5962R9563801VQYC [ETC]

Radiation-Hardened MicroController; 抗辐射微控制器
5962R9563801VQYC
型号: 5962R9563801VQYC
厂家: ETC    ETC
描述:

Radiation-Hardened MicroController
抗辐射微控制器

微控制器
文件: 总18页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UStaTnda6rd9PRrodHuc0ts51 Radiation-Hardened MicroController  
Data Sheet  
February 2000  
FEATURES  
q Three 16-bit timer/counters  
- High speed output  
- Compare/capture  
- Pulse width modulator  
- Watchdog timer capabilities  
q Flexible clock operation  
- 1Hz to 20MHz with external clock  
- 2MHz to 20MHz using internal oscillator with external  
crystal  
q 256 bytes of on-chip data RAM  
q 32 programmable I/O lines  
q 7 interrupt sources  
q Radiation-hardened process and design; total dose irradia-  
tion testing MIL-STD-883 Method 1019  
- Total dose: 1.0E6 rads(Si)  
- Latchup immune  
q Programmable serial channel with:  
- Framing error detection  
q Packaging options:  
- 40-pin 100-mil center DIP (0.600 x 2.00)  
- 44-lead 25-mil center Flatpack (0.670 x 0.800)  
- Automatic address recognition  
q TTL and CMOS compatible logic levels  
q 64K external data and program memory space  
q MCS-51 fully compatible instruction set  
q Standard Microcircuit Drawing 5962-95638 available  
- QML Q & V compliant  
PORT 0  
PORT 2  
DRIVERS  
DRIVERS  
PORT 2  
LATCH  
PORT 0  
LATCH  
RAM  
PROGRAM  
ADDRESS  
REGISTER  
ACC  
TMP2  
B
STACK  
POINTER  
SPECIAL FUNCTION  
REGISTERS,  
TIMERS,  
BUFFER  
REGISTER  
TMP1  
PC  
INCREMENTER  
ALU  
PSW TMP3  
PCA,  
SERIAL PORT  
PROGRAM  
COUNTER  
PSEN  
ALE  
EA  
DPTR  
RST  
PORT 1  
LATCH  
PORT 3  
LATCH  
OSC.  
PORT 1  
PORT 3  
DRIVERS  
DRIVERS  
XTAL2  
XTAL1  
P3.0 - P3.7  
P1.0 - P1.7  
Figure 1. UT69RH051 MicroController Block Diagram  
1.0 INTRODUCTION  
Table 1. Port 1 Alternate Functions  
The UT69RH051 is a radiation-tolerant 8-bit microcontroller  
that is pin equivalent to the MCS-51 industry standard  
microcontroller when in a 40-pin DIP. The UT69RH051’s static  
design allows operation from 1Hz to 20MHz. This data sheet  
describes hardware and software interfaces to the UT69RH051.  
Port  
Pin  
Alternate  
Name  
Alternate Function  
P1.0  
T2  
External clock input to Timer/  
Counter 2  
P1.1  
T2EX  
Timer/Counter 2 Capture/Reload  
trigger and direction control  
2.0 SIGNAL DESCRIPTION  
V
V
: +5V Supply voltage  
: Circuit Ground  
P1.2  
P1.3  
ECI  
External count input to PCA  
DD  
SS  
CEX0  
External I/O for PCA capture/  
compare Module 0  
Port 0 (P0.0 - P0.7): Port 0 is an 8-bit port. Port 0 pins are used  
as the low-order multiplexed address and data bus during  
accesses to external program and data memory. Port 0 pins use  
internal pullups when emitting 1’s and are TTL compatible.  
P1.4  
P1.5  
P1.6  
P1.7  
CEX1  
CEX2  
CEX3  
CEX4  
External I/O for PCA capture/  
compare Module 1  
External I/O for PCA capture/  
compare Module 2  
Port 1 (P1.0 - P1.7): Port 1 is an 8-bit bidirectional I/O port with  
internal pullups. The output buffers can drive TTL loads. When  
the Port 1 pins have 1’s written to them, they are pulled high by  
