5962-9305606MYA [ETC]

8K X 8 nvSRAM QuantumTrap CMOS Nonvolatile Static RAM; 8K ×8的nvSRAM QuantumTrap CMOS非易失性静态RAM
5962-9305606MYA
型号: 5962-9305606MYA
厂家: ETC    ETC
描述:

8K X 8 nvSRAM QuantumTrap CMOS Nonvolatile Static RAM
8K ×8的nvSRAM QuantumTrap CMOS非易失性静态RAM

静态存储器
文件: 总12页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK10C68  
ABSOLUTE MAXIMUM RATINGSa  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)  
INDUSTRIAL/  
MILITARY  
COMMERCIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V  
Current  
85  
75  
90  
75  
65  
55  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns  
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
65  
N/A  
c
I
I
Average V  
Average V  
Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
CC  
2
3
b
Current at t  
= 200ns  
W (V  
– 0.2V)  
AVAV  
CC  
All Others Cycling, CMOS Levels  
10  
10  
mA  
5V, 25°C, Typical  
d
d
I
Average V  
Current  
27  
23  
28  
24  
21  
20  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
CC  
(Standby, Cycling TTL Input Levels)  
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
IH  
1
20  
N/A  
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
IN  
SB  
CC  
CC  
All Others V 0.2V or (V  
2
750  
±1  
1500  
±1  
µA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
SS  
IN  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
= V to V , E or G V  
SS CC  
OLK  
±5  
±5  
IN  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
0.8  
CC  
0.8  
V
– .5  
V
– .5  
IL  
SS  
SS  
2.4  
I
I
=– 4mA  
Note a: Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.4  
V
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85/125  
V
= 8mA  
T
0
–40/-55  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 is the average current required for the duration of the STORE cycle (tSTORE ).  
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
480 Ohms  
OUTPUT  
CAPACITANCEe  
(TA = 25°C, f = 1.0MHz)  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
Input Capacitance  
8
7
pF  
IN  
C
Output Capacitance  
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
September 2003  
2
Document Control # ML0006 rev 0.1  
 
 
STK10C68  
SRAM READ CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK10C68-25 STK10C68-35 STK10C68-45 STK10C68-55  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
25  
35  
45  
55  
AVAV  
RC  
AA  
g
3
Address Access Time  
25  
10  
35  
15  
45  
20  
55  
25  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
10  
10  
35  
12  
12  
45  
12  
12  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles. NE must be high during entire cycle.  
Note g: I/O state assumes E, G < VIL, W > VIH , and NE VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledf, g  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
SRAM READ CYCLE #2: E Controlledf  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DATA VALID  
DQ (DATA OUT)  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
September 2003  
3
Document Control # ML0006 rev 0.1  
 
 
 
 
STK10C68  
SRAM WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK10C68-25  
STK10C68-35  
STK10C68-45  
STK10C68-55  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
45  
45  
30  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
45  
0
AVWH  
AVEH  
AW  
t
t
t
AVWL  
AVEL  
EHAX  
AS  
t
t
t
0
0
0
0
WHAX  
WR  
h, i  
t
t
10  
13  
14  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions. NE VIH  
.
SRAM WRITE CYCLE #1: W Controlledj  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
W
t
16  
15  
DVWH  
t
t
WHDX  
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
AVAV  
t
ADDRESS  
18  
19  
14  
ELEH  
t
t
EHAX  
t
AVEL  
E
17  
AVEH  
t
13  
WLEH  
t
W
16  
EHDX  
15  
DVEH  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
September 2003  
4
Document Control # ML0006 rev 0.1  
 
 
STK10C68  
STORE INHIBIT/POWER-UP RECALL  
(VCC = 5.0V + 10%)  
SYMBOLS  
STK10C68  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
V
k
RESTORE  
STORE  
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
RESET  
3.6  
V
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE INHIBIT/POWER-UP RECALL  
VCC  
5V  
24  
VSWITCH  
25  
VRESET  
STORE INHIBIT  
POWER-UP RECALL  
22  
t
RESTORE  
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
STORE INHIBIT  
BROWN OUT  
STORE INHIBIT  
BROWN OUT  
STORE INHIBIT  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
September 2003  
5
Document Control # ML0006 rev 0.1  
 
