2N7002LT1/D [ETC]

Small Signal MOSFET 115 mA, 60 Volts ; 小信号MOSFET 115毫安, 60伏\n
2N7002LT1/D
型号: 2N7002LT1/D
厂家: ETC    ETC
描述:

Small Signal MOSFET 115 mA, 60 Volts
小信号MOSFET 115毫安, 60伏\n

文件: 总8页 (文件大小:67K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2N7002LT1  
Preferred Device  
Small Signal MOSFET  
115 mAmps, 60 Volts  
N–Channel SOT–23  
MAXIMUM RATINGS  
http://onsemi.com  
Rating  
Drain–Source Voltage  
Symbol  
Value  
60  
Unit  
Vdc  
V
DSS  
115 mAMPS  
60 VOLTS  
Drain–Gate Voltage (R  
= 1.0 M)  
V
DGR  
60  
Vdc  
GS  
Drain Current  
– Continuous T = 25°C (Note 1.)  
– Continuous T = 100°C (Note 1.)  
– Pulsed (Note 2.)  
I
±ā115  
±ā75  
±ā800  
mAdc  
R
= 7.5 W  
D
DS(on)  
I
D
C
C
I
DM  
N–Channel  
3
Gate–Source Voltage  
– Continuous  
V
±ā20  
±ā40  
Vdc  
Vpk  
GS  
– Non–repetitive (t 50 µs)  
V
GSM  
p
THERMAL CHARACTERISTICS  
Characteristic  
1
Symbol  
Max  
Unit  
Total Device Dissipation FR–5 Board  
P
D
225  
1.8  
mW  
mW/°C  
(Note 3.) T = 25°C  
A
2
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
556  
300  
°C/W  
θJA  
3
P
mW  
mW/°C  
D
Alumina Substrate,(Note 4.) T = 25°C  
A
1
Derate above 25°C  
2.4  
2
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
R
417  
°C/W  
°C  
θJA  
SOT–23  
CASE 318  
STYLE 21  
T , T  
J stg  
ā55 to  
+150  
1. The Power Dissipation of the package may result in a lower continuous drain  
current.  
2. Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%.  
3. FR–5 = 1.0 x 0.75 x 0.062 in.  
MARKING DIAGRAM  
& PIN ASSIGNMENT  
4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.  
Drain  
3
702  
W
1
Gate  
2
Source  
702  
W
= Device Code  
= Work Week  
ORDERING INFORMATION  
Device  
Package  
Shipping  
3000 Tape & Reel  
2N7002LT1  
2N7002LT3  
SOT–23  
SOT–23 10,000 Tape & Reel  
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
December, 2000 – Rev. 4  
2N7002LT1/D  
2N7002LT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage  
V
60  
Vdc  
(BR)DSS  
(V  
GS  
= 0, I = 10 µAdc)  
D
Zero Gate Voltage Drain Current  
(V = 0, V = 60 Vdc)  
T
T
= 25°C  
= 125°C  
I
1.0  
500  
µAdc  
nAdc  
nAdc  
J
J
DSS  
GS DS  
Gate–Body Leakage Current, Forward  
(V = 20 Vdc)  
I
100  
GSSF  
GS  
Gate–Body Leakage Current, Reverse  
(V = ā20 Vdc)  
I
–100  
GSSR  
GS  
ON CHARACTERISTICS (Note 2.)  
Gate Threshold Voltage  
V
I
1.0  
2.5  
Vdc  
mA  
Vdc  
GS(th)  
(V  
DS  
= V , I = 250 µAdc)  
GS  
D
On–State Drain Current  
(V 2.0 V , V  
500  
D(on)  
= 10 Vdc)  
Static Drain–Source On–State Voltage  
DS DS(on) GS  
V
DS(on)  
(V  
GS  
(V  
GS  
= 10 Vdc, I = 500 mAdc)  
3.75  
0.375  
D
= 5.0 Vdc, I = 50 mAdc)  
D
Static Drain–Source On–State Resistance  
r
Ohms  
DS(on)  
(V  
GS  
= 10 V, I = 500 mAdc)  
T
C
T
C
T
C
T
C
= 25°C  
= 125°C  
= 25°C  
= 125°C  
7.5  
13.5  
7.5  
D
(V  
GS  
= 5.0 Vdc, I = 50 mAdc)  
D
13.5  
Forward Transconductance  
(V 2.0 V , I = 200 mAdc)  
g
FS  
80  
mmhos  
DS DS(on)  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
50  
25  
pF  
pF  
pF  
iss  
(V  
DS  
= 25 Vdc, V  
= 0, f = 1.0 MHz)  
GS  
Output Capacitance  
(V = 25 Vdc, V  
C
oss  
= 0, f = 1.0 MHz)  
DS  
GS  
Reverse Transfer Capacitance  
(V = 25 Vdc, V = 0, f = 1.0 MHz)  
C
5.0  
rss  
DS  
GS  
SWITCHING CHARACTERISTICS (Note 2.)  
Turn–On Delay Time  
t
t
20  
40  
ns  
ns  
d(on)  
(V  
DD  
G
= 25 Vdc, I ^ 500 mAdc,  
D
R
= 25 , R = 50 , V  
= 10 V)  
L
gen  
Turn–Off Delay Time  
d(off)  
BODY–DRAIN DIODE RATINGS  
Diode Forward On–Voltage  
V
–1.5  
–115  
–800  
Vdc  
SD  
(I = 11.5 mAdc, V  
S
= 0 V)  
GS  
Source Current Continuous  
(Body Diode)  
I
mAdc  
mAdc  
S
Source Current Pulsed  
I
SM  
2. Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%.  
http://onsemi.com  
2
2N7002LT1  
TYPICAL ELECTRICAL CHARACTERISTICS  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
V
= 10 V  
T
= 25°C  
DS  
A
25°C  
-ā55°C  
0.8  
0.6  
0.4  
0.2  
V
= 10 V  
9 V  
GS  
125°C  
8 V  
7 V  
6 V  
5 V  
4 V  
3 V  
0
1.0 2.0 3.0 4.0 5.0  
6.0  
7.0 8.0 9.0 10  
0
1.0 2.0 3.0 4.0  
5.0  
6.0 7.0 8.0  
9.0 10  
V , DRAIN SOURCE VOLTAGE (VOLTS)  
DS  
V , GATE SOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. Ohmic Region  
Figure 2. Transfer Characteristics  
2.4  
1.2  
1.05  
1.1  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V = V  
DS GS  
V
I
= 10 V  
GS  
I
D
= 1.0 mA  
= 200 mA  
D
1.10  
1.0  
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
-ā60  
-ā20  
+ā20  
+ā60  
+ā100  
+ā140  
-ā60  
-ā20  
+ā20  
+ā60  
+ā100  
+ā140  
T, TEMPERATURE (°C)  
T, TEMPERATURE (°C)  
Figure 3. Temperature versus Static  
Drain–Source On–Resistance  
Figure 4. Temperature versus Gate  
Threshold Voltage  
http://onsemi.com  
3
2N7002LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
150°C – 25°C  
P
=
= 225 milliwatts  
D
556°C/W  
determined by T  
temperature of the die, R  
, the maximum rated junction  
, the thermal resistance from  
J(max)  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225  
milliwatts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Cladt. Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
θJA  
the device junction to ambient, and the operating  
temperature, T . Using the values provided on the data  
A
sheet for the SOT–23 package, P can be calculated as  
D
follows:  
T
– T  
A
J(max)  
P
=
D
R
θJA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
4
2N7002LT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236)  
CASE 318–08  
ISSUE AF  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS OF  
BASE MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
H
J
D
K
STYLE 21:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
http://onsemi.com  
5
2N7002LT1  
Notes  
http://onsemi.com  
6
2N7002LT1  
Notes  
http://onsemi.com  
7
2N7002LT1  
Thermal Clad is a registered trademark of the Bergquist Company.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
2N7002LT1/D  