the internal pullups and can be used as inputs in this state. As  
inputs, any pins that are externally pulled low sources current  
because of the pullups. In addition, Port 1 pins have the alternate  
uses shown in table 1.  
External I/O for PCA capture/  
compare Module 3  
External I/O for PCA capture/  
compare Module 4  
Port 2 (P2.0 - P2.7): Port 2 is an 8-bit port. Port 2 pins are used  
asthehigh-orderaddressbusduringaccessestoexternalProgram  
Memory and during accesses to external Data Memory that uses  
16-bit addresses (i.e., MOVX@DPTR). Port 2 uses internal  
pullups when emitting 1’s in this mode. During operations that  
do not require a 16-bit address, Port 2 emits the contents of the  
P2 Special Function Registers (SFR). The pins have internal  
pullups and drives TTL loads.  
Table 2. Port 3 Alternate Functions  
Port  
Pin  
Alternate  
Name  
Alternate Function  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
RXD  
TXD  
INT0  
INT1  
T0  
Serial port input  
Serial port output  
Port 3 (P3.0 - P3.7): Port 3 is an 8-bit bidirectional I/O port with  
internal pullups. The output buffers can drive TTL loads. When  
the Port 3 pins have 1’s written to them, they are pulled high by  
the internal pullups and can be used as inputs in this state. As  
inputs, any pins that are externally pulled low sources current  
because of the pullups. In addition, Port 3 pins have the alternate  
uses shown in table 2.  
External interrupt 0  
External interrupt 1  
External clock input for Timer 0  
External clock input for Timer 1  
T1  
WR  
External Data Memory write  
strobe  
P3.7  
RD  
External Data Memory read strobe  
2
RST: Reset Input. A high on this input for 24 oscillator periods  
while the oscillator is running resets the device. All ports and  
SFRs reset to their default conditions. Internal data memory is  
undefined after reset. Program execution begins within 12  
oscillator periods (one machine cycle) after the RST signal is  
brought low. RST contains an internal pulldown resistor to allow  
implementing power-up reset with only an external capacitor.  
2.1 Hardware/Software Interface  
2.1.1 Memory  
The UT69RH051 has a separate address space for Program and  
Data Memory. Internally, the UT69RH051 contains 256 bytes of  
Data Memory. It addresses up to 64Kbytes of external Data  
Memory and 64Kbytes of external Program Memory.  
2.1.1.1 Program Memory  
There is no internal program memory in the UT69RH051. All  
program memory is accessed as external through ports P0 and  
ALE: Address Latch Enable. The ALE output is a pulse for  
latching the low byte of the address during accesses to external  
memory. Innormaloperation, theALEpulseisoutputeverysixth  
oscillator cycle and may be used for external timing or clocking.  
However, during each access to external Data Memory (MOVX  
instruction), one ALE pulse is skipped.  
P2. The EA pin must be tied to V (ground) to enable access to  
SS  
external locations 0000 through 7FFF . Following reset, the  
H
H
UT69RH051 fetches the first instruction at address 0000h.  
2.1.1.2 Data Memory  
PSEN: Program Store Enable. This active low signal is the read  
