5962-8864406-XA [ETC]

MIL-STD-1553A/B Bus Transceiver; MIL -STD - 1553A / B总线收发器
5962-8864406-XA
型号: 5962-8864406-XA
厂家: ETC    ETC
描述:

MIL-STD-1553A/B Bus Transceiver
MIL -STD - 1553A / B总线收发器

总线收发器 电信集成电路
文件: 总23页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Standard Products  
UT63M1XX MIL-STD-1553A/B Bus Transceiver  
Data Sheet  
Sept. 1999  
FEATURES  
INTRODUCTION  
q Full conformance to MIL-STD-1553A and 1553B  
q Completely monolithic bipolar technology  
q Low power consumption  
The monolithic UT63M1XX Transceivers are complete  
transmitter and receiver pairs conforming fully to MIL-STD-  
1553A and 1553B. Encoder and decoder interfaces are idle low.  
UTMC’s advanced bipolar technology allows the positive  
analog power to range from +5V to +12V or +5V to +15V,  
providing more flexibility in system power supply design.  
q Fit and functionally compatible to industry standard 631XX  
series  
The receiver section of the UT63M1XX series accepts biphase-  
modulated Manchester II bipolar data from a MIL-STD-1553  
data bus and produces TTL-level signal data at its RXOUT and  
RXOUT outputs. An external RXEN input enables or disables  
the receiver outputs.  
q Idle low encoding version  
q Flexible power supply voltages: V =+5V, V =-12V or  
-
CC  
EE  
15V, and V  
=+5V to +12V or +5V to +15V  
CCA  
q Full military operating temperature range, -55°C to +125°C,  
screened to QML Q or QML V requirements  
RXEN  
q Standard Military Drawing available  
RXOUT  
FILTER  
RXIN  
FILTER  
and  
RXIN  
TO DECODER  
RXOUT  
LIMITER  
THRESHOLD  
REFERENCE  
DRIVERS  
TXOUT  
TXOUT  
TXIN  
COMPARE  
FROM ENCODER  
TXIN  
TXIHB  
Figure 1. Functional Block Diagram  
1
The transmitter section accepts biphase TTL-level signal data  
at its TXIN and TXIN and produces MIL-STD-1553 data  
The UT63M1XX series offers a monolithic transmitter and  
receiver packaged in either single channel (24-pin) or dual-  
channel (36-pin) configurations designed for use in any MIL-  
STD-1553 application.  
signals. The transmitter’s output voltage is typically 42V , L-  
PP  
L. Activating the TXIHB input or setting both data inputs to  
the same logic level disables the transmitter.  
Legend for TYPE field:  
TI = TTL input  
TO = TTL output  
DO = Differential output  
DI = Differential input  
() = Channel designator  
TRANSMITTER  
NAME  
PACKAGE PIN  
TYPE  
DESCRIPTION  
SINGLE  
DUAL  
TXOUT  
(A)  
1
1
DO  
DO  
DO  
DO  
TI  
Transmitter outputs: TXOUT andTXOUT are differential data signals.  
TXOUT  
(B)  
N/A  
2
10  
2
TXOUT  
(A)  
TXOUT is the complement of TXOUT.  
TXOUT  
(B)  
N/A  
21  
11  
34  
25  
35  
26  
36  
27  
TXIHB  
(A)  
Transmitter inhibit: this is an active high input signal.  
TXINB  
(B)  
N/A  
22  
TI  
TXIN  
(A)  
TI  
Transmitter inputs: TXIN and TXIN are complementary TTL-level  
Manchester II encoder inputs.  
TXIN  
(B)  
N/A  
23  
TI  
TXIN  
(A)  
TI  
TXIN is the complement of TXIN input.  
TXIN  
(B)  
N/A  
TI  
2
RECEIVER  
NAME  
PACKAGE PIN  
TYPE  
DESCRIPTION  
SINGLE  
DUAL  
RXOUT  
(A)  
7
5
TO  
TO  
TO  
TO  
TI  
Receiver outputs: RXOUT and RXOUT are complementary  
Manchester II decoder outputs.  
