F25L08QA-100HG2S [ESMT]

Flash, 8MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8;
F25L08QA-100HG2S
型号: F25L08QA-100HG2S
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

Flash, 8MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8

时钟 光电二极管 内存集成电路
文件: 总43页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
F25L08QA (2S)  
Flash  
8 Mbit Serial Flash Memory  
with Dual and Quad  
FEATURES  
Single supply voltage 2.7~3.6V  
Standard, Dual and Quad SPI  
Erase  
- Chip Erase time 7 sec (typical)  
Speed  
- 64K bytes Block Erase time 0.75 sec (typical)  
- 32K bytes Block Erase time 500 ms (typical)  
- 4K bytes Sector Erase time 90 ms (typical)  
- Read max frequency: 33MHz  
- Fast Read max frequency: 50MHz / 86MHz / 100MHz  
- Fast Read Dual/Quad max frequency: 50MHz / 86MHz /  
100MHz  
(100MHz / 172MHz / 200MHz equivalent Dual SPI;  
200MHz / 344MHz / 400MHz equivalent Quad SPI)  
Page Programming  
- 256 byte per programmable page  
Lockable 512 bytes OTP security sector  
SPI Serial Interface  
Low power consumption  
- SPI Compatible: Mode 0 and Mode 3  
- Active current: 25 mA (max.)  
- Standby current: 25μ A (max.)  
End of program or erase detection  
Write Protect ( WP )  
- Deep Power Down current: 10μ A (max.)  
Reliability  
Hold Pin (HOLD )  
- 100,000 typical program/erase cycles  
- 20 years Data Retention  
All Pb-free products are RoHS-Compliant  
Program  
- Page programming time: 1.5 ms (typical)  
ORDERING INFORMATION  
Product ID  
Speed  
Package  
Comments  
F25L08QA –50PG2S  
F25L08QA –86PG2S  
F25L08QA –100PG2S  
F25L08QA –50PAG2S  
F25L08QA –86PAG2S  
F25L08QA –100PAG2S  
F25L08QA –50HG2S  
F25L08QA –86HG2S  
F25L08QA –100HG2S  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
8-lead  
SOIC  
150 mil  
200 mil  
Pb-free  
8-lead  
SOIC  
Pb-free  
Pb-free  
8-contact  
WSON  
6x5 mm  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 1/43  
ESMT  
F25L08QA (2S)  
GENERAL DESCRIPTION  
The F25L08QA is a 8Megabit, 3V only CMOS Serial Flash  
memory device. The device supports the standard Serial  
Peripheral Interface (SPI), and a Dual/Quad SPI. ESMT’s  
memory devices reliably store memory data even after 100,000  
programming and erase cycles.  
is divided into 256 uniform sectors with 4K byte each; 32 uniform  
blocks with 32K byte each; 16 uniform blocks with 64K byte each.  
Sectors can be erased individually without affecting the data in  
other sectors. Blocks can be erased individually without affecting  
the data in other blocks. Whole chip erase capabilities provide  
the flexibility to revise the data in the device. The device has  
Sector, Block or Chip Erase but no page erase.  
The memory array can be organized into 4,096 programmable  
pages of 256 byte each. 1 to 256 byte can be programmed at a  
time with the Page Program instruction.  
The sector protect/unprotect feature disables both program and  
erase operations in any combination of the sectors of the  
memory.  
The device features sector erase architecture. The memory array  
FUNCTIONAL BLOCK DIAGRAM  
Page Address  
Latch / Counter  
Memory  
Array  
High Voltage  
Generator  
Page Buffer  
Status  
Register  
Y-Decoder  
Byte Address  
Latch / Counter  
Command and Conrol Logic  
Serial Interface  
CE  
SCK  
SO  
(SIO  
WP  
(SIO  
HOLD  
(SIO3)  
SI  
(SIO0)  
1
)
2
)
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 2/43  
ESMT  
F25L08QA (2S)  
PIN CONFIGURATIONS  
8-Lead SOIC  
(SOIC 8L, 150mil Body, 1.27mm Pin Pitch)  
(SOIC 8L, 208mil Body, 1.27mm Pin Pitch)  
CE  
V
DD  
8
7
1
SO / SIO  
1
HOLD / SIO  
SCK  
3
2
6
5
3
4
WP / SIO  
2
VSS  
SI / SIO0  
8- Contact WSON  
(WSON 8C, 6mmX5mm Body, 1.27mm Contact Pitch)  
1
VDD  
CE  
8
HOLD  
2
7
SO  
3
6
SCK  
SI  
WP  
4
VSS  
5
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 3/43  
ESMT  
F25L08QA (2S)  
PIN DESCRIPTION  
Symbol  
Pin Name  
Functions  
SCK  
Serial Clock  
To provide the timing for serial input and output operations  
To transfer commands, addresses or data serially into the device. Data is  
latched on the rising edge of SCK (for Standard read mode). / Bidirectional IO  
pin to transfer commands, addresses or data serially into the device on the  
rising edge of SCK and read data or status from the device on the falling edge  
of SCK(for Dual/Quad mode).  
Serial Data Input /  
Serial Data Input Output 0  
SI / SIO0  
To transfer data serially out of the device. Data is shifted out on the falling edge  
of SCK (for Standard read mode). / Bidirectional IO pin to transfer commands,  
addresses or data serially into the device on the rising edge of SCK and read  
data or status from the device on the falling edge of SCK (for Dual/Quad  
mode).  
Serial Data Output /  
Serial Data Input Output 1  
SO / SIO1  
Chip Enable  
CE  
To activate the device when CE is low.  
The Write Protect ( WP ) pin is used to enable/disable BPL bit in the status  
register. / Bidirectional IO pin to transfer commands, addresses or data serially  
into the device on the rising edge of SCK and read data or status from the  
device on the falling edge of SCK (for Quad mode).  
Write Protect /  
Serial Data Input Output 2  
WP / SIO2  
To temporality stop serial communication with SPI flash memory without  
resetting the device. / Bidirectional IO pin to transfer commands, addresses or  
data serially into the device on the rising edge of SCK and read data or status  
from the device on the falling edge of SCK (for Quad mode).  
Hold /  
HOLD / SIO3  
Serial Data Input Output 3  
VDD  
VSS  
Power Supply  
Ground  
To provide power.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
4/43  
ESMT  
F25L08QA (2S)  
SECTOR STRUCTURE  
Table 1: Sector Address Table  
Block Address  
64KB  
Block  
32KB  
Block  
Sector Size  
(Kbytes)  
Sector  
Address range  
A19  
1
A18  
A17  
A16  
1
255  
:
4KB  
:
0FF000H – 0FFFFFH  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
:
248  
247  
:
4KB  
4KB  
:
0F8000H – 0F8FFFH  
15  
14  
13  
12  
11  
10  
1
1
0F7000H – 0F7FFFH  
:
240  
239  
:
4KB  
4KB  
:
0F0000H – 0F0FFFH  
0EF000H – 0EFFFFH  
:
232  
231  
:
4KB  
4KB  
:
0E8000H – 0E8FFFH  
0E7000H – 0E7FFFH  
:
1
1
1
1
1
1
1
1
0
0
1
0
0
1
1
0
1
0
1
0
224  
223  
:
4KB  
4KB  
:
0E0000H – 0E0FFFH  
0DF000H – 0DFFFFH  
:
216  
215  
:
4KB  
4KB  
:
0D8000H – 0D8FFFH  
0D7000H – 0D7FFFH  
:
208  
207  
:
4KB  
4KB  
:
0D0000H – 0D0FFFH  
0CF000H – 0CFFFFH  
:
200  
199  
:
4KB  
4KB  
:
0C8000H – 0C8FFFH  
0C7000H – 0C7FFFH  
:
192  
191  
:
4KB  
4KB  
:
0C0000H – 0C0FFFH  
0BF000H – 0BFFFFH  
:
184  
183  
:
4KB  
4KB  
:
0B8000H – 0B8FFFH  
0B7000H – 0B7FFFH  
:
176  
175  
:
4KB  
4KB  
:
0B0000H – 0B0FFFH  
0AF000H – 0AFFFFH  
:
168  
167  
:
4KB  
4KB  
:
0A8000H – 0A8FFFH  
0A7000H – 0A7FFFH  
:
160  
4KB  
0A0000H – 0A0FFFH  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 5/43  
ESMT  
F25L08QA (2S)  
Table 1: Sector Address Table – Continued I  
Sector Size  
Block Address  
64KB  
Block  
32KB  
Block  
Sector  
Address range  
(Kbytes)  
A19  
1
A18  
A17  
A16  
1
159  
:
4KB  
:
09F000H – 09FFFFH  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
:
152  
151  
:
4KB  
4KB  
:
098000H – 098FFFH  
9
8
7
6
5
4
0
0
097000H – 097FFFH  
:
144  
143  
:
4KB  
4KB  
:
090000H – 090FFFH  
08F000H – 08FFFFH  
:
136  
135  
:
4KB  
4KB  
:
088000H – 088FFFH  
087000H – 087FFFH  
:
1
0
0
0
0
0
1
1
1
1
0
1
1
0
0
0
1
0
1
0
128  
127  
:
4KB  
4KB  
:
080000H – 080FFFH  
07F000H – 07FFFFH  
:
120  
119  
:
4KB  
4KB  
:
078000H – 078FFFH  
077000H – 077FFFH  
:
112  
111  
:
4KB  
4KB  
:
070000H – 070FFFH  
06F000H – 06FFFFH  
:
104  
103  
:
4KB  
4KB  
:
068000H – 068FFFH  
067000H – 067FFFH  
:
96  
95  
:
4KB  
4KB  
:
060000H – 060FFFH  
05F000H – 05FFFFH  
:
88  
87  
:
4KB  
4KB  
:
058000H – 058FFFH  
057000H – 057FFFH  
:
80  
79  
:
4KB  
4KB  
:
050000H – 050FFFH  
04F000H – 04FFFFH  
:
72  
71  
:
4KB  
4KB  
:
048000H – 048FFFH  
047000H – 047FFFH  
:
8
64  
4KB  
040000H – 040FFFH  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 6/43  
ESMT  
F25L08QA (2S)  
Table 1: Sector Address Table – Continued II  
Sector Size  
Block Address  
64KB  
Block  
32KB  
Block  
Sector  
Address range  
(Kbytes)  
A19  
A18  
A17  
A16  
63  
:
4KB  
:
03F000H – 03FFFFH  
7
6
5
4
3
2
1
0
:
56  
55  
:
4KB  
4KB  
:
038000H – 038FFFH  
037000H – 037FFFH  
:
3
2
1
0
0
0
1
1
