AD8541AKS [ETC]

General-Purpose CMOS Rail-to-Rail Amplifiers(177.60 k) ; 通用CMOS轨到轨放大器( 177.60 K)\n
AD8541AKS
型号: AD8541AKS
厂家: ETC    ETC
描述:

General-Purpose CMOS Rail-to-Rail Amplifiers(177.60 k)
通用CMOS轨到轨放大器( 177.60 K)\n

放大器 光电二极管
文件: 总12页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-Purpose CMOS  
Rail-to-Rail Amplifiers  
a
AD8541/AD8542/AD8544  
FEATURES  
PIN CONFIGURATIONS  
Single Supply Operation: 2.7 V to 5.5 V  
Low Supply Current: 45 A/Amplifier  
Wide Bandwidth: 1 MHz  
No Phase Reversal  
Low Input Currents: 4 pA  
Unity Gain Stable  
5-Lead SC70 and SOT-23  
(KS and RT Suffixes)  
AD8541  
V+  
OUT A  
V؊  
1
2
5
4
Rail-to-Rail Input and Output  
+IN A  
3
؊IN A  
APPLICATIONS  
ASIC Input or Output Amplifier  
Sensor Interface  
Piezo Electric Transducer Amplifier  
Medical Instrumentation  
Mobile Communication  
Audio Output  
8-Lead SOIC  
(R Suffix)  
1
8
NC  
V+  
NC  
AD8541  
2
7
–IN A  
Portable Systems  
OUT A  
NC  
3
4
6
5
+IN A  
V–  
GENERAL DESCRIPTION  
NC = NO CONNECT  
The AD8541/AD8542/AD8544 are single, dual and quad rail-  
to-rail input and output single supply amplifiers featuring very  
low supply current and 1 MHz bandwidth. All are guaranteed to  
operate from a 2.7 V single supply as well as a 5 V supply. These  
parts provide 1 MHz bandwidth at low current consumption of  
45 µA per amplifier.  
8-Lead SOIC, MSOP, and TSSOP  
(R, RM, and RU Suffixes)  
AD8542  
OUT A  
–IN A  
+IN A  
V–  
8
7
6
5
1
2
3
4
V+  
OUT B  
Very low input bias currents enable the AD8541/AD8542/AD8544  
to be used for integrators, photodiode amplifiers, piezo electric  
sensors and other applications with high source impedance. Supply  
current is only 45 µA per amplifier, ideal for battery operation.  
–IN B  
+IN B  
Rail-to-rail inputs and outputs are useful to designers buffering  
ASICs in single supply systems. The AD8541/AD8542/AD8544  
are optimized to maintain high gains at lower supply voltages,  
making them useful for active filters and gain stages.  
14-Lead SOIC and TSSOP  
(R and RU Suffixes)  
The AD8541/AD8542/AD8544 are specified over the extended  
industrial (–40°C to +125°C) temperature range. The AD8541  
is available in 8-lead SOIC, 5-lead SC70, and 5-lead SOT-23  
packages. The AD8542 is available in 8-lead SOIC, 8-lead  
MSOP, and 8-lead TSSOP surface-mount packages. The AD8544  
is available in 14-lead narrow SOIC, and 14-lead TSSOP surface  
mount packages. All TSSOP, MSOP, SC70, and SOT versions  
are available in tape and reel only.  