strobe to the external program memory. PSEN activates every  
sixth oscillator cycle except that two PSEN activations are  
skipped during external data memory accesses.  
The UT69RH051 implements 256 bytes of internal data RAM.  
The upper 128 bytes of this RAM occupy a parallel address space  
to the SFRs. The CPU determines if the internal access to an  
address above 7F is to the upper 128 bytes of RAM or to the  
H
EA: External Access Enable. This pin should be strapped to V  
(Ground) for the UT69RH051.  
SS  
SFR space by the addressing mode of the instruction. If direct  
addressing is used, the access is to the SFR space. If indirect  
addressing is used, the access is to the internal RAM. Stack  
operations are indirectly addressed so the upper portion of RAM  
can be used as stack space. Figure 3 shows the organization of  
the internal Data Memory.  
XTAL1: Input to the inverting oscillator amplifier.  
XTAL2: Output from the inverting oscillator amplifier.  
The first 32 bytes are reserved for four register banks of eight  
bytes each. The processor uses one of the four banks as its  
working registers depending on the RS1 and RS0 bits in the PSW  
SFR. At reset, bank 0 is selected. If four register banks are not  
required, use the unused banks as general purpose scratch pad  
memory. The next 16 bytes (128 bits) are individually bit  
addressable. The remaining bytes are byte addressable and can  
be used as general purpose scratch pad memory. For addresses 0  
- 7F , use either direct or indirect addressing. For addresses  
H
larger than 7F , use only indirect addressing.  
H
In addition to the internal Data Memory, the processor can access  
64Kbytes of external Data Memory. The MOVX instruction  
accesses external Data Memory.  
2.1.2 Special Function Registers  
Table 3 contains the SFR memory map. Unoccupied addresses  
are not implemented on the device. Read accesses to these  
addresses will return unknown values and write accesses will  
have no effect.  
3
(T2)  
(T2EX)  
(ECI)  
(CEX0)  
(CEX1)  
(CEX2)  
(CEX3)  
(CEX4)  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
RST  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
EA  
ALE  
PSEN  
P2.7  
P2.6  
P2.5  
P2.4  
(AD0)  
(AD1)  
(AD2)  
(AD3)  
(AD4)  
(AD5)  
(AD6)  
(AD7)  
(RXD)  
(TXD)  
(INT0)  
(INT1)  
(T0)  
(T1)  
(WR)  
(A15)  
(A14)  
(A13)  
(A12)  
(A11)  
(A10)  
(A9)  
(RD)  
P3.7  
XTAL2  
XTAL1  
VSS  
17  
18  
19  
20  
24  
23  
22  
21  
P2.3  
P2.2  
P2.1  
P2.0  
(A8)  
Figure 2a. UT69RH051 40-Pin DIP Connections  
VDD  
VSS  
P1.0  
P1.1  
NC  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
RST  
P3.0  
P3.1  
P3.2  
1
2
3
4
5
6
7
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
(T2)  
(T2EX)  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
EA  
ALE  
PSEN  
P2.7  
P2.6  
(AD0)  
(AD1)  
(AD2)  
(AD3)  
(AD4)  
(AD5)  
(AD6)  
(AD7)  
(ECI)  
(CEX0)  
(CEX1)  
(CEX2)  
(CEX3)  
(CEX4)  
8
9
10  
11  
12  
13  
14  
(RXD)  
(TXD)  
(INTO)  
(INT1)  
(TO)  
(T1)  
(A15)  
(A14)  
(A13)  
(A12)  
(A11)  
(A10)  
(A9)  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