 
STK10C68  
MODE SELECTION  
E
H
L
L
L
L
W
X
H
L
G
X
L
NE  
X
MODE  
POWER  
Standby  
Active  
Not Selected  
H
H
L
Read SRAM  
X
L
Write SRAM  
Active  
l
H
L
Nonvolatile RECALL  
Nonvolatile STORE  
Active  
H
L
I
CC  
2
L
L
L
H
L
H
L
X
No Operation  
Active  
Note l: An automatic RECALL takes place at power up, starting when VCC exceeds 4.25V and taking tRESTORE  
.
STORE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
#1  
#2  
Alt.  
m
n
26  
27  
28  
29  
30  
31  
32  
t
t
t
t
t
t
STORE Cycle Time  
10  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
WLQX  
WLNH  
ELQX  
ELNH  
STORE  
WC  
STORE Initiation Cycle Time  
Output Disable Set-up to NE Fall  
Output Disable Set-up to E Fall  
NE Set-up  
20  
0
tGHNL  
t
t
0
GHEL  
NLEL  
t
t
0
NLWL  
ELWL  
Chip Enable Set-up  
0
t
Write Enable Set-up  
0
WLEL  
Note m: Measured with W and NE both returned high, and G returned low. STORE cycles are inhibited below 4.0V.  
Note n: Once tWC has been satisfied by NE, G, W and E, the STORE cycle is completed automatically. Any of NE, G, W or E may be used to terminate  
the STORE initiation cycle.  
Note o: If E is low for any period of time in which W is high while G and NE are low, then a RECALL cycle may be initiated.  
STORE CYCLE #1: W Controlledo  
NE  
28  
30  
27  
G
t
t
t
GHNL  
NLWL  
WLNH  
W
31  
t
ELWL  
E
26  
t
WLQX  
HIGH IMPEDANCE  
DQ (DATA OUT)  
STORE CYCLE #2: E Controlledo  
30  
t
NLEL  
NE  
29  
t
GHEL  
G
32  
t
WLEL  
W
E
27  
t
ELNH  
26  
t
ELQX  
HIGH IMPEDANCE  
DQ (DATA OUT)  
September 2003  
6
Document Control # ML0006 rev 0.1  
 
 
 
 
 
STK10C68  
RECALL CYCLES #1, #2 & #3  
(VCC = 5.0V ± 10%)  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
#1  
#2  
#3  
p
33  
34  
35  
36  
37  
38  
39  
40  
t
t
t
t
t
t
t
t
t
t
t
RECALL Cycle Time  
20  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
NLQX  
ELQXR  
ELNHR  
NLEL  
GLQXR  
GLNH  
NLGL  
q
RECALL Initiation Cycle Time  
NE Set-up  
20  
0
NLNH  
tGLNL  
Output Enable Set-up  
Write Enable Set-up  
0
GLEL  
t
t
t
t
t
t
0
WHNL  
ELNL  
NLQZ  
WHEL  
GLEL  
WHGL  
ELGL  
Chip Enable Set-up  
0
NE Fall to Outputs Inactive  
Power-up RECALL Duration  
20  
550  
RESTORE  
Note p: Measured with W and NE both high, and G and E low.  
Note q: Once tNLNH has been satisfied by NE, G, W and E, the RECALL cycle is completed automatically. Any of NE, G or E may be used to terminate  
the RECALL initiation cycle.  
Note r: If W is low at any point in which both E and NE are low and G is high, then a STORE cycle will be initiated instead of a RECALL.  
RECALL CYCLE #1: NE Controlledo  
34  
t
NLNH  
NE  
36  
t
GLNL  
G
W
E
37  
t
WHNL  
38  
33  
t
t
39  
ELNL  
NLQX  
t
NLQZ  
HIGH IMPEDANCE  
DQ (DATA OUT)  
RECALL CYCLE #2: E Controlledo  
35  
t
NLEL  
NE  
36  
t
GLEL  
G
W
E
37  
34  
t
t
WHEL  
ELNHR  
33  
t
ELQXR  
HIGH IMPEDANCE  
DQ (DATA OUT)  
,
r
RECALL CYCLE #3: G Controlledo  
35  
t
NLGL  
NE  
34  
t
GLNH  
G
37  
t
WHGL  
W
E
38  
t
ELGL  
33  
t
GLQXR  
HIGH IMPEDANCE  
DQ (DATA OUT)  
September 2003  
7
Document Control # ML0006 rev 0.1  
 
 
 