48  
47  
:
4KB  
4KB  
:
030000H – 030FFFH  
02F000H – 02FFFFH  
:
40  
39  
:
4KB  
4KB  
:
028000H – 028FFFH  
027000H – 027FFFH  
:
0
0
0
0
0
0
1
0
0
0
1
0
32  
31  
:
4KB  
4KB  
:
020000H – 020FFFH  
01F000H – 01FFFFH  
:
24  
23  
:
4KB  
4KB  
:
018000H – 018FFFH  
017000H – 017FFFH  
:
16  
15  
:
4KB  
4KB  
:
010000H – 010FFFH  
00F000H – 00FFFFH  
:
8
4KB  
4KB  
:
008000H – 008FFFH  
007000H – 007FFFH  
:
7
:
0
4KB  
000000H – 000FFFH  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 7/43  
ESMT  
F25L08QA (2S)  
STATUS REGISTER  
The software status register provides status on whether the flash  
memory array is available for any Read or Write operation,  
whether the device is Write enabled, and the state of the memory  
Write protection. During an internal Erase or Program operation,  
the status register may be read only to determine the completion  
of an operation in progress. Table 2 describes the function of  
each bit in the software status register.  
Table 2: Software Status Register  
Default at  
Power-up  
Bit  
Name  
Function  
Read/Write  
Status Register -1  
1 = Internal Write operation is in progress  
0 = No internal Write operation is in progress  
0
1
BUSY  
WEL  
0
0
R
R
1 = Device is memory Write enabled  
0 = Device is not memory Write enabled  
2
3
4
5
BP0  
BP1  
BP2  
BP3  
Indicate current level of block write protection (See Table 3)  
Indicate current level of block write protection (See Table 3)  
Indicate current level of block write protection (See Table 3)  
Indicate current level of block write protection (See Table 3)  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
1 = Quad enabled  
0 = Quad disabled  
6
7
QE  
0
0
R/W  
R/W  
1 = BP3, BP2,BP1,BP0 are read-only bits  
0 = BP3, BP2,BP1,BP0 are read/writable  
BPL  
Default at  
Power-up  
Bit  
Name  
Function  
Read/Write  
Status Register -2  
8
SUS  
Suspend Status  
0
0
R
9~15  
Reserved  
Reserved for future use  
N/A  
Note:  
1. BUSY and WEL are read only.  
2. BP0~3, QE and BPL bits are non-volatile.  
Write Enable Latch (WEL)  
BUSY  
The Write-Enable-Latch bit indicates the status of the internal  
memory Write Enable Latch. If this bit is set to “1”, it indicates the  
device is Write enabled. If the bit is set to “0” (reset), it indicates  
the device is not Write enabled and does not accept any memory  
Write (Program/ Erase) commands. This bit is automatically reset  
under the following conditions:  
The BUSY bit determines whether there is an internal Erase or  
Program operation in progress. A “1” for the BUSY bit indicates  
the device is busy with an operation in progress. A “0” indicates  
the device is ready for the next valid operation.  
Power-up  
Write Disable (WRDI) instruction completion  
Page Program instruction completion  
Sector Erase instruction completion  
Block Erase instruction completion  
Chip Erase instruction completion  
Write Status Register instructions  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
8/43  
ESMT  
F25L08QA (2S)  
Table 3: Block Protection Table  
Status Register Bit  
Protected Memory Area  
Protection Level  
BP3  
X
0
BP2  
0
BP1  
0
BP0  
0
64KB Block Range  
None  
Address Range  
None  
0
Upper 1/16  
Upper 1/8  
Upper 1/4  
Upper 1/2  
Upper 7/8  
Upper 15/16  
Bottom 1/16  
Bottom 1/8  
Bottom 1/4  
Bottom 1/2  
Bottom 7/8  
Bottom 15/16  
All Blocks  
0
0
1
Block 15  
0F0000H – 0FFFFFH  
0E0000H – 0FFFFFH  
0C0000H – 0FFFFFH  
080000H – 0FFFFFH  
020000H – 0FFFFFH  
010000H – 0FFFFFH  
000000H – 00FFFFH  
000000H – 01FFFFH  
000000H – 03FFFFH  
000000H – 07FFFFH  
000000H – 0DFFFFH  
000000H – 0EFFFFH  
000000H – 0FFFFFH  
0
0
1
0
Block 14~15  
Block 12~15  
Block 8~15  
Block 2~15  
Block 1~15  
Block 0  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
1
0
0
1
1
0
1
0
Block 0~1  
Block 0~3  
Block 0~7  
Block 0~13  
Block 0~14  
Block 0~15  
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
X
1
1
1
Block Protection (BP3, BP2, BP1, BP0)  
Block Protection Lock-Down (BPL)  
The Block-Protection (BP3, BP2, BP1, BP0) bits define the  
memory area, as defined in Table 3, to be software protected  
against any memory Write (Program or Erase) operations. The  
Write Status Register (WRSR) instruction is used to program the  
WP pin driven low (VIL), enables the Block-Protection-  
Lock-Down (BPL) bit. When BPL is set to 1, it prevents any  
further alteration of the BPL, BP3, BP2, BP1 and BP0 bits. When  
the WP pin is driven high (VIH), the BPL bit has no effect and its  
value is “Don’t Care”.  
BP3, BP2, BP1 and BP0 bits as long as WP is high or the  
Block- Protection-Look (BPL) bit is 0. Chip Erase can only be  
executed if BP3, BP2, BP1 and BP0 bits are all 0. The factory  
default setting for Block Protection Bit (BP3 ~ BP0) is 0.  
Quad Enable (QE)  
When the Quad Enable bit is reset to “0” (factory default), WP  
and HOLD pins are enabled. When QE pin is set to “1”, Quad  
SIO2 and SIO3 are enabled. (The QE should never be set to “1”  
during standard and Dual SPI operation if the WP and HOLD  
pins are tied directly to the VDD or VSS.)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
9/43  
ESMT  
F25L08QA (2S)  
HOLD OPERATION  
HOLD pin is used to pause a serial sequence underway with the  
SPI flash memory without resetting the clocking sequence. To  
Once the device enters Hold mode, SO will be in high impedance  
state while SI and SCK can be VIL or VIH.  
activate the HOLD mode, CE must be in active low state. The  
HOLD mode begins when the SCK active low state coincides  
with the falling edge of the HOLD signal. The HOLD mode ends  
If CE is driven active high during a Hold condition, it resets the  
internal logic of the device. As long as HOLD signal is low, the  
memory remains in the Hold condition. To resume  
when the HOLD signal’s rising edge coincides with the SCK  
active low state.  
communication with the device, HOLD must be driven active  
high, and CE must be driven active low. See Figure 31 for Hold  
timing.  
If the falling edge of the HOLD signal does not coincide with the  
SCK active low state, then the device enters Hold mode when the  
SCK next reaches the active low state.  
The HOLD function is only available for Standard SPI and Dual  
SPI operation, not during Quad SPI because this pin is used for  
SIO3 when the QE bit of Status Register-1 is set for Quad I/O.  
Similarly, if the rising edge of the HOLD signal does not  
coincide with the SCK active low state, then the device exits in  
Hold mode when the SCK next reaches the active low state. See  
Figure 1 for Hold Condition waveform.  
SCK  
HOLD  
Hold  
Active  
Active  
Active  
Hold  
Figure 1: HOLD Condition Waveform  
WRITE PROTECTION  
The device provides software Write Protection.  
Table 4: Conditions to Execute Write-Status- Register  
(WRSR) Instruction  
The Write-Protect pin ( WP ) enables or disables the lock-down  
function of the status register. The Block-Protection bits (BP3,  
BP2, BP1, BP0 and BPL) in the status register provide Write  
protection to the memory array and the status register. When the  
BPL  
1
Execute WRSR Instruction  
Not Allowed  
WP  
L
QE bit of Status Register-1 is set for Quad I/O, the WP pin  
function is not available since this pin is used for SIO2.  
L
0
Allowed  
H
X
Allowed  
Write Protect Pin ( WP )  
The Write-Protect ( WP ) pin enables the lock-down function of  
the BPL bit (bit 7) in the status register. When WP is driven low,  
the execution of the Write Status Register (WRSR) instruction is  
determined by the value of the BPL bit (see Table 4). When WP  
is high, the lock-down function of the BPL bit is disabled.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 10/43  
ESMT  
F25L08QA (2S)  
INSTRUCTIONS  
Instructions are used to Read, Write (Erase and Program), and  
configure the F25L08QA. The instruction bus cycles are 8 bits  
each for commands (Op Code), data, and addresses. Prior to  
executing any Page Program, Write Status Register, Sector  
Erase, Block Erase, or Chip Erase instructions, the Write Enable  
(WREN) instruction must be executed first. The complete list of  
the instructions is provided in Table 5. All instructions are  
entered and must be driven high after the last bit of the instruction  
has been shifted in (except for Read, Read ID, Read Status  
Register, Read Electronic Signature instructions). Any low to high  
