ADC-B207 [ETC]

7- BIT 20MHZ CMOS FLASH A/D CONVERTERS; 7位20MHZ CMOS FLASH A / D转换器
ADC-B207
型号: ADC-B207
厂家: ETC    ETC
描述:

7- BIT 20MHZ CMOS FLASH A/D CONVERTERS
7位20MHZ CMOS FLASH A / D转换器

转换器
文件: 总6页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
ADC-2 0 7  
7-Bit, 20MHz, CMOS  
Flash A/D Converters  
INN OVATION and E XCELLENCE  
FEATURES  
7-bit flash A/D converter  
20MHz sampling rate  
Low power (250mW)  
Single +5V supply  
1.2 micron CMOS technology  
7-bit latched 3-state output with overflow bit  
Surface-mount versions  
High-reliability version  
No missing codes  
GENERAL DESCRIPTION  
The ADC-207 has 128 comparators which are auto-balanced  
on every conversion to cancel out any offsets due to  
temperature and/or dynamic effects. The resistor ladder has a  
midpoint tap for use with an external voltage source to improve  
integral linearity beyond 7 bits. The ADC-207 also provides the  
user with 3-state outputs for easy interfacing to other  
components.  
The ADC-207 is the industry’s first 7-bit flash converter using an  
advanced high-speed VLSI 1.2 micron CMOS process. This  
process offers some very distinctive advantages over other  
processes, making the ADC-207 unique. The smaller  
geometrics of the process achieve high speed, better linearity  
and superior temperature performance.  
Since the ADC-207 is a CMOS device, it also has very low  
power consumption (250mW). The device draws power from  
a single +5V supply and is conservatively rated for 20MHz  
operation. The ADC-207 allows using sampling apertures as  
small as 12ns, making it more closely approach an ideal  
sampler. The small sampling apertures also let the device  
operate at greater than 20MHz.  
There are six models of the ADC-207 covering two operating  
temperature ranges, 0 to +70°C and –55 to +125°C. Two high-  
reliability "QL" models are also available.  
Æ2  
Æ1  
Æ2  
Æ1  
INPUT/OUTPUT  
CONNECTIONS  
CLOCK  
1 CLOCK INPUT  
GENERATOR  
ANALOG INPUT  
+REFERENCE  
4
6
R/2  
Q
Q
D
10 OVERFLOW  
DIP  
PINS  
LCC  
PINS  
D
G
+VDD  
FUNCTION  
G
D
+5V SUPPLY 18  
R
Q
Q
11 BIT 1 (MSB)  
1
2
CLOCK INPUT  
DIGITAL GROUND  
–REFERENCE  
ANALOG INPUT  
MIDPOINT  
+REFERENCE  
ANALOG GROUND  
CS1  
1
DIGITAL GROUND  
ANALOG GROUND  
2
7
D
G
G
D
R
4
Q
Q
3
5
12 BIT 2  
13 BIT 3  
4
6
128-TO-7  
ENCODER  
G
D
R/2  
R/2  
5
7
RANGE MIDPOINT  
5
6
7
8
9
D
G
G
D
Q
Q
14 BIT 4  
8
11  
12  
13  
14  
16  
17  
19  
20  
21  
23  
24  
9
CS2  
G
D
R
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
OVERFLOW  
BIT 1 (MSB)  
BIT 2  
Q
Q
Q
15 BIT 5  
D
G
G
D
Q
Q
16 BIT 6  
BIT 3  
–REFERENCE  
3
D
G
BIT 4  
G
D
BIT 5  
17 BIT 7 (LSB)  
BIT 6  
G
BIT 7 (LSB)  
+5V SUPPLY  
8
9
CS1  
CS2  
Figure 1. ADC-207 Functional Block Diagram (DIP Pinout)  
DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1151 (U.S.A.) Tel: (508) 339-3000 Fax: (508) 339-6356 For immediate assistance (800) 233-2765  
®
®
ADC-2 0 7  
ABSOLUTE MAXIMUM RATINGS  
PHYSICAL/ENVIRONMENTAL  
PARAMETERS  
LIMITS  
UNITS  
PARAMETERS  
MIN.  
TYP.  
MAX.  
UNITS  
Power Supply Voltage (+V  
Digital Inputs  
Analog Input  
Reference Inputs  
Digital Outputs  
)
–0.5 to +7  
–0.5 to +5.5  
–0.5 to (+VDD +0.5)  
Volts  
Volts  
Volts  
Volts  
Volts  
Operating Temp. Range, Case:  
LC/MC Versions  
MM/LM/QL Versions  
Storage Temp. Range  
Package Type  
DIP  
DD  
0
–55  
–65  
+70  
+125  
+150  
°C  
°C  
°C  
–0.5 to +V  
DD  
–0.5 to +5.5  
(short circuit protected to ground)  
Lead Temperature (10 sec. max.)  
18-pin ceramic DIP  