14  
13  
12  
OUT D  
–IN D  
OUT A  
–IN A  
1
2
3
4
5
+IN D  
+IN A  
V+  
AD8544  
11 V–  
10 +IN C  
+IN B  
–IN B  
9
6
7
–IN C  
8
OUT C  
OUT B  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD8541/AD8542/AD8544–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 2.7 V, VCM = 1.35 V, TA = 25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
60  
mV  
mV  
pA  
–40°C TA +125°C  
Input Bias Current  
–40°C TA +85°C  
–40°C TA +125°C  
100  
1,000  
30  
pA  
pA  
pA  
Input Offset Current  
IOS  
0.1  
–40°C TA +85°C  
–40°C TA +125°C  
50  
500  
2.7  
pA  
pA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
40  
38  
100  
50  
2
45  
dB  
dB  
–40°C TA +125°C  
RL = 100 k, VO = 0.5 V to 2.2 V  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
µV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
VOS/T  
IB/T  
4
100  
2,000  
25  
Offset Current Drift  
IOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40°C TA +125°C  
IL = 1 mA  
–40°C TA +125°C  
VOUT = VS – 1 V  
2.575 2.65  
2.550  
V
V
Output Voltage Low  
35  
100  
125  
mV  
mV  
mA  
mA  
Output Current  
IOUT  
ISC  
ZOUT  
15  
20  
50  
Closed Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40°C TA +125°C  
VO = 0 V  
65  
60  
76  
38  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
55  
75  
–40°C TA +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
Φo  
RL = 100 kΩ  
To 0.1% (1 V Step)  
0.4  
0.75  
5
980  
63  
V/µs  
µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
40  
38  
<0.1  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
–2–  
REV. B  
AD8541/AD8542/AD8544  
ELECTRICAL CHARACTERISTICS (VS = 3.0 V, VCM = 1.5 V, TA = 25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
–40°C TA +125°C  
Input Bias Current  
60  
100  
1,000  
30  
50  
500  
3
–40°C TA +85°C  
–40°C TA +125°C  
Input Offset Current  
IOS  
0.1  
–40°C TA +85°C  
–40°C TA +125°C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
V
CM = 0 V to 3 V  
40  
38  
100  
50  
2
45  
dB  
dB  
–40°C TA +125°C  
RL = 100 k, VO = 0.5 V to 2.2 V  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
µV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
VOS/T  
IB/T  
4
100  
2,000  
25  
Offset Current Drift  
IOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40°C TA +125°C  
IL = 1 mA  
–40°C TA +125°C  
VOUT = VS – 1 V  
2.875 2.955  
V
V
2.850  
Output Voltage Low  
32  
100  
125  
mV  
mV  
mA  
mA  
Output Current  
IOUT  
ISC  
ZOUT  
18  
25  
50  
Closed Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40°C TA +125°C  
VO = 0 V  
65  
60  
76  
40  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
60  
75  
–40°C TA +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
Φo  
RL = 100 kΩ  
To 0.01% (1 V Step)  
0.4  
0.8  
5
980  
64  
V/µs  
µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. B  
–3–  
AD8541/AD8542/AD8544–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 5.0 V, VCM = 2.5 V, TA = 25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
–40°C TA +125°C  
Input Bias Current  
Input Offset Current  
60  
100  
1,000  
30  
50  
500  
5
–40°C TA +85°C  
–40°C TA +125°C  
IOS  
0.1  
–40°C TA +85°C  
–40°C TA +125°C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
40  
38  
20  
10  
2
48  
40  
dB  
dB  
–40°C TA +125°C  
RL = 100 k, VO = 0.5 V to 2.2 V  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +85°C  
–40°C TA +125°C  
–40°C TA +125°C  
Large Signal Voltage Gain  
V/mV  
V/mV  
V/mV  
µV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
VOS/T  
IB/T  
4
100  
2,000  
25  
Offset Current Drift  
IOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40°C TA +125°C  
IL = 1 mA  
–40°C TA +125°C  
VOUT = VS – 1 V  
4.9  
4.875  
4.965  
25  
V
V
Output Voltage Low  
100  
125  
mV  
mV  
mA  
mA  
Output Current  
IOUT  
ISC  
ZOUT  
30  
60  
45  
Closed Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40°C TA +125°C  
VO = 0 V  
65  
60  
76  
45  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
65  
85  
–40°C TA +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
BWP  
tS  
GBP  
Φo  
RL = 100 k, CL = 200 pF  
1% Distortion  
To 0.1% (1 V Step)  
0.45  
0.92  
70  
6
1,000  
67  
V/µs  
kHz  
µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
–4–  
REV. B  
AD8541/AD8542/AD8544  
PACKAGE INFORMATION  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Package Type  
JA*  
Unit  
JC  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . .  
6 V  
5-Lead SC70 (KS)  
5-Lead SOT-23 (RT)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
8-Lead TSSOP (RU)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
376  
230  
158  
210  
240  
120  
240  
126  
146  
43  
45  
43  
36  
43  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2For supplies less than 6 V, the differential input voltage is equal to VS.  