transition on CE , before receiving the last bit of an instruction  
bus cycle, will terminate the instruction in progress and return the  
device to the standby mode.  
synchronized off a high to low transition of CE . Inputs will be  
accepted on the rising edge of SCK starting with the most  
Instruction commands (Op Code), addresses, and data are all  
input from the most significant bit (MSB) first.  
significant bit. CE must be driven low before an instruction is  
Table 5: Device Operation Instruction  
Bus Cycle 1~3  
4
Max.  
Freq  
Operation  
1
2
3
5
6
N
SIN SOUT  
SIN  
SOUT  
SIN  
SOUT SIN SOUT SIN SOUT SIN SOUT SIN SOUT  
Read  
Fast Read  
33 MHz 03H Hi-Z A23-A16 Hi-Z  
0BH Hi-Z A23-A16 Hi-Z  
A15-A8 Hi-Z A7-A0 Hi-Z  
A15-A8 Hi-Z A7-A0 Hi-Z  
X
X
DOUT0  
X
X
X
X
DOUT1  
DOUT0  
X
X
cont.  
cont.  
cont.  
-
cont.  
-
Fast Read Dual Output12,13  
Fast Read Dual I/O12, 14  
Fast Read Quad  
3BH  
BBH  
A23-A16  
A23-A8  
A15-A8  
A7-A0  
DOUT0~1  
A7-A0, M7-M0  
DOUT0~1  
cont.  
-
6BH  
EBH  
A23-A16  
A15-A8  
A7-A0  
X
DOUT0~3  
-
-
-
-
Output12, 15  
Fast Read Quad I/O12, 16  
Sector Erase4 (4K Byte)  
Block Erase5 (32K Byte)  
Block Erase5 (64K Byte)  
A23-A0, M7-M0  
X, DOUT0~1  
DOUT2~6  
cont.  
20H Hi-Z A23-A16 Hi-Z  
52H Hi-Z A23-A16 Hi-Z  
D8H Hi-Z A23-A16 Hi-Z  
60H /  
A15-A8 Hi-Z A7-A0 Hi-Z  
A15-A8 Hi-Z A7-A0 Hi-Z  
A15-A8 Hi-Z A7-A0 Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Chip Erase  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
C7H  
Erase Suspend  
Erase Resume  
75H  
7AH Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Up to  
Page Program (PP)  
02H Hi-Z A23-A16 Hi-Z  
A15-A8 Hi-Z A7-A0 Hi-Z DIN0 Hi-Z DIN1 Hi-Z 256 Hi-Z  
50MHz  
~
bytes  
Up to 256  
Quad Page Program17  
Mode Bit Reset 6  
Deep Power Down (DP)  
Read Status Register-1  
(RDSR-1) 7  
32H  
A23-A16  
A15-A8  
A7-A0  
DIN0~3  
DIN4~7  
byte  
FFH Hi-Z  
B9h Hi-Z  
FFH  
-
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DOUT  
(S7-S0)  
DOUT  
(S15-S8)  
05H Hi-Z  
35H Hi-Z  
X
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Read Status Register-2  
100MHz  
X
-
(RDSR-2) 7  
Write Status Register  
(WRSR) 10  
DIN  
(S7-S0)  
-
01H Hi-Z  
06H Hi-Z  
04H Hi-Z  
Hi-Z  
-
-
-
-
-
-
-.  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Write Enable (WREN) 10  
Write Disable (WRDI)/ Exit  
secured OTP mode  
Enter secured OTP mode  
(ENSO)  
-
-
-
-
-
B1H Hi-Z  
ABH Hi-Z  
ABH Hi-Z  
ABH Hi-Z  
ABH Hi-Z  
-
-
-
-.  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Release from Deep Power  
Down (RDP)  
-
-
-
-
-
-
Read Electronic Signature  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
13H  
33H  
73H  
(RES) 8  
RES in secured OTP mode  
& not lock down  
RES in secured OTP mode  
& lock down  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 11/43  
ESMT  
F25L08QA (2S)  
Table 5: Device Operation Instruction - Continued  
Bus Cycle 1~3  
Max.  
Freq  
Operation  
1
2
3
4
5
6
N
SIN SOUT  
SIN  
SOUT  
SIN  
SOUT SIN SOUT SIN SOUT SIN SOUT SIN SOUT  
Jedec Read ID  
50MHz 9FH Hi-Z  
~
X
8CH  
X
40H  
Hi-Z  
X
14H  
-
-
-
-
-
-
(JEDEC-ID) 9  
00H Hi-Z  
01H Hi-Z  
X
X
8CH  
13H  
X
X
13H  
8CH  
-
-
-
-
Read ID (RDID) 11  
90H Hi-Z  
00H  
Hi-Z  
00H  
100MHz  
Notes:  
1. Operation: SIN = Serial In, SOUT = Serial Out, Bus Cycle 1 = Op Code  
2. X = Dummy Input Cycles (VIL or VIH); - = Non-Applicable Cycles (Cycles are not necessary); cont. = continuous  
3. One bus cycle is eight clock periods.  
4. 4K byte Sector Earse addresses: use AMS -A12, remaining addresses can be VIL or VIH.  
5. 32K byte Block Earse addresses: use AMS -A15, remaining addresses can be VIL or VIH  
64K byte Block Earse addresses: use AMS -A16, remaining addresses can be VIL or VIH  
6. This instruction is recommended when using the Dual or Quad Mode bit feature.  
7. The Read-Status-Register is continuous with ongoing clock cycles until terminated by a low to high transition on CE .  
8. The Read-Electronic-Signature is continuous with on going clock cycles until terminated by a low to high transition on CE .  
9. The JEDEC-Read-ID is output first byte 8CH as manufacture ID; second byte 40H as memory type; third byte 14H as  
memory capacity.  
10. The Write-Enable (WREN) instruction and the Write-Status-Register (WRSR) instruction must work in conjunction of each  
other. The WRSR instruction must be executed immediately (very next bus cycle) after the WREN instruction to make both  
instructions effective. A successful WRSR can reset WREN.  
11. The Manufacture ID and Device ID output will repeat continuously until CE terminates the instruction.  
12. Dual and Quad commands use bidirectional IO pins. DOUT and cont. are serial data out; others are serial data in.  
13. Dual output data:  
IO  
IO  
0
= (D  
6
, D  
4
, D  
2
, D  
0
), (D  
6
, D  
4
, D  
2
, D  
0
)
)
1
= (D  
7
, D5  
, D3  
, D1  
), (D  
7
, D5  
, D3  
, D1  
DOUT0  
DOUT1  
14. M7-M0: Mode bits. Dual input address:  
IO  
IO  
0
= (A22, A20, A18, A16, A14, A12, A10, A  
8
)
(A  
6
, A  
4
, A  
2
, A  
0
, M  
6
, M  
4
, M  
2
, M  
0
)
1
= (A23, A21, A19, A17, A15, A13, A11, A  
9
)
(A7  
, A  
5
, A  
3
, A  
1
, M  
7
, M  
5
, M  
3
, M  
1
)
Bus Cycle-2  
Bus Cycle-3  
15. Quad output data:  
IO  
IO  
IO  
IO  
0
1
2
3
= (D  
= (D  
= (D  
= (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
)
)
)
)
DOUT0  
DOUT1  
DOUT2  
DOUT3  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 12/43  
ESMT  
F25L08QA (2S)  
16. M7-M0: Mode bits. Quad input address:  
IO  
IO  
IO  
IO  
0
1
2
3
= (A20, A16, A12, A  
= (A21, A17, A13, A  
= (A22, A18, A14, A10, A  
8
, A  
4
, A  
, A  
0
, M  
4
, M  
, M  
0
)
)
2
9
, A5  
1
, M5  
1
6
, A  
2
, M  
6
, M  
)
)
= (A23, A19, A15, A11, A  
7
, A  
3
, M  
7
, M  
3
Bus Cycle-2  
Fast Read Quad I/O data:  
IO  
IO  
IO  
IO  
0
1
2
3
= (X, X), (X, X), (D  
= (X, X), (X, X), (D  
= (X, X), (X, X), (D  
= (X, X), (X, X), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
) (D  
) (D  
) (D  
) (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
)
)
)
)
), (D  
), (D  
), (D  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
Bus Cycle-3  
Bus Cycle-4  
17. The instruction is initiated by executing command code, followed by address bits into SI (SIO0) before DIN, and then input  
data to bidirectional IO pins (SIO0 ~ SIO3).  
Quad input data:  
IO  
IO  
IO  
IO  
0
1
2
3
= (D  
= (D  
= (D  
= (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
), (D  
), (D  
), (D  
), (D  
4
5
6
7
, D  
, D  
, D  
, D  
0
1
2
3
)
)
)
)
DIN0  
DIN1  
DIN2  
DIN3  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 13/43  
ESMT  
F25L08QA (2S)  
Read (33MHz)  
The Read instruction supports up to 33 MHz, it outputs the data  
starting from the specified address location. The data output  
stream is continuous through all addresses until terminated by a  
the data from address location 0FFFFFH had been read, the  
next output will be from address location 000000H.  
The Read instruction is initiated by executing an 8-bit command,  
low to high transition on CE . The internal address pointer will  
automatically increment until the highest memory address is  
reached. Once the highest memory address is reached, the  
address pointer will automatically increment to the beginning  
(wrap-around) of the address space, i.e. for 8Mbit density, once  
03H, followed by address bits [A23 -A0]. CE must remain active  
low for the duration of the Read cycle. See Figure 2 for the Read  
sequence.  
CE  
0 1 2 3 4 5 6 7 8  
15 16  
23 24  
31 32  
39 40  
47 48  
MODE3  
MODE0  
55 56  
63 64  
70  
SCK  
SI  
03  
ADD.  
MSB  
ADD.  
A DD.  
MSB  
N
N+1  
DOUT  
N+2  
DOUT  
N+3  
DOU T  
N+4  
DOU T  
HIGH IMPENDANCE  
SO  
DOU T  
MSB  
Figure 2: Read Sequence  
Fast Read (50 MHz ~ 100 MHz)  
The Fast Read instruction supporting up to 100 MHz is initiated  
by executing an 8-bit command, 0BH, followed by address bits  
all addresses until terminated by a low to high transition on CE .  
The internal address pointer will automatically increment until the  
highest memory address is reached. Once the highest memory  
address is reached, the address pointer will automatically  
increment to the beginning (wrap-around) of the address space,  
i.e. for 8Mbit density, once the data from address location  
