speed Universal Serial Bus (USB) interface for communicating with other compatible digital devices.  
BlueCore4-Flash Plug-n-Go acts as a USB peripheral, responding to requests from a master host controller such as  
a PC.  
8.6.7 Synchronous Serial Interface  
This is a synchronous serial port interface (SPI) for interfacing with other digital devices. The SPI port can be used for  
system debugging. It can also be used for programming the Flash memory.  
8.6.8 UART  
This is a standard Universal Asynchronous Receiver Transmitter (UART) interface for communicating with other serial  
devices.  
8.7  
Microcontroller  
The microcontroller (MCU), interrupt controller and event timer run the Bluetooth software stack and control the radio  
and host interfaces. A 16-bit reduced instruction set computer (RISC) microcontroller is used for low power  
consumption and efficient use of memory.  
8.7.1 Programmable I/O  
BlueCore4-Flash Plug-n-Go has a total of 15 (12 digital and 3 analogue) programmable I/O terminals. These are  
controlled by firmware running on the device.  
Advance Information  
BC419143B-ds-001Pe  
Page 34 of 97  
© CSR plc 2006  
Description of Functional Blocks  
8.7.2 802.11 Co-Existence Interface  
Dedicated hardware is provided to implement a variety of co-existence schemes. Channel skipping AFH, priority  
signalling, channel signalling and host passing of channel instructions are all supported. The features are configured  
in firmware. The details of some methods are proprietary (e.g., Intel WCS). Contact CSR for details.  
Advance Information  
BC419143B-ds-001Pe  
Page 35 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9 CSR Bluetooth Software Stacks  
BlueCore4-Flash Plug-n-Go is supplied with Bluetooth v2.0 + EDR compliant stack firmware, which runs on the  
internal RISC microcontroller.  
The BlueCore4-Flash Plug-n-Go software architecture allows Bluetooth processing and the application program to be  
shared in different ways between the internal RISC microcontroller and an external host processor (if any). The upper  
layers of the Bluetooth stack (above HCI) can be run either on-chip or on the host processor.  
9.1  
BlueCore HCI Stack  
HCI  
LM  
LC  
Baseband  
MCU  
48KB RAM  
USB  
Host  
Host I/O  
UART  
Radio  
PCM I/O  
Figure 9.1: BlueCore HCI Stack  
In the implementation shown in the internal processor runs the Bluetooth stack up to the Host Controller Interface  
(HCI). The Host processor must provide all upper layers including the application.  
Advance Information  
BC419143B-ds-001Pe  
Page 36 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.1.1 Key Features of the HCI Stack: Standard Bluetooth Functionality  
Bluetooth v2.0 + EDR mandatory functionality:  
ƒ
ƒ
ƒ
ƒ
Adaptive frequency hopping (AFH), including classifier  
Faster connection - enhanced inquiry scan (immediate FHS response)  
LMP improvements  
Parameter ranges  
Optional Bluetooth v2.0 + EDR functionality supported:  
ƒ
ƒ
ƒ
ƒ
ƒ
Adaptive Frequency Hopping (AFH) as Master and Automatic Channel Classification  
Fast Connect - Interlaced Inquiry and Page Scan plus RSSI during Inquiry  
Extended SCO (eSCO), eV3 +CRC, eV4, eV5  
SCO handle  
Synchronisation  
The firmware was written against the Bluetooth v2.0 + EDR specification.  
ƒ
Bluetooth components:  
ƒ
ƒ
ƒ
Baseband (including LC)  
LM  
HCI  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Standard USB v1.1 and UART HCI Transport Layers  
All standard radio packet types  
Full Bluetooth data rate, enhanced data rates of 2 and 3Mbps(1)  
Operation with up to seven active slaves(1)  
Scatternet v2.5 operation  
Maximum number of simultaneous active ACL connections: 7(2)  
Maximum number of simultaneous active SCO connections: 3(2)  
Operation with up to three SCO links, routed to one or more slaves  
All standard SCO voice coding, plus transparent SCO  
Standard operating modes: Page, Inquiry, Page-Scan and Inquiry-Scan  
All standard pairing, authentication, link key and encryption operations  
Standard Bluetooth power saving mechanisms: Hold, Sniff and Park modes, including Forced Hold  
Dynamic control of peers' transmit power via LMP  
Master/Slave switch  
Broadcast  
Channel quality driven data rate  
All standard Bluetooth test modes  
The firmware's supported Bluetooth features are detailed in the standard Protocol Implementation Conformance  
Statement (PICS) documents, available from www.csr.com.  
(1)  
This is the maximum allowed by Bluetooth v2.0 + EDR specification.  
(2)  
BlueCore4-Flash Plug-n-Go supports all combinations of active ACL and SCO channels for both master and slave operation, as specified  
by the Bluetooth v2.0 + EDR specification.  
Advance Information  
BC419143B-ds-001Pe  
Page 37 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.1.2 Key Features of the HCI Stack: Extra Functionality  
The firmware extends the standard Bluetooth functionality with the following features:  
ƒ
Supports BlueCore Serial Protocol (BCSP), a proprietary, reliable alternative to the standard Bluetooth UART  
Host Transport  
ƒ
Provides a set of approximately 50 manufacturer-specific HCI extension commands. This command set,  
called BlueCore Command (BCCMD), provides:  
ƒ
ƒ
ƒ
ƒ
Access to the chip's general-purpose PIO port  
The negotiated effective encryption key length on established Bluetooth links  
Access to the firmware's random number generator  
Controls to set the default and maximum transmit powers; these can help minimise interference  
between overlapping, fixed-location piconets  
ƒ
ƒ
Dynamic UART configuration  
Radio transmitter enable/disable. A simple command connects to a dedicated hardware switch that  
determines whether the radio can transmit.  
ƒ
ƒ
The firmware can read the voltage on a pair of the chip's external pins. This is normally used to build a battery  
monitor, using either VM or host code  
A block of BCCMD commands provides access to the chip's Persistent Store configuration database (PS).  
The database sets the device's Bluetooth address, Class of Device, radio (transmit class) configuration, SCO  
routing, LM, USB and DFU constants, etc.  
ƒ
A UART break condition can be used in three ways:  
1. Presenting a UART break condition to the chip can force the chip to perform a hardware reboot  
2. Presenting a break condition at boot time can hold the chip in a low power state, preventing normal  
initialisation while the condition exists  
3. With BCSP, the firmware can be configured to send a break to the host before sending data. (This  
is normally used to wake the host from a Deep Sleep state.)  
ƒ
The DFU standard has been extended with public/private key authentication, allowing manufacturers to  
control the firmware that can be loaded onto their Bluetooth modules  
ƒ
ƒ
A modified version of the DFU protocol allows firmware upgrade via the chip's UART  
A block of radio test or BIST commands allows direct control of the chip's radio. This aids the development  
of modules' radio designs, and can be used to support Bluetooth qualification.  
ƒ
Virtual Machine (VM). The firmware provides the VM environment in which to run application-specific code.  
Although the VM is mainly used with BlueLab and RFCOMM builds (alternative firmware builds providing  
L2CAP, SDP and RFCOMM), the VM can be used with this build to perform simple tasks such as flashing  
LEDs via the chip's PIO port.  
ƒ
ƒ
Hardware low power modes: Shallow Sleep and Deep Sleep. The chip drops into modes that significantly  
reduce power consumption when the software goes idle.  
SCO channels are normally routed via HCI (over BCSP). However, up to three SCO channels can be routed  
over the chip's single PCM port (at the same time as routing any remaining SCO channels over HCI).  
Note:  
Always refer to the Firmware Release Note for the specific functionality of a particular build.  
Advance Information  
BC419143B-ds-001Pe  
Page 38 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.2  
BlueCore RFCOMM Stack  
RFCOMM  
SDP  
L2CAP  
HCI  
LM  
LC  
Baseband  
MCU  
48KB RAM  
USB  
Host  
Host I/O  
UART  
Radio  
PCM I/O  
Figure 9.2: BlueCore RFCOMM Stack  
In the version of the firmware, shown in Figure 9.2 the upper layers of the Bluetooth stack up to RFCOMM are run  
on-chip. This reduces host-side software and hardware requirements at the expense of some of the power and  
flexibility of the HCI only stack.  
Advance Information  
BC419143B-ds-001Pe  
Page 39 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.2.1 Key Features of the RFCOMM Stack  
Interfaces to Host:  
ƒ
ƒ
RFCOMM, an RS-232 serial cable emulation protocol  
SDP, a service database look-up protocol  
Connectivity:  
ƒ
ƒ
ƒ
ƒ
Maximum number of active slaves: three  
Maximum number of simultaneous active ACL connections: three  
Maximum number of simultaneous active SCO connections: three  
Data Rate: up to 350kbps(1)  
Security:  
ƒ
Full support for all Bluetooth security features up to and including strong (128-bit) encryption.  
Power Saving:  
ƒ
Full support for all Bluetooth power saving modes (Park, Sniff and Hold).  
Data Integrity:  
ƒ
ƒ
CQDDR increases the effective data rate in noisy environments.  
RSSI used to minimise interference to other radio devices using the ISM band.  
(1)  
The data rate is with respect to BlueCore4-Flash Plug-n-Go with basic data rate packets.  
Advance Information  
BC419143B-ds-001Pe  
Page 40 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.3  
BlueCore Virtual Machine Stack  
VM Application Software  
RFCOMM  
SDP  
L2CAP  
HCI  
LM  
LC  
Baseband  
MCU  
48KB RAM  
USB  
Host (Optional)  
Host I/O  
UART  
Radio  
PCM I/O  
Figure 9.3: Virtual Machine  
In Figure 9.3, this version of the stack firmware shown requires no host processor (but it can use a host processor for  
debugging, etc.). All software layers, including application software, run on the internal RISC processor in a protected  
user software execution environment known as a Virtual Machine (VM).  
The user may write custom application code to run on the BlueCore VM using BlueLab SDK supplied with the BlueLab  
Multimedia and Casira development kits, available separately from CSR. This code will then execute alongside the  
main BlueCore firmware. The user is able to make calls to the BlueCore firmware for various operations.  
The execution environment is structured so the user application does not adversely affect the main software routines,  
thus ensuring that the Bluetooth stack software component does not need re-qualification when the application is  
changed.  
Using the VM and the BlueLab SDK the user is able to develop applications such as a cordless handsfree kit or other  
profiles without the requirement of a host controller. BlueLab is supplied with example code including a full  
implementation of the handsfree profile.  
Note:  
Sample applications to control PIO lines can also be written with BlueLab SDK and the VM for the HCI stack.  
Advance Information  
BC419143B-ds-001Pe  
Page 41 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.4  
BlueCore HID Stack  
VM Application Software  
HID  
SDP  
L2CAP  
HCI  
LM  
LC  
Baseband  
MCU  
48KB RAM  
Sensing  
Hardware  
(Optical Sensor  
etc.)  
PIO/UART  
HID I/O  
Radio  
Figure 9.4: HID Stack  
This version of the stack firmware requires no host processor. All software layers, including application software, run  
on the internal RISC microcontroller in a protected user software execution environment known as a virtual machine  
(VM).  
The user may write custom application code to run on the BlueCore VM using BlueLab Professional SDK supplied with  
the BlueLab Professional and Casira development kits, available separately from CSR. This code will then execute  
alongside the main BlueCore firmware. The user is able to make calls to the BlueCore firmware for various operations.  
The execution environment is structured so the user application does not adversely affect the main software routines,  
thus ensuring that the Bluetooth stack software component does not need re-qualification when the application is  
changed.  
Using the VM and the BlueLab Professional SDK the user is able to develop Bluetooth HID devices such as an optical  
mouse or keyboard. The user is able to customise features such as power management and connect/reconnect  
behaviour.  
The HID I/O component in the HID stack controls low latency data acquisition from external sensor hardware. With  
this component running in native code, it does not incur the overhead of the VM code interpreter. Supported external  
sensors include five mouse buttons, the Agilent ADNS-2030 optical sensor, quadrature scroll wheel, direct coupling  
to a keyboard matrix and a UART interface to custom hardware.  
A reference schematic for implementing a three button, optical mouse with scroll wheel is available from CSR.  