*θJA is specified for worst-case conditions, i.e., qJA is specified for device soldered  
onto a circuit board for surface mount packages.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
AD8541AKS*  
AD8541AR  
AD8541ART*  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
5-Lead SC70  
KS-5  
SO-8  
RT-5  
SO-8  
RM-8  
RU-8  
SO-14  
RU-14  
A4B  
A4A  
AVA  
8-Lead SOIC  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead MSOP  
8-Lead TSSOP  
14-Lead SOIC  
14-Lead TSSOP  
AD8542AR  
AD8542ARM*  
AD8542ARU*  
AD8544AR  
AD8544ARU*  
*Available in reels only.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8541/AD8542/AD8544 features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD8541/AD8542/AD8544Typical Performance Characteristics  
180  
160  
140  
120  
100  
80  
1.0  
0.5  
0.0  
9
8
7
6
5
4
3
2
1
0
V
V
= 5V  
V
V
= 2.7V AND 5V  
= V /2  
V
V
= 2.7V AND 5V  
= V /2  
S
S
S
= 2.5V  
CM  
CM  
S
CM  
S
T
= 25؇C  
A
؊0.5  
؊1.0  
؊1.5  
؊2.0  
؊2.5  
؊3.0  
؊3.5  
؊4.0  
60  
40  
20  
0
؊4.5 ؊3.5 ؊2.5 ؊1.5  
؊0.5 0.5 1.5 2.5 3.5 4.5  
INPUT OFFSET VOLTAGE mV  
؊55 ؊35 ؊15  
5
25 45 65 85 105 125 145  
؊0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE ؇C  
COMMON-MODE VOLTAGE V  
Figure 2. Input Offset Voltage  
vs. Temperature  
Figure 1. Input Offset Voltage  
Distribution  
Figure 3. Input Bias Current vs.  
Common-Mode Voltage  
7
400  
350  
300  
250  
200  
150  
100  
50  
160  
V
V
= 2.7V AND 5V  
= V /2  
V
V
= 2.7V AND 5V  
= V /2  
S
S
V
T
= 2.7V  
= 25؇C  
S
A
CM  
S
CM  
S
140  
120  
100  
80  
6
5
4
؊PSRR  
+PSRR  
3
60  
40  
2
20  
1
0
0
؊20  
؊40  
؊1  
0
؊55 ؊35 ؊15  
5
25 45 65 85 105 125 145  
؊40 ؊20  
0
20 40 60 80 100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
FREQUENCY Hz  
Figure 5. Input Offset Current vs.  
Temperature  
Figure 6. Power Supply Rejection  
Ratio vs. Frequency  
Figure 4. Input Bias Current vs.  
Temperature  
60  
3.0  
10k  
V
V
R
= 2.7V  
= 2.5Vp-p  
= 2k  
V
T
= 2.7V  
= 25؇C  
S
S
V
R
= 2.7V  
=
S
IN  
A
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
40  
30  
20  
L
1k  
100  
10  
L
T
= 25؇C  
A
T
= 25؇C  
A
+OS  
SOURCE  
SINK  
؊OS  
1
10  
0
0.1  
0.01  
0.001  
10  
100  
1k  
10k  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
0.01  
0.1  
1
10  
100  
CAPACITANCE pF  
LOAD CURRENT mA  
Figure 9. Small Signal Overshoot vs.  
Load Capacitance  
Figure 8. Closed-Loop Output  
Voltage Swing vs. Frequency  
Figure 7. Output Voltage to Supply  
Rail vs. Load Current  
–6–  
REV. B  
AD8541/AD8542/AD8544  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
V
= 2.7V  
= 100k  
= 300pF  
= 1  
S
V
R
= 2.7V  
= 10k⍀  
= 25؇C  
V
R
= 2.7V  
= 2k⍀  
= 25؇C  
S
S
R
C
A
T
L
L
V
L
L
T
T
A
A
= 25؇C  
A
+OS  
+OS  
؊OS  
1.35V  
؊OS  
10  
0
10s  
50mV  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
CAPACITANCE pF  
CAPACITANCE pF  
Figure 10. Small Signal Overshoot  
vs. Load Capacitance  
Figure 11. Small Signal Overshoot  
vs. Load Capacitance  
Figure 12. Small Signal Transient  
Response  
160  
V
R
= 2.7V  
= NO LOAD  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
S
140  
120  
100  
80  
L
A
T
A
80  