RXOUT  
(B)  
N/A  
10  
14  
8
RXOUT  
(A)  
RXOUT is the complement of RXOUT output  
RXOUT  
(B)  
N/A  
8
17  
6
RXEN  
(A)  
Receiver enable/disable: This is an active high input signal.  
RXEN  
(B)  
N/A  
15  
15  
29  
20  
30  
21  
TI  
RXIN  
(A)  
DI  
DI  
DI  
DI  
Receiver inputs: RXIN and RXIN are biphase-modulated Manchester  
II bipolar inputs from MIL-STD-1553 data bus.  
RXIN  
(B)  
N/A  
16  
RXIN  
(A)  
RXIN is the complement of RXIN input.  
RXIN  
(B)  
N/A  
POWER AND GROUND  
NAME PACKAGE PIN  
TYPE  
DESCRIPTION  
SINGLE  
DUAL  
V
(A)  
20  
33  
PWR  
PWR  
CC  
+5V power (±10%)  
DC  
V
(B)  
N/A  
13  
24  
28  
CC  
V
PWR +5 to +12V power or  
DC  
CCA  
(A)  
+5 to +15V power (± 5%)  
DC  
V
(B)  
N/A  
19  
19  
PWR  
CCA  
V
32  
PWR -12 or -15V power (± 5%)  
EE  
DC  
(A)  
Recommended de-coupling capacitors 4.7mF and.1mF  
V
(B)  
N/A  
3, 9, 18  
N/A  
23  
PWR  
EE  
GND  
(A)  
3, 7, 31  
GND  
Ground reference  
GND  
(B)  
12, 16, 22 GND  
3
TXOUT  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
2
TXOUT  
GND  
NC  
TXIN  
TXIN  
3
4
TXIHB  
NC  
5
CHANNEL  
A
V
V
CC  
NC  
6
EE  
RXOUT  
RXEN  
GND  
7
GND  
NC  
8
9
RXIN  
RXIN  
10  
11  
12  
RXOUT  
NC  
NC  
NC  
V
CCA  
Figure 2a. Functional Pin Diagram--Single Channel  
1
2
3
4
5
6
7
8
9
TXOUT  
TXOUT  
GND  
36  
35  
TXIN  
TXIN  
34  
33  
32  
31  
30  
29  
268  
TXIHB  
CHANNEL  
A
NC  
V
V
CC  
EE  
RXOUT  
RXEN  
GND  
GND  
RXIN  
RXIN  
RXOUT  
NC  
V
CCA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
27  
TXIN  
TXOUT  
TXOUT  
GND  
26  
25  
TXIN  
TXIHB  
CHANNEL  
B
24  
23  
22  
21  
20  
19  
NC  
V
V
CC  
EE  
RXOUT  
RXEN  
GND  
GND  
RXIN  
RXIN  
RXOUT  
NC  
V
CCA  
Figure 2b. Functional Pin Diagram--Dual Channel  
4
TRANSMITTER  
The transmitter section accepts Manchester II biphase TTL data  
and converts this data into differential phase-modulated current  
drive. Transmitter current drivers are coupled to a MIL-STD-  
1553 data bus via a transformer driven from the TXOUT and  
TXOUT terminals. Transmitter output terminals’ non-  
transmitting state is enabled by asserting TXIHB (logic 1), or  
by placing both TXIN and TXIN at the same logic level. Table  
1, Transmit Operating Mode, lists the functions for the output  
data in reference to the state of TXIHB. Figure 3 shows typical  
transmitter waveforms.  