XTAL2  
XTAL1  
VSS  
15  
16  
17  
18  
19  
20  
21  
22  
30  
29  
28  
27  
26  
25  
24  
23  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
NC  
(WR)  
(RD)  
(A8)  
VDD  
Figure 2b. UT69RH051 44-Pin Flatpack Connections  
4
8 BYTES  
F8  
F0  
FF  
F7  
INDIRECT  
ACCESS  
ONLY  
·
·
·
·
·
·
88  
8F  
SCRATCH  
PAD AREA  
80  
87  
78  
70  
7F  
77  
·
·
·
·
·
·
38  
3F  
DIRECT OR  
INDIRECT  
ACCESS  
30  
37  
BIT  
28  
20  
18  
10  
08  
00  
2F  
27  
1F  
17  
0F  
07  
ADDRESSABLE  
SEGMENT  
REGISTER  
BANKS  
Figure 3. Internal Data Memory Organization  
2.1.3 Reset  
While RST is high,PSEN and the port pins are pulled high; ALE  
is pulled low. All SFRs are reset to their reset values as shown  
in table 3. The internal Data Memory content is indeterminate.  
The reset input is the RST pin. To reset, hold the RST pin high  
for a minimum of 24 oscillator periods while the oscillator is  
running. The CPU generates an internal reset from the external  
signal. The port pins are driven to the reset state as soon as a valid  
high is detected on the RST pin.  
The processor will begin operation one machine cycle after the  
RST line is brought low. A memory access occurs immediately  
after the RST line is brought low, but the data is not brought into  
the processor. The memory access repeats on the next machine  
cycle and actual processing begins at that time.  
5
Table 3. SFR Memory Registers  
CCAP0H CCAP1H CCAP2H CCAP3H  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
B0  
A8  
A0  
98  
CH  
00000000  
CCAP4H  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
FF  
F7  
EF  
E7  
DF  
D7  
CF  
C7  
BF  
B7  
AF  
A7  
9F  
97  
B
00000000  
CL  
00000000  
CCAP0L  
CCAP1L  
CCAP2L  
CCAP3L  
CCAP4L  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
ACC  
00000000  
CCON  
00X00000  
CMOD  
OOXXX000  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
X00000000  
X00000000  
X00000000  
X00000000  
X00000000  
PSW  
00000000  
T2CON  
00000000  
T2MOD  
XXXXXX00  
RCAP2L  
00000000  
RCAP2H  
00000000  
TL2  
00000000  
TH2  
00000000  
IP  
SADEN  
00000000  
X0000000  
P3  
11111111  
IPH  
X00000000  
IE  
SADDR  
00000000  
00000000  
P2  
11111111  
SCON  
00000000  
SBUF  
XXXXXXXX  
90  
P1  
11111111  
88  
TCON  
00000000  
TMOD  
00000000  
TL0  
00000000  
TL1  
00000000  
TH0  
00000000  
TH1  
00000000  
8F  
87  
80  
P0  
SP  
DPL  
DPH  
PCON  
11111111  
00000111  
00000000  
00000000  
00XX00XX  
Notes:  
1. Values shown are the reset values of the registers.  
2. X = undefined.  
6
3.0 RADIATION HARDNESS  
circuit density and reliability. For transient radiation hardness  
and latchup immunity, UTMC builds all radiation-hardened  
products on epitaxial wafers using an advanced twin-tub CMOS  
process. In addition, UTMC pays special attention to power and  
ground distribution during the design phase, minimizing dose-  
rate upset caused by rail collapse.  
The UT69RH051 incorporates special design and layout features  
which allow operation in high-level radiation environments.  
UTMC has developed special low-temperature processing  