STK10C68  
DEVICE OPERATION  
The STK10C68 has two modes of operation: SRAM  
mode and nonvolatile mode, determined by the  
state of the NE pin. When in SRAM mode, the mem-  
ory operates as a standard fast static RAM. While in  
nonvolatile mode, data is transferred in parallel from  
SRAM to Nonvolatile Elements or from Nonvolatile  
Elements to SRAM.  
NONVOLATILE STORE  
A STORE cycle is performed when NE, E and W and  
low and G is high. While any sequence that  
achieves this state will initiate a STORE, only W initi-  
ation (STORE cycle #1) and E initiation (STORE cycle  
#2) are practical without risking an unintentional  
SRAM WRITE that would disturb SRAM data. During a  
STORE cycle, previous nonvolatile data is erased  
and the SRAM contents are then programmed into  
nonvolatile elements. Once a STORE cycle is initi-  
ated, further input and output are disabled and the  
DQ0-7 pins are tri-stated until the cycle is complete.  
NOISE CONSIDERATIONS  
Note that the STK10C68 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1µF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
If E and G are low and W and NE are high at the end  
of the cycle, a READ will be performed and the out-  
puts will go active, signaling the end of the STORE.  
NONVOLATILE RECALL  
SRAM READ  
A RECALL cycle is performed when E, G and NE are  
low and W is high. Like the STORE cycle, RECALL is  
initiated when the last of the four clock signals goes  
to the RECALL state. Once initiated, the RECALL  
cycle will take tNLQX to complete, during which all  
inputs are ignored. When the RECALL completes,  
any READ or WRITE state on the input pins will take  
effect.  
The STK10C68 performs a READ cycle whenever E  
and G are low and NE and W are high. The address  
specified on pins A0-12 determines which of the 8,192  
data bytes will be accessed. When the READ is initi-  
ated by an address transition, the outputs will be  
valid after a delay of tAVQV (READ cycle #1). If the  
READ is initiated by E or G, the outputs will be valid  
at tELQV or at tGLQV, whichever is later (READ cycle #2).  
The data outputs will repeatedly respond to address  
changes within the tAVQV access time without the need  
for transitions on any control input pins, and will  
remain valid until another address change or until E  
or G is brought high or W or NE is brought low.  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
nonvolatile cells. The nonvolatile data can be  
recalled an unlimited number of times.  
SRAM WRITE  
As with the STORE cycle, a transition must occur on  
any one control pin to cause a RECALL, preventing  
inadvertent multi-triggering. On power up, once VCC  
exceeds the VCC sense voltage of 4.25V, a RECALL  
cycle is automatically initiated. Due to this automatic  
RECALL, SRAM operation cannot commence until  
tRESTORE after VCC exceeds approximately 4.25V.  
A WRITE cycle is performed whenever E and W are  
low and NE is high. The address inputs must be sta-  
ble prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
POWER-UP RECALL  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
During power up, or after any low-power condition  
(VCC < 3.0V), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of 4.25V, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
September 2003  
8
Document Control # ML0006 rev 0.1  
STK10C68  
If the STK10C68 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
LOW AVERAGE ACTIVE POWER  
The STK10C68 draws significantly less current  
when it is cycled at times longer than 55ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK10C68 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the VCC level; and 7) I/O loading.  
HARDWARE PROTECT  
The STK10C68 offers two levels of protection to  
suppress inadvertent STORE cycles. If the control  
signals (E, G, W and NE) remain in the STORE con-  
dition at the end of a STORE cycle, a second STORE  
cycle will not be started. The STORE (or RECALL)  
will be initiated only after a transition on any one of  
these signals to the required state. In addition to  
multi-trigger protection, STOREs are inhibited when  
VCC is below 4.0V, protecting against inadvertent  
STOREs.  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
Figure 3: ICC (max) Writes  
September 2003  
9
Document Control # ML0006 rev 0.1  
STK10C68  
ORDERING INFORMATION  
- 5 P F 45 I  
STK10C68  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
M = Military (–55 to 125°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
55 = 55ns (Military only)  
Lead Finish (Plastic only)  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
P = Plastic 28-pin 300 mil DIP  
S = Plastic 28-pin 350 mil SOIC  
C = Ceramic 28-pin 300 mil DIP (gold lead finish)  
K = Ceramic 28-pin 300 mil DIP (solder dip finish)  
L = Ceramic 28 pin LCC  
Retention / Endurance  
6
Blank = Comm/Ind (100 years/10 cycles)  
5
5 = Military (10 years/10 cycles)  
5962-93056 04 MX X  
Lead Finish  
A = Solder DIP lead finish  
C = Gold lead DIP finish  
X = Lead finish “A” or “C” is acceptable  
Package  
MX = Ceramic 28 pin 300-mil DIP  
MY = Ceramic 28 pin LCC  
Access Time  
04 = 55ns  
05 = 45ns  
06 = 35ns  
September 2003  
10  
Document Control # ML0006 rev 0.1  
STK10C68  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
Summary  
Combined commercial, industrial and military data sheets. Removed 20 nsec device.  
Added lead-free lead finish  
0.1  
September 2003  
11  
Document Control # ML0006 rev 0.1  
STK10C68  
September 2003  
12  
Document Control # ML0006 rev 0.1  

相关型号:

5962-9305606MYC

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CQCC28, CERAMIC, LCC-28
SIMTEK

5962-9305606MYX

8K X 8 nvSRAM QuantumTrap CMOS Nonvolatile Static RAM
ETC

5962-9305701MPX

Single-Ended or Diff Data Acquisition System
ETC

5962-9305702MPA

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CERAMIC, DIP-8
WEDC

5962-9305702MPX

Analog-to-Digital Converter, 12-Bit
ETC

5962-9305703MEA

ADC, Successive Approximation, 12-Bit, 1 Func, 6 Channel, Serial Access, CERAMIC, DIP-16
WEDC

5962-9305703MEX

Single-Ended Data Acquisition System
ETC

5962-9305704MRX

Single-Ended Data Acquisition System
ETC

5962-9305705MPX

Single-Ended or Diff Data Acquisition System
ETC

5962-9305706MPA

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CERAMIC, DIP-8
WEDC

5962-9305706MPX

Analog-to-Digital Converter, 12-Bit
ETC

5962-9305707MEA

ADC, Successive Approximation, 12-Bit, 1 Func, 6 Channel, Serial Access, CERAMIC, DIP-16
WEDC