相关型号:

2N7002LT1G

Small Signal MOSFET 60 V, 115 mA, N−Channel SOT−23
ONSEMI

2N7002LT1H

75mA, 60V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236, HALOGEN FREE AND ROHS COMPLIANT, CASE 318-08, 3 PIN
ONSEMI

2N7002LT3

Small Signal MOSFET 115 mAmps, 60 Volts
LRC

2N7002LT3

Small Signal MOSFET 60 V, 115 mA, N−Channel SOT−23
ONSEMI

2N7002LT3G

Small Signal MOSFET 60 V, 115 mA, N−Channel SOT−23
ONSEMI

2N7002LT3H

75mA, 60V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236, HALOGEN FREE AND ROHS COMPLIANT, CASE 318-08, 3 PIN
ONSEMI

2N7002LT7G

SOT23,N沟道MOSFET - 60V 115MA 7.5Ohm 
ONSEMI

2N7002L_10

60V, 115mA, N-CHANNEL MOSFET
UTC

2N7002L_12

Small Signal MOSFET 60 V, 115 mA, N.Channel SOT.23
ONSEMI

2N7002M

MOSFET( N-Channel )
JCST

2N7002M

Small Signal Field-Effect Transistor, 0.115A I(D), 60V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, PLASTIC PACKAGE-3
CALOGIC

2N7002M1PT

N-Channel Enhancement Mode Field Effect Transistor
CHENMKO