techniques designed to enhance the total-dose radiation hardness  
of both the gate oxide and the field oxide while maintaining the  
1
RADIATION HARDNESS DESIGN SPECIFICATIONS  
Total Dose  
1.0E6  
14  
rad(Si)  
2
LET Threshold  
MeV-cm /mg  
2
Neutron Fluence  
1.0E14  
1E-4  
n/cm  
2
Saturated Cross-Section (1Kx8)  
Single Event Upset  
cm /device  
2
1.3E-7  
errors/device-day  
1
2
LET>128  
Single Event Latchup  
MeV-cm /mg  
Note:  
1. Worst case temperature TA = +125°C.  
2. Adams 90% worst case environment (geosynchronous).  
1
4.0 ABSOLUTE MAXIMUM RATINGS  
(Referenced to V  
)
SS  
SYMBOL  
PARAMETER  
DC Supply Voltage  
LIMITS  
UNITS  
V
-0.5 to 7.0  
V
DD  
V
Voltage on Any Pin  
-0.5 to V +0.3V  
V
°C  
I/O  
DD  
T
Storage Temperature  
-65 to +150  
STG  
P
Maximum Power Dissipation  
Maximum Junction Temperature  
750  
175  
10  
mW  
°C  
D
T
J
2
Q
°C/W  
mA  
JC  
Thermal Resistance, Junction-to-Case  
DC Input Current  
I
±10  
I
Notes:  
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device  
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2. Test per MIL-STD-883, Method 1012.  
7
5.0 DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*  
V
= 5.0V ±10%; TA = -55°C < T < +125°C)  
C
DD  
SYMBOL  
PARAMETER  
CONDITION  
MINIMUM  
MAXIMUM  
UNIT  
V
V
Low-level Input Voltage  
0.8  
IL  
V
High-level Input Voltage  
(except XTAL, RST)  
2.0  
V
IH  
V
High-level Input Voltage  
(XTAL)  
3.85  
V
V
IH1  
1
V
I
= 100mA  
0.3  
OL  
Low-level Output Voltage  
(Ports 1, 2 and 3)  
OL  
I
I
I
= 1.6mA  
= 3.5mA  
= 200mA  
0.45  
1.0  
V
V
V
OL  
OL  
OL  
1,2  
V
0.3  
OL1  
Low-level Output Voltage  
(Port 0, ALE, PSEN, PROG)  
I
I
I
= 3.2mA  
= 7.0mA  
= -10mA  
0.45  
1.0  
V
V
V
OL  
OL  
OH  
3
V
4.2  
OH  
High-level Output Voltage  
(Ports 1, 2, and 3  
ALE and PSEN)  
I
I
I
= -30mA  
= -60mA  
= -200mA  
3.8  
3.0  
4.2  
V
V
V
OH  
OH  
OH  
V
High-level Output Voltage  
OH1  
(Port 0 in External Bus Mode)  
I
I
= -3.2mA  
= -7.0mA  
= 0.0V  
3.8  
3.0  
V
V
OH  
OH  
I
Logical 0 Input Current  
(Ports 1, 2, and 3)  
V
V
V
V
V
V
V
V
-50  
-65  
mA  
IL  
IL  
LI  
LI  
IN  
= 5.5V  
CC  
I
Logical 0 Input Current  
(XTAL 1)  
= 0.0V  
-65  
mA  
mA  
mA  
IN  
= 5.5V  
CC  
IN  
I
I
Input Leakage Current  
(Port 0)  
= 0.0V or V  
= 5.5V  
±25  
±65  
CC  
CC  
CC  
Input Leakage Current  
(XTAL1)  
= 0.0V or V  
= 5.5V  
±65  
IN  
CC  
4
Pin Capacitance  
@ 1MHZ, 25°C  
15  
pF  
C
IO  
I
Power Supply Current:  
@16MHz  
@20 MHz  
95  
120  
mA  
DD  
Notes:  
* Post-radiation performance guaranteed at 25°C per MIL-STD-883.  
1. Under steady state (non-transient) conditions, IOL must be limited externally as follows:  
Maximum IOL per port pin:  
Maximum IOL per 8-bit port-  
10mA  
Port 0: 26mA  
Ports 1, 2, & 3: 15mA  
Maximum total IOL for all output pins: 71mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE and ports 1 and 3. The noise is due to external bus  
capacitance discharging into the port 0 and port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading  