Advance Information  
BC419143B-ds-001Pe  
Page 42 of 97  
© CSR plc 2006  
CSR Bluetooth Software Stacks  
9.5  
Host-Side Software  
BlueCore4-Flash Plug-n-Go can be ordered with companion host-side software:  
ƒ
BlueCore3-PC includes software for a full Windows 98/ME, Windows 2000 or Windows XP Bluetooth  
host-side stack together with IC hardware described in this document.  
ƒ
BlueCore3-Mobile includes software for a full host-side stack designed for modern ARM chip-based mobile  
handsets together with IC hardware described in this document.  
9.6  
Device Firmware Upgrade  
BlueCore4-Flash Plug-n-Go is supplied with boot loader software, which implements a Device Firmware Upgrade  
(DFU) capability. This allows new firmware to be uploaded to the Flash memory through BlueCore4-Flash Plug-n-Go  
UART or USB ports.  
9.7  
BCHS Software  
BlueCore Embedded Host Software is designed to enable CSR customers to implement Bluetooth functionality into  
embedded products quickly, cheaply and with low risk.  
BCHS is developed to work with CSR's family of BlueCore ICs. BCHS is intended for embedded products that have a  
host processor for running BCHS and the Bluetooth application, e.g., a mobile phone or a PDA. BCHS together with  
the BlueCore IC with embedded Bluetooth core stack (L2CAP, RFCOMM and SDP) is a complete Bluetooth system  
solution from RF to profiles.  
BCHS includes most of the Bluetooth intelligence and gives the user a simple API. This makes it possible to develop  
a Bluetooth product without in-depth Bluetooth knowledge.  
The BlueCore Embedded Host Software contains three elements:  
ƒ
ƒ
ƒ
Example Drivers (BCSP and proxies)  
Bluetooth Profile Managers  
Example Applications  
The profiles are qualified which makes the qualification of the final product very easy. BCHS is delivered with source  
code (ANSI C). BCHS also comes with example applications in ANSI C, which makes the process of writing the  
application easier.  
9.8  
Additional Software for Other Embedded Applications  
When the upper layers of the Bluetooth protocol stack are run as firmware on BlueCore4-Flash Plug-n-Go, a UART  
software driver is supplied that presents the L2CAP, RFCOMM and Service Discovery Protocol (SDP) APIs to higher  
Bluetooth stack layers running on the host. The code is provided as C source or object code.  
9.9  
CSR Development Systems  
CSR’s BlueLab Multimedia and Casira development kits are available to allow the evaluation of the BlueCore4-Flash  
Plug-n-Go hardware and software, and as toolkits for developing on-chip and host software.  
Advance Information  
BC419143B-ds-001Pe  
Page 43 of 97  
© CSR plc 2006  
Enhanced Data Rate  
10 Enhanced Data Rate  
EDR has been introduced to provide 2x and 3x(1) data rates with minimal disruption to higher layers of the Bluetooth  
stack. BlueCore4-Flash Plug-n-Go supports both of the new data rates and is compliant with the Bluetooth v2.0+EDR  
specification.  
10.1  
Enhanced Data Rate Baseband  
At the baseband level EDR utilises both the same 1.6kHz slot rate and the 1MHz symbol rate as defined for the basic  
data rate. Where EDR differs is that each symbol in the payload portion of a packet represents 2 or 3-bits. This is  
achieved using two new distinct modulation schemes. These are summarised in Table 10.1 and in Figure 10.1. Link  
Establishment and management are unchanged and still use GFSK for both the header and payload portions of these  
packets.  
Data Rate Scheme  
Basic Data Rate  
EDR  
Bits Per Symbol  
Modulation  
GFSK  
1
2
3
π/4 DQPSK  
8DPSK (optional)  
EDR  
Table 10.1: Data Rate Schemes  
Figure 10.1: Basic Rate and Enhanced Data Rate Packet Structure  
10.2  
Enhanced Data Rate π/4 DQPSK  
The 2x data rate for EDR utilises a π/4-DQPSK. Each symbol represents two bits of information. Figure 10.2 shows  
the constellation. It is described as having two planes, each having four points. Although it would appear that there are  
eight possible phase states, the encoding ensures that the trajectory of the modulation between symbols is restricted  
to the four states in the other plane.  
For a given starting point, each phase change between symbols is restricted to +3π/4, +π/4, -π/4 or -3π/4 radians  
(+135°, +45°, -135° or -45°). For example, the arrows shown in Figure 10.2 represents trajectory to the four possible  
states in the other plane.Table 10.2 shows the phase shift encoding of symbols.  
There are two primary advantages of utilising π/4-DQPSK modulation:  
ƒ
The scheme avoids the crossing of the origin (a +π or -π phase shift) and therefore minimises amplitude  
variations in the envelope of the transmitted signal. This in turn allows the RF power amplifiers of the  
transmitter to be operated closer to their compression point without introducing spectral distortions.  
Consequently, the DC to RF efficiency is maximised.  
ƒ
The differential encoding also allows for the demodulation without the knowledge of an absolute value for the  
phase of the RF carrier.  
(1)  
The inclusion of 3x data rates is optional.  
Advance Information  
BC419143B-ds-001Pe  
Page 44 of 97  
© CSR plc 2006  
Enhanced Data Rate  
01  
00  
11  
10  
Figure 10.2: π/4 DQPSK Constellation Pattern  
Bit Pattern  
Phase Shift  
00  
01  
11  
10  
π/4  
3π/4  
-3π/4  
-π/4  
Table 10.2: 2-Bits Determine Phase Shift Between Consecutive Symbols  
10.3  
Enhanced Data Rate 8DPSK  
The 3x data rate modulation uses eight phase differential phase shift keying (8DPSK). Each symbol in the payload  
portion of the packet represents three baseband bits. Although it would appear that the 8DPSK is similar to π/4  
DQPSK, the differential phase shifts between symbols are now permissible between any of the eight possible phase  
states. This reduces the separation between adjacent symbols on the constellation to π/4 (45°) and thereby reduces  
the noise and interference immunity of the modulation scheme. Nevertheless, since each symbol now represents 3  
baseband bits, the actual throughput of the data is 3x when compared with the basic rate packet.  
Figure 10.3 illustrates the 8DPSK constellation and Table 10.3 defines the phase encoding.  
Advance Information  
BC419143B-ds-001Pe  
Page 45 of 97  
© CSR plc 2006  
Enhanced Data Rate  
011  
010  
001  
110  
000  
111  
100  
101  
Figure 10.3: 8DPSK Constellation Pattern  
Bit Pattern  
Phase Shift  
000  
001  
011  
010  
110  
111  
101  
100  
0
π/4  
π/2  
3π/4  
π
-3π/4  
-π/2  
-π/4  
Table 10.3: 3-Bits Determine Phase Shift Between Consecutive Symbols  
Advance Information  
BC419143B-ds-001Pe  
Page 46 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11 Device Terminal Descriptions  
11.1  
RF Ports  
The BlueCore4-Flash Plug-n-Go RF_IN terminal can be configured as either a single-ended or differential input. The  
operational mode is determined by setting the PS Key PSKEY_TXRX_PIO_CONTROL (0x20).  
11.1.1 RF Plug-n-Go  
The package used on the BlueCore4-Flash Plug-n-Go device is an RF Plug-n-Go package, where the terminal  
RF_CONNECT forms an unbalanced ouput with a nominal 50impedance. This terminal can be directly connected  
to an antenna requiring no impedance matching network as Figure 11.1 indicates.  
BlueCore  
RF_CONNECT  
R1  
50  
Figure 11.1: Circuit for RF_CONNECT  
Advance Information  
BC419143B-ds-001Pe  
Page 47 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.1.2 Single-Ended Input (RF_IN)  
This is the single-ended RF input from the antenna. The input presents a complex impedance that requires a matching  
network between the terminal and the antenna. Starting from the substrate (chip) side, the input can be modelled as  
a lossy capacitor with the bond wire to the ball grid represented as a series inductance.  
The terminal is DC blocked. The DC level must not exceed (VSS_RADIO -0.3V to VDD_RADIO + 0.3V).  
BlueCore  
L1  
1.5nH  
RF_IN  
R1  
6.8  
C1  
0.68pF  
Figure 11.2: Circuit RF_IN  
Advance Information  
BC419143B-ds-001Pe  
Page 48 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.2  
External Reference Clock Input (XTAL_IN)  
The BlueCore4-Flash Plug-n-Go RF local oscillator and internal digital clocks are derived from the reference clock at  
the BlueCore4-Flash Plug-n-Go XTAL_IN input. This reference may be either an external clock or from a crystal  
connected between XTAL_IN and XTAL_OUT. The crystal mode is described in section 11.3.  
11.2.1 External Mode  
BlueCore4-Flash Plug-n-Go can be configured to accept an external reference clock from another device (such as  
TCXO) at XTAL_IN by connecting XTAL_OUT to ground. The external clock can be either a digital level square wave  
or sinusoidal, and this may be directly coupled to XTAL_IN without the need for additional components. If the peaks  
of the reference clock are below VSS_ANA or above VDD_ANA, it must be driven through a DC blocking capacitor  
(approximately 33pF) connected to XTAL_IN. A digital level reference clock gives superior noise immunity, as the high  
slew rate clock edges have lower voltage to phase conversion.  
The external clock signal should meet the specifications in Table 11.1:  
Min  
7.5MHz  
20:80  
Typ  
Max  
Frequency(a)  
16MHz  
40MHz  
Duty cycle  
50:50  
80:20  
Edge Jitter (At Zero Crossing)  
Signal Level  
-
-
-
15ps rms  
VDD_ANA(b) (c)  
400mV pk-pk  
Table 11.1: External Clock Specifications  
The frequency should be an integer multiple of 250kHz except for the CDMA/3G frequencies  
VDD_ANA is 1.8V nominal  
If the external clock is driven through a DC blocking capacitor, then maximum allowable amplitude is reduced from  
VDD_ANA to 800mV pk-pk.  
(a)  
(b)  
(c)  
11.2.2 XTAL_IN Impedance in External Mode  
The impedance of the XTAL_IN will not change significantly between operating modes, typically 10fF. When  
transitioning from Deep Sleep to an active state a spike of up to 1pC may be measured. For this reason it is  
recommended that a buffered clock input be used.  
11.2.3 Clock Timing Accuracy  
As Figure 11.3 indicates, the 250ppm timing accuracy on the external clock is required 7ms after the assertion of the  
system clock request line. This is to guarantee that the firmware can maintain timing accuracy in accordance with the  
Bluetooth v2.0 + EDR specification. Radio activity may occur after 11ms, therefore, at this point the timing accuracy  
of the external clock source must be within 20ppm.  
Figure 11.3: TCXO Clock Accuracy  
Advance Information  
BC419143B-ds-001Pe  
Page 49 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.2.4 Clock Start-Up Delay  
BlueCore4-Flash Plug-n-Go hardware incorporates an automatic delay after the assertion of the system clock request  
signal before running firmware. By default, the delay is 5 low-power oscillator (LPO) cycles. At a nominal LPO  
frequency of 1 kHz, this equates to 5 ms. This is suitable for most applications using an external clock source.  
However, there may be scenarios where the clock cannot be guaranteed to either exist or be stable after this period.  
Under these conditions, BlueCore4-Flash Plug-n-Go provides a function that alters the system clock request signal to  
the period stored in PSKEY_CLOCK_STARTUP_DELAY. This value is in units of LPO cycles from 1 to 31. Setting the  
key to zero gives a delay of 5 cycles, the default value.  
The nominal frequency of the internal LPO is 1 kHz, however, the value varies somewhat between chips, so care  
should be taken to pick a suitable value. If an external slow clock at 32 kHz is supplied, this is divided by 32 before use.  
This PS Key allows the designer to optimise a system where clock latencies may be longer than 5ms while still keeping  
the current consumption of BlueCore4-Flash Plug-n-Go as low as possible. BlueCore4-Flash Plug-n-Go consumes  
about 2mA of current for the duration of PSKEY_CLOCK_STARTUP_DELAY before activating the firmware.  
Advance Information  
BC419143B-ds-001Pe  
Page 50 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.2.5 Input Frequencies and PS Key Settings  
BlueCore4-Flash Plug-n-Go should be configured to operate with the chosen reference frequency. This is  
accomplished by setting the PS Key PSKEY_ANA_FREQ (0x1fe) for all frequencies with an integer multiple of  
250kHz. The input frequency default setting in BlueCore4-Flash Plug-n-Go is 26MHz.  
The following CDMA/3G TCXO frequencies are also catered for: 7.68, 14.4, 15.36, 16.2, 16.8, 19.2, 19.44, 19.68, 19.8  
and 38.4MHz.  
PSKEY_ANA_FREQ (0x1fe)  
Reference Crystal Frequency (MHz)  
(Units of 1kHz)  
7.68  
14.40  
7680  
14400  
15360  
16200  
16800  
19200  
19440  
19680  
19800  
38400  
-
15.36  
16.20  
16.80  
19.20  
19.44  
19.68  
19.80  
38.40  
n x 250kHz  
+26.00 Default  
26000  
Table 11.2: PS Key Values for CDMA/3G Phone TCXO Frequencies  
Advance Information  
BC419143B-ds-001Pe  
Page 51 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.3  