24-pin ceramic LCC  
+300  
°C  
LCC  
TECHNICAL NOTES  
FUNCTIONAL SPECIFICATIONS  
(Typical at +5V power, +25°C, 20MHz clock, +REFERENCE = +5V,  
–REFERENCE = ground, unless noted)  
1. Input Buffer Amplifier – Since the ADC-207 has a switched  
capacitor type input, the input impedance of the 207 is  
dependent on the clock frequency. At relatively slow  
ANALOG INPUT  
MIN.  
TYP.  
MAX.  
UNITS  
conversion rates, a general purpose type input buffer can be  
used; at high conversion rates DATEL recommends either  
the HA-5033 or Elantec 2003. See Figure 2 for typical  
connections.  
InputType  
Input Range (dc-20MHz)  
Input Impedance  
Single-ended, non-isolated  
0
1000  
10  
+5  
Volts  
Ohms  
pF  
Input Capacitance (FullRange)  
2. Reference Ladder – Adjusting the voltage at +REFERENCE  
adjusts the gain of the ADC-207. Adjusting the voltage at –  
REFERENCE adjusts the offset or zero of the ADC-207.  
The midpoint pin is usually bypassed to ground through a  
0.1µF capacitor, although it can be tied to a precision  
voltage halfway between +REFERENCE and  
DIGITAL INPUTS  
Logic Levels  
Logic "1"  
Logic "0"  
Logic Loading "1"  
Logic Loading "0"  
Sample Pulse Width  
(During Sampling Portion of Clock)  
Reference Ladder Resistance  
+3.2  
±1  
±1  
+0.8  
±5  
Volts  
Volts  
microamps  
microamps  
±5  
–REFERENCE. This would improve integral linearity  
beyond 7 bits.  
12  
225  
330  
ns  
Ohms  
3. Clock Pulse Width – To improve performance at Nyquist  
bandwidths, the clock duty cycle can be adjusted so that the  
low portion of the clock pulse is 12ns wide. The smaller  
aperture allows the ADC-207 to closely resemble an ideal  
sampler. See Figure 4.  
PERFORMANCE  
Conversion Rate ➀  
Harmonic Distortion ➁  
(8MHz 2nd Order Harmonic)  
Differential Gain ➂  
Differential Phase ➂  
Aperture Delay  
Aperture Jitter  
No Missing Codes  
LC/MC grade  
LM/MM grade  
Integral Linearity ➃  
Over Temperature Range  
Differential Nonlinearity  
Over Temperature Range  
Power Supply Rejection  
20  
25  
MHz  
–40  
3
1.5  
8
dB  
%
degrees  
ns  
4. At sampling rates less than 100kHz, there may be some  
degradation in offset and differential nonlinearity.  
50  
ps  
Performance may be improved by increasing the clock duty  
cycle (decreasing the time spent in the sample mode).  
0
–55  
+70  
+125  
±1  
°C  
°C  
LSB  
LSB  
LSB  
±0.8  
±0.8  
±0.3  
±0.4  
±0.02  
CAUTION  
±1  
Since the ADC-207 is a CMOS device, normal precautions  
against static electricity should be taken. Use ground straps,  
grounded mats, etc. The Absolute Maximum Ratings of the  
device MUST NOT BE EXCEEDED as irrevocable damage to  
the ADC-207 will occur.  
±0.6  
±0.6  
LSB  
%FSR/%Vs  
DIGITAL OUTPUTS  
Data Coding  
Data Output Resolution  
Logic Levels  
Straight binary  
+5V  
7
Bits  
20MHz  
CLOCK  
+15  
Logic "1"  
+2.4  
–4  
+4.5  
+0.4  
Volts  
Volts  
mA  
4.7µF  
Logic "0" (at 1.6mA)  
Logic Loading "1"  
Logic Loading "0"  
Output Data Valid Delay  
(From Rising Edge)  
+
47µF  
0.01µF  
+5V  
+
0.1µF  
+4  
mA  
1
2
18  
17  
CLOCK  
+VDD  
B7  
15  
25  
ns  
B7 (LSB)  
B6  
DIGITAL GND  
–REFERENCE  
VIN  
12  
3
4
5
16  
15  
14  
13  
12  
11  
10  
B6  
B5  
POWER REQUIREMENTS  
11  
5
10  
W
B5  
HA-5033  
10  
Power Supply Range (+V  
Power Supply Current  
Power Dissipation  
)
DD  
+3.0  
+5.0  
+50  
250  
+5.5  
+70  
385  
Volts  
mA  
mW  
MID  
B4  
B3  
B2  
B4  
6
7
8
9
+REFERENCE  
B3  
47µF  
ANALOG GND  
CS1  
B2  
0.1µF  
B1 (MSB)  
OF  
B1  
Footnotes:  