exceeds 100 pF, the noise pulse on the ALE may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a schmitt trigger or use an address latch  
with a schmitt trigger strobe input.  
3. Capacitive loading ports 0 and 2 cause the VOH on ALE and PSEN to drop below the VDD-0.3 specification when the address lines are stabilizing.  
4. Capacitance measured for initial qualification or design changes which may affect the value.  
8
VDD  
IDD  
VDD  
VDD  
VDD  
P0  
RST  
EA  
(NC)  
XTAL2  
XTAL1  
VSS  
CLOCK  
SIGNAL  
GND  
tCLCH = tCHCL = 5ns  
Figure 4. I Test Condition, Active Mode  
DD  
All other pins  
disconnected  
VDD -0.5  
0.45V  
0.7 VDD  
0.2 VDD -0.1  
tCHCX  
tCLCH  
tCHCX  
tCHCL  
tCLCL  
Figure 5. Clock Signal Waveform for I Tests in Active and Idle Modes  
DD  
t
= t  
= 5ns  
CLCH  
CHCL  
9
6.0 AC CHARACTERISTICS READ CYCLE (Post-Radiation)*  
(V = 5.0V ±10%; -55°C < T < +125°C)  
DD  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
t
Clock Period  
50  
ns  
CLCL  
1/t  
Oscillator Frequency  
20  
MHz  
ns  
CLCL  
LHLL  
t
t
ALE Pulse Width  
2 t  
-40  
CLCL  
Address Valid to ALE Low  
Address Hold after ALE Low  
t
-40  
ns  
AVLL  
1
CLCL  
CLCL  
t
-30  
ns  
t
LLAX  
t
ALE Low to Valid Instruction  
ALE Low to PSEN Low  
4 t  
3 t  
-100  
-105  
ns  
ns  
ns  
ns  
ns  
LLIV  
LLPL  
PLPH  
CLCL  
CLCL  
t
t
t
-30  
CLCL  
PSEN Pulse Width  
3 t  
-45  
CLCL  
t
PSEN Low to Valid Instruction In  
Input Instruction Hold after PSEN  
PLIV  
1
0
t
PXIX  
1
Input Instruction Float after PSEN  
t
-25  
ns  
CLCL  
t
PXIZ  
t
Address to Valid Instruction In  
PSEN Low to Address Float  
5 t  
-105  
ns  
ns  
AVIV  
CLCL  
1
10  
t
PLAZ  
t
RD Pulse Width  
6 t  
6 t  
-100  
-100  
ns  
ns  
ns  
ns  
RLRH  
CLCL  
CLCL  
t
WR Pulse Width  
WLWH  
t
RD Low to Valid Data In  
Data Hold After RD High  
5 t  
CLCL  
-165  
RLDV  
1
0
t
RHDX  
1
Data Float After RD High  
2 t  
-60  
ns  
CLCL  
t
RHDZ  
t
ALE Low Valid Data In  
Address to Valid Data In  
ALE Low to RD or WR Low  
Address Valid to WR Low  
Data Valid Before WR High  
Data Hold After WR High  
Data Valid to WR High  
8 t  
9 t  
-150  
-165  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LLDV  
CLCL  
CLCL  
t
AVDV  
LLWL  
AVWL  
t
3 t  
-50  
3 t  
+50  
CLCL  
CLCL  
t
4 t  
-130  
CLCL  
t
t
t
t
-33  
-33  
QVWX  
WHQX  
CLCL  
CLCL  
7 t  
-150  
CLCL  
t
t
QVWH  
1
RD Low to Address Float  
0
ns  
ns  
RLAZ  
t
RD or WR High to ALE High  
t
-40  
t
+40  
CLCL  
WHLH  
CLCL  
Note:  
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019 at 1.0E6 rads(Si).  
1. Guaranteed, but not tested.  
10  
tLHLL  
ALE  
tLLPL  
tAVLL  
tPLPH  
tLLIV  
tPLIV  
PSEN  
tPXIZ  
tPLAZ  
tLLAX  
tPXIX  
INSTR IN  
A0 - A7  
A0 - A7  
PORT 0  
tAVIV  
A8 - A15  
A8 - A15  
PORT 2  
Figure 6. External Program Memory Read Timing Waveforms  
ALE  
tLHLL  
tWHLH  
tLLDV  
PSEN  
RD  
tRLRH  
tLLWL  
tRLDV  
tLLAX  
tAVLL  
tRHDZ  
tRHDX  
tRLAZ  
A0 -A7 FROM RI OR DPL  
DATA IN  
A0 - A7 FROM PCL  
INSTR IN  
PORT 0  
PORT 2  
tAVWL  
tAVDV  
P2.0 - P2.7 OR A8 -A15 FROM DPH  
A8 - A15 FROM PCH  
Figure 7. External Data Memory Read Cycle Waveforms  
ALE  
tLHLL  
tWHLH  