Crystal Oscillator (XTAL_IN, XTAL_OUT)  
This section describes the crystal mode. See section 11.2 for the description of the external reference clock mode.  
11.3.1 XTAL Mode  
BlueCore4-Flash Plug-n-Go contains a crystal driver circuit. This operates with an external crystal and capacitors to  
form a Pierce oscillator.  
gm  
-
Cint  
Ctrim  
Ctrim  
Ct2  
Ct1  
Figure 11.4: Crystal Driver Circuit  
Figure 11.5 shows an electrical equivalent circuit for a crystal. The crystal appears inductive near its resonant  
frequency. It forms a resonant circuit with its load capacitors.  
Figure 11.5: Crystal Equivalent Circuit  
The resonant frequency may be trimmed with the crystal load capacitance. BlueCore4-Flash Plug-n-Go contains  
variable internal capacitors to provide a fine trim.  
Advance Information  
BC419143B-ds-001Pe  
Page 52 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Min  
Typ  
Max  
Frequency  
8MHz  
26MHz  
32MHz  
Initial Tolerance  
Pullability  
-
-
±25ppm  
±20ppm/pF  
-
-
Table 11.3: Crystal Specification  
The BlueCore4-Flash Plug-n-Go driver circuit is a transconductance amplifier. A voltage at XTAL_IN generates a  
current at XTAL_OUT. The value of transconductance is variable and may be set for optimum performance.  
11.3.2 Load Capacitance  
For resonance at the correct frequency the crystal should be loaded with its specified load capacitance, which is  
defined for the crystal. This is the total capacitance across the crystal viewed from its terminals. BlueCore4-Flash  
Plug-n-Go provides some of this load with the capacitors Ctrim and Cint. The remainder should be from the external  
capacitors labelled Ct1 and Ct2. Ct1 should be three times the value of Ct2 for best noise performance. This maximises  
the signal swing, hence, slew rate at XTAL_IN (to which all on-chip clocks are referred). Crystal load capacitance, Cl  
is calculated with Equation 11.1:  
Ctrim  
2
C
t1Ct2  
CI = Cint  
+
+
Ct1 + Ct2  
Equation 11.1: Load Capacitance  
Where:  
Ctrim = 3.4pF nominal (mid-range setting)  
Cint = 1.5pF  
Note:  
Cint does not include the crystal internal self capacitance; it is the driver self capacitance.  
Advance Information  
BC419143B-ds-001Pe  
Page 53 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.3.3 Frequency Trim  
BlueCore4-Flash Plug-n-Go enables frequency adjustments to be made. This feature is typically used to remove initial  
tolerance frequency errors associated with the crystal. Frequency trim is achieved by adjusting the crystal load  
capacitance with on-chip trim capacitors, Ctrim. The value of Ctrim is set by a 6-bit word in the PS Key  
PSKEY_ANA_FTRIM (0x1f6). Its value is calculated thus:  
Ctrim = 110fF×PSKEY_ ANA_ FTRIM  
Equation 11.2: Trim Capacitance  
There are two Ctrim capacitors, which are both connected to ground. When viewed from the crystal terminals, they  
appear in series so each least significant bit (LSB) increment of frequency trim presents a load across the crystal of  
55fF.  
The frequency trim is described by Equation 11.3.  
FX  
(
FX  
)
= pullabiliyt ×55×103  
(
ppm/LSB  
)
Equation 11.3: Frequency Trim  
Where Fx is the crystal frequency and pullability is a crystal parameter with units of ppm/pF. Total trim range is 63  
times the value above.  
If not specified, the pullability of a crystal may be calculated from its motional capacitance with Equation 11.4.  
(
FX  
)
Cm  
CI C0  
Equation 11.4: Pullability  
FX  
=
2
C
( )  
2
(
+
)
Where:  
C0 = Crystal self capacitance (shunt capacitance)  
Cm = Crystal motional capacitance (series branch capacitance in crystal model). See Figure 11.5.  
Note:  
It is a Bluetooth requirement that the frequency is always within ±20ppm. The trim range should be sufficient to  
pull the crystal within ±5ppm of the exact frequency. This leaves a margin of ±15ppm for frequency drift with ageing  
and temperature. A crystal with an ageing and temperature drift specification of better than ±15ppm is required.  
Advance Information  
BC419143B-ds-001Pe  
Page 54 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.3.4 Transconductance Driver Model  
The crystal and its load capacitors should be viewed as a transimpedance element, whereby a current applied to one  
terminal generates a voltage at the other. The transconductance amplifier in BlueCore4-Flash Plug-n-Go uses the  
voltage at its input, XTAL_IN, to generate a current at its output, XTAL_OUT. Therefore, the circuit will oscillate if the  
transconductance, transimpedance product is greater than unity. For sufficient oscillation amplitude, the product  
should be greater than three. The transconductance required for oscillation is defined by the relationship shown in  
Equation 11.5:  
2
(
3 2πFx  
)
2 Rm ((C0 + Cint
)(
Ct1 + Ct2 + Ctrim  
) (  
Ct1 + Ctrim
)(
Ct2 + Ctrim ))  
+
gm  
>
(
Ct1 + Ctrim )(Ct2 + Ctrim  
)
Equation 11.5: Transconductance Required for Oscillation  
BlueCore4-Flash Plug-n-Go guarantees a transconductance value of at least 2mA/V at maximum drive level.  
Notes:  
More drive strength is required for higher frequency crystals, higher loss crystals (larger Rm) or higher capacitance  
loading.  
Optimum drive level is attained when the level at XTAL_IN is approximately 1V pk-pk. The drive level is  
determined by the crystal driver transconductance, by setting the PS Key PSKEY_XTAL_LVL (0x241).  
11.3.5 Negative Resistance Model  
An alternative representation of the crystal and its load capacitors is a frequency dependent resistive element. The  
driver amplifier may be considered as a circuit that provides negative resistance. For oscillation, the value of the  
negative resistance must be greater than that of the crystal circuit equivalent resistance. Although the  
BlueCore4-Flash Plug-n-Go crystal driver circuit is based on a transimpedance amplifier, an equivalent negative  
resistance may be calculated for it with the following formula in Equation 11.6:  
(
Ct1  
+
Ctrim) (Ct2  
+
Ctrim  
)
Rneg  
>
2
2
+
trim  
gm  
(
2
π
FX) ((C0  
+
Cint )(Ct1  
+
Ct2  
+
2C  
)
+
(
C
)(Ct2  
Ctrim))  
+
Ct1  
trim  
Equation 11.6: Equivalent Negative Resistance  
This formula shows the negative resistance of the BlueCore4-Flash Plug-n-Go driver as a function of its drive strength.  
The value of the driver negative resistance may be easily measured by placing an additional resistance in series with  
the crystal. The maximum value of this resistor (oscillation occurs) is the equivalent negative resistance of the  
oscillator.  
Advance Information  
BC419143B-ds-001Pe  
Page 55 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.3.6 Crystal PS Key Settings  
See tables in section 11.2.5.  
11.3.7 Crystal Oscillator Characteristics  
Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency  
1000.0  
100.0  
10.0  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
10.5  
11.5  
12.5  
Load Capacitance (pF)  
8 MHz  
20 MHz  
32 MHz  
12 MHz  
24 MHz  
16 MHz  
28 MHz  
Figure 11.6: Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency  
Note:  
Graph shows results for BlueCore4-Flash Plug-n-Go crystal driver at maximum drive level.  
Conditions:  
Ctrim = 3.4pF centre value  
Crystal Co = 2pF  
Transconductance setting = 2mA/V  
Loop gain = 3  
Ct1/Ct2 = 3  
Advance Information  
BC419143B-ds-001Pe  
Page 56 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Figure 11.7: Crystal Driver Transconductance vs. Driver Level Register Setting  
Note:  
Drive level is set by PS Key PSKEY_XTAL_LVL (0x241).  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 57 of 97  
Device Terminal Descriptions  
Figure 11.8: Crystal Driver Negative Resistance as a Function of Drive Level Setting  
Crystal parameters:  
Crystal frequency 16MHz (refer to your software build release note for supported frequencies ).  
Crystal C0 = 0.75pF  
Circuit parameters:  
Ctrim = 8pF, maximum value  
Ct1,Ct2 = 5pF (3.9pF plus 1.1 pF stray)  
(Crystal total load capacitance 8.5pF)  
Note:  
This is for a specific crystal and load capacitance.  
Advance Information  
BC419143B-ds-001Pe  
Page 58 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.4  
UART Interface  
This is a standard Universal Asynchronous Receiver Transmitter (UART) interface for communicating with other serial  
devices.  
BlueCore4-Flash Plug-n-Go UART interface provides a simple mechanism for communicating with other serial devices  
using the RS232 protocol.(1)  
BlueCore  
UART_TX  
UART_RX  
UART_RTS  
UART_CTS  
Figure 11.9: Universal Asynchronous Receiver  
Four signals are used to implement the UART function, as shown in Figure 11.9. When BlueCore4-Flash Plug-n-Go  
is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The  
remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where  
both are active low indicators. All UART connections are implemented using CMOS technology and have signalling  
levels of 0V and VDD_USB.  
UART configuration parameters, such as baud rate and packet format, are set using BlueCore4-Flash Plug-n-Go  
software.  
Note:  
In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port  
adapter card is required for the PC.  
Parameter  
Possible Values  
1200 baud (2%Error)  
9600 baud (1%Error)  
3M baud (1%Error)  
RTS/CTS or None  
None, Odd or Even  
1 or 2  
Minimum  
Maximum  
Baud Rate  
Flow Control  
Parity  
Number of Stop Bits  
Bits per Channel  
8
Table 11.4: Possible UART Settings  
The UART interface is capable of resetting BlueCore4-Flash Plug-n-Go upon reception of a break signal. A break is  
identified by a continuous logic low (0V) on the UART_RX terminal, as shown in Figure 11.10. If tBRK is longer than  
the value, defined by the PS Key PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur. This  
feature allows a host to initialise the system to a known state. Also, BlueCore4-Flash Plug-n-Go can emit a break  
character that may be used to wake the host.  
(1)  
Uses RS232 protocol, but voltage levels are 0V to VDD_USB (requires external RS232 transceiver chip).  
Advance Information  
BC419143B-ds-001Pe  
Page 59 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Figure 11.10: Break Signal  
Note:  
The DFU boot loader must be loaded into the Flash device before the UART or USB interfaces can be used. This  
initial flash programming can be done via the SPI.  
Table 11.5 shows a list of commonly used baud rates and their associated values for the PS Key  
PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any baud rate within  
the supported range can be set in the PS Key according to the formula in Equation 11.7.  
PSKEY_UART_BAUD_RATE  
BaudRate =  
0.004096  
Equation 11.7: Baud Rate  
Persistent Store Value  
Baud Rate  
Error  
Hex  
Dec  
5
1200  
2400  
0x0005  
0x000a  
0x0014  
0x0027  
0x004f  
0x009d  
0x00ec  
0x013b  
0x01d8  
0x03b0  
0x075f  
0x0ebf  
0x161e  
0x1d7e  
0x2c3d  
1.73%  
1.73%  
1.73%  
-0.82%  
0.45%  
-0.18%  
0.03%  
0.14%  
0.03%  
0.03%  
-0.02%  
0.00%  
-0.01%  
0.00%  
0.00%  
10  
4800  
20  
9600  
39  
19200  
38400  
57600  
76800  
115200  
230400  
460800  
921600  
1382400  
1843200  
2764800  
79  
157  
236  
315  
472  
944  
1887  
3775  
5662  
7550  
11325  
Table 11.5: Standard Baud Rates  
Advance Information  
BC419143B-ds-001Pe  
Page 60 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.4.1 UART Bypass  
BlueCore  
Another Device  
Host Processor  
RESET  
UART_TX  
UART_RTS  
UART_CTS  
UART_RX  
PIO4  
PIO5  
PIO6  
PIO7  
RXD  
CTS  
RTS  
TXD  
TX  
RTS  
CTS  
RX  
UART  
Test Interface  
Figure 11.11: UART Bypass Architecture  
11.4.2 UART Configuration While RESET is Active  
The UART interface for BlueCore4-Flash Plug-n-Go while the chip is being held in reset is tri-state. This will allow the  
user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected  
to this bus must tri-state when BlueCore4-Flash Plug-n-Go reset is de-asserted and the firmware begins to run.  
11.4.3 UART Bypass Mode  
Alternatively, for devices that do not tri-state the UART bus, the UART bypass mode on BlueCore4-Flash Plug-n-Go  
can be used. The default state of BlueCore4-Flash Plug-n-Go after reset is de-asserted; this is for the host UART bus  
to be connected to the BlueCore4-Flash Plug-n-Go UART, thereby allowing communication to BlueCore4-Flash  
Plug-n-Go via the UART. All UART bypass mode connections are implemented using CMOS technology and have  
signalling levels of 0V and VDD_PADS.(1)  
In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-Flash Plug-n-Go. Upon  
this issue, it will switch the bypass to PIO[7:4] as Figure 11.11 indicates. Once the bypass mode has been invoked,  
BlueCore4-Flash Plug-n-Go will enter the Deep Sleep state indefinitely.  
In order to re-establish communication with BlueCore4-Flash Plug-n-Go, the chip must be reset so that the default  
configuration takes effect.  
It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass mode is  