TXIN  
TXIN  
BOTH HIGH  
OR  
BOTH LOW  
TXIHB  
LINE-TO-LINE  
DIFFERENTIAL  
OUTPUT  
90%  
10%  
RECEIVER  
TXOUT, TXOUT  
The receiver section accepts biphase differential data from a  
MIL-STD-1553 data bus at its RXIN and RXIN inputs. The  
receiver converts input data to biphase Manchester II TTL  
format and is available for decoding at the RXOUT and RXOUT  
terminals. The outputs RXOUT andRXOUT represent positive  
and negative excursions (respectively) of the inputs RXIN and  
RXIN. Figure 4 shows typical receiver output waveforms.  
TXIN  
TXIN  
Models UT63M105, UT63M107, UT63M125, and UT63M127  
idle in the “0” state when disabled or receiving no signal.  
tTXDD  
Figure 3. Typical Transmitter Waveforms  
POWER SUPPLY VOLTAGES  
The UT63M1XX series meets device requirements over a wide  
range of power supply voltages. Table 2 shows the overall  
capabilities of all available devices. Each channel of the dual  
transceiver is electrically and physically separate from the other  
andfullyindependent, includingallpowerandsignallines. Thus  
there will be no interaction between the channels.  
Table 1. Transmit Operating Mode  
TXIN  
TXIN  
TXIHB  
TXOUT  
1
2
x
x
0
1
0
1
1
x
0
0
x
Off  
3
0
0
1
1
Off  
On  
On  
3
Off  
Notes:  
1. x = Don’t care.  
2. Transmitter output terminals are in the non-transmitting mode during Off  
time.  
3. Transmitter output terminals are in the non-transmitting mode during Off  
time, independent of TXIHB status.  
5
DATA BUS INTERFACE  
The designer can connect the UT63M1XX to the data bus via a  
short-stub (direct-coupling) connection or a long-stub  
(transformer-coupling) connection. Use a short-stub connection  
when the distance from the isolation transformer to the data bus  
does not exceed a one-foot maximum. Use a long-stub  
connection when the distance from the isolation transformer  
exceeds the one-foot maximum and is less than twenty-five feet.  
Figure 5 shows various examples of bus coupling  
LINE-TO-LINE  
DIFFERENTIAL  
INPUT  
RXOUT  
RXOUT  
QUIESCENT IDLE LOW  
configurations. The UT63M1XX series transceivers are  
designed to function with MIL-STD-1553A and 1553B  
compatible transformers.  
RXOUT  
RXOUT  
RECOMMENDED THERMAL PROTECTION  
All packages, single and dual, should mount to or contact a heat  
removalraillocatedintheprintedcircuitboard. Toinsureproper  
heat transfer between the package and the heat removal rail, use  
a thermally conductive material between the package and the  
heat removal rail. Use a material such as Mereco XLN-589 or  
equivalent to insure heat transfer between the package and heat  
removal rail.  
t
RXDD  
Figure 4. Typical Receiver Waveforms  
Table 2. Transceiver Model Capabilities  
MODEL  
UT63M105  
UT63M107  
UT63M125  
UT63M127  
V
V
V
CCA  
IDLE  
Low  
Low  
Low  
Low  
CC  
EE  
+5V  
+5V  
+5V  
+5V  
-15V  
-12V  
-15V  
-12V  
+5 to +15V  
+5 to +12V  
+5 to +15V  
+5 to +12V  
6
SHORT-STUB  
DIRECT COUPLING  
1 FT MAX  
Z
O
55 OHMS  
55 OHMS  
1.4:1  
± 15V  
DC  
OPERATION  
LONG-STUB  
TRANSFORMER COUPLING  
.75Z  
.75Z  
O
O
2:1  
20 FT MAX  
1:1.4  
SHORT-STUB  
DIRECT COUPLING  
55 OHMS  
55 OHMS  
1.2:1  
1 FT MAX  
± 12V  
DC  
OPERATION  
LONG-STUB  
TRANSFORMER COUPLING  
.75Z  
20 FT MAX 1:1.4  
1.66:1  
O
.75Z  
O
Note:  
ZO defined per MIL-STD-1553B in section 4.5.1.5.2.1.  