PSEN  
WR  
tLLWL  
tQVWX  
tWLWH  
tAVLL  
tWHQX  
tLLAX  
tQVWH  
INSTR IN  
A0 -A7 FROM RI OR DPL  
DATA OUT  
A0 - A7 FROM PCL  
PORT 0  
PORT 2  
tAVWL  
P2.0 - P2.7 OR A8 -A15 FROM DPH  
A8 - A15 FROM PCH  
Figure 8. External Data Memory Write Cycle Waveforms  
11  
7.0 SERIAL PORT TIMING CHARACTERISTICS  
(V = 5.0V ±10%; -55°C < T < +125°C)  
DD  
C
SYMBOL  
PARAMETER  
MINIMUM  
12 t -10  
MAXIMUM  
12 t +10  
UNIT  
1
Serial Port Clock Period  
ns  
CLCL  
CLCL  
t
XLXL  
t
Output Data Setup to Clock Rising Edge  
Output Data Hold after Clock Rising Edge  
Input Data Hold after Clock Rising Edge  
10 t  
2 t  
-133  
-70  
ns  
ns  
ns  
QVXH  
XHQX  
CLCL  
t
CLCL  
1
0
t
XHDX  
t
Clock Rising Edge to Input Data Valid  
10 t  
-133  
ns  
XHDV  
CLCL  
Note:  
1. Guaranteed, but not tested.  
0
1
2
3
4
5
6
7
8
ALE  
TXLXL  
CLOCK  
TXHQX  
TQVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
(WRITE TO SBUF)  
TXHDX  
SET TI  
TXHDV  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
(CLEAR RI)  
SET RI  
Figure 9. Serial Port Timing Waveforms  
8.0 EXTERNAL CLOCK DRIVE TIMING CHARACTERISTICS  
SYMBOL PARAMETER  
Oscillator Frequency  
MINIMUM  
MAXIMUM  
UNIT  
1/t  
20  
MHz  
CLCL  
t
High Time  
Low Time  
Rise Time  
Fall Time  
16  
16  
ns  
ns  
ns  
ns  
CHCX  
t
t
t
CLCX  
CLCH  
CHCL  
20  
20  
Note:  
1. Guaranteed, but not tested.  
VDD - 0.5  
0.7 VDD  
0.2 VDD - 0.1  
0.45 V  
tCHCX  
tCHCX  
tCHCL  
tCLCH  
tCLCL  
Figure 10. External Clock Drive Timing Waveforms  
12  
9.0 PACKAGING  
E
0.595+0.010  
S2  
0.005 MIN. typ.  
S1  
0.005 MIN. TYP.  
e
0.100  
D
2.000 +0.025  
b
0.018 +0.002  
L
PIN 1 I.D.  
(Geometry OPTIONAL)  
A
0.200  
0.125  
0.185 MAX.  
TOP VIEW  
SIDE VIEW  
Notes:  
C
1. All package finishes are per MIL-PRF-38535.  
2. Letter designations are for cross-reference MIL-STD-1835.  
+ 0.002  
0.010  
- 0.001  
0.600  
END VIEW  
Figure 11. 40-pin Side-Brazed DIP  
13  
C
Notes:  
1. All exposed metalized areas to be plated per MIL-PRF-38535.  
2. Dimension letters refer to MIL-STD-1835.  
Figure 12. 44-Lead Flatpack  
14  
APPENDIX A  
Difference Between Industry Standard and UT69RH051  
The areas in which the UT69RH051 differs from the industry  
2.0 POWER SAVING MODES OF OPERATION  
2.1 Idle Mode  
standard will be covered in this section. In this discussion,  
industry standard will be used generically to refer to all speed  
grades including the 20MHz.  
Idle mode and the corresponding control bit in the PCON SFR  
have not been implemented in the UT69RH051. Setting the idle  
control bit has no effect.  
1.0 RESET  
The UT69RH051 requires the RST input to be held high for at  
least 24 oscillator periods to guarantee the reset is completed in  
the chip. Also, the port pins are reset asynchronously as soon as  
the RST pin is pulled high. On the UT69RH051 all portions of  
the chip are reset synchronously when the RST pin is high during  
a rising edge of the input clock. When coming out of reset, the  
industry standard takes 1 to 2 machine cycles to begin driving  
ALE and PSEN immediately after the RST is removed, but the  