invoked. Therefore, it is not possible to have active Bluetooth links while operating the bypass mode.  
11.4.4 Current Consumption in UART Bypass Mode  
The current consumption for a device in UART bypass mode is equal to the values quoted for a device in standby  
mode.  
(1)  
The range of the signalling level for the standard UART described in section 11.4 and the UART bypass may differ between CSR BlueCore  
devices, as the power supply configurations are chip dependent. For BlueCore4-Flash Plug-n-Go, the standard UART is supplied by  
VDD_USB, so has signalling levels of 0V and VDD_USB. Whereas in the UART bypass mode, the signals appear on PIO[4:7] which are  
supplied by VDD_PADS, therefore the signalling levels are 0V and VDD_PADS.  
Advance Information  
BC419143B-ds-001Pe  
Page 61 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.5  
USB Interface  
This is a full speed (12Mbits/s) Universal Serial Bus (USB) interface for communicating with other compatible digital  
devices. BlueCore4-Flash Plug-n-Go acts as a USB peripheral, responding to requests from a master host controller  
such as a PC.  
The USB interface is capable of driving a USB cable directly. No external USB transceiver is required. The device  
operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and  
the UHCI standards are supported. The set of USB endpoints implemented can behave as specified in the USB  
section of the Bluetooth specification v2.0+EDR or alternatively can appear as a set of endpoints appropriate to USB  
audio devices such as speakers.  
As USB is a master/slave oriented system (in common with other USB peripherals), BlueCore4-Flash Plug-n-Go only  
supports USB Slave operation.  
11.5.1 USB Data Connections  
The USB data lines emerge as pins USB_DP and USB_DN. These terminals are connected to the internal USB I/O  
buffers of the BlueCore4-Flash Plug-n-Go, therefore, have a low output impedance. To match the connection to the  
characteristic impedance of the USB cable, resistors must be placed in series with USB_DP/USB_DN and the cable.  
11.5.2 USB Pull-Up Resistor  
BlueCore4-Flash Plug-n-Go features an internal USB pull-up resistor. This pulls the USB_DP pin weakly high when  
BlueCore4-Flash Plug-n-Go is ready to enumerate. It signals to the PC that it is a full speed (12Mbit/s) USB device.  
The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB  
specification v1.2. The internal pull-up pulls USB_DP high to at least 2.8V when loaded with a 15kΩ ±5% pull-down  
resistor (in the hub/host) when VDD_PADS=3.1V. This presents a Thevenin resistance to the host of at least 900.  
Alternatively, an external 1.5kpull-up resistor can be placed between a PIO line and D+ on the USB cable. The  
firmware must be alerted to which mode is used by setting PS Key PSKEY_USB_PIO_PULLUP appropriately. The  
default setting uses the internal pull-up resistor.  
11.5.3 USB Power Supply  
The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely meet the  
USB specification, the voltage on the VDD_USB supply terminals must be an absolute minimum of 3.1V. CSR  
recommends 3.3V for optimal USB signal quality.  
Advance Information  
BC419143B-ds-001Pe  
Page 62 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.5.4 Self-Powered Mode  
In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the USB  
cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the easier mode for  
which to design, as the design is not limited by the power that can be drawn from the USB hub or root port. However,  
it requires that VBUS be connected to BlueCore4-Flash Plug-n-Go via a resistor network (Rvb1 and Rvb2), so  
BlueCore4-Flash Plug-n-Go can detect when VBUS is powered up. BlueCore4-Flash Plug-n-Go will not pull USB_DP  
high when VBUS is off.  
Self-powered USB designs (powered from a battery or PSU) must ensure that a PIO line is allocated for USB pull-up  
purposes. A 1.5K5% pull-up resistor between USB_DP and the selected PIO line should be fitted to the design.  
Failure to fit this resistor may result in the design failing to be USB compliant in self-powered mode. The internal pull-up  
in BlueCore is only suitable for bus-powered USB devices, e.g., dongles.  
BlueCore  
PIO  
1.5K  
5%  
Rs  
USB_DP  
USB_DN  
USB_ON  
D+  
Rs  
D-  
Rvb1  
VBUS  
Rvb2  
GND  
Figure 11.12: USB Connections for Self-Powered Mode  
The terminal marked USB_ON can be any free PIO pin. The PIO pin selected must be registered by setting  
PSKEY_USB_PIO_VBUS to the corresponding pin number.  
Note:  
USB_ON is shared with BlueCore4-Flash Plug-n-Go PIO terminals.  
Identifier  
Rs  
Value  
Function  
27nominal  
22k5%  
47k5%  
Impedance matching to USB cable  
VBUS ON sense divider  
VBUS ON sense divider  
Rvb1  
Rvb2  
Table 11.6: USB Interface Component Values  
11.5.5 Bus-Powered Mode  
In bus-powered mode, the application circuit draws its current from the 5V VBUS supply on the USB cable.  
BlueCore4-Flash Plug-n-Go negotiates with the PC during the USB enumeration stage about how much current it is  
allowed to consume.  
For Class 2 Bluetooth applications, CSR recommends that the regulator used to derive 3.3V from VBUS is rated at  
100mA average current and should be able to handle peaks of 120mA without foldback or limiting. In bus-powered  
mode, BlueCore4-Flash Plug-n-Go requests 100mA during enumeration.  
Advance Information  
BC419143B-ds-001Pe  
Page 63 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
For Class 1 Bluetooth applications, the USB power descriptor should be altered to reflect the amount of power  
required. This is accomplished by setting the PS Key PSKEY_USB_MAX_POWER (0x2c6). This is higher than for a  
Class 2 application due to the extra current drawn by the Transmit RF PA.  
When selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging reservoir  
and supply decoupling capacitors) is limited by the USB specification. See USB Specification v1.1, section 7.2.4.1.  
Some applications may require soft start circuitry to limit inrush current if more than 10µF is present between VBUS  
and GND.  
The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down to 3.3V and 1.8V,  
applications should include careful filtering of the 5V line to attenuate noise that is above the voltage regulator  
bandwidth. Excessive noise on the 1.8V supply to the analogue supply pins of BlueCore4-Flash Plug-n-Go will result  
in reduced receive sensitivity and a distorted RF transmit signal.  
BlueCore  
Rs  
USB_DP  
D+  
Rs  
D-  
USB_DN  
USB_ON  
Rvb1  
VBUS  
GND  
Voltage  
Regulator  
Figure 11.13: USB Connections for Bus-Powered Mode  
11.5.6 Suspend Current  
All USB devices must permit the USB controller to place them in a USB suspend mode. While in USB Suspend,  
bus-powered devices must not draw more than 0.5mA from USB VBUS (self-powered devices may draw more than  
0.5mA from their own supply). This current draw requirement prevents operation of the radio by bus-powered devices  
during USB Suspend.  
The voltage regulator circuit itself should draw only a small quiescent current (typically less than 100µA) to ensure  
adherence to the suspend current requirement of the USB specification. This is not normally a problem with modern  
regulators. Ensure that external LEDs and/or amplifiers can be turned off by BlueCore4-Flash Plug-n-Go. The entire  
circuit must be able to enter the suspend mode. Refer to separate CSR documentation for more details on USB  
Suspend.  
11.5.7 Detach and Wake_Up Signalling  
BlueCore4-Flash Plug-n-Go can provide out-of-band signalling to a host controller by using the control lines called  
USB_DETACH and USB_WAKE_UP. These are outside the USB specification (no wires exist for them inside the USB  
cable), but can be useful when embedding BlueCore4-Flash Plug-n-Go into a circuit where no external USB is visible  
to the user. Both control lines are shared with PIO pins and can be assigned to any PIO pin by setting the PS Keys  
PSKEY_USB_PIO_DETACH and PSKEY_USB_PIO_WAKEUP to the selected PIO number.  
Advance Information  
BC419143B-ds-001Pe  
Page 64 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
USB_DETACH is an input which, when asserted high, causes BlueCore4-Flash Plug-n-Go to put USB_DN and  
USB_DP in a high impedance state and turns off the pull-up resistor on DP. This detaches the device from the bus  
and is logically equivalent to unplugging the device. When USB_DETACH is taken low, BlueCore4-Flash Plug-n-Go  
will connect back to USB and await enumeration by the USB host.  
USB_WAKE_UP is an active high output (used only when USB_DETACH is active) to wake up the host and allow USB  
communication to recommence. It replaces the function of the software USB WAKE_UP message (which runs over  
the USB cable) and cannot be sent while BlueCore4-Flash Plug-n-Go is effectively disconnected from the bus.  
Figure 11.14: USB_DETACH and USB_WAKE_UP Signal  
11.5.8 USB Driver  
A USB Bluetooth device driver is required to provide a software interface between BlueCore4-Flash Plug-n-Go and  
Bluetooth software running on the host computer. Suitable drivers are available from http://www.csrsupport.com.  
11.5.9 USB 1.1 Compliance  
BlueCore4-Flash Plug-n-Go is qualified to the USB Specification v1.1, details of which are available from  
www.usb.org. The specification contains valuable information on aspects such as PCB track impedance, supply inrush  
current and product labelling.  
Although BlueCore4-Flash Plug-n-Go meets the USB specification, CSR cannot guarantee that an application circuit  
designed around the chip is USB compliant. The choice of application circuit, component choice and PCB layout all  
affect USB signal quality and electrical characteristics. The information in this document is intended as a guide and  
should be read in association with the USB specification, with particular attention being given to Chapter 7.  
Independent USB qualification must be sought before an application is deemed USB compliant and can bear the USB  
logo. Such qualification can be obtained from a USB plugfest or from an independent USB test house.  
Terminals USB_DP and USB_DN adhere to the USB specification v2.0 (Chapter 7) electrical requirements.  
11.5.10 USB 2.0 Compatibility  
BlueCore4-Flash Plug-n-Go is compatible with USB v2.0 host controllers; under these circumstances the two ends  
agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification.  
Advance Information  
BC419143B-ds-001Pe  
Page 65 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.6  
Serial Peripheral Interface  
BlueCore4-Flash Plug-n-Go uses 16-bit data and 16-bit address serial peripheral interface, where transactions may  
occur when the internal processor is running or is stopped. This section details the considerations required when  
interfacing to BlueCore4-Flash Plug-n-Go via the four dedicated serial peripheral interface terminals. Data may be  
written or read one word at a time or the auto increment feature may be used to access blocks.  
11.6.1 Instruction Cycle  
The BlueCore4-Flash Plug-n-Go is the slave and receives commands on SPI_MOSI and outputs data on SPI_MISO.  
shows the instruction cycle for an SPI transaction.  
1
2
3
4
5
Reset the SPI interface  
Write the command word  
Write the address  
Hold SPI_CSB high for two SPI_CLK cycles  
Take SPI_CSB low and clock in the 8 bit command  
Clock in the 16-bit address word  
Write or read data words  
Termination  
Clock in or out 16-bit data word(s)  
Take SPI_CSB high  
Table 11.7: Instruction Cycle for an SPI Transaction  
With the exception of reset, SPI_CSB must be held low during the transaction. Data on SPI_MOSI is clocked into the  
BlueCore4-Flash Plug-n-Go on the rising edge of the clock line SPI_CLK. When reading, BlueCore4-Flash Plug-n-Go  
will reply to the master on SPI_MISO with the data changing on the falling edge of the SPI_CLK. The master provides  
the clock on SPI_CLK. The transaction is teminated by taking SPI_CSB high.  
Sending a command word and the address of a register for every time it is to be read or written is a significant  
overhead, especially when large amounts of data are to be transferred. To overcome this BlueCore4-Flash Plug-n-Go  
offers increased data transfer efficiency via an auto increment operation. To invoke auto increment, SPI_CSB is kept  
low, which auto increments the address, while providing an extra 16 clock cycles for each extra word to be written or  
read.  
Advance Information  
BC419143B-ds-001Pe  
Page 66 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.6.2 Writing to the Device  
To write to BlueCore4-Flash Plug-n-Go, the 8-bit write command (00000010) is sent first (C[7:0]) followed by a 16-bit  
address (A[15:0]). The next 16-bits (D[15:0]) clocked in on SPI_MOSI are written to the location set by the address  