0FFFFFH has been read, the next output will be from address  
location 000000H.  
[A23 -A0] and a dummy byte. CE must remain active low for the  
duration of the Fast Read cycle. See Figure 3 for the Fast Read  
sequence.  
Following a dummy byte (8 clocks input dummy cycle), the Fast  
Read instruction outputs the data starting from the specified  
address location. The data output stream is continuous through  
CE  
0
1 2  
3
4 5 6 7  
8
15 16  
23 24  
31 32  
39 40  
47 48  
MODE3  
MODE0  
55 56  
63 64  
71 72  
80  
SCK  
SI  
0B  
ADD.  
MSB  
ADD.  
ADD.  
X
MSB  
N
N+1  
DOUT  
N+2  
DOUT  
N+3  
DOU T  
N+4  
DOU T  
HIGH IMPENANCE  
SO  
DOU T  
MSB  
Note : X = Dummy Byte : 8 Clocks Input Dummy (VIL or VIH)  
Figure 3: Fast Read Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 14/43  
ESMT  
F25L08QA (2S)  
Fast Read Dual Output (50 MHz ~ 100 MHz)  
The Fast Read Dual Output (3BH) instruction is similar to the  
standard Fast Read (0BH) instruction except the data is output  
on bidirectional I/O pins (SIO0 and SIO1). This allows data to be  
transferred from the device at twice the rate of standard SPI  
devices. This instruction is for quickly downloading code from  
Flash to RAM upon power-up or for applications that cache code-  
segments to RAM for execution.  
The Fast Read Dual Output instruction is initiated by executing  
an 8-bit command, 3BH, followed by address bits [A23 -A0] and a  
dummy byte. CE must remain active low for the duration of the  
Fast Read Dual Output cycle. See Figure 4 for the Fast Read  
Dual Output sequence.  
CE  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
43 44  
MODE3  
MODE0  
47 48  
51 52  
55 56  
SCK  
SIO0  
IO0 switches from Input to Ouput  
Dummy  
3B  
ADD.  
MSB  
ADD.  
ADD.  
6
7
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
1
6
7
4
MSB  
DOUT  
N
DOUT  
N+1  
DOU T  
N+2  
DOU T  
N+3  
DOUT  
N+4  
5
HIGH IMPENANCE  
SIO1  
5
1
7
5
1
7
5
1
7
5
3
3
3
3
Note: The input data during the dummy clocks is “don’t care”.  
However , the IO0 pin should be high-impefance piror to the falling edge of the first data clock.  
Figure 4: Fast Read Dual Output Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 15/43  
ESMT  
F25L08QA (2S)  
Fast Read Dual I/O (50 MHz ~ 100 MHz)  
The Fast Read Dual I/O (BBH) instruction is similar to the Fast  
Read Dual Output (3BH) instruction, but with the capability to  
input address bits [A23 -A0] two bits per clock.  
If [M7 –M0] = “AxH”, the next Fast Read Dual I/O instruction (after  
CE is raised and the lowered) doesn’t need the command code  
(See Figure 6). This way let the instruction sequence reduce 8  
clocks and allows to enter address immediately after CE is  
asserted low. If [M7 –M0] are the value other than “AxH”, the next  
instruction need the first byte command code, thus returning to  
normal operation. A Mode Bit Reset (FFH) also can be used to  
reset mode bits [M7 –M0] before issuing normal instructions.  
To set mode bits [M7 -M0] after the address bits [A23 -A0] can  
further reduce instruction overhead (See Figure 5). The upper  
mode bits [M7 –M4] controls the length of next Fast Read Dual I/O  
instruction with/without the first byte command code (BBH). The  
lower mode bits [M3 –M0] are “don’t care”.  
CE  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
27 28  
31 32  
35 36  
39 40  
MODE3  
MODE0  
SCK  
SIO0  
IO0 switches from Input to Ouput  
22  
2
20 18 16 14 12 10  
6
4
5
0
1
6
4
BB  
8
9
6
7
4
2
0
6
4
2
0
6
4
2
0
6
4
2 0  
6
7
4
MSB  
DOUT  
N
DOU T  
N+1  
DOUT  
N+2  
DOUT  
N+3  
DOUT  
N+4  
5
HIGH IMPENANCE  
SIO1  
23 21 19  
11  
7
3
7
5
M7-0  
17 15 13  
5
1
7
5
1
7
5
1
7
5
1
3
3
3
3
A23-16 A15-8  
A7- 0  
Note: The mode bits [M3 -M0] are don’t care”.  
However , the IO pins should be high-impefance piror to the falling edge of the first data clock.  
Figure 5: Fast Read Dual I/O Sequence ([M7 -M0] = 0xH or NOT AxH)  
CE  
SCK  
SIO0  
MODE3  
MODE0  
0 1 2 3 4 5 6 7 8 9 10 11 121314 15 16  
1920  
2324  
2728  
3132  
IO0 switches from Input to Ouput  
22  
2
20 18 16 14 12 10  
6
4
0
1
6
4
8
6
7
4
2
0
1
6
7
4
2
0
1
6
7
4
2
0
1
6
7
4
2
0
1
6
7
4
DOUT  
N
DOUT  
N+1  
DOU T  
N+2  
DOUT  
N+3  
DOUT  
N+4  
5
SIO1  
23 21 19  
11  
9
7
5
3
7
5
17 15 13  
5
5
5
5
3
3
3
3
A23-16 A15- 8  
A7-0  
M7-0  
Note: The mode bits [M3 -M0] are “don’t care”.  
However , the IO pins should be high-impefance piror to the falling edge of the first data clock.  
Figure 6: Fast Read Dual I/O Sequence ([M7 -M0] = AxH)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 16/43  
ESMT  
F25L08QA (2S)  
Fast Read Quad Output (50 MHz ~ 100 MHz)  
The Fast Read Quad Output (6B) instruction is similar to the Fast  
Read Dual Output (3BH) instruction except the data is output on  
bidirectional I/O pins (SIO0, SIO1, SIO2 and SIO3). A Quad  
Enable (QE) bit of Status Register-1 must be set “1” to enable  
Quad function. This allows data to be transferred from the device  
at four times the rate of standard SPI devices.  
The Fast Read Quad Output instruction is initiated by executing  
an 8-bit command, 6BH, followed by address bits [A23 -A0] and a  
dummy byte. CE must remain active low for the duration of the  
Fast Read Dual Output cycle. See Figure 7 for the Fast Read  
Quad Output sequence.  
CE  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40 4142 43 44 45 46  
4748  
MODE3  
MODE0  
SCK  
IO0 switches from Input to Ouput  
Dummy  
6B  
ADD.  
MSB  
ADD.  
ADD.  
4
5
0
1
0
4
0
0
4
0
SIO0  
SIO1  
SIO2  
SIO3  
4
5
4
MSB  
HIGH IMPENANCE  
HIGH IMPENANCE  
HIGH IMPENANCE  
1
5
1
1
5
6
7
1
2
3
5
N
N+1 N+2 N+3 N+4  
DOU T DOUT DOUT DOU T DOUT  
Note: The input data during the dummy clocks is “don’t care.  
However , the IO pins should be high-impefance piror to the falling edge of the first data clock.  
Figure 7: Fast Read Quad Output Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 17/43  
ESMT  
F25L08QA (2S)  
Fast Read Quad I/O (50 MHz ~ 100 MHz)  
The Fast Read Quad I/O (EBH) instruction is similar to the Fast  
Read Quad Output (6BH) instruction, but with the capability to  
input address bits [A23 -A0] four bits per clock. A Quad Enable  
(QE) bit of Status Register-1 must be set “1” to enable Quad  
function.  
If [M7 –M0] = “AxH”, the next Fast Read Quad I/O instruction (after  
CE is raised and the lowered) doesn’t need the command code  
(See Figure 9). This way let the instruction sequence reduce 8  
clocks and allows to enter address immediately after CE is  
asserted low. If [M7 –M0] are the value other than “AxH”, the next  
instruction need the first byte command code, thus returning to  
normal operation. A Mode Bit Reset (FFH) also can be used to  
reset mode bits [M7 –M0] before issuing normal instructions.  
To set mode bits [M7 -M0] after the address bits [A23 -A0] can  
further reduce instruction overhead (See Figure 8). The upper  
mode bits [M7 –M4] controls the length of next Fast Read Quad  
I/O instruction with/without the first byte command code (EBH).  
The lower mode bits [M3 –M0] are “don’t care”.  
CE  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
MODE3  
MODE0  
SCK  
IO0 switches from Input to Ouput  
Dummy  
20  
16 12  
8
4
5
0
1
4
EB  
0
1
4
0
0
4
0
SIO0  
SIO1  
4
MSB  
HIGH IMPENANCE  
HIGH IMP ENANCE  
HIGH IMP ENANCE  
21 17 13  
22 18 14  
5
9
5
1
5
1
5
1
SIO2  
6
7
2
3
10  
6
7
2
3
6
7
2
3
6
7
2
3
6
7
2
3
SIO3  
23 19 15 11  
A23- 0  
M7-0  
N
N+1 N+2  
DOUT DOUT DOUT  
Note: The mode bits [M3 -M0] are “don’t care”.  
However , the IO pins should be high-impefance piror to the falling edge of the first data clock.  
Figure 8: Fast Read Quad I/O Sequence ([M7 -M0] = 0xH or NOT AxH)  
CE  
0
1
2
3
8
4
5
6
7
8
9 10 11 12 13 14 15 16  
MODE3  
MODE0  
SCK  
IO0 switches from Input to Ouput  
Dummy  
20  
16 12  
4
5
0
1
4
5
0
1
4
5
0
1
0
4
5
0
1
4
5
SIO0  
SIO1  
21 1 7 13  
22 18 14  
9
1
6
7
2
3
10  
6
7
2
3
6
7
2
3
6
7
2
3
SIO  
2
6
7
2
3
23 19 15 11  
SIO  
3
A23-0  
M7-0  
N
N+1 N+2  
DOUT DOUT DOU T  
Note: The mode bits [M3 -M0] are “don’t care”.  
However , the IO pins should be high-impefance piror to the falling edge of the first data clock.  
Figure 9: Fast Read Quad I/O Sequence ([M7 -M0] = AxH)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 18/43  
ESMT  
F25L08QA (2S)  
Page Program (PP)  
The Page Program instruction allows many bytes to be  
programmed in the memory. The bytes must be in the erased  