At full power input and chip selects enabled.  
At 4MHz input and 20MHz clock.  
0.1µF  
CS2  
OF  
+
–15  
For 10-step, 40 IRE NTSC ramp test.  
Adjustable using reference ladder midpoint tap. See ADC-207 Operation.  
Figure 2. Typical Connections for Using the ADC-207  
2
®
®
ADC-2 0 7  
OUTPUT CODING  
(+REFERENCE = +5.12V, REFERENCE = ground, MIDPOINT = no connection)  
TIMING DIAGRAM  
NOTE: The reference should be held to ±0.1% accuracy or  
better. Do not use the +5V power supply as a  
reference input without precision regulation and high  
frequency decoupling.  
Æ2  
Æ1  
Æ2  
Æ1  
Æ2  
Æ1  
AUTO  
ZERO  
SAMPLE  
N
AUTO  
ZERO  
SAMPLE  
N + 1  
AUTO  
ZERO  
SAMPLE  
N + 2  
CLOCK  
Values shown here are for a +5.12V reference. Scale other  
references proportionally. Calibration equipment should test for  
code changes at the midpoints between these center values  
shown in Table 1. For example, at the half-scale major carry,  
set the input to 2.54V and adjust the reference until the code  
flickers equally between 63 and 64. Note also that the  
weighting for the comparator resistor network leaves the first  
and last thresholds within 1/2LSB of the end points to adjust  
the code transition to the proper midpoint values.  
OUTPUT  
DATA  
N DATA  
N+1 DATA  
25ns max.  
25ns max.  
Table 1. ADC-207 Output Coding  
Analog Input  
(Center Value)  
1
2
3
4
5
6
7
LSB  
Hexadecimal  
(Incl. 0V)  
Code  
Overflow  
MSB  
Decimal  
0.00V  
+0.04V  
+1.28V  
+2.52V  
+2.56V  
+2.60V  
+3.84V  
+5.08V  
+5.12V  
Zero  
+1LSB  
+1/4FS  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
32  
63  
64  
65  
96  
127  
255*  
00  
01  
20  
3F  
40  
41  
60  
7F  
FF  
+1/2FS – 1LSB  
+1/2FS  
+1/2FS + 1LSB  
+3/4FS  
+FS  
Overflow  
*Note that the overflow code does not clear the data bits.  
ADC-207 OPERATION  
The ADC-207 uses a switched capacitor scheme in which  
there is an auto-zero phase and a sampling phase. See  
Figure 1 and Timing Diagram. The ADC-207 uses a single  
clock input. When the clock is at a high state (logic 1), the  
Continuous conversion requires one cycle/sample (one positive  
pulse and one negative pulse). The 3-state buffer has two  
enable lines, CS1 and CS2. Table 2 shows the truth table for  
chip select signals. CS1 has the function of enabling/disabling  
bits 1 through 7. CS2 has the function of enabling/disabling  
bits 1 through 7 and the overflow bit. Also, a full-scale input  
produces all ones, including the overflow bit at the output. The  
ADC-207 has an adjustable resistor ladder string. The top end,  
idle point, and bottom end are brought out for use with  
applications circuits.  
ADC-207 is in the auto-zero phase (Ø1). When the clock is at  
a low state (logic 0), the ADC-207 is in the sampling phase  
(Ø2). During phase 1, the 128 comparator outputs are shorted  
to their inputs through CMOS switches. This serves the  
purpose of bringing the inputs and outputs to the transition  
levels of the respective comparators. The inputs to the  
comparators are also connected to 128 sampling capacitors.  
The other end of the 128 capacitors are also shorted to 128  
taps of a resistor ladder, via CMOS switches. Therefore, during  
phase 1 the sampling capacitors are charged to the differential  
voltage between a resistor tap and its respective comparator  
transition voltage.  
These pins are called +REFERENCE, MIDPOINT and  
–REFERENCE, respectively. In typical operation  
+REFERENCE is tied to +5V, REFERENCE is tied to ground,  