Z
O
Figure 5. Bus Coupling Configuration  
7
V
CC  
RECEIVER  
2K OHMS  
2K OHMS  
RXOUT  
15pF  
RXOUT  
15pF  
55 OHMS  
35 OHMS  
1:1.4  
RXIN  
*
TP  
V
IN  
RXIN  
55 OHMS  
TP  
RXEN  
TRANSMITTER  
55 OHMS  
1.4:1  
TXOUT  
TXOUT  
TXIN  
A
35 OHMS  
55 OHMS  
R =  
L
TXIN  
Notes:  
1. TP = Test point.  
TXIHB  
Figure 6. Direct-Coupled Transceiver with Load  
2. RL removed for terminal input impedance test.  
3. TX and RX tied together.  
2K OHMS  
RXOUT  
RECEIVER  
2K OHMS  
L:N  
1.4:1  
RXIN  
RXIN  
15pF  
*
TP  
TP  
V
IN  
RXOUT  
15pF  
RXEN  
TRANSMITTER  
N:L  
TXIN  
TXIN  
TXOUT  
TXOUT  
1:1.4  
A
TXIHB  
55 OHMS  
35 OHMS  
55 OHMS  
Notes:  
1. TP = Test point.  
2. N:L Ratio is dependent on power supply voltage.  
3. RL removed for terminal input impedance test.  
4. TX and RX tied together.  
Figure 7. Transformer-Coupled Transceiver with Load  
8
TXOUT  
R
A
TERMINAL  
L
TXOUT  
Notes:  
Transformer-Coupled Stub:  
Terminal is defined as transceiver plus isolation transformer. Point A defined in figure 7.  
Direct-Coupled Stub:  
Terminal is defined as transceiver plus isolation transformer and fault resistors. Point A defined in figure 6.  
Figure 8. Transceiver Test Circuit MIL-STD-1553B  
1
ABSOLUTE MAXIMUM RATINGS  
(Referenced to V  
)
SS  
SYMBOL  
PARAMETER  
LIMITS  
UNIT  
V
V
V
V
V
Supply Voltage  
Supply Voltage  
Supply Voltage  
7.0  
V
V
V
CC  
EE  
-22  
+22  
CCA  
IN  
Input Voltage Range (Receiver)  
Logic Input Voltage  
42  
V , L-L  
PP  
-0.3 to +5.5  
V
IN  
I
Output Current (Transmitter)  
Power Dissipation (per Channel)  
Thermal Impedance, Junction-to-Case  
Operating Temperature, Junction  
Operating Temperature, Case  
Storage Temperature  
190  
4
mA  
W
O
P
D
2
Q
6
°C/W  
°C  
JC  
T
T
T
-55 to +150  
-55 to +125  
-65 to +150  
J
°C  
C
°C  
STG  
Notes:  
1. Stress outside the listed absolute maximum rating may cause permanent damage to the devices. This is a stress rating only, and functional operation of the  
device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Mounting per MIL-STD-883, Method 1012.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Logic input voltage range  
LIMITS  
0 to +5.0  
9.0  
UNIT  
V
Receiver differential voltage  
V
P-P  
Driver peak output current  
Serial data rate  
180  
mA  
MHz  
°C  
0.1 to 1  
Case operating temperature range (T )  
-55 to +125  
C
9
DC ELECTRICAL CHARACTERISTICS  
V
V
V
= +5V (± 10%)  
CC  
= +5V to + 12V (± 5%) or +5V to +15V (± 5%)  
CCA  
= -12V or -15V (± 5%)  
EE  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
V
CONDITION  
RXEN, TXIHB, TXIN, TXIN  
RXEN, TXIHB, TXIN, TXIN  
V
Input Low Voltage  
Input High Voltage  
Input Low Current  
0.8  
IL  
V
2.0  
V
IH  
I
-1.6  
V
= 0.4V; RXEN, TXIHB, TXIN,  
IL  
mA  
IL  
TXIN  
V = 2.4V; RXEN, TXIHB, TXIN,  
IL  
I
Input High Current  
40  
IH  
mA  
TXIN  
V
V