state (FFH) when initiating a Program operation. A Page  
Program instruction applied to a protected memory area will be  
ignored.  
latched data are discarded and the last 256 bytes Data are  
guaranteed to be programmed correctly within the same page. If  
less than 256 bytes Data are sent to device, they are correctly  
programmed at the requested addresses without having any  
effects on the other bytes of the same page.  
Prior to any Write operation, the Write Enable (WREN) instruction  
CE must be driven high before the instruction is executed. The  
user may poll the BUSY bit in the software status register or wait  
TPP for the completion of the internal self-timed Page Program  
operation. While the Page Program cycle is in progress, the Read  
Status Register instruction may still be accessed for checking the  
status of the BUSY bit. The BUSY bit is a 1 during the Page  
Program cycle and becomes a 0 when the cycle is finished and  
the device is ready to accept other instructions again. After the  
Page Program cycle has finished, the Write-Enable-Latch (WEL)  
bit in the Status Register-1 is cleared to 0. See Figure 10 for the  
Page Program sequence.  
must be executed. CE must remain active low for the duration  
of the Page Program instruction. The Page Program instruction is  
initiated by executing an 8-bit command, 02H, followed by  
address bits [A23-A0]. Following the address, at least one byte  
Data is input (the maximum of input data can be up to 256 bytes).  
If the 8 least significant address bits [A7-A0] are not all zero, all  
transmitted data that goes beyond the end of the current page  
are programmed from the start address of the same page (from  
the address whose 8 least significant bits [A7-A0] are all zero).  
If more than 256 bytes Data are sent to the device, previously  
Figure 10: Page Program Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
19/43  
ESMT  
F25L08QA (2S)  
Quad Page Program  
The Quad Page Program instruction allows many bytes to be  
programmed in the memory by using four I/O pins (SIO0, SIO1,  
SIO2 and SIO3). The instruction can improve programmer  
performance and the effectiveness of application that have slow  
clock speed <20MHz. For system with faster clock, this  
instruction can’t provide more actual favors, because the required  
internal page program time is far more than the time data flows in.  
Therefore, we suggest that user can execute this command while  
the clock speed <20MHz.  
Prior to Quad Page Program operation, the Write Enable (WREN)  
instruction must be executed and Quad Enable (QE) bit of Status  
Register must be set “1”. The other function descriptions are as  
same as standard Page Program. See Figure 11 for the Quad  
Page Program sequence.  
CE  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32 3334 35 36 37 3839  
MODE3  
MODE0  
SCK  
SS  
32  
ADD.  
MSB  
ADD.  
ADD.  
4
5
0
1
0
1
4
5
0
1
0
1
4
0
SIO0  
SIO1  
SIO2  
SIO3  
4
5
4
5
SS  
MSB  
SS  
SS  
SS  
5
6
7
1
2
3
DIN 0 DIN 1 DIN2 DIN3  
DIN255  
Figure 11: Quad Page Program Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 20/43  
ESMT  
F25L08QA (2S)  
Mode Bit Reset  
Mode bits [M7 –M0] are issued to further reduce instruction  
overhead for Fast Read Dual/Quad I/O operation. If [M7 –M0] =  
“AxH”, the next Fast Read Dual/Quad I/O instruction doesn’t  
need the command code.  
However, the device doesn’t have a hardware reset pin, so if  
[M7 –M0] = “AxH”, the device will not recognize any standard SPI  
instruction. After a system reset, it is recommended to issue a  
Mode Bit Reset instruction first to release the status of [M7 –M0] =  
“AxH” and allow the device to recognize standard SPI instruction.  
See Figure 12 for the Mode Bit Reset instruction.  
If the system controller is reset during operation, it will send a  
standard instruction (such as Read ID) to the Flash memory.  
Mode bit Reset for Dual I/O  
Mode bit Reset for Quad I/O  
CE  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
MODE3  
SCK MODE0  
SIO0  
SIO1  
FF  
FF  
SIO2  
SIO3  
Note: To reset mode bits during Quad I/O operation, only eight clocks are needed. The command code is “FFH”.  
To reset mode bits during Dual I/O operation, sixteen clocks are needed to shift in command code “FFFFH”.  
Figure 12: Mode Bit Reset Instruction  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 21/43  
ESMT  
F25L08QA (2S)  
64K Byte Block Erase  
The 64K-byte Block Erase instruction clears all bits in the  
selected block to FFH. A Block Erase instruction applied to a  
protected memory area will be ignored. Prior to any Write  
operation, the Write Enable (WREN) instruction must be  
-A0]. Address bits [AMS -A16] (AMS = Most Significant address) are  
used to determine the block address (BAX), remaining address  
bits can be VIL or VIH. CE must be driven high before the  
instruction is executed. The user may poll the BUSY bit in the  
Software Status Register or wait TBE for the completion of the  
internal self-timed Block Erase cycle. See Figure 13 for 64K Byte  
Block Erase sequence.  
executed. CE must remain active low for the duration of the any  
command sequence. The Block Erase instruction is initiated by  
executing an 8-bit command, D8H, followed by address bits [A23  
CE  
0 1 2 3 4 5 6 7 8  
15 16  
23 24  
31  
MODE3  
MODE0  
SCK  
ADD.  
ADD.  
ADD.  
D8  
SI  
MSB  
MSB  
HIGH IMPENANCE  
SO  
Figure 13: 64K-byte Block Erase Sequence  
32K Byte Block Erase  
The 32K-byte Block Erase instruction clears all bits in the  
selected block to FFH. A Block Erase instruction applied to a  
protected memory area will be ignored. Prior to any Write  
operation, the Write Enable (WREN) instruction must be  
-A0]. Address bits [AMS -A15] (AMS = Most Significant address) are  
used to determine the block address (BAX), remaining address  
bits can be VIL or VIH. CE must be driven high before the  
instruction is executed. The user may poll the BUSY bit in the  
Software Status Register or wait TBE for the completion of the  
internal self-timed Block Erase cycle. See Figure 14 for 32K Byte  
Block Erase sequence.  
executed. CE must remain active low for the duration of the any  
command sequence. The Block Erase instruction is initiated by  
executing an 8-bit command, 52H, followed by address bits [A23  
CE  
0 1 2 3 4 5 6 7 8  
15 16  
23 24  
31  
MODE3  
MODE0  
SCK  
ADD.  
ADD.  
ADD.  
52  
SI  
MSB  
MSB  
HIGH IMPENANCE  
SO  
Figure 14: 32K-byte Block Erase Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 22/43  
ESMT  
F25L08QA (2S)  
4K Byte Sector Erase  
The Sector Erase instruction clears all bits in the selected sector  
to FFH. A Sector Erase instruction applied to a protected memory  
area will be ignored. Prior to any Write operation, the Write  
[AMS -A12] (AMS = Most Significant address) are used to determine  
the sector address (SAX), remaining address bits can be VIL or  
VIH. CE must be driven high before the instruction is executed.  
The user may poll the BUSY bit in the Software Status Register  
or wait TSE for the completion of the internal self-timed Sector  
Erase cycle. See Figure 15 for the Sector Erase sequence.  
Enable (WREN) instruction must be executed. CE must remain  
active low for the duration of the any command sequence. The  
Sector Erase instruction is initiated by executing an 8-bit  
command, 20H, followed by address bits [A23 -A0]. Address bits  
CE  
0 1 2 3 4 5 6 7 8  
15 16  
23 24  
31  
MODE3  
MODE0  
SCK  
ADD.  
ADD.  
ADD.  
20  
SI  
MSB  
MSB  
HIGH IMPENANCE  
SO  
Figure 15: 4K-byte Sector Erase Sequence  
Chip Erase  
The Chip Erase instruction clears all bits in the device to FFH. A  
Chip Erase instruction will be ignored if any of the memory area is  
protected. Prior to any Write operation, the Write Enable (WREN)  
Erase instruction is initiated by executing an 8-bit command, 60H  
or C7H. CE must be driven high before the instruction is  
executed. The user may poll the BUSY bit in the Software Status  
Register or wait TCE for the completion of the internal self-timed  
Chip Erase cycle. See Figure 16 for the Chip Erase sequence.  
instruction must be executed. CE must remain active low for  
the duration of the Chip Erase instruction sequence. The Chip  
CE  
0 1 2 3 4 5 6 7  
MODE3  
SCK  
SI  
MODE0  
60 or C7  
MSB  