60  
40  
20  
0
45  
90  
؊PSRR  
+PSRR  
135  
180  
60  
1.35V  
40  
V
= 2.7V  
= 2k  
= 1  
S
20  
R
A
L
V
A
0
T
= 25؇C  
؊20  
؊40  
10s  
500mV  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
Figure 13. Large Signal Transient  
Response  
Figure 14. Open-Loop Gain and  
Phase vs. Frequency  
Figure 15. Power Supply Rejection  
Ratio vs. Frequency  
10k  
5.0  
90  
V
V
R
= 5V  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
S
S
4.5  
80  
70  
60  
50  
= 4.9V p-p  
= NO LOAD  
= 25؇C  
IN  
A
A
1k  
100  
10  
L
4.0  
3.5  
T
A
3.0  
2.5  
SOURCE  
40  
30  
20  
SINK  
2.0  
1.5  
1
1.0  
0.5  
0
10  
0.1  
0
0.01  
0.001  
؊10  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
0.01  
0.1  
1
10  
100  
LOAD CURRENT mA  
Figure 16. Common-Mode Rejection  
Ratio vs. Frequency  
Figure 17. Output Voltage to Supply  
Rail vs. Frequency  
Figure 18. Closed Loop Output  
Voltage Swing vs. Frequency  
REV. B  
–7–  
AD8541/AD8542/AD8544  
60  
50  
40  
30  
20  
5.0  
60  
V
V
= 5V  
= 4.9V p-p  
= 2k⍀  
S
4.5  
V
R
= 5V  
= 10k⍀  
= 25؇C  
S
V
= 5V  
= 2k  
= 25؇C  
S
IN  
L
50  
40  
30  
20  
10  
0
R
T
R
T
L
L
4.0  
3.5  
T
A
= 25؇C  
A
A
3.0  
2.5  
+OS  
+OS  
؊OS  
؊OS  
2.0  
1.5  
1.0  
0.5  
0
10  
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
CAPACITANCE pF  
CAPACITANCE pF  
Figure 19. Closed-Loop Output  
Voltage Swing vs. Frequency  
Figure 20. Small Signal Overshoot  
vs. Load Capacitance  
Figure 21. Small Signal Overshoot  
vs. Load Capacitance  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
S
V
R
= 5V  
=
= 25؇C  
S
R
C
A
T
= 100k  
= 300pF  
= 1  
L
L
V
L
T
A
= 25؇C  
A
+OS  
2.5V  
2.5V  
؊OS  
V
= 5V  
= 2k  
= 1  
S
R
A
L
V
A
T
= 25؇C  
10s  
10s  
50mV  
1V  
10  
100  
1k  
10k  
CAPACITANCE pF  
Figure 22. Small Signal Overshoot  
vs. Load Capacitance  
Figure 23. Small Signal Transient  
Response  
Figure 24. Large Signal Transient  
Response  
60  
V
= 5V  
S
V
R
= 5V  
= NO LOAD  
= 25؇C  
T
= 25؇C  
S
A
R
A
T
= 10k  
= 1  
= 25؇C  
L
V
A
L
V
IN  
50  
40  
30  
20  
10  
0
T
A
80  
60  
40  
20  
0
45  
V
OUT  
90  
135  
180  
2.5V  
20s  
1V  
0
1
2
3
4
5
6
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
SUPPLY VOLTAGE V  
Figure 25. Open-Loop Gain & Phase  
vs. Frequency  
Figure 26. No Phase Reversal  
Figure 27. Supply Current per  
Amplifier vs. Supply Voltage  
–8–  
REV. B  
AD8541/AD8542/AD8544  
55  
50  
45  
40  
35  
30  
25  
20  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 2.7V AND 5V  
= 1  
= 25؇C  
V
A
= 5V  
= 1  
S
S
A
T
V
V
MARKER SET @ 10kHz  
V
= 5V  
A
S
MARKER READING: 37.6V/ Hz  
T
= 25؇C  
A
V
= 2.7V  
S
؊55 ؊35؊15  
5
25 45 65 85 105 125 145  
0
5
10  
15  
20  
25  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE ؇C  
FREQUENCY Hz  
FREQUENCY kHz  
Figure 28. Supply Current per  
Amplifier vs. Temperature  
Figure 29. Closed-Loop Output  
Impedance vs. Frequency  
Figure 30. Voltage Noise  
NOTES ON THE AD854x AMPLIFIERS  
the circuit to no longer attenuate at the ideal notch frequency.  
To achieve desired performance, 1% or better component  
tolerances or special component screens are usually required.  