(A). Thereafter for each subsequent 16-bits clocked in, the address (A) is incremented and the data written to  
consecutive locations until the transaction terminates when SPI_CSB is taken high.  
Figure 11.15: SPI Write Operation  
11.6.3 Reading from the Device  
Reading from BlueCore4-Flash Plug-n-Go is similar to writing to it. An 8-bit read command (00000011) is sent first  
(C[7:0]), followed by the address of the location to be read (A[15:0]). BlueCore4-Flash Plug-n-Go then outputs on  
SPI_MISO a check word during T[15:0] followed by the 16-bit contents of the addressed location during bits D[15:0].  
The check word is composed of {command, address [15:8]}. The check word may be used to confirm a read operation  
to a memory location. This overcomes the problems encountered with typical serial peripheral interface slaves,  
whereby it is impossible to determine whether the data returned by a read operation is valid data or the result of the  
slave device not responding.  
If SPI_CSB is kept low, data from consecutive locations is read out on SPI_MISO for each subsequent 16 clocks, until  
the transaction terminates when SPI_CSB is taken high.  
Figure 11.16: SPI Read Operation  
11.6.4 Multi-Slave Operation  
BlueCore4-Flash Plug-n-Go should not be connected in a multi-slave arrangement by simple parallel connection of  
slave MISO lines. When BlueCore4-Flash Plug-n-Go is deselected (SPI_CSB = 1), the SPI_MISO line does not float.  
Instead, BlueCore4-Flash Plug-n-Go outputs 0 if the processor is running or 1 if it is stopped.  
Advance Information  
BC419143B-ds-001Pe  
Page 67 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.7  
PCM CODEC Interface  
Pulse Code Modulation (PCM) is a standard method used to digitise audio (particularly voice) for transmission over  
digital communication channels. Through its PCM interface, BlueCore4-Flash Plug-n-Go has hardware support for  
continual transmission and reception of PCM data, thus reducing processor overhead for wireless headset  
applications. BlueCore4-Flash Plug-n-Go offers a bi-directional digital audio interface that routes directly into the  
baseband layer of the on-chip firmware. It does not pass through the HCI protocol layer.  
Hardware on BlueCore4-Flash Plug-n-Go allows the data to be sent to and received from a SCO connection. (1)  
Up to three SCO connections can be supported by the PCM interface at any one time.  
BlueCore4-Flash Plug-n-Go can operate as the PCM interface master generating an output clock of 128, 256 or  
512kHz. When configured as PCM interface slave, it can operate with an input clock up to 2048kHz. BlueCore4-Flash  
Plug-n-Go is compatible with a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing  
environments.  
It supports 13-bit or 16-bit linear, 8-bit µ-law or A-law companded sample formats at 8ksamples/s and can receive and  
transmit on any selection of three of the first four slots following PCM_SYNC. The PCM configuration options are  
enabled by setting the PS Key PS KEY_PCM_CONFIG32 (0x1b3).  
BlueCore4-Flash Plug-n-Go interfaces directly to PCM audio devices including the following:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Qualcomm MSM 3000 series and MSM 5000 series CDMA baseband devices  
OKI MSM7705 four channel A-law and µ-law CODEC  
Motorola MC145481 8-bit A-law and µ-law CODEC  
Motorola MC145483 13-bit linear CODEC  
STW 5093 and 5094 14-bit linear CODECs  
BlueCore4-Flash Plug-n-Go is also compatible with the Motorola SSI interface  
11.7.1 PCM Interface Master/Slave  
When configured as the master of the PCM interface, BlueCore4-Flash Plug-n-Go generates PCM_CLK and  
PCM_SYNC.  
BlueCore  
PCM_OUT  
PCM_IN  
PCM_CLK  
128/256/512kHz  
8kHz  
PCM_SYNC  
Figure 11.17: BlueCore4-Flash Plug-n-Go as PCM Interface Master  
When configured as the Slave of the PCM interface, BlueCore4-Flash Plug-n-Go accepts PCM_CLK rates up to  
2048kHz.  
(1)  
Subject to firmware support. Contact CSR for current status.  
Advance Information  
BC419143B-ds-001Pe  
Page 68 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
BlueCore  
PCM_OUT  
PCM_IN  
PCM_CLK  
PCM_SYNC  
Upto 2048kHz  
8kHz  
Figure 11.18: BlueCore4-Flash Plug-n-Go as PCM Interface Slave  
11.7.2 Long Frame Sync  
Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In  
Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When BlueCore4-Flash  
Plug-n-Go is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits long.  
When BlueCore4-Flash Plug-n-Go is configured as PCM Slave, PCM_SYNC may be from two consecutive falling  
edges of PCM_CLK to half the PCM_SYNC rate, i.e., 62.5µs long.  
PCM_SYNC  
PCM_CLK  
PCM_OUT  
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
PCM_IN  
8
Undefined  
Undefined  
Figure 11.19: Long Frame Sync (Shown with 8-bit Companded Sample)  
BlueCore4-Flash Plug-n-Go samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising  
edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on  
the rising edge.  
11.7.3 Short Frame Sync  
In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always one  
clock cycle long.  
Advance Information  
BC419143B-ds-001Pe  
Page 69 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
PCM_SYNC  
PCM_CLK  
PCM_OUT  
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10 11 12 13 14 15  
16  
PCM_IN Undefined  
10 11 12 13 14 15 16  
Undefined  
Figure 11.20: Short Frame Sync (Shown with 16-bit Sample)  
As with Long Frame Sync, BlueCore4-Flash Plug-n-Go samples PCM_IN on the falling edge of PCM_CLK and  
transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of  
PCM_CLK in the LSB position or on the rising edge.  
11.7.4 Multi-slot Operation  
More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO connections  
can be carried over any of the first four slots.  
LONG_PCM_SYNC  
Or  
SHORT_PCM_SYNC  
PCM_CLK  
PCM_OUT  
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
PCM_IN Do Not Care  
8
8 Do Not Care  
Figure 11.21: Multi-slot Operation with Two Slots and 8-bit Companded Samples  
11.7.5 GCI Interface  
BlueCore4-Flash Plug-n-Go is compatible with the General Circuit Interface (GCI), a standard synchronous 2B+D  
ISDN timing interface. The two 64Kbps B channels can be accessed when this mode is configured.  
Advance Information  
BC419143B-ds-001Pe  
Page 70 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
PCM_SYNC  
PCM_CLK  
PCM_OUT  
PCM_IN  
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
Do Not  
Care  
Do Not  
Care  
8
B1 Channel  
B2 Channel  
Figure 11.22: GCI Interface  
The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8kHz. With BlueCore4-Flash Plug-n-Go  
in Slave mode, the frequency of PCM_CLK can be up to 4.096MHz.  
11.7.6 Slots and Sample Formats  
BlueCore4-Flash Plug-n-Go can receive and transmit on any selection of the first four slots following each sync pulse.  
Slot durations can be either 8 or 16 clock cycles. Durations of 8 clock cycles may only be used with 8-bit sample  
formats. Durations of 16 clocks may be used with 8-bit, 13-bit or 16-bit sample formats.  
BlueCore4-Flash Plug-n-Go supports 13-bit linear, 16-bit linear and 8-bit µ-law or A-law sample formats. The sample  
rate is 8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in each  
slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with  
some Motorola CODECs.  
Advance Information  
BC419143B-ds-001Pe  
Page 71 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Sign  
Extension  
PCM_OUT  
PCM_OUT  
PCM_OUT  
PCM_OUT  
1
2
3
3
3
3
4
5
6
7
8
9
10  
11  
12  
8-Bit  
Sample  
13  
14  
15 16  
A 16-bit slot with 8-bit companded sample and sign extension selected.  
8-Bit  
Sample  
1
2
4
5
6
7
8
9
10  
11  
12  
Zeros  
Padding  
A 16-bit slot with 8-bit companded sample and zeros padding selected.  
13  
14  
15 16  
Sign  
Extension  
1
2
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 16  
13-Bit  
Sample  
A 16-bit slot with 13-bit linear sample and sign extension selected.  
13-Bit  
Sample  
1
2
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 16  
Audio  
Gain  
A 16-bit slot with 13-bit linear sample and audio gain selected.  
Figure 11.23: 16-Bit Slot Length and Sample Formats  
11.7.7 Additional Features  
BlueCore4-Flash Plug-n-Go has a mute facility that forces PCM_OUT to be 0. In master mode, PCM_SYNC may also  
be forced to 0 while keeping PCM_CLK running which some CODECS use to control power down.  
Advance Information  
BC419143B-ds-001Pe  
Page 72 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.7.8 PCM Timing Information  
Symbol  
Parameter  
Min  
Typ  
128  
256  
Max  
Unit  
4MHz DDS  
generation. Selection  
of frequency is  
programmable. See  
Table 11.10.  
-
-
kHz  
512  
48MHz DDS  
generation. Selection  
of frequency is  
programmable. See  
Table 11.11 and  
PCM_CLK and  
PCM_SYNC  
fmclk  
PCM_CLK frequency  
2.9  
-
-
kHz  
Generation on page  
76.  
-
PCM_SYNC frequency  
PCM_CLK high  
-
8
-
kHz  
ns  
(a)  
tmclkh  
4MHz DDS generation  
4MHz DDS generation  
980  
730  
(a)  
tmclkl  
PCM_CLK low  
-
ns  
48MHz DDS  
generation  
-
PCM_CLK jitter  
21  
20  
20  
20  
20  
20  
20  
ns pk-pk  
Delay time from PCM_CLK high to PCM_SYNC  
high  
tdmclksynch  
tdmclkpout  
tdmclklsyncl  
tdmclkhsyncl  
tdmclklpoutz  
tdmclkhpoutz  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
Delay time from PCM_CLK high to valid  
PCM_OUT  
Delay time from PCM_CLK low to PCM_SYNC  
low (Long Frame Sync only)  
Delay time from PCM_CLK high to PCM_SYNC  
low  
Delay time from PCM_CLK low to PCM_OUT  
high impedance  
Delay time from PCM_CLK high to PCM_OUT  
high impedance  
tsupinclkl  
thpinclkl  
Set-up time for PCM_IN valid to PCM_CLK low  
Hold time for PCM_CLK low to PCM_IN invalid  
30  
10  
-
-
-
-
ns  
ns  
Table 11.8: PCM Master Timing  
Assumes normal system clock operation. Figures will vary during low power modes, when system clock speeds are  
reduced.  
(a)  
Advance Information  
BC419143B-ds-001Pe  
Page 73 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
t dmclklsyncl  
t dmclksynch  
t dmclkhsyncl  
PCM_SYNC  
fmlk  
tmclkh  
tmclkl  
PCM_CLK  
t dmclklpoutz  
t dmclkpout  
tr ,t f  
t dmclkhpoutz  
PCM_OUT  
PCM_IN  
MSB (LSB)  
LSB (MSB)  
t supinclkl  
thpinclkl  
MSB (LSB)  
LSB (MSB)  
Figure 11.24: PCM Master Timing Long Frame Sync  
t dmclksynch  
t dmclkhsyncl  
PCM_SYNC  
fmlk  
tmclkh  
tmclkl  
PCM_CLK  
t dmclklpoutz  
t dmclkpout  
tr ,t f  
t dmclkhpoutz  
PCM_OUT  
PCM_IN  
MSB (LSB)  
LSB (MSB)  
t supinclkl  
thpinclkl  
MSB (LSB)  
LSB (MSB)  
Figure 11.25: PCM Master Timing Short Frame Sync  
Advance Information  
BC419143B-ds-001Pe  
Page 74 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Symbol  
fsclk  
Parameter  
Min  
64  
Typ  
Max  
Unit  
kHz  
kHz  
ns  
PCM clock frequency (Slave mode: input)  
PCM clock frequency (GCI mode)  
PCM_CLK low time  
-
-
-
-
-
-
2048  
fsclk  
128  
200  
200  
30  
4096  
tsclkl  
-
-
-
-
tsclkh  
PCM_CLK high time  
ns  
thsclksynch  
tsusclksynch  
Hold time from PCM_CLK low to PCM_SYNC high  
Set-up time for PCM_SYNC high to PCM_CLK low  
ns  
30  
ns  
Delay time from PCM_SYNC or PCM_CLK  
whichever is later, to valid PCM_OUT data (Long  
Frame Sync only)  
tdpout  
-
-
-
-
-
-
20  
20  
20  
ns  
ns  
ns  
tdsclkhpout  
tdpoutz  
Delay time from CLK high to PCM_OUT valid data  
Delay time from PCM_SYNC or PCM_CLK low,  
whichever is later, to PCM_OUT data line high  
impedance  
tsupinsclkl  
thpinsclkl  
Set-up time for PCM_IN valid to CLK low  
30  
30  
-
-
-
-
ns  
ns  
Hold time for PCM_CLK low to PCM_IN invalid  
Table 11.9: PCM Slave Timing  
fsclk  
tsclkh  
ttsclkl  
PCM_CLK  
t hsclksynch  
t susclksynch  
PCM_SYNC  
tdpoutz  
tdpout  
MSB (LSB)  
t dsclkhpout  
tr ,t f  
tdpoutz  
PCM_OUT  
PCM_IN  
LSB (MSB)  
t supinsclkl  
t hpinsclkl  
MSB (LSB)  
LSB (MSB)  
Figure 11.26: PCM Slave Timing Long Frame Sync  
Advance Information  
BC419143B-ds-001Pe  
Page 75 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
fsclk  
tsclkh  
ttsclkl  
PCM_CLK  
t susclksynch  
t hsclksynch  
PCM_SYNC  
tdpoutz  
tdpoutz  
t dsclkhpout  
MSB (LSB)  
tr ,t f  
PCM_OUT  
PCM_IN  
LSB (MSB)  
t supinsclkl  
t hpinsclkl  
MSB (LSB)  
LSB (MSB)  
Figure 11.27: PCM Slave Timing Short Frame Sync  
PCM_CLK and PCM_SYNC Generation  
BlueCore4-Flash Plug-n-Go has two methods of generating PCM_CLK and PCM_SYNC in master mode. The first is  
generating these signals by Direct Digital Synthesis (DDS) from BlueCore4-Flash Plug-n-Go internal 4MHz clock  
(which is used in BlueCore2-External). Using this mode limits PCM_CLK to 128, 256 or 512kHz and PCM_SYNC to  
8kHz. The second is generating PCM_CLK and PCM_SYNC by DDS from an internal 48MHz clock (which allows a  
greater range of frequencies to be generated with low jitter but consumes more power). This second method is  
selected by setting bit 48M_PCM_CLK_GEN_EN in PSKEY_PCM_CONFIG32. When in this mode and with long  