HIGH IMPENANCE  
SO  
Figure 16: Chip Erase Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 23/43  
ESMT  
F25L08QA (2S)  
Erase Suspend  
The Erase Suspend instruction allows the system to interrupt a  
Sector or Block Erase operation and then read from any other  
sector or block. The Write Status Register instruction and Sector /  
Block Erase instructions are not allowed during suspend. Erase  
Suspend is valid only during the Sector or Block Erase operation.  
If written during the Chip Erase or Program operation, the Erase  
Suspend instruction is ignored. A maximum of TSUS is required to  
suspend the erase operation. The BUSY bit in the Software  
Status Register will clear to “0” after Erase Suspend. A power-off  
during the suspend period will reset the device and release the  
suspend status.  
CE  
0
1
2
3
4
5
6
7
MODE3  
TSUS  
SCK MODE0  
SI  
75  
MSB  
HIGH IMPEDANCE  
SO  
Accept Read or Program Instruction  
Figure 17: Erase Suspend Instruction  
Erase Resume  
The Erase Resume instruction must be written to resume the  
Sector or Block Erase operation after Erase Suspend. After  
issued the BUSY bit in the Software Status Register will be set to  
“1” and the sector or block will complete the erase operation.  
Erase Resume instruction will be ignored unless an Erase  
Suspend operation is active.  
CE  
0
1
2
3
4
5
6
7
MODE3  
SCK MODE0  
SI  
7A  
MSB  
Resume Sector or Block Erase  
Figure 18: Erase Resume Instruction  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
24/43  
ESMT  
F25L08QA (2S)  
Write Enable (WREN)  
The Write Enable (WREN) instruction sets the Write-Enable-  
Latch bit in the Software Status Register to 1 allowing Write  
operations to occur.  
(Program/Erase) operation. CE must be driven high before the  
WREN instruction is executed.  
The WREN instruction must be executed prior to any Write  
CE  
0 1 2 3 4 5 6 7  
MODE3  
MODE0  
SCK  
SI  
06  
MSB  
HIGH IMPENANCE  
SO  
Figure 19: Write Enable (WREN) Sequence  
Write Disable (WRDI)  
The Write Disable (WRDI) instruction resets the Write-Enable-  
Latch bit to 0 disabling any new Write operations from occurring  
or exits from OTP mode to normal mode.  
CE must be driven high before the WRDI instruction is  
executed.  
CE  
0 1 2 3 4 5 6 7  
MODE3  
SCK  
SI  
MODE0  
04  
MSB  
HIGH IMPENANCE  
SO  
Figure 20: Write Disable (WRDI) Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 25/43  
ESMT  
F25L08QA (2S)  
Write Status Register (WRSR)  
The Write Status Register instruction writes new values to the  
BP3, BP2, BP1, BP0, QE and BPL (Status Register-1) bits of the  
When WP is high, the lock-down function of the BPL bit is  
disabled and the BPL, BP0, BP1, BP2 and BP3 bits in the status  
status register. CE must be driven low before the command  
sequence of the WRSR instruction is entered and driven high  
register can all be changed. As long as BPL bit is set to 0 or WP  
pin is driven high (VIH) prior to the low-to-high transition of the  
before the WRSR instruction is executed. CE must be driven  
high after the eighth bit of data that is clocked in. If it is not done,  
the WRSR instruction will not be issued. See Figure 21 for  
WREN and WRSR instruction sequences.  
CE pin at the end of the WRSR instruction, the bits in the status  
register can all be altered by the WRSR instruction. In this case,  
a single WRSR instruction can set the BPL bit to “1” to lock down  
the status register as well as altering the BP0; BP1, BP2 and BP3  
bits at the same time. See Table 4 for a summary description of  
Executing the Write Status Register instruction will be ignored  
when WP is low and BPL bit is set to “1”. When the WP is  
low, the BPL bit can only be set from “0” to “1” to lock down the  
status register, but cannot be reset from “1” to “0”.  
WP and BPL functions.  
CE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
MODE3  
MODE0  
SCK  
Stauts Register-1  
Data In  
06  
01  
7
6
4
3
2
0
1
SI  
5
MSB  
MSB  
HIGH IMPENANCE  
SO  
Figure 21: Write Enable (WREN) and Write Status Register (WRSR)  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction allows reading of  
the status register. The status register may be read at any time  
even during a Write (Program/Erase) operation. When a Write  
operation is in progress, the BUSY bit may be checked before  
sending any new commands to assure that the new commands  
are properly received by the device.  
and remain low until the status data is read. The RDSR-1  
instruction code is “05H” for Status Register-1. The RDSR-2  
instruction code is “35H” for Status Register-2. Read Status  
Register is continuous with ongoing clock cycles until it is  
terminated by a low to high transition of the CE . See Figure 22  
for the RDSR instruction sequence.  
CE must be driven low before the RDSR instruction is entered  
CE  
MODE3  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK MODE0  
05 or 35  
SI  
MSB  
HIGH IMPEDANCE  
SO  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
MSB  
Status Register -1 or -2 Data Out  
Figure 22: Read Status Register (RDSR-1 or RDSR-2) Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 26/43  
ESMT  
F25L08QA (2S)  
Enter OTP Mode (ENSO)  
The ENSO (B1H) instruction is for entering the additional 512  
bytes secured OTP mode. The additional 512 bytes secured OTP  
sector is independent from main array, which may use to store  
unique serial number for system identifier. User must unprotect  
whole array (BP0=BP1=BP2=BP3=0), prior to any Program  
operation in OTP sector. After entering the secured OTP mode,  
only the secured OTP sector can be accessed and user can only  
follow the Read or Program procedure with OTP address range  
(address bits [A23 –A9] must be “0”). The secured OTP data  
cannot be updated again once it is lock down or has been  
programmed. In secured OTP mode, WRSR command will  
ignore the input data and lock down the secured OTP sector  
(OTP_lock bit =1). To exit secured OTP mode, user must  
execute WRDI command. RES can be used to verify the secured  
OTP status as shown in Table 6.  
Figure 23: Enter OTP Mode (ENSO) Sequence  
OTP Sector Address  
Size  
Address Range  
512 bytes  
000000H ~ 0001FFH  
Note: The OTP sector is an independent Sector.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
27/43  
ESMT  
F25L08QA (2S)  
Deep Power Down (DP)  
The Deep Power Down instruction is for minimizing power  
consumption (the standby current is reduced from ISB1 to ISB2.).  
Once the device is in deep power down status, all instructions will  
be ignored except the Release from Deep Power Down  
instruction (RDP) and Read Electronic Signature instruction  
(RES). The device always power-up in the normal operation with  
the standby current (ISB1). See Figure 24 for the Deep Power  
Down instruction.  
This instruction is initiated by executing an 8-bit command, B9H,  
and then CE must be driven high. After CE is driven high, the  
device will enter to deep power down within the duration of TDP  
.
CE  
MODE3  
0
1
2
3
4
5
6
7
TDP  
SCK MODE0  
B9  
SI  
MSB  
Standard Current  
Deep Power Down Current  
(ISB2)  
Figure 24: Deep Power Down Instruction  
Release from Deep Power Down (RDP) and Read Electronic-Signature (RES)  
The Release form Deep Power Down and Read  
Electronic-Signature instruction is a multi-purpose instruction.  
CE low and executing an 8-bit command, ABH, followed by 3  
dummy bytes. The Electronic-Signature byte is then output from  
the device. The Electronic-Signature can be read continuously  
The instruction can be used to release the device from the deep  
power down status. This instruction is initiated by driving CE  
until CE go high. See Figure 26 for RES sequence. After  
driving CE high, it must remain high during for the duration of  
TRES2, and then the device will resume normal operation and  
other instructions are accepted.  
low and executing an 8-bit command, ABH, and then drive CE  
high. See Figure 25 for RDP instruction. Release from the deep  
power down will take the duration of TRES1 before the device will  
resume normal operation and other instructions are accepted.  
The instruction is executed while an Erase, Program or WRSR  
cycle is in progress is ignored and has no effect on the cycle in  
progress. In OTP mode, user also can execute RES to confirm  
the status of OTP.  