One method to desensitize the circuit-to-component mis-  
match is to increase R2 with respect to R1, which lowers Q. A  
lower Q increases attenuation over a wider frequency range,  
but reduces attenuation at the peak notch frequency.  
The AD8541/AD8542/AD8544 amplifiers are improved perfor-  
mance general-purpose operational amplifiers. Performance has  
been improved over previous amplifiers in several ways.  
Lower Supply Current for 1 MHz Gain Bandwidth  
The AD854x series typically uses 45 microamps of current per  
amplifier. This is much less than the 200 µA to 700 µA used in  
earlier generation parts with similar performance. This makes  
the AD854x series a good choice for upgrading portable designs  
for longer battery life. Alternatively, additional functions and  
performance can be added at the same current drain.  
5.0V  
R
R
8
100k  
100k⍀  
1/2 AD8542  
3
2
U1  
VOUT  
C2  
1
4
53.6F  
Higher Output Current  
R/2  
50k⍀  
At 5 V single supply, the short circuit current is typically 60 µA.  
Even 1 V from the supply rail, the AD854x amplifiers can provide  
30 mA, sourcing or sinking.  
R2  
2.5k⍀  
2.5V  
REF  
C
C
1/2 AD8542  
26.7nF  
26.7nF  
5
6
Sourcing and sinking is strong at lower voltages, with 15 mA  
available at 2.7 V, and 18 mA at 3.0 V. For even higher output  
currents, please see the Analog Devices AD8531/AD8532/AD8534  
parts, with output currents to 250 mA. Information on these  
parts is available from your Analog Devices representative,  
and data sheets are available at the Analog Devices website at  
www.analog.com.  
7
U2  
R1  
97.5k⍀  
1
f
=
0
2πRC  
1
2.5V  
REF  
f
=
0
R1  
1 ؊  
4
[
]
R1+R2  
Figure 31. 60 Hz Twin-T Notch Filter, Q = 10  
Better Performance at Lower Voltages  
The AD854x family parts have been designed to provide better ac  
performance, at 3.0 V and 2.7 V, than previously available parts.  
Typical gain-bandwidth product is close to 1 MHz at 2.7 V. Volt-  
age gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is  
typically over 60°C, making the part easy to use.  
5.0V  
7
AD8541  
R
R
3
2
VOUT  
6
4
2C  
V
IN  
APPLICATIONS  
Notch Filter  
R/2  
2.5V  
REF  
The AD8542 has very high open loop gain (especially with supply  
voltage below 4 V), which makes it useful for active filters of all  
types. For example, Figure 31 illustrates the AD8542 in the clas-  
sic Twin-T Notch Filter design. The Twin-T Notch is desired for  
simplicity, low output impedance and minimal use of op amps. In  
fact, this notch filter may be designed with only one op amp if Q  
adjustment is not required. Simply remove U2 as illustrated in  
Figure 32. However, a major drawback to this circuit topology is  
ensuring that all the Rs and Cs closely match. The components  
must closely match or notch frequency offset and drift will cause  
C
C
=
Figure 32. 60 Hz Twin-T Notch Filter, Q (Ideal)  
Figure 33 diagrams another example of the AD8542 in a  
notch filter circuit. The FNDR notch filter has several  
unique features as compared to the Twin-T Notch including:  
less critical matching requirements; Q is directly proportional  
to a single resistor R1. While matching component values is  
still important, it is also much easier and/or less expensive to  
REV. B  
–9–  
AD8541/AD8542/AD8544  
accomplish in the FNDR circuit. For example, the Twin-T  
Notch uses three capacitors with two unique values, whereas the  
FNDR circuit uses only two capacitors, which may be of the  
same value. U3 is simply a buffer that is added to lower the out-  
put impedance of the circuit.  
Photodiode Application  
The AD854x family has very high impedance with input bias  
current typically around 4 pA. This characteristic allows the  
AD854x op amps to be used in photodiode applications and  
other applications that require high input impedance. Note that  
the AD854x has significant voltage offset, which can be removed  
by capacitive coupling or software calibration.  
1/4 AD8544  
R1  
Q ADJUST  
200  
9
8
Figure 35, illustrates a photodiode or current measurement  
application. The feedback resistor is limited to 10 Mto avoid  
excessive output offset. Also note that a resistor is not needed  
on the noninverting input to cancel bias current offset, because  
the bias current related output offset is not significant when  
compared to the voltage offset contribution. For the best per-  
formance follow the standard high impedance layout techniques  
including: shield circuit, clean circuit board, put a trace con-  
nected to the noninverting input around the inverting input,  
and use separate analog and digital power supplies.  