and MIDPOINT is bypassed to ground. Such a configuration  
results in a 0 to +5V input voltage range. The MIDPOINT pin  
can also be tied to a +2.5V source to further improve integral  
linearity. This is usually not necessary unless better than 7-bit  
linearity is needed.  
This eliminates offset differences between comparators and  
yields better temperature performance. During phase 2 (Ø2) the  
input voltage is applied to the 128 capacitors, via CMOS  
switches. This forces the comparators to trip either high or low.  
Since the comparators during phase 1 were sitting at their  
transition point, they can trip very quickly to the correct state.  
Also during phase 2, the outputs of the comparators are loaded  
into internal latches which in turn feed a128-to-7 encoder. When  
going back into phase 1, the output of the encoder is loaded into  
an output latch. This latch then feeds the 3-state output buffer.  
Table 2. Chip Select Truth Table  
CS1  
CS2  
Bits 1-7  
Overflow Bit  
0
1
0
1
0
0
1
1
3-State Mode  
3-State Mode  
Data Outputed  
3-State Mode  
3-State Mode  
3-State Mode  
Data Outputed  
Data Outputed  
This means that the ADC-207 is of pipeline design. To do a  
single conversion, the ADC-207 requires a positive pulse  
followed by a negative pulse followed by a positive pulse.  
NOTE: Reduce the sample time (sample pulse)  
3
®
®
ADC-2 0 7  
9
8
13  
12  
11  
CLOCK OUT  
CLOCK IN  
4
20k  
6
1
2
3
5
0.01µF  
10pF  
to 12ns to improve performance above  
20MHz. Such a configuration will closely  
resemble an ideal sampler.  
GROUND  
+5 VOLTS  
Figure 3. Optional Pulse Shaping Circuit  
USINGTWO ADC-207’S FOR 8-BIT RESOLUTION  
BEAT FREQUENCY AND ENVELOPE TESTS  
Two ADC-207’s (A and B) are cascadable for applications  
requiring 8-bit resolution. The device A provides a typical 7-bit  
output. The OVERFLOW signal of device A turns off device A  
and turns on the device B. The OVERFLOW signal of device A  
is also used as MSB for 8-bit operation. The device B provides  
the other seven bits from the input signal. Figure 4 shows the  
circuit connections for the application.  
Figure 5 shows an actual ADC-207 plot of the Beat Frequency  
Test. This test uses a 20MHz clock input to the ADC-207 with  
a 20.002MHz full-scale sine wave input. Although the  
converter would not normally be used in this mode because  
the input frequency violates Nyquist criteria for full recovery of  
signal information, the test is an excellent demonstration of the  
ADC-207’s high-frequency performance.  
The effect of the 2kHz frequency difference between the input  
and the clock is that the output will be a 2kHz sinusoidal digital  
data array which "walks" along the actual input at the 2kHz  
beat note frequency. Any inability to follow the 20.002MHz  
input will be immediately obvious by plotting the digital data  
array. Further arithmetic analysis may be done on the data  
array to determine spectral purity, harmonic distortion, etc.  
This test is an excellent indication of:  
OVERFLOW  
+5V  
18  
+5.12  
BIT 1 (MSB)  
REFERENCE  
+VDD  
6
8
10  
11  
12  
IN  
OF  
+REFERENCE  
CS1  
10  
BIT2  
BIT3  
B1  
B2  
TURN  
13  
14  
4
1
BIT4  
BIT5  
B3  
B4  
B5  
B6  
ANALOG INPUT  
CLOCK  
OPTIONAL  
MIDSCALE  
ADJUST  
1. Full power input bandwidth of all 128 comparators.  
(Any gain loss would show as signal distortion.)  
15  
16  
BIT6  
9
3
BIT7  
CS2  
17  
2
BIT8 (LSB)  
B7  
2. Phase response linearity vs. instantaneous signal  
magnitude. (Phase problems would show as  
improper codes.)  