frame sync, the length of PCM_SYNC can be either 8 or 16 cycles of PCM_CLK, determined by  
LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32.  
The Equation 11.8 describes PCM_CLK frequency when being generated using the internal 48MHz clock:  
CNT_RATE  
f =  
× 24MHz  
CNT_LIMIT  
Equation 11.8: PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock  
The frequency of PCM_SYNC relative to PCM_CLK can be set using Equation 11.9:  
PCM_CLK  
f =  
SYNC_LIMIT×8  
Equation 11.9: PCM_SYNC Frequency Relative to PCM_CLK  
CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an example, to  
generate PCM_CLK at 512kHz with PCM_SYNC at 8kHz, set PSKEY_PCM_LOW_JITTER_CONFIG to 0x08080177.  
11.7.9 PCM Configuration  
The PCM configuration is set using two PS Keys, PSKEY_PCM_CONFIG32 detailed in Table 11.10 and  
PSKEY_PCM_LOW_JITTER_CONFIG in Table 11.11. The default for PSKEY_PCM_CONFIG32 is 0x00800000, i.e.,  
first slot following sync is active, 13-bit linear voice format, long frame sync and interface master generating 256kHz  
PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT.  
Advance Information  
BC419143B-ds-001Pe  
Page 76 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Name  
Bit Position Description  
-
0
Set to 0  
0 = master mode with internal generation of PCM_CLK and  
PCM_SYNC.  
SLAVE_MODE_EN  
1
1 = slave mode requiring externally generated PCM_CLK  
and PCM_SYNC.  
0 = long frame sync (rising edge indicates start of frame).  
1 = short frame sync (falling edge indicates start of frame).  
Set to 0.  
SHORT_SYNC_EN  
-
2
3
0 = padding of 8 or 13-bit voice sample into a 16-bit slot by  
inserting extra LSBs. When padding is selected with 13-bit  
voice sample, the 3 padding bits are the audio gain setting;  
with 8-bit sample the 8 padding bits are zeroes.  
SIGN_EXTEND_EN  
4
1 = sign-extension.  
0 = MSB first of transmit and receive voice samples.  
1 = LSB first of transmit and receive voice samples.  
0 = drive PCM_OUT continuously.  
LSB_FIRST_EN  
5
6
1 = tri-state PCM_OUT immediately after falling edge of  
PCM_CLK in the last bit of an active slot, assuming the next  
slot is not active.  
TX_TRISTATE_EN  
0 = tri-state PCM_OUT immediately after falling edge of  
PCM_CLK in last bit of an active slot, assuming the next slot  
is also not active.  
TX_TRISTATE_RISING_EDGE_EN  
SYNC_SUPPRESS_EN  
7
8
1 = tri-state PCM_OUT after rising edge of PCM_CLK.  
0 = enable PCM_SYNC output when master.  
1 = suppress PCM_SYNC whilst keeping PCM_CLK running.  
Some CODECS utilise this to enter a low power state.  
GCI_MODE_EN  
MUTE_EN  
9
1 = enable GCI mode  
10  
1 = force PCM_OUT to 0  
0 = set PCM_CLK and PCM_SYNC generation via DDS from  
internal 4 MHz clock.  
48M_PCM_CLK_GEN_EN  
LONG_LENGTH_SYNC_EN  
11  
12  
1 = set PCM_CLK and PCM_SYNC generation via DDS from  
internal 48 MHz clock.  
0 = set PCM_SYNC length to 8 PCM_CLK cycles.  
1 = set length to 16 PCM_CLK cycles.  
Only applies for long frame sync and with  
48M_PCM_CLK_GEN_EN set to 1.  
-
[20:16]  
[22:21]  
[26:23]  
Set to 0b00000  
Selects 128 (0b01), 256 (0b00), 512 (0b10) kHz PCM_CLK  
frequency when master and 48M_PCM_CLK_GEN_EN (bit  
11) is low.  
MASTER_CLK_RATE  
ACTIVE_SLOT  
Default is 0001. Ignored by firmware.  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 77 of 97  
Device Terminal Descriptions  
Name  
Bit Position Description  
Selects between 13 (0b00), 16 (0b01), 8 (0b10) bit sample  
with 16 cycle slot duration or 8 (0b11) bit sample with 8 cycle  
slot duration.  
SAMPLE_FORMAT  
[28:27]  
Table 11.10: PSKEY_PCM_CONFIG32 Description  
Advance Information  
BC419143B-ds-001Pe  
Page 78 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Name  
Bit Position Description  
CNT_LIMIT  
CNT_RATE  
SYNC_LIMIT  
[12:0]  
[23:16]  
[31:24]  
Sets PCM_CLK counter limit  
Sets PCM_CLK count rate  
Sets PCM_SYNC division relative to PCM_CLK  
Table 11.11: PSKEY_PCM_LOW_JITTER_CONFIG Description  
Advance Information  
BC419143B-ds-001Pe  
Page 79 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.8  
I/O Parallel Ports  
Fifteen lines of programmable bi-directional input/outputs (I/O) are provided. PIO[11:8] and PIO[3:0] are powered from  
VDD_PIO. PIO[7:4] are powered from VDD_PADS. AIO [2:0] are powered from VDD_MEM.  
PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are  
configured as inputs with weak pull-downs at reset.  
PIO[0] and PIO[1] are normally dedicated to RXEN and TXEN respectively, but they are available for general use.  
Any of the PIO lines can be configured as interrupt request lines or as wake-up lines from sleep modes. PIO[6] or  
PIO[2] can be configured as a request line for an external clock source. This is useful when the clock to  
BlueCore4-Flash Plug-n-Go is provided from a system application specific integrated circuit (ASIC). Using  
PSKEY_CLOCK_REQUEST_ENABLE (0x246), this terminal can be configured to be low when BlueCore4-Flash  
Plug-n-Go is in Deep Sleep and high when a clock is required. The clock must be supplied within 4ms of the rising  
edge of PIO[6] or PIO[2] to avoid losing timing accuracy in certain Bluetooth operating modes.  
BlueCore4-Flash Plug-n-Go has three general purpose analogue interface pins, AIO[0], AIO[1] and AIO[2] also known  
as the extended PIO lines. These are used to access internal circuitry and control signals. One pin is allocated to  
decoupling for the on-chip band gap reference voltage; the other two may be configured to provide additional  
functionality.  
Auxiliary functions available via these pins include an 8-bit ADC and an 8-bit DAC. Typically the ADC is used for battery  
voltage measurement. Signals selectable at these pins include the band gap reference voltage and a variety of clock  
signals: 48, 24, 16, 8MHz and the XTAL clock frequency. When used with analogue signals, the voltage range is  
constrained by the analogue supply voltage (1.8V). When configured to drive out digital level signals (e.g., clocks), the  
output voltage level is determined by VDD_MEM (1.8V).  
11.8.1 PIO Defaults  
CSR cannot guarantee that these terminal functions remain the same. Refer to the software release note for the  
implementation of these PIO lines, as they are firmware build-specific.  
Advance Information  
BC419143B-ds-001Pe  
Page 80 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
Advance Information  
BC419143B-ds-001Pe  
Page 81 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.9  
TCXO Enable OR Function  
An OR function exists for clock enable signals from a host controller and BlueCore4-Flash Plug-n-Go where either  
device can turn on the clock without having to wake up the other device. PIO[3] can be used as the host clock enables  
input and PIO[2] can be used as the OR output with the TCXO enable signal from BlueCore4-Flash Plug-n-Go.  
VDD  
GSM System  
TCXO  
CLK IN  
Enable  
CLK REQ OUT  
BlueCore System  
CLK REQ IN/  
PIO[3]  
CLK REQ OUT/  
CLK IN  
PIO[2]  
Figure 11.28: Example TCXO Enable OR Function  
On reset and up to the time the PIO has been configured, PIO[2] will be tri-state. Therefore, the developer must ensure  
that the circuitry connected to this pin is pulled via a 470kresistor to the appropriate power rail. This ensures that the  
TCXO is oscillating at start up.  
Advance Information  
BC419143B-ds-001Pe  
Page 82 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.10 RESET and RESETB  
BlueCore4-Flash Plug-n-Go may be reset from several sources:  
ƒ
ƒ
ƒ
ƒ
RESET or RESETB pins  
Power on reset  
A UART break character  
Via a software configured watchdog timer  
The RESET pin is an active high reset and is internally filtered using the internal low frequency clock oscillator. A reset  
will be performed between 1.5ms and 4.0ms following RESET being active. It is recommended that RESET be applied  
for a period greater than 5ms. The RESETB pin is the active low version of RESET and is OR'd on-chip with the active  
high RESET, with either causing the reset function.  
The power on reset occurs when the VDD_CORE supply falls below typically 1.5V and is released when VDD_CORE  
rises above typically 1.6V.  
At reset the digital I/O pins are set to inputs for bi-directional pins and outputs are tri-state. The PIOs have weak  
pull-downs.  
Following a reset, BlueCore4-Flash Plug-n-Go assumes the maximum XTAL_IN frequency, which ensures that the  
internal clocks run at a safe (low) frequency until BlueCore4-Flash Plug-n-Go is configured for the actual XTAL_IN  
frequency. If no clock is present at XTAL_IN, the oscillator in BlueCore4-Flash Plug-n-Go free runs, again at a safe  
frequency.  
Advance Information  
BC419143B-ds-001Pe  
Page 83 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.10.1 Pin States on Reset  
Table 11.12 shows the pin states of BlueCore4-Flash Plug-n-Go on reset.  
Pin Name  
PIO[11:0]  
PCM_OUT  
PCM_IN  
State: BlueCore4-Flash Plug-n-Go  
Input with weak pull-down  
Tri-state with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Output tri-state with weak pull-up  
Input with weak pull-down  
Output tri-state with weak pull-up  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-up  
PCM_SYNC  
PCM_CLK  
UART_TX  
UART_RX  
UART_RTS  
UART_CTS  
USB_DP  
USB_DN  
SPI_CSB  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
AIO[2:0]  
Input with weak pull-down  
Input with weak pull-down  
Output tri-state with weak pull-down  
Output, driving low  
RESET  
Input with weak pull-down  
Input with weak pull-up  
RESETB  
TEST_EN  
AUX_DAC  
RF_IN  
Input with strong pull-down  
High impedance  
High impedance  
XTAL_IN  
High impedance, 250k to XTAL_OUT  
High impedance, 250k to XTAL_IN  
XTAL_OUT  
Table 11.12: Pin States of BlueCore4-Flash Plug-n-Go on Reset  
11.10.2 Status after Reset  
The chip status after a reset is as follows:  
ƒ
ƒ
Warm Reset: Baud rate and RAM data remain available  
Cold Reset(1) : Baud rate and RAM data not available  
(1)  
A Cold Reset is either Power cycle, system reset (firmware fault code) or Reset signal. See section 11.10.  
Advance Information  
BC419143B-ds-001Pe  
Page 84 of 97  
© CSR plc 2006  
Device Terminal Descriptions  
11.11 Power Supply  
11.11.1 Voltage Regulator (Plug-n-Go)  
An on-chip linear voltage regulator can be used to power the 1.8V dependent supplies. It is advised that a smoothing  
circuit using a 2.2µF low ESR capacitor and 2.2resistor be placed on the output VDD_ANA.  
In the Plug-n-Go package, an internal 2.2resistor is provided between the regulator output VDD_ANA and  
VDD_DIG.  
The regulator is switched into a low power mode when the device is sent into Deep Sleep mode. When the on-chip  
regulator is not required VDD_ANA is a 1.8V input and VREG_IN must be either open circuit or tied to VDD_ANA.  
11.11.2 Sequencing  
It is recommended that VDD_CORE, VDD_RADIO and VDD_ANA be powered at the same time. The order of  
powering supplies for VDD_CORE, VDD_PIO, VDD_PADS and VDD_USB is not important. However, if VDD_CORE  
is not present, all inputs have a weak pull-down irrespective of the reset state.  
11.11.3 Sensitivity to Disturbances  
CSR recommends if supplying BlueCore4-Flash Plug-n-Go from an external voltage source that VDD_ANA and  
VDD_RADIO should have less than 10mV rms noise levels between 0 to 10MHz. In addition, avoid single tone  
frequencies. CSR recommends a simple RC filter for VDD_CORE, as this reduces transients put back onto the power  
supply rails.  
The remaining supplies VDD_PIO, VDD_PADS and VDD_USB can be connected together with the VREG_IN to the  
3.3V supply and simply decoupled.  
The transient response of the regulator is also important. At the start of a packet, power consumption will jump to high  
levels. See the average current consumption section. The regulator should have a response time of 20µs or less; it is  
essential that the power rail recovers quickly.  
11.11.4 VREG_EN Pin  
The regulator enable pin, VREG_EN, can be used to enable and disable the BlueCore4-Flash Plug-n-Go device if the  
on-chip regulator is being used. The pin is active high and has an internal weak pull-up to enable the regulator if  
VREG_EN is not connected.  
Advance Information  
BC419143B-ds-001Pe  
Page 85 of 97  
© CSR plc 2006  
Product Reliability Tests  
12 Product Reliability Tests  
Die  
Test Conditions  
Human Body Model  
±200mA  
Specification  
JEDEC  
Sample Size  
ESD  
36  
Latch-up  
Early Life  
Hot Life Test  
JEDEC  
6
125°C  
48 – 168 hours  
1000 hours  
240  
125°C  
320 (240 FITs)  
Package  
Test Conditions  
(125°C 24 hours)  
30°C/60%RH  
-65°C to +150°C  
121°C at 100% RH  
130°C/85% RH  
-55/125°C  
Specification  
Sample Size  
Moisture Sensitivity Precon  
JEDEC Level 3  
192 hours five re-flow  
simulation cycles  
308  
Temperature Cycling  
AutoClave (Steam)  
HAST  
500 cycles  
96 hours  
77  
77  
77  
77  
77  