Output Low Voltage  
Output High Voltage  
0.55  
I
I
= 4.0 mA; RXOUT, RXOUT  
V
V
OL  
OL  
OH  
2.4  
= 0.4 mA; RXOUT, RXOUT  
= -12V V = 5V  
OH  
CC  
I
V
Supply Current  
V
V
CC  
EE  
CC  
= +5V to +12V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
60  
60  
60  
mA  
mA  
mA  
V
V
= -15V V = 5V  
CC  
EE  
= +5V to +15V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
60  
60  
60  
mA  
mA  
mA  
I
V
Supply Current  
V
V
= -12V V = 5V  
EE CC  
CCA  
CCA  
= +5V to +12V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
10  
10  
10  
mA  
mA  
mA  
V
V
= -15V V = 5V  
CC  
EE  
= +5V to +15V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
10  
10  
10  
mA  
mA  
mA  
I
V
Supply Current  
V
V
= -12V V = 5V  
EE CC  
EE  
EE  
= +5V to +12V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
40  
140  
230  
mA  
mA  
mA  
V
V
= -15V V = 5V  
CC  
EE  
= +5V to +15V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
40  
130  
230  
mA  
mA  
mA  
10  
1
DC ELECTRICAL CHARACTERISTICS  
V
V
V
= +5V (± 10%)  
CC  
2
= +5V to + 12V (± 5%) or +5V to +15V (± 5%)  
CCA  
2
= -12V or -15V (± 5%)  
EE  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
Power Dissipation  
MINIMUM  
MAXIMUM  
UNIT  
CONDITION  
P
V
V
= -12V V = 5V  
EE CC  
CD  
= +5V to +12V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
0.9  
2.1  
3.3  
W
W
W
V
V
= -15V V = 5V  
CC  
EE  
= +5V to +15V  
CCA  
0% duty cycle (non-transmitting)  
50% duty cycle (¦ = 1MHz)  
100% duty cycle (¦ = 1MHz)  
1.0  
2.5  
3.8  
W
W
W
Notes:  
1. All tests guaranteed per test figure 6.  
2. As specified in test conditions.  
11  
1
RECEIVER ELECTRICAL CHARACTERISTICS  
V
V
V
= +5V (± 10%)  
CC  
= +5V to + 12V (± 5%) or +5V to +15V (± 5%)  
CCA  
= -12V or -15V (± 5%)  
EE  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
CONDITION  
2
R
Differential (Receiver)  
Input Impedance  
15  
Input ¦ = 1MHz (no transformer  
in circuit)  
K Ohms  
IZ  
2
C
Input Capacitance  
10  
RXEN; input ¦ = 1MHz @ 0V  
pF  
V
IN  
2
V
Common Mode Input Volt-  
age  
-10  
+10  
Direct-coupled stub: input  
IC  
1.2V 200ns rise/fall time ±  
PP,  
25ns, ¦ = 1MHz.  
V
Input Threshold Voltage  
0.20  
0.28  
14.0  
V
V
V
L-L Transformer-coupled stub: input  
at ¦ = 1MHz, rise/fall time 200ns  
at (Receiver output 0 ® 1  
transition).  
TH  
PP,  
PP,  
PP,  
2
(No Response)  
L-L  
Input Threshold Voltage  
(No Response)  
Direct-coupled stub: input at ¦ =  
1MHz, rise/fall time 200ns at  
(Receiver output 0 ® 1  
transition).  
L-L  
L-L  
Input Threshold Voltage  
0.86  
1.20  
2
(Response)  
Transformer-coupled stub: input  
at ¦ = 1MHz, rise/fall time 200ns  
output at (Receiver output 0 ® 1  
transition).  
2
V
Input Threshold Voltage  
(Response)  
20.0  
PP,  
Direct-coupled stub: input at ¦ =  
1MHz, rise/fall time 200ns output  
at (Receiver output 0 ® 1  
transition).  