U3  
VOUT  
10  
C1  
1F  
R
2.5V  
REF  
2.61k⍀  
1/4 AD8544  
1
4
3
C2  
1F  
U1  
1/4 AD8544  
2
6
11  
7
U2  
R
5
2.61k⍀  
R
C
2.61k⍀  
100pF  
1/4 AD8544  
R
13  
1
f =  
14  
R
10M⍀  
2.61k⍀  
2π  
LC1  
U4  
NC  
12  
2.5V  
REF  
SPARE  
2
L =  
R C2  
V+  
7
OR  
2.5V  
2
3
REF  
6
V
OUT  
Figure 33. FNDR 60 Hz Notch Filter with Output Buffer  
4
D
AD8541  
Comparator Function  
A comparator function is a common application for a spare op  
amp in a quad package. Figure 34 illustrates 1/4 of the AD8544  
as a comparator in a standard overload detection application.  
Unlike so many op amps, the AD854x family can double as  
comparator because this op amp family has rail-to-rail differen-  
tial input range, rail-to-rail output, and a great speed vs. power  
ratio. R2 is used to introduce hysteresis. The AD854x when  
used as comparators have 5 µs propagation delay @ 5 V and 5 µs  
overload recovery time.  
2.5V  
2.5V  
REF  
REF  
Figure 35. High Input Impedance Application–Photodiode  
Amplifier  
R2  
1M  
R1  
1k⍀  
VOUT  
V
IN  
1/4 AD8544  
2.5V  
DC  
2.5V  
REF  
Figure 34. The AD854x Comparator Application–Overload  
Detector  
–10–  
REV. B  
AD8541/AD8542/AD8544  
* AD8542 SPICE Macro-model Typical Values  
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)  
* 6/98, Ver. 1  
*
* TAM / ADSC  
VN1 80 0 0  
*
RN1 80 0 16.45E-3  
* Copyright 1998 by Analog Devices  
HN 81 0 VN1 35  
*
RN2 81 0 1  
* Refer to “README.DOC” file for License State-  
ment. Use of this  
*
* INTERNAL VOLTAGE REFERENCE  
* model indicates your acceptance of the terms  
and provisions in  
*
VFIX 90 98 DC 1  
* the License Statement.  
*
S1  
90 91 (50,99) VSY_SWITCH  
VSN1 91 92 DC 0  
* Node Assignments  
RSY 92 98 1E3  
*
*
*
*
*
*
*
noninverting input  
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5  
GSY 99 50 POLY(1) (99,50) 0 3.7E-6  
*
* ADAPTIVE GAIN STAGE  
* AT Vsy>+4.2, AVol=45 V/mv  
* AT Vsy<+3.8, AVol=450 V/mv  
*
|
|
|
|
|
|
1
inverting input  
|
|
|
|
|
2
positive supply  
|
|
|
|
negative supply  
|
|
|
output  
|
|
.SUBCKT AD8542  
*
99 50 45  
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5  
VR1 30 31 DC 0  
* INPUT STAGE  
*
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9  
CF 45 30 10E-12  
M1  
M2  
4
6
1 8 8 PIX L=0.6E-6 W=16E-6  
7 8 8 PIX L=0.6E-6 W=16E-6  
D3 30 99 DX  
D4 50 30 DX  
M3 11 1 10 10 NIX L=0.6E-6 W=16E-6  
M4 12 7 10 10 NIX L=0.6E-6 W=16E-6  
RC1 4 50 20E3  
*
* OUTPUT STAGE  
*
RC2 6 50 20E3  
RC3 99 11 20E3  
RC4 99 12 20E3  
M5 45 46 99 99 POX L=0.6E-6 W=375E-6  
M6 45 47 50 50 NOX L=0.6E-6 W=500E-6  
EG1 99 46 POLY(1) (98,30) 1.05 1  
EG2 47 50 POLY(1) (30,98) 1.04 1  
*
C1  
4
6 1.5E-12  
C2 11 12 1.5E-12  
I1 99 8 1E-5  
I2 10 50 1E-5  
V1 99 9 0.2  
V2 13 50 0.2  
* MODELS  
*
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=-  