96 hours  
Thermal Shock  
100 cycles  
1000 hours  
High Temperature Storage  
150°C  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 86 of 97  
Product Reliability Tests for BlueCore4-Flash Plug-n-Go Automotive  
13 Product Reliability Tests for BlueCore4-Flash Plug-n-Go  
Automotive  
13.1  
AEC-Q100  
The reliability tests in this section follow the tests outlined in the AEC-Q100 and were performed on BlueCore4-Flash  
Plug-n-Go in VFBGA 10 x 10mm 96 I/O (lead-free solder balls). Samples are electrically tested at ambient  
temperature.  
This package qualification will (where moisture sensitivity preconditioning is required) use IPC/Jedec MSL3, i.e., the  
finished product is allowed a maximum exposure to a 30°C/60%RH environment for 168 hours before mounting.  
As part of CSR's automotive test program, customers will have access to the initial device reliability test report. They  
will also have access to a quarterly reliability test report update for automotive parts.  
Die  
Test Conditions  
Human Body Model  
125°C VDDmax  
Specification  
JEDEC  
Sample Size  
24  
ESD  
Early Life  
Hot Life Test  
48 hours  
2400  
125°C VDDmax  
1000 hours  
90, 77, 77  
Package  
Test Conditions  
Specification  
Sample Size  
Moisture  
(125°C 24 hours)  
Sensitivity  
192 hours five reflow  
simulation cycles  
783  
Precon  
30°C/60%RH  
JEDEC Level 3  
Temperature Cycling  
Autoclave (Steam)  
Temperature Humidity Bias  
Thermal Shock  
High Temperature Storage  
-65/150°C  
121°C/100%RH  
85°C/85%RH Vddmax  
-55/125°C  
500 cycles  
96 hours  
231 from Precon  
231 from Precon  
231 from Precon  
77 from Precon  
77  
1000 hours  
100 cycles  
1000 hours  
150°C  
Other  
Test Conditions  
Sample Size  
Bond Shear  
Acid decapsulation of finished product  
Acid decapsulation of finished product  
Two reflow cycles  
30 bonds  
60 wires from Precon and  
temperature cycling  
Wire Pull  
Solder Ball Shear  
150 balls  
Visual Inspection and  
Dimensions  
N/A  
30 devices  
Advance Information  
BC419143B-ds-001Pe  
Page 87 of 97  
© CSR plc 2006  
Application Schematic  
14 Application Schematic  
E N H S _ F L A  
R E S E T  
F 9  
0
B 1  
U O T A L X _ T  
L 4  
N I _ L A X T  
N E _ S T T E  
L 3  
E 9  
N I _ G E V R  
L 7  
S B U _  
O
S D A  
V D D  
D V D _ P I  
D V D _ P  
L 1 0  
A 3  
E 1  
N C  
1
E S T B R E  
A P D S S S V _  
A P D S S S V _  
A P D S S S V _  
G 9  
0
K 1  
E 1 0  
A 2  
J 9  
D 9  
F 1  
M
M E S _ V S  
M
M E S _ V S  
C O R E V S S _  
0
C _ O D R E V D  
D V D _ M E  
D V D _ M E  
D _ D V I D G  
1 F 1  
M
M
K 6  
B 1  
L 6  
A
O
O
O
A _ N V S S  
V _ C V S S  
V _ C V S S  
V _ C V S S  
A R D I O S S V _  
A R D I O S S V _  
A R D I O S S V _  
1
K 4  
H 3  
H 2  
G 3  
G 2  
F 3  
E 2  
A 1  
K 1  
J 1  
G 1  
A _ N D A D V  
L 5  
H
T C M A B A L _  
N U L B _ A V S S  
N U L B _ A V S S  
N U L B _ A V S S  
D _ R V A D D I O  
V D D _ B A L  
E 3  
F 1  
N U  
Figure 14.1: Application Circuit for Radio Characteristics Specification  
Advance Information  
BC419143B-ds-001Pe  
Page 88 of 97  
© CSR plc 2006  
Package Dimensions  
15 Package Dimensions  
15.1  
10 x 10 LFBGA 96-Ball 1.6mm Package  
Top View  
Bottom View  
1
2
3
4
5
6
7
8
10 11  
11 10  
8
7
6
5
4
3
2
1
PX  
X
Y
F
PY  
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
4
E1 SE  
E
G
H
J
K
L
K
e
L
G
SD  
Øb 1  
D
J
D1  
H
0.1  
Z
3
A3  
A
A2  
A1  
Scale = 1mm  
0.08  
Z
SEATING PLANE  
Z
2
1
2
3
4
5
Figure 15.1: BlueCore4-Flash Plug-n-Go 96-Ball LFBGA 1.6mm Package Dimensions  
Advance Information  
BC419143B-ds-001Pe  
Page 89 of 97  
© CSR plc 2006  
RoHS Statement with a List of Banned Materials  
16 RoHS Statement with a List of Banned Materials  
16.1  
RoHS Statement  
BlueCore4-Flash Plug-n-Go where explicitly stated in this Data Sheet meets the requirements of Directive 2002/95/EC  
of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS).  
16.1.1 List of Banned Materials  
The following banned substances are not present in BlueCore4-Flash Plug-n-Go which is compliant with RoHS:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Cadmium  
Lead  
Mercury  
Hexavalent chromium  
PBB (Polybrominated Bi-Phenyl)  
PBDE (Polybrominated Diphenyl Ether)  
In addition, BlueCore4-Flash Plug-n-Go is free from the following substances:  
PVC (Poly Vinyl Chloride)  
ƒ
Advance Information  
BC419143B-ds-001Pe  
Page 90 of 97  
© CSR plc 2006  
Ordering Information  
17 Ordering Information  
17.1  
BlueCore4-Flash Plug-n-Go  
Package  
Size  
Interface Version  
Order Number  
Type  
Shipment Method  
96-Ball LFBGA  
(Pb free)  
UART and USB  
10 x 10 x 1.6mm  
Tape and reel  
BC419143B-ANN-E4 (a)  
(a)  
Until BlueCore4-Flash Plug-n-Go reaches Production status order number is BC419143BES-ANN-E4.  
Minimum Order Quantity  
2kpcs taped and reeled  
Advance Information  
BC419143B-ds-001Pe  
Page 91 of 97  
© CSR plc 2006  
Contact Information  
18 Contact Information  
CSR UK  
CSR Denmark  
Novi Science Park  
Niels Jernes Vej 10  
9220 Aalborg East  
Denmark  
CSR Japan  
Churchill House  
CSR KK  
9F Kojimachi KS Square 5-3-3,  
Kojimachi,  
Cambridge Business Park  
Cowley Road  
Cambridge, CB4 0WZ  
United Kingdom  
Chiyoda-ku,  
Tel: +45 72 200 380  
Fax: +45 96 354 599  
e-mail: sales@csr.com  
Tokyo 102-0083  
Tel: +44 (0) 1223 692 000  
Fax: +44 (0) 1223 692 001  
e-mail: sales@csr.com  
Japan  
Tel: +81-3-5276-2911  
Fax: +81-3-5276-2915  
e-mail: sales@csr.com  
CSR Korea  
2nd Floor, Hyo-Bong Building,  
1364-1, Seocho-dong,  
Seocho-gu,  
CSR Taiwan  
6th Floor, No. 407,  
Rui Guang Road,  
NeiHu,  
CSR U.S.  
2425 N. Central Expressway  
Suite 1000  
Richardson  
Seoul 137-863,  
Taipei 114,  
Texas 75080  
Korea  
Taiwan, R.O.C.  
USA  
Tel: +82 2 3473 2372-5  
Fax : +82 2 3473 2205  
e-mail: sales@csr.com  
Tel: +886 2 7721 5588  
Fax: +886 2 7721 5589  
e-mail: sales@csr.com  
Tel: +1 (972) 238 2300  
Fax: +1 (972) 231 1440  
e-mail: sales@csr.com  
To contact a CSR representative, go to www.csr.com/contacts.htm  
Advance Information  
BC419143B-ds-001Pe  
Page 92 of 97  
© CSR plc 2006  
Document References  
19 Document References  
Document:  
Reference  
Specification of the Bluetooth system  
Bluetooth Core Specification v2.0 + EDR  
Bluetooth Test Document v2.0+EDR  
Universal Serial Bus Specification  
Selection of Flash Memory for Use with BlueCore  
Selection of I2C EEPROMS for Use with BlueCore  
v1.1, 22 February 2001 and v1.2, 05 November 2003  
v2.0+EDR, 8 November 2004  
v2.0.e.0, 5 November 2004  
v1.1, 23 September 1998  
CSR document bcore-an-001P  
CSR document bcore-an-008P  
16mm, 24mm, 32mm, 44mm and 56mm Embossed  
Carrier Taping of Surface Mount Components for  
Automatic Handling  
IA-481-2  
EIA-541  
EIA-583  
Packaging Material Standards for ESD Sensitive Items  
Packaging Material Standards for Electrostatic Discharge  
(ESD) Sensitive Items  
IPC / JEDEC  
J-STD-033  
Standard for Handling, Packing, Shipping and Use of  
Moisture / Reflow Sensitive Surface Mount Devices  
Advance Information  
© CSR plc 2006  
BC419143B-ds-001Pe  
Page 93 of 97  
Terms and Definitions  
20 Terms and Definitions  
8DPSK  
π/4 DQPSK  
BlueCore®  
Bluetooth™  
ACL  
8 phase Differential Phase Shift Keying  
pi/4 rotated Differential Quaternary Phase Shift Keying  
Group term for CSR’s range of Bluetooth chips  
Set of technologies providing audio and data transfer over short-range radio connections  
Asynchronous Connection-Less. Bluetooth data packet  
Analogue to Digital Converter  
Adaptive Frequency Hopping  
Automatic Gain Control  
ADC  
AFH  
AGC  
A-law  
ALU  
Audio encoding standard  
Arithmetic Logic Unit  
API  
Application Programming Interface  
Application Specific Integrated Circuit  
BlueCore™ Serial Protocol  
Bit Error Rate. Used to measure the quality of a link  
Built-In Self-Test  
ASIC  
BCSP  
BER  
BIST  
BMC  
Burst Mode Controller  
CDMA  
CMOS  
CODEC  
CQDDR  
CRC  
Code Division Multiple Access  
Complementary Metal Oxide Semiconductor  
Coder Decoder  
Channel Quality Driven Data Rate  
Cyclic Redundancy Check  
CSB  
Chip Select (Active Low)  
CSR  
Cambridge Silicon Radio  
CTS  
Clear to Send  
CVSD  
DAC  
Continuous Variable Slope Delta Modulation  
Digital to Analogue Converter  
Decibels relative to 1mW  
dBm  
DDS  
Direct Digital Synthesis  
DC  
Direct Current  
DFU  
Device Firmware Upgrade  
DNL  
Differential Linearity Error  
DSP  
Digital Signal Processor  
EDR  
Enhanced Data Rate  
eSCO  
ESR  
Extended SCO  
Equivalent Series Resistance  
Finite Impulse Response  
FIR  
FSK  
Frequency Shift Keying  
Advance Information  
BC419143B-ds-001Pe  
Page 94 of 97  
© CSR plc 2006  
Terms and Definitions  
GCI  
General Circuit Interface  
GFSK  
GSM  
HCI  
Gaussian Frequency Shift Keying  
Global System for Mobile communications  
Host Controller Interface  
I2C™  
IF  
Inter-Integrated Circuit  
Intermediate Frequency  
IIR  
Infinite Impulse Response  
Integral Linearity Error  
INL  
IQ Modulation  
ISDN  
ISM  
In-Phase and Quadrature Modulation  
Integrated Services Digital Network  
Industrial, Scientific and Medical  
DSP core for CSR’s range of chips  
KiloSamples Per Second  
Kalimba  
ksps  
L2CAP  
LC  
Logical Link Control and Adaptation Protocol (protocol layer)  
Link Controller  
LCD  
Liquid Crystal Display  
LFBGA  
LMP  
Low profile Fine Ball Grid Array  
Link Manager Protocol  
LNA  
Low Noise Amplifier  
LPF  
Low Pass Filter  
LSB  
Least-Significant Bit  
MCU  
µ-law  
MIPS  
MMU  
MISO  
NOB  
OHCI  
PA  
MicroController Unit  
Audio Encoding Standard  
Million Instructions Per Second  
Memory Management Unit  
Master In Serial Out  
Number Of Bits  
Open Host Controller Interface  
Power Amplifier  
PCM  
PDA  
Pulse Code Modulation. Refers to digital voice data  
Personal Digital Assistant  
Storage of BlueCore’s configuration values in non-volatile memory  
Parallel Input Output  
Persistent Store  
PIO  
PICS  
pk-pk  
PLL  
Profile Implementation Confirmation Statement  
Peak to Peak  
Phase Lock Loop  
ppm  
parts per million  
PS Key  
RAM  
REB  
Persistent Store Key  
Random Access Memory  
Read enable (Active Low)  
Advance Information  
BC419143B-ds-001Pe  
Page 95 of 97  
© CSR plc 2006  
Terms and Definitions  
REF  
Reference. Represents dimension for reference use only.  
Radio Frequency  
RF  
RFCOMM  
RISC  
rms  
Protocol layer providing serial port emulation over L2CAP  
Reduced Instruction Set Computer  
root mean squared  
RSSI  
RTS  
Receive Signal Strength Indication  
Ready To Send  
RX  
Receive or Receiver  
SCO  
SDK  
Synchronous Connection-Oriented. Voice oriented Bluetooth packet  
Software Development Kit  
SDP  
Service Discovery Protocol  
SIG  
Special Interest Group  
SINAD  
SNR  
SPDIF  
SPI  
SIgnal to Noise ratio And Distortion  
Signal to Noise Ratio  
Sony and Philips Interface Specification  
Serial Peripheral Interface  
SSI  
Synchronous Serial Interface  
TBD  
To Be Defined  
TCXO  
TX  
Temperature Controlled crystal Oscillator  
Transmit or Transmitter  
UART  
UHCI  
USB  
Universal Asynchronous Receiver Transmitter  
Upper Host Control Interface  
Universal Serial Bus or Upper Side Band (depending on context)  
Voltage Controlled Oscillator  
VCO  
VFBGA  
VM  
Very Fine Ball Grid Array  
Virtual Machine  
W-CDMA  
WEB  
Wideband Code Division Multiple Access  
Write Enable (Active Low)  
Advance Information  
BC419143B-ds-001Pe  
Page 96 of 97  
© CSR plc 2006  
Document History  
21 Document History  
Date  
Revision  
Reason for Change  
FEB 05  
a
Original publication of this document. (CSR reference: BC419143B-ds-001Pa)  
Amended System Architecture and Device Diagrams. Added Balun and Filter  
block description. Minor amends. (CSR reference: BC419143B-ds-001Pb)  
MAR 05  
APR 05  
b
c
Amended maximum baud rate to 3M baud and added additional data rates.  
Electrical Characteristics and Radio Characteristics - Basic Data Rate updated  
to reflect a radio performance temperature range of -40°C to +85°C.  
Updated Auxilliary DAC in Description of Functional Blocks  
Amendment to note (a) concerning specified output voltage in the Auxilliary DAC  
table (Input/Output Terminal Characteristics) in Electrical Characteristics.  
JUL 05  
d
Amendment to note (g) concerning VREG_EN and VREG_IN in Linear  
Regulator table in Electrical Characteristics.  
Power Consumption moved from Radio Characteristics to Electrical  
Characteristics section.  
Changed title of Record of Changes to Document History; changed title of  
Acronyms and Abbreviations to Terms and Definitions.  
Updated references to VDD_MEM. See Electrical Characteristics, and  
Sensitivity to Disturbances in Device Terminal Descriptions.  
APR 06  
e
_äìÉ`çêÉ»QJcä~ëÜ=mäìÖJåJdç»  
Product Data Sheet  
BC419143B-DS-001Pe  
April 2006  
Advance Information  
BC419143B-ds-001Pe  
Page 97 of 97  
© CSR plc 2006  