DIG GND  
–REFERENCE  
ANALOG GROUND  
CLOCK IN  
7
3. Comparator slew rate limiting.  
7
Figure 6 shows an actual ADC-207 plot of the Envelope Test.  
This test is a variation of the previous test but uses a  
10.002MHz sinewave input to give two overlapping cycles  
when the data is reconstructed by a D/A converter output to an  
oscilloscope. The scope is triggered by the 20MHz clock used  
by the A/D. Any asymmetry between positive and negative  
portions of the signal will be very obvious. This test is an  
excellent indication of slew rate capability. At the peaks of the  
envelope, consecutive samples swing completely through the  
input voltage range.  
ANALOG GROUND  
10  
6
8
OF  
B1  
B2  
+REFERENCE  
ANALOG IN  
11  
12  
CS1  
1
4
13  
14  
CLOCK  
B3  
B4  
ANALOG INPUT  
15  
16  
17  
2
9
B5  
B6  
CS2  
18  
+VDD  
+5V  
B7  
3
–REFERENCE  
DIG GND  
REFERENCE  
GROUND  
NOTE: The output data bit numbering is offset  
by a bit to the device Bs output.  
Figure 4. Using Two ADC-207’s for 8-Bit Operation  
®
®
ADC-2 0 7  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUTPUT  
CODES  
OUTPUT  
CODES  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2 1.3  
1.4  
1.5  
NUMBER OF SAMPLES(X103  
)
NUMBER OF SAMPLES(X103  
)
Figure 6. 10MHz Envelope Test  
Figure 5. Beat Frequency Test at 20MHz  
FFTTEST  
This test actually produces an amplitude versus frequency graph (Figure 7) which indicates harmonic distortion and signal-to-noise  
ratio. The theoretical rms signal-to-noise ration for a 7-bit converter is +43.8dB.  
4MHz FUNDAMENTAL  
SAMPLE PULSE = 25ns  
70  
69.2
65  
60  
55  
50  
45  
40  
35  
27.3  
30  
25  
20  
15  
10  
0
–5  
–10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
Figure 7. FFT Test Using the ADC-207  
®
®
ADC-2 0 7  
MECHANICAL DIMENSIONS INCHES (MM)  
24-Pin Ceramic LCC  
18-Pin Ceramic DIP  
+0.010  
–0.005  
0.400  
+0.25  
–0.13  
(10.16  
)
0.960 MAX.  
(24.38 MAX.)  
16  
10  
18  
0.400 +00..000105  
24  
+0.25  
1
–0.13  
(10.16  
)
DATEL  
ADC-207MC  
0.220/0.310  
(5.59/7.87)  
10  
4
1
9
TOP VIEW  
0.090 MAX.  
(2.29 MAX.)  
PIN 1  
IDENTIFIER  
0.015/0.060  
(0.38/1.52)  
0.200 MAX.  
(5.1 MAX.)  
0.020 ±0.005  
(0.51 ±0.13)  
0.008/0.015  
(0.20/0.38)  
0.050  
(1.270)  
TYP.  
PIN 1  
INDEX  
0.250 ±0.005  
(6.35 ±0.13)  
0.014/0.023 0.100 TYP.  
0.290/0.320  
(7.36/8.13)  
(0.35/0.58)  
(2.540)  
SEATING  
PLANE  
0.035  
(0.889)  
0.250 ±0.005  
(6.35 ±0.13)  
ORDERING INFORMATION  
MODEL  
TEMP. RANGE  
PACKAGE  
ADC-207MC  
ADC-207MM  
ADC-207MM-QL  
0 to +70°C  
–55 to +125°C  
–55 to +125°C  
18-pin DIP  
18-pin DIP  
18-pin DIP  
ADC-207LC  
0 to +70°C  
24-pin CLCC  
24-pin CLCC  
24-pin CLCC  
ADC-207LM  
ADC-207LM-QL  
–55 to +125°C  
–55 to +125°C  
ACCESSORIES  
ADC-B207/208  
Evaluation Board for DIP Version  
(without ADC-207)  
®
®
ISO 9001  
R
E
G
I
S
T
E
R
E
D
INN OVAT ION and E XCELLENCE  
DS-0038C 12/04  
DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151  
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356  
Internet: www.datel.com E-mail:sales@datel.com  
Data Sheet Fax Back: (508) 261-2857  
DATEL (UK) LTD. Tadley, England Tel: (01256)-880444  
DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01  
DATEL GmbH München, Germany Tel: 89-544334-0  
DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025  
DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein  
do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. The DATEL logo is a registered DATEL, Inc. trademark.  