CE must remain high during TRES1  
.
The instruction also can be used to read the 8-bit Electronic-  
Signature of the device on the SO pin. It is initiated by driving  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
28/43  
ESMT  
F25L08QA (2S)  
CE  
MODE3  
0
1
2
3
4
5
6
7
TRES1  
SCK MODE0  
AB  
SI  
MSB  
HIGH IMPEDANCE  
SO  
Standby Current  
Deep Power Down Current  
(ISB2)  
Figure 25: Release from Deep Power Down (RDP) Instruction  
CE  
30 31 32 33 34 35 36 37 38  
0
1
2
3
4
5
6
7
8
9
MODE3  
TRES2  
SCK MODE0  
SS  
3 Dummy Bytes  
SS  
AB  
SI  
MSB  
HIGH IMPEDANCE  
SS  
Electronic-Signature Data Out  
SO  
MSB  
Standby  
Current  
Deep Power Down Current  
(ISB2)  
Figure 26: Read Electronic -Signature (RES) Sequence  
Table 6: Electronic Signature Data  
Command  
Mode  
Electronic Signature Data  
Normal  
13H  
In secured OTP mode &  
33H  
73H  
RES  
non lock down (OTP_lock =0)  
In secured OTP mode &  
lock down (OTP_lock =1)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 29/43  
ESMT  
F25L08QA (2S)  
JEDEC Read-ID  
The JEDEC Read-ID instruction identifies the device as  
F25L08QA and the manufacturer as ESMT. The device  
information can be read from executing the 8-bit command, 9FH.  
Following the JEDEC Read-ID instruction, the 8-bit  
manufacturer’s ID, 8CH, is output from the device. After that, a  
16-bit device ID is shifted out on the SO pin. Byte1, 8CH,  
identifies the manufacturer as ESMT. Byte2, 40H, identifies the  
memory type as SPI Flash. Byte3, 14H, identifies the device as  
F25L08QA. The instruction sequence is shown in Figure 27.  
The JEDEC Read ID instruction is terminated by a low to high  
transition on CE at any time during data output. If no other  
command is issued after executing the JEDEC Read-ID  
instruction, issue a 00H (NOP) command before going into  
Standby Mode ( CE =VIH).  
CE  
0
1
2
3
4 5 6 7 8 9 10 11 12 13 1415 1617 1819 2021 22 23 24 25 2627 2829 3031  
MODE3  
MODE0  
SCK  
9F  
SI  
MSB  
HIGH IMPENANCE  
SO  
8C  
40  
14  
MSB  
MSB  
MSB  
Figure 27: JEDEC Read-ID Sequence  
Table 7: JEDEC Read-ID Data  
Device ID  
Manufacturer’s ID  
(Byte 1)  
Memory Type  
(Byte 2)  
Memory Capacity  
(Byte 3)  
8CH  
40H  
14H  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 30/43  
ESMT  
F25L08QA (2S)  
Read-ID (RDID)  
The Read-ID instruction (RDID) identifies the devices as  
F25L08QA and manufacturer as ESMT. This command is  
backward compatible to all ESMT SPI devices and should be  
used as default device identification when multiple versions of  
ESMT SPI devices are used in one design. The device  
information can be read from executing an 8-bit command, 90H,  
followed by address bits [A23 -A0]. Following the Read-ID  
instruction, the manufacturer’s ID is located in address 000000H  
and the device ID is located in address 000001H.  
Once the device is in Read-ID mode, the manufacturer’s and  
device ID output data toggles between address 000000H and  
000001H until terminated by a low to high transition on CE .  
CE  
15 16  
31 32  
0
1
2
3
4
5
6
7
8
23 24  
MSB  
39 40  
47 48  
55 56  
63  
MODE3  
SCK MODE0  
SI  
90  
00  
00  
ADD1  
MSB  
HIGH  
IMPENANCE  
HIGH IMPENANCE  
SO  
8C  
13  
8C  
13  
MSB  
Note: The Manufacture’s and Device IDoutput stream iscontinuous until terminated by a low to high transition on CE.  
1. 00H will output the Manufacture’s ID first and 01H will output Device ID first before toggling between the two. .  
Figure 28: Read ID Sequence  
Table 8: Product ID Data  
Address  
Byte1  
Byte2  
8CH  
13H  
000000H  
Device ID  
Manufacturer’s ID  
ESMT F25L08QA  
13H  
8CH  
000001H  
Device ID  
Manufacturer’s ID  
ESMT F25L08QA  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 31/43  
ESMT  
F25L08QA (2S)  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Stress Ratings  
(Applied conditions are greater than those listed under “Absolute Maximum Stress Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the  
operational sections of this datasheet is not implied. Exposure to absolute maximum stress rating conditions may affect device  
reliability.)  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
D. C. Voltage on Any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDD+0.5V  
Transient Voltage (<20 ns) on Any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0V to VDD+2.0V  
Package Power Dissipation Capability (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W  
Surface Mount Lead Soldering Temperature (3 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Output Short Circuit Current (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
( Note 1: Output shorted for no more than one second. No more than one output shorted at a time. )  
TABLE 9: AC CONDITIONS OF TEST  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ns  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . CL = 15 pF for 75MHz  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CL = 30 pF for 50MHz  
See Figures 34 and 35  
TABLE 10: OPERATING RANGE  
Parameter  
Symbol  
VDD  
Value  
Unit  
2.7 ~ 3.6  
-40 ~ +85  
Operating Supply Voltage  
Ambient Operating Temperature  
V
TA  
TABLE 11: DC OPERATING CHARACTERISTICS  
Limits  
Max  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
Standard  
Dual  
Quad  
Standard  
Dual  
Quad  
Standard  
Dual  
Quad  
9
10.5  
12  
10  
12  
13.5  
15  
16.5  
18  
Read Current  
@ 33MHz  
IDDR1  
mA  
mA  
mA  
CE =0.1 VDD/0.9 VDD, SO=open  
Read Current  
@ 50MHz  
IDDR2  
CE =0.1 VDD/0.9 VDD, SO=open  
CE =0.1 VDD/0.9 VDD, SO=open  
Read Current  
@ 86MHz  
IDDR3  
Standard  
Dual  
Quad  
22  
23.5  
25  
Read Current  
@ 100MHz  
IDDR4  
IDDW  
IDDE  
mA  
mA  
CE =0.1 VDD/0.9 VDD, SO=open  
CE =VDD  
Program and Write Status  
Register Current  
20  
Sector and Block Erase Current  
Chip Erase Current  
20  
20  
25  
10  
mA  
mA  
µA  
CE =VDD  
CE =VDD  
ISB1  
ISB2  
Standby Current  
CE =VDD, VIN =VDD or VSS  
CE =VDD, VIN =VDD or VSS  
Deep Power Down Current  
µA  
ILI  
ILO  
VIL  
VIH  
VOL  
VOH  
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
1
1
µA VIN=GND to VDD, VDD=VDD Max  
µA VOUT=GND to VDD, VDD=VDD Max  
V
V
-0.5  
0.7 x VDD  
0.3 x VDD  
VDD +0.4  
0.4  
V
V
IOL=1.6 mA  
IOH=-100 µA  
VDD-0.2  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 32/43  
ESMT  
F25L08QA (2S)  
TABLE 12: LATCH UP CHARACTERISTIC  
Symbol  
Parameter  
Latch Up  
Minimum  
Unit  
Test Method  
JEDEC Standard 78  
1
ILTH  
100 + IDD  
mA  
Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.  
TABLE 13: CAPACITANCE (TA = 25°C, f=1 MHz, other pins open)  
Parameter  
Description  
Test Condition  
VOUT = 0V  
Maximum  
8 pF  
1
COUT  
Output Pin Capacitance  
Input Capacitance  
1
CIN  
VIN = 0V  
6 pF  
Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.  
TABLE 14: AC OPERATING CHARACTERISTICS  
Normal 33MHz Fast 50 MHz  
Fast 86 MHz  
Fast 100 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
FCLK  
Serial Clock Frequency  
33  
50  
86  
100  
MHz  
ns  
TSCKH  
TSCKL  
Serial Clock High Time  
13  
13  
0.1  
0.1  
5
9
9
6
6
4
4
Serial Clock Low Time  
ns  
2
TCLCH  
Clock Rise Time (Slew Rate)  
Clock Fall Time (Slew Rate)  
0.1  
0.1  
5
0.1  
0.1  
5
0.1  
0.1  
5
V/ns  
V/ns  
ns  
2
TCHCL  
1
TCES  
CE Active Setup Time  
CE Active Hold Time  
CE Not Active Setup Time  
CE Not Active Hold Time  
CE Deselect Time  
1
TCEH  
5
5
5
5
ns  
1
TCHS  
5
5
5
5
ns  
1
TCHH  
5
5
5
5
ns  
TCPH  
TCHZ  
TCLZ  
TDS  
10  
10  
10  
10  
ns  
7
7
7
7
ns  
CE High to High-Z Output  
SCK Low to Low-Z Output  
Data In Setup Time  
0
2
1
5
5
5
5
0
2
1
5
5
5
5
0
2
1
5
5
5
5
0
2
1
5
5
5
5
ns  
ns  
TDH  
Data In Hold Time  
ns  
THLS  
THHS  
THLH  
THHH  
ns  
HOLD Low Setup Time  
HOLD High Setup Time  
HOLD Low Hold Time  
ns  
ns  
ns  
HOLD High Hold Time  
HOLD Low to High-Z Output  
HOLD High to Low-Z Output  
3
THZ  
8
8
8
8
8
8
8
8
ns  
3
TLZ  
ns  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 33/43  
ESMT  
F25L08QA (2S)  
TABLE 14: AC OPERATING CHARACTERISTICS - Continued  
Normal 33MHz Fast 50 MHz  
Fast 86 MHz  
Fast 100 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
TOH  
TV  
Output Hold from SCK Change  
0
0
0
0
ns  
ns  
ns  
ns  
us  
us  
us  
us  
Output Valid from SCK  
12  
8
8
8
4
TWHSL  
20  
20  
20  
20  
Write Protect Setup Time before CE Low  