2
3
CMMR  
Common Mode Rejection  
Ratio  
Pass/Fail  
N/A  
Notes:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed by device characterization.  
3. Pass/fail criteria per the test method described in MIL-HDBK-1553 Appendix A, RT Validation Test Plan, Section 5.1.2.2, Common Mode Rejection.  
12  
1
TRANSMITTER ELECTRICAL CHARACTERISTICS  
V
V
V
= +5V (± 10%)  
CC  
= +5V to + 12V (± 5%) or +5V to +15V (± 5%)  
CCA  
= -12V or -15V (± 5%)  
EE  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
CONITION  
V
Output Voltage Swing per  
MIL-STD-1553B  
(See figure 9)  
18  
27  
V
V
V
L-L Transformer-coupled stub, Figure  
O
PP,  
PP,  
PP,  
2
8, Point A: input ¦ = 1MHz,  
R = 70 ohms.  
L
6
6
9
L-L  
L-L  
per MIL-STD-1553B  
(See figure 9)  
Direct-coupled stub, Figure 8,  
Point A: input ¦ = 1MHz,  
R = 35 ohms.  
2
L
per MIL-STD-1553A  
20  
(See figure 9)  
Figure 7, Point A:  
input ¦ = 1MHz, R = 35 ohms.  
L
2
V
Output Noise  
Voltage Differential  
(See figure 9)  
14  
5
mV-RMS, Transformer-coupled stub, Figure  
L-L 8, Point A: input ¦ = DC to 10MHz,  
R = 70 ohms.  
NS  
L
mV-RMS, Direct-coupled stub, Figure 8,  
L-L Point A: input ¦ = DC to 10MHz,  
R = 35 ohms.  
L
Output Symmetry  
(See figure 9)  
-250  
-90  
+250  
+90  
mV , L-L Transformer-coupled stub, Figure  
PP  
2
V
OS  
8, Point A: R = 70 ohms, measure-  
L
ment taken 2.5ms after end of trans-  
mission  
mV , L-L  
PP  
Direct-coupled stub, Figure 8,  
Point A: R = 35 ohms, measure-  
L
ment taken 2.5ms after end of trans-  
mission  
2
Output voltage distortion  
(overshoot or ring)  
(See figure 9)  
-900  
-300  
+900  
+300  
mV peak, Transformer-coupled stub, Figure  
L-L 8, Point A: R = 70 ohms.  
V
DIS  
L
mV peak, Direct-coupled stub, Figure 8,  
L-L  
Point A: R = 35 ohms.  
L
Input Capacitance  
10  
pF  
TXIHB, TXIN, TXIN; input  
¦ = 1MHz @ 0 V  
2
C
IN  
Terminal Input Impedance  
1
2
Kohm  
2
Transformer-coupled stub, Figure  
7, Point A: input ¦ = 75KHz to  
1MHz (power on or power off: non-  
T
IZ  
transmitting, R removed from  
L
Kohm  
circuit).  
Direct-coupled stub, Figure 6,  
Point A: input ¦ = 75KHz to 1MHz  
(power on or power off: non-trans-  
mitting, R removed from circuit).  
L
Notes:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed by device characterization.  
13  
1
AC ELECTRICAL CHARACTERISTICS  
V
V
V
= +5V (± 10%)  
CC  
= +5V to + 12V (± 5%) or +5V to +15V (± 5%)  
CCA  
= -12V or -15V (± 5%)  
EE  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
CONDITION  
Transmitter Output  
Rise/Fall Time  
(See figure 10)  
100  
300  
ns  
Input ¦ = 1MHz 50% duty cycle:  
direct-coupled R = 35 ohms output at  
t , t  
L
R
F
10% through 90% points TXOUT,  
TXOUT. Figure 3.  
RXOUT Delay  
TXIN Skew  
-200  
-25  
+200  
+25  
ns  
ns  
ns  
RXOUT to RXOUT; Figure 4.  