相关型号:

ADC-B208

7- BIT 20MHZ CMOS FLASH A/D CONVERTERS
ETC

ADC-ED10228/1+

Directional Coupler, 5MHz Min, 1000MHz Max, 0.7dB Insertion Loss-Max, PLASTIC, CASE CD637, 6 PIN
MINI

ADC-ED10778/2

Directional Coupler, 40MHz Min, 1000MHz Max, 0.8dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED10778/2+

Directional Coupler, 40MHz Min, 1000MHz Max, 0.8dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED11372/1

Directional Coupler, 5MHz Min, 1500MHz Max, 2.6dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED11372/1+

Directional Coupler, 5MHz Min, 1500MHz Max, 2.6dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED8270/1

Directional Coupler, 200MHz Min, 1800MHz Max, 2.75dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED8270/1+

Directional Coupler, 200MHz Min, 1800MHz Max, 2.75dB Insertion Loss-Max, PLASTIC, CASE CD542, 6 PIN
MINI

ADC-ED9780/1+

Directional Coupler, 0.5MHz Min, 2000MHz Max, 4.56dB Insertion Loss-Max, PLASTIC, CASE CD637, 6 PIN
MINI

ADC-EH8B1

Converter IC
ETC

ADC-EH8B2

Converter IC
ETC

ADC-EK10B

Analog-to-Digital Converter, 10-Bit
ETC