access during the first machine cycle after reset is ignored by the  
processor. The second cycle will repeat the access and processing  
will begin.  
2.2 Power Down Mode  
PowerdownmodeandthecorrespondingcontrolbitinthePCON  
register have not been implemented in the UT69RH051. Setting  
the power down control bit has no effect. Also, the Power Off  
Flag in the PCON has not been implemented.  
3.0 ON CIRCUIT EMULATION  
The On Circuit Emulation mode of operation in the industry  
standard has not been implemented in the UT69RH051.  
4.0 OPERATING CONDITIONS  
The operating voltage range for the industry standard is  
5V+20%. The operating temperature range is 0°C to 70°C. On  
the UT69RH051, the operating voltage range is 5V+10%. The  
operating temperature range is -55°C to +125°C.  
15  
APPENDIX B  
Impact of External Program ROM  
The 8051 family of microcontrollers, including the industry  
standards, use ports 0 and 2 to access external memory. In  
implementations with external program memory, these two ports  
are dedicated to the program ROM interface and can not be used  
as Input/Output ports. The UT69RH051 uses external program  
ROM, so ports 0 and 2 will not be available for I/O.  
16  
ORDERING INFORMATION  
UT69RH051 Microcontroller: SMD  
5962  
* 95638 *  
*
*
*
Lead Finish:  
(A)  
(C)  
=
=
Solder  
Gold  
(X)  
=
Optional  
Case Outline:  
(Q)  
(Y)  
=
=
40-pin DIP  
44-pin Flatpack  
Class Designator:  
(Q)  
(V)  
=
=
Class Q  
Class V  
Device Type  
(01) = 8-bit Microcontroller  
Drawing Number: 95638  
Total Dose:  
(H)  
(G)  
(F)  
(R)  
=
=
=
=
1E6 rads(Si)  
5E5 rads(Si)  
3E5 rads(Si)  
1E5 rads(Si)  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening.  
17  
UT69RH051 Microcontroller  
UT **** *** - * * * *  
Total Dose:  
( ) None  
=
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
=
=
Mil Temp  
Prototype  
Package Type:  
(P) 40-pin DIP  
=
(W) = 44-pin Flatpack  
Device Type:  
(UT69RH051) = 8-bit Microcontroller  
Notes:  
1. Lead finish (A,C, or X) must be specified.  
2. If an “X” is specified when ordering, then the part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Radiation characteristics are neither tested nor guaranteed and may not be specified.  
4. Devices have prototype assembly and are tested at 25°C only. Radiation characteristics are neither tested nor guaranteed and may not be specified.  
18  

相关型号:

5962R9563801VQYX

Radiation-Hardened MicroController
ETC

5962R9563801VYA

Radiation-Hardened MicroController
AEROFLEX

5962R9563801VYC

Radiation-Hardened MicroController
AEROFLEX

5962R9563801VYX

Radiation-Hardened MicroController
AEROFLEX

5962R9566301VXC

HCT SERIES, 8-BIT RIGHT SERIAL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, CDFP14, CERAMIC, DFP-14
RENESAS

5962R9566901VCA

Sample/Track-and-Hold Amplifier
ETC

5962R9566901VCC

Sample/Track-and-Hold Amplifier
ETC

5962R9567901V9X

IC HC/UH SERIES, QUAD 2-INPUT NOR GATE, UUC14, DIE-14, Gate
WEDC

5962R9567901VCC

Quad 2-input NOR Gate
ETC

5962R9567901VXC

Quad 2-input NOR Gate
ETC

5962R9568001VCC

Quad 2-input AND Gate
ETC

5962R9568001VXC

Quad 2-input AND Gate
ETC