Write Protect Hold Time after CE High  
CE High to Deep Power Down Mode  
CE High to Standby Mode ( for DP)  
CE High to Standby Mode (for RES)  
CE High to next Instruction after Suspend  
4
TSHWL  
100  
100  
100  
100  
3
TDP  
3
3
3
3
3
3
3
3
3
TRES1  
3
TRES2  
1.8  
20  
1.8  
20  
1.8  
20  
1.8  
20  
3
TSUS  
Note:  
1. Relative to SCK.  
2. TSCKH + TSCKL must be less than or equal to 1/ FCLK  
.
3. Value guaranteed by characterization, not 100% tested in production.  
4. Only applicable as a constraint for a Write status Register instruction when Block- Protection-Look (BPL) bit is set at 1.  
TABLE 15: ERASE AND PROGRAMMING PERFORMANCE  
Limit  
Unit  
Parameter  
Symbol  
Typ2  
Max3  
250  
1000  
1.5  
15  
Sector Erase Time (4KB)  
TSE  
TBE1  
TBE2  
TCE  
TW  
90  
ms  
ms  
Block Erase Time (32KB)  
Block Erase Time (64KB)  
Chip Erase Time  
500  
0.75  
7
s
s
Write Status Register Time  
Page Programming Time  
Erase/Program Cycles1  
Data Retention  
10  
15  
ms  
TPP  
1.5  
5
ms  
100,000  
20  
-
Cycles  
Years  
-
Notes:  
1. Not 100% Tested, Excludes external system level over head.  
2. Typical values measured at 25°C, 3V.  
3. Maximum values measured at 85°C, 2.7V.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 34/43  
ESMT  
F25L08QA (2S)  
Figure 29: Serial Input Timing Diagram  
Figure 30: Serial Output Timing Diagram  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
35/43  
ESMT  
F25L08QA (2S)  
CE  
SCK  
SO  
SI  
HOLD  
Figure 31: HOLD Timing Diagram  
WP  
CE  
TSHWL  
TWHSL  
SCK  
SI  
HIGH IMPENANCE  
SO  
Figure 32: Write Protect setup and hold timing during WRSR when BPL = 1  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
36/43  
ESMT  
F25L08QA (2S)  
VDD  
VDD (max)  
Program, Erase and Write command is ignored  
CE must track VDD  
VDD (min)  
Read command  
is allowed  
T
VSL  
Device is fully  
accessible  
Reset  
State  
VWI  
T
PUW  
Time  
Figure 33: Power-Up Timing Diagram  
Table 16: Power-Up Timing and VWI Threshold  
Unit  
Parameter  
Symbol  
Min.  
10  
1
Max.  
TVSL  
TPUW  
VWI  
us  
ms  
V
VDD(min) to CE low  
Time Delay before Write instruction  
10  
Write Inhibit Threshold Voltage  
1
2.5  
Note: These parameters are characterized only.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 37/43  
ESMT  
F25L08QA (2S)  
Input timing reference level  
Output timing reference level  
0.8VDD  
0.2VDD  
0.7VDD  
0.3VDD  
AC  
Measurement  
Level  
0.5VDD  
Note : Input pulse rise and fall time are <5ns  
Figure 34: AC Input/Output Reference Waveforms  
Figure 35: A Test Load Example  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2  
38/43  
ESMT  
F25L08QA (2S)  
PACKAGING DIMENSIONS  
8-LEAD  
SOIC ( 150 mil )  
8
5
GAUGE PLANE  
L
DETAIL "X"  
1
4
e
b
D
L1  
"X"  
SEATING PLANE  
Dimension in mm  
Dimension in inch  
Dimension in mm  
Dimension in inch  
Symbol  
Symbol  
Min  
1.35  
0.10  
1.25  
0.33  
0.19  
5.80  
Norm  
1.60  
Max  
1.75  
0.25  
1.55  
0.51  
Min  
Norm  
0.063  
0.006  
0.057  
0.016  
Max  
Min  
Norm  
4.90  
Max  
Min  
Norm  
0.193  
Max  
0.197  
0.157  
0.034  
A
A1  
A2  
b
0.053  
0.004  
0.049  
0.013  
0.069  
0.010  
0.061  
0.020  
0.010  
0.244  
D
E
L
4.80  
3.80  
0.40  
5.00  
4.00  
0.86  
0.189  
0.150  
0.016  
0.15  
3.90  
0.154  
1.45  
0.66  
0.026  
0.406  
0.203  
6.00  
e
1.27 BSC  
1.05  
0.050 BSC  
0.041  
c
0.25 0.0075 0.008  
6.20 0.228 0.236  
1.00  
1.10  
0.039  
0.043  
L1  
0  
8  
0  
8  
H
---  
---  
Controlling dimension : millimenter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 39/43  
ESMT  
F25L08QA (2S)  
PACKING DIMENSIONS  
8-LEAD SOIC 200 mil ( official name – 208 mil )  
θ
5
8
4
1
b
e
D
L
L1  
SEATING PLANE  
DETAIL "X"  
Dimension in mm  
Dimension in inch  
Dimension in mm  
Dimension in inch  
Symbol  
Symbol  
Min  
---  
Norm  
---  
Max  
2.16  
0.25  
1.91  
0.51  
0.25  
5.33  
Min  
Norm  
---  
Max  
Min  
Norm  
7.90  
Max  
Min  
Norm  
0.311  
Max  
0.319  
0.212  
0.032  
A
A1  
A2  
b
---  
0.085  
0.010  
0.075  
0.020  
0.010  
0.210  
E
E1  
L
7.70  
5.18  
0.50  
8.10  
5.38  
0.80  
0.303  
0.204  
0.020  
0.05  
1.70  
0.36  
0.19  
5.13  
0.15  
1.80  
0.41  
0.20  
5.23  
0.002  
0.067  
0.014  
0.007  
0.202  
0.006  
0.071  
0.016  
0.008  
0.206  
5.28  
0.208  
0.65  
0.026  
e
1.27 BSC  
1.37  
0.050 BSC  
0.054  
c
1.27  
1.47  
0.050  
0.058  
L1  
0  
8  
0  
8  
D
---  
---  
Controlling dimension : millimenter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 40/43  
ESMT  
F25L08QA (2S)  
PACKING DIMENSIONS  
8-CONTACT  
WSON ( 6x5 mm )  
D
PIN# 1  
L
DETAIL : "B"  
"A"  
D2  
DETAIL : "A"  
"B"  
PIN# 1  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
0.70  
0.00  
0.35  
5.90  
2.50  
4.90  
2.10  
Norm  
0.75  
0.02  
0.40  
6.00  
2.60  
5.00  
2.20  
Max  
0.80  
0.05  
0.45  
6.10  
2.70  
5.10  
2.30  
Min  
Norm  
0.030  
0.001  
0.016  
0.236  
0.102  
0.197  
0.087  
Max  
A
A1  
b
D
D2  
E
E2  
e
L
0.028  
0.000  
0.014  
0.232  
0.098  
0.193  
0.083  
0.031  
0.002  
0.018  
0.240  
0.106  
0.201  
0.091  
1.27 BSC  
0.60  
0.050 BSC  
0.024  
0.55  
0.65  
0.022  
0.026  
Controlling dimension : millimeter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 41/43  
ESMT  
F25L08QA (2S)  
Revision History  
Revision  
Date  
Description  
0.1  
2011.09.30  
Original  
1.Add WSON package  
0.2  
2012.02.13  
2.Modify the specification of TSE, TBE1, TBE2,TCE and TPP  
1. Delete "Preliminary"  
2. Modify Ambient Operating Temperature  
1.0  
2012.09.24  
3. Correct the description of Block Protection and Block  
Protection Lock-Down  
1.1  
1.2  
Correct the description of Erase Suspend  
2012.10.11  
2013.11.29  
1. Modify the figures of Read Sequence and Fast Read  
Dual I/O Sequence ([M7 -M0] = AxH)  
2. Correct max. value of TWHSL and TSHWL to min. value  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 42/43  
ESMT  
F25L08QA (2S)  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or  
by any means without the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at  
the time of publication. ESMT assumes no responsibility for any error in  
this document, and reserves the right to change the products or  
specification in this document without notice.  
The information contained herein is presented only as a guide or  
examples for the application of our products. No responsibility is  
assumed by ESMT for any infringement of patents, copyrights, or other  
intellectual property rights of third parties which may result from its use.  
No license, either express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of ESMT or  
others.  
Any semiconductor devices may have inherently a certain rate of failure.  
To minimize risks associated with customer's application, adequate  
design and operating safeguards against injury, damage, or loss from  
such failure, should be provided by the customer when making  
application designs.  
ESMT's products are not authorized for use in critical applications such  
as, but not limited to, life support devices or system, where failure or  
abnormal operation may directly affect human lives or cause physical  
injury or property damage. If products described here are to be used for  
such kinds of application, purchaser must do its own quality assurance  
testing appropriate to such applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Nov. 2013  
Revision: 1.2 43/43  

相关型号:

F25L08QA-100PAG2S

Flash, 8MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L08QA-100PG2S

Flash, 8MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L08QA-50HG2S

Flash, 8MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8
ESMT

F25L08QA-50PAG2S

Flash, 8MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L08QA-50PG2S

Flash, 8MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L08QA-86HG2S

Flash, 8MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8
ESMT

F25L08QA-86PAG2S

Flash, 8MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L08QA-86PG2S

Flash, 8MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L16PA

3V Only 16 Mbit Serial Flash Memory with Dual
ESMT

F25L16PA-100DG

3V Only 16 Mbit Serial Flash Memory with Dual
ESMT

F25L16PA-100DG2S

Flash, 16MX1, PDIP8, 0.300 INCH, 2.54 MM PITCH, ROHS COMPLIANT, PLASTIC, DIP-8
ESMT

F25L16PA-100HG2S

Flash, 16MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8
ESMT