相关型号:

BC41B143A-ANN-E4

BlueCore 4-ROM Plug-n-Go Single Chip Bluetooth v2.0 + EDR System
ETC

BC41B143A-DS-001PE

BlueCpre 4-ROM Single Chip Bluetooth v2.0 System with EDR
ETC

BC41B143A-DS-002PD

BlueCore 4-ROM CSP EDR Single Chip Bluetooth v2.0 + EDR System
ETC

BC41B143A-DS-003PC

BlueCore 4-ROM Plug-n-Go Single Chip Bluetooth v2.0 + EDR System
ETC

BC41B143A05-IRK-E4

BlueCpre 4-ROM Single Chip Bluetooth v2.0 System with EDR
ETC

BC41B143AES-ANN-E4

BlueCore 4-ROM Plug-n-Go Single Chip Bluetooth v2.0 + EDR System
ETC

BC41B143AXX-IXB-E4

BlueCore 4-ROM CSP EDR Single Chip Bluetooth v2.0 + EDR System
ETC

BC425

TRANSISTOR | BJT | NPN | 60V V(BR)CEO | 500MA I(C) | TO-92
ETC

BC427

TRANSISTOR | BJT | PNP | 60V V(BR)CEO | 500MA I(C) | TO-92
ETC

BC431

TRANSISTOR | BJT | NPN | 60V V(BR)CEO | 500MA I(C) | TO-12
ETC

BC432

TRANSISTOR | BJT | PNP | 60V V(BR)CEO | 500MA I(C) | TO-92
ETC

BC440

COMPLEMENTARY SILICON AF MEDIUM POWER AMPLIFIERS & SWITCHES
MICRO-ELECTRO