TXIN to TXIN; Figure 4.  
t
RXDD  
3
t
TXDD  
Zero Crossing  
-150  
+150  
Direct-coupled stub; input ¦ = 1MHz,  
t
3V (skew INPUT ± 150ns), rise/fall  
RZCD  
PP  
time 200ns.  
Zero Crossing  
Stability  
(See figure 10)  
-25  
+25  
ns  
Input TXIN and TXIN should create  
transmitter output zero crossings at  
500ns, 1000ns, 1500ns, and 2000ns.  
These zero crossings should not devi-  
ate more than ± 25ns.  
2
t
TZCS  
Transmitter Off;  
Delay from Inhibit  
Active  
400  
250  
ns  
ns  
TXIN and TXIN toggling @ 1MHz;  
TXIHB transitions from logic zero to  
one.  
3,4  
t
DXOFF  
Transmitter On;  
Delay from Inhibit  
Inactive  
TXIN and TXIN toggling @ 1MHz;  
TXIHB transitions from logic one to  
zero.  
3,5  
t
DXON  
Notes:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed by device characterization.  
3. Supplied as a design limit but not guaranteed or tested.  
4. Delay time from transmit inhibit (1.5V) to transmit off (280mV).  
5. Delay time from not transmit inhibit (1.5V) to transmit on (1.2V).  
Table 3. Transformer Requirements Versus Power Supplies  
COUPLING TECHNIQUE  
± 12VDC  
± 15VDC  
DIRECT-COUPLED:  
1.2:1  
1.4:1  
Isolation Transformer Ratio  
TRANSFORMER-COUPLED:  
Isolation Transformer Ratio  
1.66:1  
1:1.4  
2:1  
Coupling Transformer Ratio  
1:1.4  
14  
V
(Overshoot)  
DIS  
V
(Ring)  
DIS  
0 Volts  
0 Volts  
V
O
V
NS  
Figure 9. Transmitter Output Characteristics (V , V , V )  
DIS  
NS  
O
t
R
90%  
90%  
V
O
t
TZCS  
Zero Crossing  
Stability ± 25ns  
10%  
10%  
t
F
Figure 10. Transmitter Output Zero Crossing Stability (t  
, t , t )  
R F  
TZCS  
V
IN  
t
RZCD  
Zero Crossing  
Distortion ± 150ns  
Figure 11. Receiver Input Zero Crossing Distortion (t  
)
RZCD  
15  
0.001 MIN.  
.023 MAX.  
.014 MIN.  
LEAD 1  
INDICATOR  
1.89 MAX  
0.100  
0.155  
MAX.  
0.150  
MIN.  
.610 MAX.  
.570 MIN.  
0.005 MIN.  
Notes:  
1. Package material: opaque ceramic.  
2. All package finishes are per MIL-PRF-38535.  
3. It is recommended that package ceramic be mounted on a heat removal  
rail in the printed circuit board. A thermally conductive material should  
be used.  
.015 MAX.  
.008 MIN.  
.620 MAX  
.590 MIN.  
(AT SEATING PLANE)  
Figure 12. 36-Pin Side-Brazed DIP, Dual Cavity  
16  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted on a heat removal  
rail in the printed circuit board. A thermally conductive material such as  
MERECO XLN-589 or equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
Figure 13. 24-Pin Side-Brazed DIP, Single Cavity  
17  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted on a heat removal  
rail in the printed circuit board. A thermally conductive material such as  
MERECO XLN-589 or equivalent should be used.  
3. Letter designations are for cross-refernce to MIL-M-38510.  
Figure 14. 36-Pin Lead Flatpack  
(100-MIL Lead Spacing)  
18  
LEAD 1 INDICATOR  
b
D
0.016±.002  
1.00+.025  
-
e
.050  
E
L
0.700±0.015  
C
0.007  
A
+0.002  
-0.001  
0.130 MAX.  
Q
0.070±0.010  
(AT CERAMIC BODY)  
Notes:  
1. Package material: opaque ceramic.  
2. All package plating finishes are per MIL-M-38510.  
3. Lid is not connected to any electrical potential.  
4. It is recommended that package ceramic be mounted to a heat removal rail located in the  
printed circuit board. A thermally conductive material such as Mereco XLN-589 or  
equivalent should be used.  