+1,LAMBDA=0.067)  
D1  
8
9 DX  
.MODEL NOX NMOS (LEVEL=2,KP=20E-  
+6,VTO=1,LAMBDA=0.067)  
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-  
+0.7,LAMBDA=0.01,KF=1E-31)  
.MODEL NIX NMOS (LEVEL=2,KP=20E-  
+6,VTO=0.7,LAMBDA=0.01,KF=1E-31)  
.MODEL DX D(IS=1E-14)  
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=-  
+4.2,VON=-3.5)  
D2 13 10 DX  
EOS  
1
IOS  
*
* CMRR 64dB, ZERO AT 20kHz  
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5  
7
1
2 POLY(3) (22,98) (73,98) (81,0) 1E-3 1 1  
2 2.5E-12  
RCM1 21 22 79.6E3  
CCM1 21 22 100E-12  
RCM2 22 98 50  
.ENDS AD8542  
*
* PSRR=90dB, ZERO AT 200Hz  
*
RPS1 70 0 1E6  
RPS2 71 0 1E6  
CPS1 99 70 1E-5  
CPS2 50 71 1E-5  
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1  
RPS3 72 73 1.59E6  
CPS3 72 73 500E-12  
RPS4 73 98 25  
*
REV. B  
–11–  
AD8541/AD8542/AD8544  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead TSSOP  
(RU-08)  
0.122 (3.10)  
0.114 (2.90)  
14-Lead TSSOP  
(RU-14)  
0.201 (5.10)  
0.193 (4.90)  
8
1
5
4
14  
8
7
1
PIN 1  
0.0256 (0.65)  
BSC  
0.006 (0.15)  
0.002 (0.05)  
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
0.028 (0.70)  
0.020 (0.50)  
8؇  
0؇  
8؇  
0؇  
0.0118 (0.30)  
0.0075 (0.19)  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
14-Lead SOIC  
8-Lead SOIC  
(SO-8)  
(SO-14)  
0.3444 (8.75)  
0.3367 (8.55)  
0.1968 (5.00)  
0.1890 (4.80)  
14  
8
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
7
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
x 45؇  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
8-Lead MSOP  
(RM-8)  
5-Lead SOT-23  
(RT Suffix)  
0.122 (3.10)  
0.114 (2.90)  
0.1220 (3.100)  
0.1063 (2.700)  
PIN 1  
8
5
4
0.193  
(4.90)  
BSC  
3
2
1
5
0.122 (3.10)  
0.114 (2.90)  
0.1181 (3.000)  
0.0984 (2.500)  
0.0709 (1.800)  
0.0590 (1.500)  
4
1
PIN 1  
0.0256 (0.65) BSC  
0.037 (0.95)  
0.030 (0.75)  
0.0374 (0.950) BSC  
0.043  
(1.10)  
MAX  
0.0748 (1.900)  
REF  
0.006 (0.15)  
0.002 (0.05)  
0.0079 (0.200)  
0.0035 (0.090)  
6؇  
0؇  
0.016 (0.40)  
0.010 (0.25)  
SEATING  
PLANE  
0.0512 (1.300)  
0.0354 (0.900)  
0.0571 (1.450)  
0.0354 (0.900)  
0.028 (0.70)  
0.016 (0.40)  
0.009 (0.23)  
0.005 (0.13)  
10؇  
0؇  
SEATING  
PLANE  
0.0197 (0.500)  
0.0118 (0.300)  
0.0590 (0.150)  
0.0000 (0.000)  
NOTE:  
PACKAGE OUTLINE INCLUSIVE AS SOLDER PLATING.  
0.0236 (0.600)  
0.0039 (0.100)  
5-Lead SC70  
(KS-5)  
0.026 (0.65) BSC  
PIN 1  
3
2
1
5
0.053 (1.35)  
0.045 (1.15)  
0.094 (2.40)  
0.071 (1.80)  
4
0.016 (0.40)  
0.004 (0.10)  
0.087 (2.20)  
0.071 (1.80)  
0.039 (1.00)  
0.031 (0.80)  
0.043 (1.10)  
0.031 (0.80)  
0.012 (0.30)  
0.006 (0.15)  
0.012 (0.30)  
0.004 (0.10)  
0.007 (0.18)  
0.004 (0.10)  
0.004 (0.10)  
0.000 (0.00)  
SEATING  
PLANE  
–12–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY