AN-21 [ETC]

TOPSwitch-II Flyback Quick Selection Curves ; TOPSwitch-II的反激式快速选择曲线\n
AN-21
型号: AN-21
厂家: ETC    ETC
描述:

TOPSwitch-II Flyback Quick Selection Curves
TOPSwitch-II的反激式快速选择曲线\n

文件: 总8页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
TOPSwitch®-II Flyback  
Quick Selection Curves  
Application Note AN-21  
Introduction  
QUICK START  
This application note is for engineers starting a flyback power  
supply design with TOPSwitch-II. It offers a quick method to  
select the proper TOPSwitch-II device from parameters that  
are usually not available until much later in the design process.  
The TOPSwitch-II Flyback Quick Selection Curves provide  
the essential design guidance.  
1) Determine which graph (Fig. 2, 3, 4 or 5) is  
closest to your application.  
Example: Use Figure 2 for Universal input,  
12 V output.  
2) Find your power requirement on the X- axis.  
Efficiency and TOPSwitch-II power dissipation are two  
importantperformanceparameterstotheflybackpowersupply  
designer. Both can be easily measured or accurately estimated  
after the power supply is designed. But what if the designer  
must make project and resource decisions before actually  
committing to and starting development? This application  
note helps the designer quickly select the optimum  
TOPSwitch-IIdevicefromsimplecurvesofestimatedefficiency  
and TOPSwitch-II power dissipation.  
3) Move vertically from your power  
requirement until you intersect with a  
TOPSwitch-II curve (solid line).  
4) Read the associated efficiency on the  
Y- axis.  
5) Determine if this is the appropriate  
efficiency for your application. If not,  
continue to the next TOPSwitch-II curve.  
Typical Power Supply Losses  
Power supplies have an input power which, because of internal  
dissipation, can be significantly higher than the output power.  
Efficiency, defined as the ratio of output power to input power,  
indicates how much power is dissipated in the power supply.  
In the typical TOPSwitch-II flyback power supply shown in  
Figure 1, most of the power dissipation occurs in output  
rectifier D2, Zener diode VR1 (or equivalent clamp circuit)  
and the TOPSwitch-II device. Other components, such as  
outputfilterinductorL1, inputcommonmodeinductorL2, and  
bridgerectifierBR1,contributelesserpowerdissipationterms.  
6) Read TOPSwitch-II power dissipation from  
the dashed contours to determine heatsink  
requirements.  
7) Start the design. Use the Transformer  
Design Spreadsheet from AN-17.  
Note: See Selection Curve Assumptions for limits of use.  
Overview of Quick Selection Curves  
For higher nominal mains voltages, including 208, 220, 230,  
and 240 VAC, a low line AC input voltage of 195 VAC is used  
togeneratesimilarcurvesfoundinFigure4(for+12Voutputs)  
and Figure 5 (for +5 V outputs). For all curves, the maximum  
AC mains voltage is assumed to be 265 VAC.  
The TOPSwitch-II Flyback Quick Selection Curves consider  
these dissipation terms (and others as well) to provide a good  
estimate of expected efficiency for both Universal input and  
230 VAC mains applications. Figure 2 (for +12 V outputs) and  
Figure 3 (for +5 V outputs) show a set of curves for efficiency  
and TOPSwitch-II power dissipation versus output power for  
the entire family of TOP221-TOP227 devices. These curves  
assume operation from a low line AC input voltage of 85 VAC,  
which is a suitable value for all Universal input applications.  
For each TOPSwitch-II device, a family of efficiency curves  
(solid lines) is plotted on the Y-axis as a function of output  
power on the X-axis. TOPSwitch-II power dissipation is  
plotted separately on the same graph as a family of constant  
power dissipation contours (dashed lines).  
April 1998  
AN-21  
D2  
L1  
MUR610CT  
3.3 µH  
1
9, 10  
15 V  
RTN  
C2  
1000 µF  
35 V  
C3  
120 µF  
25 V  
VR1  
P6KE200  
R2  
200 Ω  
1/2 W  
C1  
47 µF  
400 V  
6, 7  
D1  
BYV26C  
D3  
1N4148  
U2  
NEC2501  
4
5
BR1  
2
400 V  
L2  
C4  
0.1 µF  
33 mH  
R4  
49.9 kΩ  
R1  
C7  
1.0 nF  
Y1  
510 Ω  
T1  
C9  
C6  
0.1 µF  
0.1 µF  
TOPSwitch-II  
D
S
CONTROL  
C
F1  
3.15 A  
U3  
TL431  
C5  
47 µF  
R3  
6.2 Ω  
L
U1  
TOP224Y  
R5  
N
10 kΩ  
J1  
PI-2158-031698  
Figure 1. Typical Flyback Power Supply Using TOP224.  
Example 1: 30 W Universal Application  
Selecting the Right TOPSwitch-II  
Using Figures 2, 3, 4 and 5  
Assumea+5Vapplicationrequires30Wofoutputpowerfrom  
Universal input voltage. From the curves in Figure 3, the  
TOP224 can deliver 30 W with an estimated Y-axis efficiency  
of 71%. The projected TOPSwitch-II power dissipation is  
approximately 2.5W. The TOP225 can also be used with an  
expected efficiency of 75% and interpolated power dissipation  
of approximately 1.7 W. With these curves, a heat sink can be  
selected or evaluated immediately because an estimate for  
TOPSwitch-II power dissipation is now available before the  
design is even started!  
First we use the Power versus Efficiency curves to find the  
efficiency of the power supply for each TOPSwitch-II device  
that will deliver the output power. Then we estimate the  
TOPSwitch-II loss from the contours of constant power  
dissipation.  
Start with the output power of the application on the X-axis.  
Move vertically to the intersection with the first TOPSwitch-II  
curve and then read the efficiency directly from the Y-axis.  
From the same intersection point on the TOPSwitch-II curve,  
interpolate the TOPSwitch-II power dissipation from the  
constant power dissipation contours.  
Example 2: 30 W Application from 230 VAC  
Consider a +12 V output at 30 W from 230 VAC input. Figure  
4 shows the TOP223 is the optimum device with an expected  
efficiency slightly over 85% and power dissipation of  
approximately 0.75 W.  
Some output powers can be delivered by more than one  
TOPSwitch-II device. When moving vertically from the X-  
axis, the first curve encountered will be for the smallest, lowest  
cost TOPSwitch-II device, while the last curve will be for the  
largest, most efficient TOPSwitch-II device suitable for the  
desired output power.  
Example 3: TOPSwitch-II Temperature  
It is easy to estimate the junction temperature TJ of the  
TOPSwitch-II from the ambient temperature TA and the  
B
5/98  
2
AN-21  
effective junction to ambient thermal impedance θJA. This  
technique works for any TOPSwitch-II package as long as the  
overall thermal impedance is known, which includes the  
selected TOPSwitch-II thermal impedance, the thermal  
interface to a heatsink, and the effective thermal impedance  
of the heatsink itself. For example, with a TOP225 dissipation  
PD of 1.7 W, ambient temperature T of 40 °C, and overall  
thermal impedance θJA of 20 °AC/W, the maximum  
TOPSwitch-II junction temperature TJ can be found as  
follows:  
Adjusting for Minimum Input Voltage  
Using Figures 6 and 7  
To use the power ratio curves, start on the X-axis with the  
desired minimum AC input voltage. Move vertically to the  
intersection with the curve. Read the value of the power ratio  
from the Y-axis. The effective output power at the originally  
assumed minimum mains voltage of 85 or 195 VAC is simply  
the actual required output power divided by this ratio.  
The effective output power at 85 or 195 VAC mains voltage is  
used as the X-axis value for the curves given in Figures 2-5.  
The effective output power at 85 or 195 VAC will generate the  
same TOPSwitch-II loss (obtained from the curves in Figures  
2-5) as the actual required output power at the modified AC  
input voltage. This ratio also scales the primary inductance to  
avalueappropriateforthedifferentinputvoltage. Theoriginal  
curves are derived from the typical values in Table 3, which is  
discussed later in this application note. In addition,  
TOPSwitch-II duty cycle limitations require a linear reduction  
in reflected voltage VOR for AC mains voltages below 85 VAC,  
as shown in Figure 7.  
TJ = TA + (P ×θJA )  
D
= 40 °C + (1.7 W × 20 °C/W) = 74 °C  
The design should limit TJ to less than 100 °C at the maximum  
ambient temperature.  
Available Power  
The minimum AC input voltage has a strong influence on the  
choice of TOPSwitch-II device for a given output power. If the  
minimum voltage is increased above the values assumed for  
the curves in Figures 2 through 5, then more power will be  
available from each TOPSwitch-II device.  
Example 4: Input Voltage Adjustment  
We can use the Output Power Ratio Curves in Figures 6 and 7  
together with the original curves of Figures 2 through 5 to  
determine the available power for different input voltages.  
Suppose an application for only the US market requires 35 W  
of output power at +12 V. The lowest AC input voltage is  
typically 90% of 115 VAC or 103.5 VAC. Find the power ratio  
from Figure 7 to be 1.15. The effective output power, obtained  
by dividing the actual output power by the power ratio, is  
Figure 6 gives a ratio curve for 230 VAC mains at low line  
while Figure 7 shows a similar curve for low line Universal  
mains applications.  
35 W  
Effective Output Power =  
= 30.4 W  
1.15  
VALUE  
100 kHz  
135 V  
PARAMETER  
195 VAC  
85 VAC  
Optocoupler  
LED Current  
Switching Frequency (fs)  
5.0 mA  
3.5 mA  
3.5 mA  
Transformer Reflected Voltage (VOR  
)
Optocoupler  
Transistor Current  
5.0 mA  
200 V  
Clamp Voltage (VCLAMP  
)
Table 2. Typical Power Supply Parameters that Change with  
TOPSwitch-II Duty Cycle.  
Output Schottky Rectifier  
Forward Voltage (VD)  
0.4 V  
16 V  
Primary Bias Voltage (VB)  
Table 1. Power Supply Parameters Independent of Input Voltage  
and Output Power.  
B
5/98  
3
AN-21  
TYPICAL POWER SUPPLY COMPONENT PARAMETERS  
PARAMETER  
UNITS TOP221 TOP222 TOP223 TOP224 TOP225 TOP226 TOP227  
2200  
45  
4400  
90  
1475  
30  
1100  
22  
880  
18  
740  
15  
Transformer Primary Inductance  
8650  
175  
µH  
µH  
Transformer Leakage Inductance  
(referred to the primary)  
Transformer Resonant Frequency  
(measured with secondary open)  
500  
450  
550  
600  
650  
700  
400  
kHz  
Transformer Primary  
Winding Resistance  
650  
7
1800  
12  
350  
5
250  
4
175  
3.5  
140  
3
5000  
20  
mΩ  
mΩ  
mΩ  
mΩ  
Transformer Secondary Resistance  
Output Capacitor Equivalent  
Series Resistance  
18  
25  
24  
15  
20  
13  
16  
11.5  
13  
10  
10  
30  
32  
40  
Output Inductor DC Resistance  
Common Mode Inductor  
DC Resistance  
333  
370  
300  
267  
233  
200  
400  
mΩ  
Table 3. Typical Power Supply Component Parameters for TOPSwitch-II Flyback Power Supply.  
This effective output power is then used with the curves in  
Figure 2 to select the TOPSwitch-II device and to estimate the  
TOPSwitch-II dissipation. Predictions of efficiency and power  
dissipation may be less accurate when the ratio is used. The  
new value of primary inductance is the product of the power  
ratio and original inductance value in Table 3. The new  
inductance value for the TOP224 would be:  
Typical values are given in Table 2 for two parameters that  
depend only on input voltage. These parameters change with  
TOPSwitch-II duty cycle.  
The remaining power supply parameters depend on the output  
power. Table 3 gives typical values for the power-dependent  
parameters  
LP = 1475 µH ×1.15 = 1696 µH  
Input Capacitance  
Efficiency and output power are both strong functions of bulk  
energy storage capacitor C1. For the Universal AC Mains  
curves, the numerical value of C1 in microfarads is assumed to  
be at least three times the maximum output power in watts. For  
230 VAC mains, the C1 value (µF) is assumed to be at least  
equal to the maximum output power (watts).  
Selection Curve Assumptions  
Several physical power supply parameters must be calculated,  
estimated, or measured to determine efficiency. Measured  
values can differ significantly from the curvespredictions if  
the design parameters are not the same as the typical values  
used to generate the curves.  
Forexample, for30Wofoutputpower, thebulkenergystorage  
capacitor C1 is expected to be at least 90 µF for Universal  
mains and 30 µF for 230 VAC mains applications. The design  
must consider the tolerance of the capacitor to guarantee  
expected performance from the power supply.  
Typical values are given in Table 1 for several parameters that  
are independent of power level and input voltage. These  
parameters are defined and discussed in AN-16 and AN-17.  
B
5/98  
4
AN-21  
Lower values of input capacitance will reduce the available  
output power. Going from 3 to 2 µF per watt will decrease the  
output power by as much as 15% for Universal input. The  
available power falls dramatically for values less than 2 µF per  
watt.  
Use a DC voltage source to prevent AC ripple voltage  
from modulating the duty cycle. Efficiency depends  
heavily on actual DC input voltage. A convincing  
experiment is to vary the DC voltage 15 V to see how  
efficiency varies over the range of expected AC ripple  
voltage.  
The value of capacitor C1 also determines the average value of  
the DC bus voltage. The Universal VAC Mains curves in  
Figures 2 and 3 were generated with an average DC bus value  
of 105 VDC while the 230 VAC Mains curves in Figures 4 and  
5 were generated with an average DC bus value of 265VDC.  
Measuretransformerleakageinductanceaccurately. Take  
into account inductance of external circuitry, which can  
increase effective leakage inductance by 30% or more.  
Measureswitchingfrequencyaccuratelyfortheindividual  
TOPSwitch-II in the circuit to account for component-to-  
component variations.  
Other Considerations  
Curves in this application note were generated from the typical  
power supply parameters in Tables 1, 2 and 3. If measured  
efficiency in a particular TOPSwitch-II application does not  
agree with the values predicted from the curves, it is likely the  
physical parameters of the measured power supply do not  
match the tabular values. Use the guidelines below to get best  
agreement between measurements and predictions.  
Verify actual clamp voltage. Effective clamp voltage can  
be 230 VDC or higher, even though the clamp Zener diode  
is specified to be 200 V. See AN-16 for details.  
Determine which physical power supply parameters do not  
match the typical values in Table 3. Change (temporarily) to  
components that match the parameters in the table until  
measured efficiency matches the predicted value.  
When measuring efficiency from an AC source, use an  
electronic wattmeter designed for average input power  
measurements with high-crest factor current waveforms.  
Do not simply measure RMS input voltage and RMS input  
current. The product of these two measurements is input  
volt-amperes or input burden (VA), not the real input  
power in watts.  
B
5/98  
5
AN-21  
UNIVERSAL INPUT (85 VAC TO 265 VAC) 12 V OUTPUT  
84  
0.25 W  
82  
0.5 W  
80  
0.75 W  
1.0 W  
78  
76  
74  
3 W  
2 W  
4 W  
5 W  
2.5 W  
1.5 W  
8 W  
10 W  
6 W  
TOP224  
TOP222  
TOP223  
72  
TOP221  
70  
68  
TOP225  
TOP226  
60  
TOP227  
80 100  
4
6
8
10  
15  
20  
30  
40  
Output Power (W) at 85 VAC  
Figure 2. Typical Efficiency vs Output Power with Contours of Constant TOPSwitch-II Power Loss for Universal Input and 12 V Output.  
UNIVERSAL INPUT (85 VAC TO 265 VAC) 5 V OUTPUT  
80  
78  
0.25 W  
76  
0.5 W  
74  
0.75 W  
72  
1.0 W  
70  
3 W  
2.0 W  
2.5 W  
TOP227  
68  
1.5 W  
4 W  
66  
64  
TOP221  
6 W  
TOP222  
5 W  
TOP223  
62  
8 W  
10 W  
TOP224  
12 W  
60  
58  
TOP225  
14 W  
TOP226  
4
6
8
10  
15  
20  
30  
40  
60  
80  
100  
Output Power (W) at 85 VAC  
Figure 3. Typical Efficiency vs Output Power with Contours of Constant TOPSwitch-II Power Loss for Universal Input and 5 V Output.  
B
5/98  
6
AN-21  
SINGLE VOLTAGE INPUT (230 VAC 15%) 12 V OUTPUT  
87  
86  
85  
0.25 W  
84  
0.5 W  
1.0 W  
2.0 W  
3 W  
83  
82  
0.75 W  
1.5 W  
2.5 W  
TOP224  
TOP225  
TOP222  
TOP223  
TOP221  
TOP226  
81  
80  
TOP227  
7
8
9
10  
15  
20  
30  
40  
60  
80  
100  
200  
150  
Output Power (W) at 195 VAC  
Figure 4. Typical Efficiency vs Output Power with Contours of Constant TOPSwitch-II Power Loss for Single Voltage Application and  
12 V Output.  
SINGLE VOLTAGE INPUT (230 VAC 15%) 5 V OUTPUT  
80  
0.25 W  
78  
0.5 W  
76  
1.0 W  
0.75 W  
TOP221  
1.5 W  
74  
TOP222  
2.0 W  
2.5 W  
3 W  
72  
70  
68  
TOP223  
TOP224  
TOP227  
5 W  
TOP225  
6 W  
TOP226  
7
8
9
10  
15  
20  
30  
40  
60  
80  
100  
150  
200  
Output Power (W) at 195 VAC  
Figure 5. Typical Efficiency vs Output Power with Contours of Constant TOPSwitch-II Power Loss for Single Voltage Application and  
5 V Output.  
B
5/98  
7
AN-21  
POWER RATIO: UNIVERSAL INPUT (85 TO 265 VAC)  
POWER RATIO: SINGLE VOLTAGE (230 VAC 15%)  
1.3  
1.15  
1.2  
1.1  
1.1  
1.05  
1
1
0.9  
0.95  
P
V
OUT  
OR  
0.8  
0.9  
P
V
OUT  
OR  
0.7  
0.85  
140  
160  
180  
220  
240  
200  
0.6  
Low Line AC Input Voltage (VAC)  
60  
70  
80  
90  
100  
110  
Low Line AC Input Voltage (VAC)  
Figure 6. Power Ratio vs Low Line AC Input Voltage of Nominal  
230 VAC.  
Figure 7. Power Ratio and VOR vs Low Line AC Input Voltage for  
Universal Input.  
For the latest updates, visit our Web site: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.  
Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it  
convey any license under its patent rights or the rights of others.  
The PI Logo, TOPSwitch, TinySwitch and EcoSmart are registered trademarks of Power Integrations, Inc.  
©Copyright 2001, Power Integrations, Inc.  
WORLD HEADQUARTERS  
AMERICAS  
Power Integrations, Inc.  
5245 Hellyer Avenue  
San Jose, CA 95138 USA  
EUROPE & AFRICA  
Power Integrations (Europe) Ltd.  
Centennial Court  
Easthampstead Road  
Bracknell  
TAIWAN  
CHINA  
Power Integrations  
International Holdings, Inc.  
17F-3, No. 510  
Chung Hsiao E. Rd.,  
Sec. 5,  
Power Integrations  
International Holdings, Inc.  
Rm# 1705, Bao Hua Bldg.  
1016 Hua Qiang Bei Lu  
Shenzhen, Guangdong 518031  
China  
Main:  
+1 408-414-9200  
Berkshire, RG12 1YQ  
United Kingdom  
Customer Service:  
Taipei, Taiwan 110, R.O.C.  
Phone:  
Fax:  
+1 408-414-9665  
+1 408-414-9765  
Phone:  
Fax:  
+44-1344-462-300  
+44-1344-311-732  
Phone:  
Fax:  
+886-2-2727-1221  
+886-2-2727-1223  
Phone:  
Fax:  
+86-755-367-5143  
+86-755-377-9610  
e-mail: usasales@powerint.com  
e-mail: eurosales@powerint.com  
e-mail: taiwansales@powerint.com  
e-mail: chinasales@powerint.com  
KOREA  
JAPAN  
INDIA (Technical Support)  
Innovatech  
#1, 8th Main Road  
Vasanthnagar  
APPLICATIONS HOTLINE  
World Wide +1-408-414-9660  
Power Integrations  
International Holdings, Inc.  
Rm# 402, Handuk Building  
649-4 Yeoksam-Dong,  
Kangnam-Gu,  
Seoul, Korea  
Phone:  
Fax:  
Power Integrations, K.K.  
Keihin-Tatemono 1st Bldg.  
12-20 Shin-Yokohama 2-Chome  
Kohoku-ku, Yokohama-shi  
Kanagawa 222-0033, Japan  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
Bangalore, India 560052  
Phone:  
Fax:  
+91-80-226-6023  
+91-80-228-9727  
Phone:  
Fax:  
+81-45-471-1021  
+81-45-471-3717  
+82-2-568-7520  
+82-2-568-7474  
e-mail: indiasales@powerint.com  
e-mail: japansales@powerint.com  
e-mail: koreasales@powerint.com  
B
5/98  
8

相关型号:

AN-2116

SolarMagic? ICs in Microinverter Applications
NSC

AN-214

GROUND RULES FOR HIGH SPEED CIRCUITS
ADI

AN-2195

AN-2195 Driving High Speed ADCs with the LMH6521 DVGA for High IF AC-Coupled Applications
TI

AN-22

Designing Multiple Output Power Supplies with TOPSwitch
ETC

AN-2219

AN-2219 Precision Current Limiting with the LMP8646 and LP38501
TI

AN-2235

AN-2235 Circuit Board Design for LMH6517/21/22 and Other High-Speed IF/RF Feedback Amplifiers
TI

AN-2244

AN-2244 LP5907 micro SMD Evaluation Board Information
TI

AN-23

TinySwitch Flyback Design Methodology
ETC

AN-236

APPLICATION NOTE
ADI

AN-24

A Simplified Test Set for Op Amp Characterization
ETC

AN-242

Applying a New Precision Op Amp
NSC

AN-251(FC67207)

UEBERSTROMSCHUTZSCHALTER MINIATUR 2.5A
ETC