Figure 15. 36-Lead Flatpack, Dual Cavity  
(50-Mil Lead Spacing)  
19  
ORDERING INFORMATION  
UT63M Single Channel MIL-STD-1553 Monolithic Transceiver: SM  
5962  
*
*
*
*
*
*
Lead Finish:  
(A)  
(C)  
=
=
Solder  
Gold  
(X)  
=
Optional  
Case Outline:  
(U) 24 pin DIP  
=
Class Designator:  
(-)  
(Q)  
=
=
Bland or No field is QML Q  
QML  
Device Type  
(01) = +\-15V, idle low  
(02) = +\-12V, Idle low  
Drawing Number: 88644  
Total Dose: None  
(R)  
= 1E5 (100KRad)  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. RadHard offered only on 01 device type. Cobalt 60testing required.  
4. For QML Q product, the Q designator is intentionally left blank in the SMD number (e.g. 5962-8864401UX).  
20  
UT63M Single Channel MIL-STD-1553 Monolithic Transceiver  
UT63M  
*
*
*
*
*
Radiation:  
5
=
=
1E5 rads(Si)  
None  
-
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
=
=
Military Temperature  
Prototype  
(Q)  
(V)  
=
=
QML-Q  
QML-V  
Package Type:  
(P) 24-pin DIP  
=
Device Type Modifier:  
105  
107  
=
=
+\-15V, Idle low  
+\- 12V, Idle Low  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Military Temperature range devices are burned-in and are tested at -55°C, room temperature, and 125°C. Radiation characteristics are neither tested  
nor guaranteed and may not be specified.  
4. Devices have prototype assembly and are tested at 25°C only. Radiation characteristics are neither tested nor guaranteed and may not be specified. Lead  
finish is at UTMC’s option and an “X” must be specified when ordering.  
5. The 63M105 only may be ordered with 1E5 rads(Si) total dose. Co60 testing is required. Contact factory for details.  
6. SEU and neutron irradiation limits will be added when available.  
21  
ORDERING INFORMATION  
UT63M Dual Monolithic Transceiver: SMD  
5962  
*
*
*
*
*
Lead Finish:  
(A)  
(C)  
=
=
Solder  
Gold  
(X)  
=
Optional  
Case Outline:  
(X)  
(Y)  
(Z )  
=
=
=
36 pin DIP  
36 pin FP (.100)  
36 pin FP (.50)  
Class Designator:  
(-)  
(V)  
=
=
Blank orNo field is QML Q  
QML V  
Device Type  
(05) = +\-15V, idle low  
(06) = +\-12V, Idle low  
Drawing Number: 88644  
(-)  
(R)  
=
=
None  
1E5 (100Krad)  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. RadHard offered only on 05 device type. Cobalt 60testing required.  
4. For QML Q product, the Q designator is intentionally left blank in the SMD number (e.g. 5962-8864405YX).  
Appendix 1 - 22  
UT63M Dual Multichip Monolithic Transceiver  
UT63M-  
*
*
*
*
Radiation:  
None  
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
(Q)  
(V)  
=
=
=
Military Temperature  
Prototype  
QML-Q  
=
QML-V  
Package Type:  
(B)  
(D)  
(C)  
=
=
=
36-pin DIP  
36-pin FP (.100)  
36-pin FP (.50)  
Device Type Modifier:  
125  
127  
=
=
+\-15V, Idle low  
+\- 12V, Idle Low  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Military Temperature range devices are burned-in and tested at -55°C, room temperature, and 125°C. Radiation characteristics are neither tested nor  
guaranteed and may not be specified.  
4. Devices have prototype assembly and are tested at 25°C only. Radiation characteristics are neither tested nor guaranteed and may not be specified. Lead  
finish is GOLD only.  
23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY