F25L01PA-50HG [ESMT]

Flash, 1MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8;
F25L01PA-50HG
型号: F25L01PA-50HG
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

Flash, 1MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8

光电二极管
文件: 总37页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
F25L01PA  
Flash  
3V Only 1 Mbit Serial Flash Memory  
with Dual Output  
„ FEATURES  
y
y
Single supply voltage 2.7~3.6V  
Standard, Dual SPI  
y
Erase  
- Chip erase time 1 sec (typical)  
- Block erase time 0.75 sec (typical)  
- Sector erase time 90 ms (typical)  
y
y
Speed  
- Read max frequency: 33MHz  
- Fast Read max frequency: 50MHz; 86MHz; 100MHz  
- Fast Read Dual max frequency: 50MHz / 86MHz  
(100MHz / 172MHz equivalent Dual SPI)  
y
y
Page Programming  
- 256 byte per programmable page  
SPI Serial Interface  
- SPI Compatible: Mode 0 and Mode 3  
Low power consumption  
- Active current: 22 mA  
- Standby current: 25μ A  
y
y
End of program or erase detection  
Write Protect ( WP )  
- Deep Power Down current: 10μ A  
y
y
Reliability  
y
y
Hold Pin (HOLD )  
- 100,000 typical program/erase cycles  
- 20 years Data Retention  
All Pb-free products are RoHS-Compliant  
Program  
- Page programming time: 1.5 ms (typical)  
„ ORDERING INFORMATION  
Product ID  
Speed  
Package  
Comments  
F25L01PA –50PG  
F25L01PA –86PG  
F25L01PA –100PG  
F25L01PA –50PAG  
F25L01PA –86PAG  
F25L01PA –100PAG  
F25L01PA –50SG  
F25L01PA –86SG  
F25L01PA –100SG  
F25L01PA –50DG  
F25L01PA –86DG  
F25L01PA –100DG  
F25L01PA –50HG  
F25L01PA –86HG  
F25L01PA –100HG  
F25L01PA –50UG  
F25L01PA –86UG  
F25L01PA –100UG  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
50MHz  
86MHz  
100MHz  
8-lead  
SOIC  
150 mil  
200 mil  
Pb-free  
8-lead  
SOIC  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
8-pin  
TSSOP  
173 mil  
(4.4mm)  
8-pin  
PDIP  
300 mil  
6x5 mm  
2x3 mm  
8-contact  
WSON  
8-contact  
USON  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 1/37  
ESMT  
F25L01PA  
„ GENERAL DESCRIPTION  
The F25L01PA is a 1Megabit, 3V only CMOS Serial Flash  
memory device. The device supports the standard Serial  
Peripheral Interface (SPI), and a Dual SPI. ESMT’s memory  
devices reliably store memory data even after 100,000  
programming and erase cycles.  
is divided into 32 uniform sectors with 4K byte each; 2 uniform  
blocks with 64K byte each. Sectors can be erased individually  
without affecting the data in other sectors. Blocks can be erased  
individually without affecting the data in other blocks. Whole chip  
erase capabilities provide the flexibility to revise the data in the  
device. The device has Sector, Block or Chip Erase but no page  
erase.  
The memory array can be organized into 512 programmable  
pages of 256 byte each. 1 to 256 byte can be programmed at a  
time with the Page Program instruction.  
The sector protect/unprotect feature disables both program and  
erase operations in any combination of the sectors of the  
memory.  
The device features sector erase architecture. The memory array  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
2/37  
ESMT  
F25L01PA  
„ PIN CONFIGURATIONS  
8- Lead SOIC  
(SOIC 8L, 150mil Body, 1.27mm Pin Pitch)  
(SOIC 8L, 208mil Body, 1.27mm Pin Pitch)  
1
8
VDD  
CE  
HOLD  
SCK  
SO  
2
3
7
6
WP  
SI  
VSS  
4
5
8- Pin PDIP  
(PDIP 8P, 300mil Body, 2.54mm Pin Pitch)  
1
8
VDD  
CE  
HOLD  
SCK  
SO  
2
3
7
6
WP  
SI  
VSS  
4
5
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 3/37  
ESMT  
F25L01PA  
8- Pin TSSOP  
(TSSOP 8P, 173mil (4.4mm) Body, 0.65mm Pin Pitch)  
V
DD  
CE  
SO  
WP  
8
7
6
1
2
3
HOLD  
SCK  
SI  
4
5
V
SS  
8- Contact WSON  
(WSON 8C, 6mmX5mm Body, 1.27mm Contact Pitch)  
1
VDD  
CE  
8
HOLD  
2
7
SO  
3
6
SCK  
SI  
WP  
4
VSS  
5
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 4/37  
ESMT  
F25L01PA  
8- Contact USON  
(USON 8C, 2mmX3mm Body, 0.5mm Contact Pitch)  
8
7
1
2
VDD  
HOLD  
SCK  
SI  
CE  
SO  
3
4
6
5
WP  
VSS  
„ PIN DESCRIPTION  
Symbol  
Pin Name  
Functions  
To provide the timing for serial input and  
output operations  
SCK  
Serial Clock  
To transfer commands, addresses or data  
serially into the device.  
SI  
Serial Data Input  
Data is latched on the rising edge of SCK.  
To transfer data serially out of the device.  
SO  
CE  
WP  
Serial Data Output  
Chip Enable  
Data is shifted out on the falling edge of  
SCK.  
To activate the device when CE is low.  
The Write Protect ( WP ) pin is used to  
enable/disable BPL bit in the status  
register.  
Write Protect  
To temporality stop serial communication  
with SPI flash memory without resetting  
the device.  
Hold  
HOLD  
VDD  
VSS  
Power Supply  
Ground  
To provide power.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 5/37  
ESMT  
F25L01PA  
„ FUNCTIONAL BLOCK DIAGRAM  
Flash  
Address  
Buffers  
and  
X-Decoder  
Latches  
Y-Decoder  
I/O Butters  
and  
Control Logic  
Data Latches  
Serial Interface  
CE  
SCK  
SO  
WP  
HOLD  
SI  
„ SECTOR STRUCTURE  
Table 1: F25L01PA Sector Address Table  
Sector Size  
Block  
Address  
Block  
1
Sector  
Address range  
(Kbytes)  
A16  
1
31  
:
4KB  
:
01F000H – 01FFFFH  
:
16  
15  
:
4KB  
4KB  
:
010000H – 010FFFH  
00F000H – 00FFFFH  
:
0
0
0
4KB  
000000H – 000FFFH  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 6/37  
ESMT  
F25L01PA  
„ STATUS REGISTER  
The software status register provides status on whether the flash  
memory array is available for any Read or Write operation,  
whether the device is Write enabled, and the state of the memory  
Write protection. During an internal Erase or Program operation,  
the status register may be read only to determine the completion  
of an operation in progress. Table 2 describes the function of  
each bit in the software status register.  
Table 2: Software Status Register  
Default at  
Power-up  
Bit  
0
Name  
BUSY  
WEL  
Function  
Read/Write  
1 = Internal Write operation is in progress  
0 = No internal Write operation is in progress  
1 = Device is memory Write enabled  
0 = Device is not memory Write enabled  
0
0
R
R
1
2
3
4
5
6
BP0  
BP1  
BP2  
TB  
Indicate current level of block write protection (See Table 3)  
Indicate current level of block write protection (See Table 3)  
Indicate current level of block write protection (See Table 3)  
Top / Bottom write protect  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
N/A  
RESERVED Reserved for future use  
1 = BP2,BP1,BP0 and TB are read-only bits  
0 = BP2,BP1,BP0 and TB are read/writable  
7
BPL  
0
R/W  
Note:  
1. Only BP0, BP1, BP2, TB and BPL are writable.  
2. BP0, BP1, BP2, TB and BPL are non-volatile.  
WRITE ENABLE LATCH (WEL)  
BUSY  
The Write-Enable-Latch bit indicates the status of the internal  
memory Write Enable Latch. If this bit is set to “1”, it indicates the  
device is Write enabled. If the bit is set to “0” (reset), it indicates  
the device is not Write enabled and does not accept any memory  
Write (Program/ Erase) commands. This bit is automatically reset  
under the following conditions:  
The Busy bit determines whether there is an internal Erase or  
Program operation in progress. A “1” for the Busy bit indicates  
the device is busy with an operation in progress. A “0” indicates  
the device is ready for the next valid operation.  
Power-up  
Top/Bottom Block Protect (TB)  
Write Disable (WRDI) instruction completion  
Page Program instruction completion  
Sector Erase instruction completion  
Block Erase instruction completion  
Chip Erase instruction completion  
Write Status Register instructions  
The Top/Bottom bit (TB) controls if the Block-Protection (BP2,  
BP1, BP0) bits protect from the Top (TB=0) or the Bottom (TB=1)  
of the array as show in Table 3, The TB bit can be set with Write  
Status Register (WRSR) instruction. The TB bit can not be written  
to if the Block- Protection-Look (BPL) bit is 1 or WP is low.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
7/37  
ESMT  
F25L01PA  
Table 3: F25L01PA Block Protection Table  
Status Register Bit  
Protected Memory Area  
Protection Level  
TB  
X
BP2  
0
BP1  
BP0  
0
Block Range  
None  
Address Range  
0
0
0
0
0
1
None  
0*  
X
1
0
None  
None  
Upper 1/2  
Lower 1/2  
All Blocks  
0
X
1
Block 1  
Block 0  
Block 0~1  
010000H – 01FFFFH  
000000H – 00FFFFH  
000000H – 01FFFFH  
1
X
1
X
X
X
Note: * The combination of Status Register Bit (X100) can’t use Chip Erase instruction.  
Block Protection (BP2, BP1, BP0)  
Block Protection Lock-Down (BPL)  
The Block-Protection (BP2, BP1, BP0) bits define the size of the  
memory area, as defined in Table 3, to be software protected  
against any memory Write (Program or Erase) operations. The  
Write Status Register (WRSR) instruction is used to program the  
WP pin driven low (VIL), enables the Block-Protection-  
Lock-Down (BPL) bit. When BPL is set to 1, it prevents any  
further alteration of the TB, BPL, BP2, BP1, and BP0 bits. When  
the WP pin is driven high (VIH), the BPL bit has no effect and its  
value is “Don’t Care”.  
BP2, BP1, BP0 bits as long as WP is high or the Block-  
Protection-Look (BPL) bit is 0. Chip Erase can only be executed if  
Block-Protection bits are all 0. The factory default setting for  
Block Protection Bit (BP2 ~ BP0) is 0.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
8/37  
ESMT  
F25L01PA  
„ HOLD OPERATION  
Hold mode when the SCK next reaches the active low state. See  
Figure 1 for Hold Condition waveform.  
HOLD pin is used to pause a serial sequence underway with the  
SPI flash memory without resetting the clocking sequence. To  
activate the HOLD mode, CE must be in active low state. The  
HOLD mode begins when the SCK active low state coincides  
with the falling edge of the HOLD signal. The HOLD mode ends  
Once the device enters Hold mode, SO will be in high impedance  
state while SI and SCK can be VIL or VIH.  
If CE is driven active high during a Hold condition, it resets the  
when the HOLD signal’s rising edge coincides with the SCK  
active low state.  
internal logic of the device. As long as HOLD signal is low, the  
memory remains in the Hold condition. To resume  
communication with the device, HOLD must be driven active  
If the falling edge of the HOLD signal does not coincide with the  
SCK active low state, then the device enters Hold mode when the  
SCK next reaches the active low state.  
high, and CE must be driven active low. See Figure 22 for Hold  
timing.  
Similarly, if the rising edge of the HOLD signal does not  
coincide with the SCK active low state, then the device exits in  
S C K  
HO L D  
Hold  
A ctive  
A ctive  
A ctive  
H o ld  
Figure 1: HOLD Condition Waveform  
„ WRITE PROTECTION  
Table 4: Conditions to Execute Write-Status-Register (WRSR)  
Instruction  
The device provides software Write Protection.  
The Write-Protect pin ( WP ) enables or disables the lock-down  
function of the status register. The Block-Protection bits (BP2,  
BP1, BP0, TB and BPL) in the status register provide Write  
protection to the memory array and the status register. See Table  
3 for Block-Protection description.  
BPL  
1
Execute WRSR Instruction  
Not Allowed  
WP  
L
L
0
Allowed  
H
X
Allowed  
Write Protect Pin ( WP )  
The Write-Protect ( WP ) pin enables the lock-down function of  
the BPL bit (bit 7) in the status register. When WP is driven low,  
the execution of the Write Status Register (WRSR) instruction is  
determined by the value of the BPL bit (see Table 4). When WP  
is high, the lock-down function of the BPL bit is disabled.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
9/37  
ESMT  
F25L01PA  
„ INSTRUCTIONS  
Instructions are used to Read, Write (Erase and Program), and  
configure the F25L01PA. The instruction bus cycles are 8 bits  
each for commands (Op Code), data, and addresses. Prior to  
executing any Page Program, Write Status Register, Sector  
Erase, Block Erase, or Chip Erase instructions, the Write Enable  
(WREN) instruction must be executed first. The complete list of  
the instructions is provided in Table 5. All instructions are  
entered and must be driven high after the last bit of the instruction  
has been shifted in (except for Read, Read ID, Read Status  
Register, Read Electronic Signature instructions). Any low to high  
transition on CE , before receiving the last bit of an instruction  
bus cycle, will terminate the instruction in progress and return the  
device to the standby mode.  
synchronized off a high to low transition of CE . Inputs will be  
accepted on the rising edge of SCK starting with the most  
Instruction commands (Op Code), addresses, and data are all  
input from the most significant bit (MSB) first.  
significant bit. CE must be driven low before an instruction is  
Table 5: Device Operation Instructions  
Bus Cycle 1~3  
4
Max.  
Freq  
Operation  
1
2
3
5
6
N
SIN  
SOUT  
SIN  
SOUT SIN SOUT SIN SOUT SIN  
SOUT  
SIN  
SOUT  
SIN SOUT  
Read  
33 MHz 03H  
50MHz  
Hi-Z A23-A16 Hi-Z A15-A8 Hi-Z A7-A0 Hi-Z  
X
DOUT0  
X
DOUT1  
X
cont.  
Fast Read13  
~
0BH Hi-Z A23-A16 Hi-Z A15-A8 Hi-Z A7-A0 Hi-Z  
X
X
X
DOUT0  
X
cont.  
100MHz  
50MHz  
~
Fast Read Dual  
Output11,12  
3BH  
A23-A16  
A15-A8  
A7-A0  
X
DOUT0~1  
cont.  
86MHz  
Sector Erase4 (4K Byte)  
20H Hi-Z A23-A16 Hi-Z A15-A8 Hi-Z A7-A0 Hi-Z  
D8H Hi-Z A23-A16 Hi-Z A15-A8 Hi-Z A7-A0 Hi-Z  
60H /  
-
-
-
-
-
-
-
-
-
-
-
-
Block Erase4, (64K Byte)  
Chip Erase  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
C7H  
Up to  
Page Program (PP)  
02H Hi-Z A23-A16 Hi-Z A15-A8 Hi-Z A7-A0 Hi-Z DIN0  
Hi-Z  
DIN1  
Hi-Z  
256 Hi-Z  
bytes  
50MHz  
~
Read Status Register  
05H Hi-Z  
01H Hi-Z  
X
DOUT  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(RDSR) 6  
Write Status Register  
(WRSR)  
DIN  
-.  
-
-
Write Enable (WREN) 9  
Write Disable (WRDI)  
Deep Power Down (DP)  
Release from Deep  
Power Down (RDP)  
Read Electronic  
06H Hi-Z  
04H Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100MHz  
B9h  
Hi-Z  
ABH Hi-Z  
ABH Hi-Z  
9FH Hi-Z  
90H Hi-Z  
-
X
-
X
-
-
-
-
-
X
-
-
10H  
-
-
-
-
-
-
-
-
-
-
-
-
-
X
X
X
X
X
X
Signature (RES) 7  
Jedec Read ID  
X
8CH  
30H  
11H  
(JEDEC-ID) 8  
00H Hi-Z  
01H Hi-Z  
X
X
8CH  
10H  
X
X
10H  
8CH  
-
-
-
-
Read ID (RDID) 10  
00H  
Hi-Z 00H Hi-Z  
Note:  
1. Operation: SIN = Serial In, SOUT = Serial Out, Bus Cycle 1 = Op Code  
2. X = Dummy Input Cycles (VIL or VIH); - = Non-Applicable Cycles (Cycles are not necessary); cont. = continuous  
3. One bus cycle is eight clock periods.  
4. Sector Earse addresses: use AMS -A12, remaining addresses can be VIL or VIH  
Block Earse addresses: use AMS -A16, remaining addresses can be VIL or VIH  
5. To continue programming to the next sequential address location, enter the 8-bit command, followed by the data to be  
programmed.  
6. The Read-Status-Register is continuous with ongoing clock cycles until terminated by a low to high transition on CE .  
7. The Read-Electronic-Signature is continuous with on going clock cycles until terminated by a low to high transition on CE .  
8. The Jedec-Read-ID is output first byte 8CH as manufacture ID; second byte 30H as memory type; third byte 11H as  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 10/37  
ESMT  
F25L01PA  
memory capacity.  
9. The Write-Enable (WREN) instruction and the Write-Status-Register (WRSR) instruction must work in conjunction of each  
other. The WRSR instruction must be executed immediately (very next bus cycle) after the WREN instruction to make both  
instructions effective. WREN can enable WRSR, user just need to execute it. A successful WRSR can reset WREN.  
10. The Manufacture ID and Device ID output will repeat continuously until CE terminates the instruction.  
11. Dual commands use bidirectional IO pins. DOUT and cont. are serial data out; others are serial data in.  
12. Dual output data:  
IO  
IO  
0
= (D  
6
, D  
4
, D  
2
, D  
0
), (D  
6
, D  
4
, D  
2
, D  
0
)
)
1
= (D  
7
, D5  
, D3  
, D1  
), (D  
7
, D5  
, D3  
, D1  
DOUT0  
DOUT1  
13. Max. load capacitance is 15pF.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 11/37  
ESMT  
F25L01PA  
Read (33MHz)  
The Read instruction supports up to 33 MHz, it outputs the data  
starting from the specified address location. The data output  
stream is continuous through all addresses until terminated by a  
the data from address location 01FFFFH had been read, the next  
output will be from address location 000000H.  
The Read instruction is initiated by executing an 8-bit command,  
low to high transition on CE . The internal address pointer will  
automatically increment until the highest memory address is  
reached. Once the highest memory address is reached, the  
address pointer will automatically increment to the beginning  
(wrap-around) of the address space, i.e. for 1Mbit density, once  
03H, followed by address bits [A23 -A0]. CE must remain active  
low for the duration of the Read cycle. See Figure 2 for the Read  
sequence.  
Figure 2: Read Sequence  
Fast Read (50 MHz ~ 100 MHz)  
The Fast Read instruction supporting up to 100 MHz is initiated  
by executing an 8-bit command, 0BH, followed by address bits  
all addresses until terminated by a low to high transition on CE .  
The internal address pointer will automatically increment until the  
highest memory address is reached. Once the highest memory  
address is reached, the address pointer will automatically  
increment to the beginning (wrap-around) of the address space,  
i.e. for 1Mbit density, once the data from address location  
01FFFFH has been read, the next output will be from address  
location 000000H.  
[A23 -A0] and a dummy byte. CE must remain active low for the  
duration of the Fast Read cycle. See Figure 3 for the Fast Read  
sequence.  
Following a dummy byte (8 clocks input dummy cycle), the Fast  
Read instruction outputs the data starting from the specified  
address location. The data output stream is continuous through  
CE  
0
1 2  
3
4 5 6 7  
8
15 16  
23 24  
31 32  
39 40  
47 48  
MODE3  
MODE0  
55 56  
63 64  
71 72  
80  
SCK  
SI  
0B  
ADD.  
MSB  
ADD.  
ADD.  
X
MSB  
N
N+1  
DOUT  
N+2  
DOUT  
N+3  
DOU T  
N+4  
DOU T  
HIGH IMPENANCE  
SO  
DOU T  
MSB  
Note : X = Dummy Byte : 8 Clocks Input Dummy (VIL or VIH)  
Figure 3: Fast Read Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 12/37  
ESMT  
F25L01PA  
Fast Read Dual Output (50 MHz ~ 86 MHz)  
The Fast Read Dual Output (3BH) instruction is similar to the  
standard Fast Read (0BH) instruction except the data is output  
on SI and SO pins. This allows data to be transferred from the  
device at twice the rate of standard SPI devices. This instruction  
is for quickly downloading code from Flash to RAM upon  
power-up or for applications that cache code- segments to RAM  
for execution.  
The Fast Read Dual Output instruction is initiated by executing  
an 8-bit command, 3BH, followed by address bits [A23 -A0] and a  
dummy byte. CE must remain active low for the duration of the  
Fast Read Dual Output cycle. See Figure 4 for the Fast Read  
Dual Output sequence.  
Figure 4: Fast Read Dual Output Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
13/37  
ESMT  
F25L01PA  
Page Program (PP)  
The Page Program instruction allows many bytes to be  
programmed in the memory. The bytes must be in the erased  
state (FFH) when initiating a Program operation. A Page  
Program instruction applied to a protected memory area will be  
ignored.  
latched data are discarded and the last 256 bytes Data are  
guaranteed to be programmed correctly within the same page. If  
less than 256 bytes Data are sent to device, they are correctly  
programmed at the requested addresses without having any  
effects on the other bytes of the same page.  
Prior to any Write operation, the Write Enable (WREN) instruction  
CE must be driven high before the instruction is executed. The  
user may poll the Busy bit in the software status register or wait  
TPP for the completion of the internal self-timed Page Program  
operation. While the Page Program cycle is in progress, the Read  
Status Register instruction may still be accessed for checking the  
status of the Busy bit. The BUSY bit is a 1 during the Page  
Program cycle and becomes a 0 when the cycle is finished and  
the device is ready to accept other instructions again. After the  
Page Program cycle has finished, the Write-Enable-Latch (WEL)  
bit in the Status Register is cleared to 0. See Figure 7 for the  
Page Program sequence.  
must be executed. CE must remain active low for the duration  
of the Page Program instruction. The Page Program instruction is  
initiated by executing an 8-bit command, 02H, followed by  
address bits [A23-A0]. Following the address, at least one byte  
Data is input (the maximum of input data can be up to 256 bytes).  
If the 8 least significant address bits [A7-A0] are not all zero, all  
transmitted data that goes beyond the end of the current page  
are programmed from the start address of the same page (from  
the address whose 8 least significant bits [A7-A0] are all zero).  
If more than 256 bytes Data are sent to the device, previously  
Figure 7: Page Program Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
14/37  
ESMT  
F25L01PA  
64K Byte Block Erase  
The 64K-byte Block Erase instruction clears all bits in the  
selected block to FFH. A Block Erase instruction applied to a  
protected memory area will be ignored. Prior to any Write  
operation, the Write Enable (WREN) instruction must be  
-A0]. Address bits [AMS -A16] (AMS = Most Significant address) are  
used to determine the block address (BAX), remaining address  
bits can be VIL or VIH. CE must be driven high before the  
instruction is executed. The user may poll the Busy bit in the  
Software Status Register or wait TBE for the completion of the  
internal self-timed Block Erase cycle. See Figure 8 for the Block  
Erase sequence.  
executed. CE must remain active low for the duration of the any  
command sequence. The Block Erase instruction is initiated by  
executing an 8-bit command, D8H, followed by address bits [A23  
Figure 8: 64K-byte Block Erase Sequence  
4K Byte Sector Erase  
The Sector Erase instruction clears all bits in the selected sector  
to FFH. A Sector Erase instruction applied to a protected memory  
area will be ignored. Prior to any Write operation, the Write  
[AMS -A12] (AMS = Most Significant address) are used to determine  
the sector address (SAX), remaining address bits can be VIL or  
VIH. CE must be driven high before the instruction is executed.  
The user may poll the Busy bit in the Software Status Register or  
wait TSE for the completion of the internal self-timed Sector Erase  
cycle. See Figure 9 for the Sector Erase sequence.  
Enable (WREN) instruction must be executed. CE must remain  
active low for the duration of the any command sequence. The  
Sector Erase instruction is initiated by executing an 8-bit  
command, 20H, followed by address bits [A23 -A0]. Address bits  
CE  
15 16  
31  
23 24  
0 1 2 3 4 5 6 7 8  
MODE3  
MODE0  
SCK  
SI  
20  
ADD.  
MSB  
ADD.  
ADD.  
MSB  
HIGH IMPENANCE  
SO  
Figure 9: 4K-byte Sector Erase Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 15/37  
ESMT  
F25L01PA  
Chip Erase  
The Chip Erase instruction clears all bits in the device to FFH. A  
Chip Erase instruction will be ignored if any of the memory area is  
protected. Prior to any Write operation, the Write Enable (WREN)  
Erase instruction is initiated by executing an 8-bit command, 60H  
or C7H. CE must be driven high before the instruction is  
executed. The user may poll the Busy bit in the Software Status  
Register or wait TCE for the completion of the internal self-timed  
Chip Erase cycle. See Figure 10 for the Chip Erase sequence.  
instruction must be executed. CE must remain active low for  
the duration of the Chip-Erase instruction sequence. The Chip  
CE  
0 1 2 3 4 5 6 7  
MODE3  
SCK  
SI  
MODE0  
60 or C7  
MSB  
HIGH IMPENANCE  
SO  
Figure 10: Chip Erase Sequence  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction allows reading of  
the status register. The status register may be read at any time  
even during a Write (Program/Erase) operation.  
When a Write operation is in progress, the Busy bit may be  
checked before sending any new commands to assure that the  
new commands are properly received by the device.  
CE must be driven low before the RDSR instruction is entered  
and remain low until the status data is read. Read Status  
Register is continuous with ongoing clock cycles until it is  
terminated by a low to high transition of the CE . See Figure 11  
for the RDSR instruction sequence.  
Figure 11: Read Status Register (RDSR) Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
16/37  
ESMT  
F25L01PA  
Write Enable (WREN)  
The Write Enable (WREN) instruction sets the Write-Enable-  
Latch bit in the Software Status Register to 1 allowing Write  
operations to occur.  
(Program/Erase) operation. CE must be driven high before the  
WREN instruction is executed.  
The WREN instruction must be executed prior to any Write  
CE  
0 1 2 3 4 5 6 7  
MODE3  
MODE0  
SCK  
SI  
06  
MSB  
HIGH IMPENANCE  
SO  
Figure 12: Write Enable (WREN) Sequence  
Write Disable (WRDI)  
The Write Disable (WRDI) instruction resets the Write-Enable-  
Latch bit to 0 disabling any new Write operations from occurring.  
CE must be driven high before the WRDI instruction is  
executed.  
CE  
0 1 2 3 4 5 6 7  
MODE3  
SCK  
SI  
MODE0  
04  
MSB  
HIGH IMPENANCE  
SO  
Figure 13: Write Disable (WRDI) Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 17/37  
ESMT  
F25L01PA  
Write-Status-Register (WRSR)  
The Write Status Register instruction writes new values to the  
When WP is high, the lock-down function of the BPL bit is  
disabled and the BPL, TB, BP0, BP1,and BP2 bits in the status  
BP2, BP1, BP0, TB and BPL bits of the status register. CE  
must be driven low before the command sequence of the WRSR  
instruction is entered and driven high before the WRSR  
instruction is executed. See Figure 14 for WREN and WRSR  
instruction sequences.  
register can all be changed. As long as BPL bit is set to 0 or WP  
pin is driven high (VIH) prior to the low-to-high transition of the  
CE pin at the end of the WRSR instruction, the bits in the status  
register can all be altered by the WRSR instruction. In this case,  
a single WRSR instruction can set the BPL bit to “1” to lock down  
the status register as well as altering the TB, BP0; BP1 and BP2  
bits at the same time. See Table 4 for a summary description of  
Executing the Write Status Register instruction will be ignored  
when WP is low and BPL bit is set to “1”. When the WP is  
low, the BPL bit can only be set from “0” to “1” to lock down the  
status register, but cannot be reset from “1” to “0”.  
WP and BPL functions.  
CE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
MODE3  
MODE0  
SCK  
Stauts Register  
Data In  
06  
01  
7
6
4
3
2
0
1
SI  
5
MSB  
MSB  
HIGH IMPENANCE  
SO  
Figure 14: Write-Enable (WREN) and Write-Status-Register (WRSR)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 18/37  
ESMT  
F25L01PA  
Deep Power Down (DP)  
The Deep Power Down instruction is for minimizing power  
consumption (the standby current is reduced from ISB1 to ISB2.).  
Once the device is in deep power down status, all instructions will  
be ignored except the Release from Deep Power Down  
instruction (RDP) and Read Electronic Signature instruction  
(RES). The device always power-up in the normal operation with  
the standby current (ISB1). See Figure 15 for the Deep Power  
Down instruction.  
This instruction is initiated by executing an 8-bit command, B9H,  
and then CE must be driven high. After CE is driven high, the  
device will enter to deep power down within the duration of TDP  
.
CE  
MODE3  
0
1
2
3
4
5
6
7
TDP  
SCK MODE0  
B9  
SI  
MSB  
Standard Current  
Deep Power Down Current  
(ISB2)  
Figure 15: Deep Power Down Instruction  
Release from Deep Power Down (RDP) and Read-Electronic-Signature (RES)  
The Release form Deep Power Down and Read-Electronic-  
Signature instruction is a multi-purpose instruction.  
CE low and executing an 8-bit command, ABH, followed by 3  
dummy bytes. The Electronic-Signature byte is then output from  
the device. The Electronic-Signature can be read continuously  
The instruction can be used to release the device from the deep  
power down status. This instruction is initiated by driving CE  
until CE go high. See Figure 17 for RES sequence. After  
driving CE high, it must remain high during for the duration of  
low and executing an 8-bit command, ABH, and then drive CE  
high. See Figure 16 for RDP instruction. Release from the deep  
power down will take the duration of TRES1 before the device will  
resume normal operation and other instructions are accepted.  
T
RES2, and then the device will resume normal operation and  
other instructions are accepted.  
The instruction is executed while an Erase, Program or WRSR  
cycle is in progress is ignored and has no effect on the cycle in  
progress.  
CE must remain high during TRES1  
.
The instruction also can be used to read the 8-bit Electronic-  
Signature of the device on the SO pin. It is initiated by driving  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
19/37  
ESMT  
F25L01PA  
CE  
MODE3  
0
1
2
3
4
5
6
7
TRES1  
SCK MODE0  
AB  
SI  
MSB  
HIGH IMPEDANCE  
SO  
Standby Current  
Deep Power Down Current  
(ISB2)  
Figure 16: Release from Deep Power Down (RDP) Instruction  
CE  
30 31 32 33 34 35 36 37 38  
0
1
2
3
4
5
6
7
8
9
MODE3  
TRES2  
SCK MODE0  
SS  
3 Dummy Bytes  
SS  
AB  
SI  
MSB  
HIGH IMPEDANCE  
SS  
Electronic-Signature Data Out  
SO  
MSB  
Standby  
Current  
Deep Power Down Current  
(ISB2)  
Figure 17: Read Electronic -Signature (RES) Sequence  
Table 6: Electronic Signature Data  
Command  
RES  
Electronic Signature Data  
10H  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 20/37  
ESMT  
F25L01PA  
JEDEC Read-ID  
The JEDEC Read-ID instruction identifies the device as  
F25L01PA and the manufacturer as ESMT. The device  
information can be read from executing the 8-bit command, 9FH.  
Following the JEDEC Read-ID instruction, the 8-bit  
manufacturer’s ID, 8CH, is output from the device. After that, a  
16-bit device ID is shifted out on the SO pin. Byte1, 8CH,  
identifies the manufacturer as ESMT. Byte2, 30H, identifies the  
memory type as SPI Flash. Byte3, 11H, identifies the device as  
F25L01PA. The instruction sequence is shown in Figure 18.  
The JEDEC Read ID instruction is terminated by a low to high  
transition on CE at any time during data output. If no other  
command is issued after executing the JEDEC Read-ID  
instruction, issue a 00H (NOP) command before going into  
Standby Mode ( CE =VIH).  
CE  
0
1
2
3
4 5 6 7 8 9 10 11 12 13 1415 1617 1819 2021 22 23 24 25 2627 2829 3031  
MODE3  
MODE0  
SCK  
9F  
SI  
MSB  
HIGH IMPENANCE  
SO  
8C  
30  
11  
MSB  
MSB  
MSB  
Figure 18: JEDEC Read-ID Sequence  
Table 7: JEDEC READ-ID Data  
Device ID  
Manufacturer’s ID  
(Byte 1)  
Memory Type  
(Byte 2)  
Memory Capacity  
(Byte 3)  
8CH  
30H  
11H  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 21/37  
ESMT  
F25L01PA  
Read-ID (RDID)  
The Read-ID instruction (RDID) identifies the devices as  
F25L01PA and manufacturer as ESMT. This command is  
backward compatible to all ESMT SPI devices and should be  
used as default device identification when multiple versions of  
ESMT SPI devices are used in one design. The device  
information can be read from executing an 8-bit command, 90H,  
followed by address bits [A23 -A0]. Following the Read-ID  
instruction, the manufacturer’s ID is located in address 000000H  
and the device ID is located in address 000001H.  
Once the device is in Read-ID mode, the manufacturer’s and  
device ID output data toggles between address 000000H and  
000001H until terminated by a low to high transition on CE .  
CE  
15 16  
31 32  
0
1
2
3
4
5
6
7
8
23 24  
MSB  
39 40  
47 48  
55 56  
63  
MODE3  
SCK MODE0  
SI  
90  
00  
00  
ADD1  
MSB  
HIGH  
IMPENANCE  
HIGH IMPENANCE  
SO  
8C  
10  
8C  
10  
MSB  
Note: The Manufacture’s and Device ID output stream is continuous until terminated by a low to high transition on CE.  
1. 00H will output the Manufacture’s ID first and 01H will output Device ID first before toggling between the two. .  
Figure 19: Read-ID Sequence  
Table 8: Product ID Data  
Address  
Byte1  
Byte2  
8CH  
10H  
000000H  
Device ID  
Manufacturer’s ID  
ESMT F25L01PA  
10H  
8CH  
000001H  
Device ID  
Manufacturer’s ID  
ESMT F25L01PA  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 22/37  
ESMT  
F25L01PA  
„ ELECTRICAL SPECIFICATIONS  
Absolute Maximum Stress Ratings  
(Applied conditions are greater than those listed under “Absolute Maximum Stress Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the  
operational sections of this datasheet is not implied. Exposure to absolute maximum stress rating conditions may affect device  
reliability.)  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
D. C. Voltage on Any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDD+0.5V  
Transient Voltage (<20 ns) on Any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0V to VDD+2.0V  
Package Power Dissipation Capability (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W  
Surface Mount Lead Soldering Temperature (3 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Output Short Circuit Current (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
( Note 1: Output shorted for no more than one second. No more than one output shorted at a time. )  
AC CONDITIONS OF TEST  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ns  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . CL = 15 pF for 75MHz  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CL = 30 pF for 50MHz  
See Figures 25 and 26  
OPERATING RANGE  
Parameter  
Symbol  
VDD  
Value  
Unit  
Operating Supply Voltage  
Ambient Operating Temperature  
2.7 ~ 3.6  
-40 ~ +85  
V
TA  
Table 9: DC OPERATING CHARACTERISTICS  
Limits  
Max  
Symbol  
Parameter  
Read Current  
Test Condition  
Min  
Unit  
Standard  
Dual  
10  
15  
15  
20  
17  
22  
IDDR1  
IDDR2  
IDDR3  
IDDR4  
mA  
mA  
mA  
mA  
CE =0.1 VDD/0.9 VDD, SO=open  
CE =0.1 VDD/0.9 VDD, SO=open  
CE =0.1 VDD/0.9 VDD, SO=open  
CE =0.1 VDD/0.9 VDD, SO=open  
@33 MHz  
Read Current  
@ 50MHz  
Standard  
Dual  
Read Current  
@ 86MHz  
Standard  
Dual  
Read Current  
@ 100MHz  
Standard  
22  
IDDW  
ISB1  
ISB2  
Program and Erase Current  
Standby Current  
20  
25  
10  
mA  
µA  
µA  
CE =VDD  
CE =VDD, VIN =VDD or VSS  
Deep Power Down Current  
CE =VDD, VIN =VDD or VSS  
±2  
±2  
ILI  
ILO  
VIL  
VIH  
VOL  
VOH  
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
µA VIN=GND to VDD, VDD=VDD Max  
µA VOUT=GND to VDD, VDD=VDD Max  
V
V
V
V
VDD=VDD Min  
VDD=VDD Max  
IOL= 1.6 mA, VDD=VDD Min  
IOH=-100 µA, VDD=VDD Min  
-0.5  
0.7 x VDD  
0.3 x VDD  
VDD +0.4  
0.4  
VDD-0.2  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 23/37  
ESMT  
F25L01PA  
Table 10: CAPACITANCE (TA = 25°C, f=1 MHz, other pins open)  
Parameter  
Description  
Test Condition  
VOUT = 0V  
Maximum  
8 pF  
1
COUT  
Output Pin Capacitance  
Input Capacitance  
1
CIN  
VIN = 0V  
6 pF  
Note 1: This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.  
Table 11: AC OPERATING CHARACTERISTICS  
Normal 33MHz Fast 50 MHz  
Fast 86 MHz Fast 100 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
FCLK  
Serial Clock Frequency  
33  
50  
86  
100  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
TSCKH  
Serial Clock High Time  
Serial Clock Low Time  
13  
13  
5
9
9
5
5
4
4
2
TSCKL  
1
TCES  
5
5
5
CE Active Setup Time  
CE Active Hold Time  
CE Not Active Setup Time  
CE Not Active Hold Time  
CE High Time  
1
TCEH  
5
5
5
5
1
TCHS  
5
5
5
5
1
TCHH  
5
5
5
5
TCPH  
TCHZ  
TCLZ  
TDS  
100  
100  
100  
100  
6
6
6
6
CE High to High-Z Output  
SCK Low to Low-Z Output  
Data In Setup Time  
0
3
3
5
5
0
3
3
5
5
0
3
3
5
5
0
3
3
5
5
TDH  
Data In Hold Time  
THLS  
THHS  
HOLD Low Setup Time  
HOLD High Setup Time  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 24/37  
ESMT  
F25L01PA  
Table 11: AC OPERATING CHARACTERISTICS - Continued  
Normal 33MHz Fast 50 MHz  
Fast 86 MHz Fast 100 MHz  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
THLH  
THHH  
ns  
ns  
ns  
ns  
5
5
5
5
HOLD Low Hold Time  
5
5
5
5
HOLD High Hold Time  
3
THZ  
6
6
6
6
6
6
6
6
HOLD Low to High-Z Output  
3
TLZ  
HOLD High to Low-Z Output  
Output Hold from SCK Change  
Output Valid from SCK  
TOH  
TV  
TWHSL  
0
0
0
0
ns  
ns  
ns  
12  
20  
8
7
7
4
20  
20  
20  
Write Protect Setup Time before CE Low  
Write Protect Hold Time after CE High  
CE High to Deep Power Down Mode  
CE High to Standby Mode ( for DP)  
CE High to Standby Mode (for RES)  
4
TSHWL  
ns  
us  
us  
us  
100  
3
100  
3
100  
3
100  
3
3
TDP  
3
TRES1  
3
3
3
3
3
TRES2  
1.8  
1.8  
1.8  
1.8  
Note:  
1. Relative to SCK.  
2. SCKH + TSCKL must be less than or equal to 1/ FCLK  
3. Value guaranteed by characterization, not 100% tested in production.  
T
.
4. Only applicable as a constraint for a Write status Register instruction when Block- Protection-Look (BPL) bit is set at 1.  
ERASE AND PROGRAMMING PERFORMANCE  
Limit  
Parameter  
Symbol  
Unit  
Typ2  
90  
Max3  
Sector Erase Time  
TSE  
TBE  
TCE  
TW  
250  
1.5  
2
ms  
s
Block Erase Time  
0.75  
1
Chip Erase Time  
s
Write Status Register Time  
Page Programming Time  
Erase/Program Cycles1  
Data Retention  
5
15  
5
ms  
TPP  
1.5  
ms  
100,000  
20  
-
Cycles  
Years  
-
Notes:  
1. Not 100% Tested, Excludes external system level over head.  
2. Typical values measured at 25°C, 3V.  
3. Maximum values measured at 85°C, 2.7V.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 25/37  
ESMT  
F25L01PA  
Figure 20: Serial Input Timing Diagram  
Figure 21: Serial Output Timing Diagram  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 26/37  
ESMT  
F25L01PA  
Figure 22: HOLD Timing Diagram  
WP  
CE  
TSHWL  
TWHSL  
SCK  
SI  
HIGH IMPENANCE  
SO  
Figure 23: Write Protect setup and hold timing during WRSR when BPL = 1  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 27/37  
ESMT  
F25L01PA  
VCC  
VCC (max)  
Program, Erase and Write command is ignored  
CE must track VCC  
VCC (min)  
Read command  
is allowed  
T
VSL  
Device is fully  
accessible  
Reset  
State  
VWI  
T
PUW  
Time  
Figure 24: Power-Up Timing Diagram  
Table 12: Power-Up Timing and VWI Threshold  
Unit  
Parameter  
Symbol  
Min.  
10  
1
Max.  
TVSL  
TPUW  
VWI  
us  
ms  
V
VCC(min) to CE low  
Time Delay before Write instruction  
10  
2
Write Inhibit Threshold Voltage  
1
Note: These parameters are characterized only.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 28/37  
ESMT  
F25L01PA  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.2VCC  
0.7VCC  
0.3VCC  
AC  
Measurement  
Level  
0.5VCC  
Note : Input pulse rise and fall time are <5ns  
Figure 25: AC Input/Output Reference Waveforms  
Figure 26: A Teat Load Example  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3  
29/37  
ESMT  
F25L01PA  
PACKING DIMENSIONS  
8-LEAD  
SOIC ( 150 mil )  
8
5
GAUGE PLANE  
L
DETAIL "X"  
1
4
e
b
D
L1  
"X"  
SEATING PLANE  
Dimension in mm  
Dimension in inch  
Dimension in mm  
Dimension in inch  
Symbol  
Symbol  
Min  
1.35  
0.10  
1.25  
0.33  
0.19  
5.80  
Norm  
1.60  
Max  
1.75  
0.25  
1.55  
0.51  
Min  
Norm  
0.063  
0.006  
0.057  
0.016  
Max  
Min  
Norm  
4.90  
Max  
Min  
Norm  
0.193  
Max  
A
A1  
A2  
b
0.053  
0.004  
0.049  
0.013  
0.069  
0.010  
0.061  
0.020  
0.010  
0.244  
D
E
L
4.80  
3.80  
0.40  
5.00  
4.00  
0.86  
0.189  
0.150  
0.016  
0.197  
0.157  
0.034  
0.15  
3.90  
0.154  
1.45  
0.66  
0.026  
0.406  
0.203  
6.00  
e
1.27 BSC  
1.05  
0.050 BSC  
0.041  
c
0.25 0.0075 0.008  
6.20 0.228 0.236  
1.00  
1.10  
0.039  
0.043  
L1  
θ
0°  
8°  
0°  
8°  
H
---  
---  
Controlling dimension : millimenter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 30/37  
ESMT  
F25L01PA  
PACKING DIMENSIONS  
8-LEAD SOIC 200 mil ( official name – 208 mil )  
θ
5
8
4
1
b
e
D
L
L1  
SEATING PLANE  
DETAIL "X"  
Dimension in mm  
Dimension in inch  
Dimension in mm  
Dimension in inch  
Symbol  
Symbol  
Min  
---  
Norm  
---  
Max  
2.16  
0.25  
1.91  
0.51  
0.25  
5.33  
Min  
Norm  
---  
Max  
Min  
Norm  
7.90  
Max  
Min  
Norm  
0.311  
Max  
0.319  
0.212  
0.032  
A
A1  
A2  
b
---  
0.085  
0.010  
0.075  
0.020  
0.010  
0.210  
E
E1  
L
7.70  
5.18  
0.50  
8.10  
5.38  
0.80  
0.303  
0.204  
0.020  
0.05  
1.70  
0.36  
0.19  
5.13  
0.15  
1.80  
0.41  
0.20  
5.23  
0.002  
0.067  
0.014  
0.007  
0.202  
0.006  
0.071  
0.016  
0.008  
0.206  
5.28  
0.208  
0.65  
0.026  
e
1.27 BSC  
1.37  
0.050 BSC  
0.054  
c
1.27  
1.47  
0.050  
0.058  
L1  
θ
0°  
8°  
0°  
8°  
D
---  
---  
Controlling dimension : millimenter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 31/37  
ESMT  
F25L01PA  
PACKING DIMENSIONS  
8-LEAD TSSOP SPI Flash (4.4mm)  
D
D
A
A2  
1
A1  
e
1
8
Y
4
5
b
b1  
c
with Plating  
Base Material  
c1  
B
B
Gage Plane  
Section B-B  
°
L
L1  
Dimension in mm  
Dimension in inch  
Symbol  
Min  
-
Norm  
Max  
1.20  
0.15  
1.05  
0.30  
0.25  
0.20  
0.16  
Min  
-
Norm  
Max  
-
-
0.004  
0.039  
-
0.009  
-
A
A1  
A2  
b
b1  
c
c1  
D
D1  
E
L
L1  
e
Y
Θ
0.047  
0.006  
0.041  
0.012  
0.010  
0.008  
0.006  
0.05  
0.80  
0.19  
0.19  
0.09  
0.09  
0.10  
1.00  
-
0.22  
-
0.002  
0.031  
0.008  
0.008  
0.004  
0.004  
0.127  
6.40 BSC  
4.40  
3.00  
0.60  
1.00 REF  
0.65 BSC  
-
0.005  
0.252 BSC  
0.173  
0.118  
0.024  
0.039 REF  
0.026 BSC  
-
4.30  
2.90  
0.45  
4.50  
3.10  
0.75  
0.169  
0.114  
0.018  
0.177  
0.122  
0.030  
-
-
0.10  
8°  
0.004  
8°  
0°  
0°  
-
-
Controlling dimension : Millimeter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 32/37  
ESMT  
F25L01PA  
PACKING  
DIMENSIONS  
8-PIN P-DIP ( 300 mil )  
D
8
5
0
1
4
S e a tin g P la n e  
1
b
b
e
Dimension in mm  
Dimension in inch  
Symbol  
Min  
Norm  
---  
Max  
Min  
---  
Norm  
Max  
0.21  
---  
---  
---  
---  
A
A1  
A2  
D
5.00  
---  
---  
0.38  
3.18  
9.02  
0.015  
0.125  
0.355  
3.30  
3.43  
10.16  
0.130  
0.135  
0.400  
9.27  
0.365  
E
7.62 BSC.  
6.35  
0.300 BSC.  
0.250  
E1  
L
6.22  
9.02  
6.48  
0.245  
0.115  
0.255  
0.150  
9.27  
10.16  
0.130  
e
2.54 TYP.  
9.02  
0.100 TYP.  
0.355  
eB  
b
8.51  
9.53  
15O  
0.335  
0O  
0.375  
15O  
0.46 TYP.  
1.52 TYP.  
7O  
0.018 TYP.  
0.060 TYP.  
7O  
b1  
θO  
0O  
Controlling dimension : Inch.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 33/37  
ESMT  
F25L01PA  
PACKING DIMENSIONS  
8-CONTACT  
WSON ( 6x5 mm )  
D
PIN# 1  
L
DETAIL : "B"  
"A"  
D2  
DETAIL : "A"  
"B"  
PIN# 1  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
0.70  
0.00  
0.35  
5.90  
3.30  
4.90  
3.90  
Norm  
0.75  
0.02  
0.40  
6.00  
3.40  
5.00  
4.00  
Max  
0.80  
0.05  
0.45  
6.10  
3.50  
5.10  
4.10  
Min  
Norm  
0.030  
0.001  
0.016  
0.236  
0.134  
0.197  
0.157  
Max  
A
A1  
b
D
D2  
E
E2  
e
L
0.028  
0.000  
0.014  
0.232  
0.130  
0.193  
0.154  
0.031  
0.002  
0.018  
0.240  
0.138  
0.201  
0.161  
1.27 BSC  
0.60  
0.050 BSC  
0.024  
0.55  
0.65  
0.022  
0.026  
Controlling dimension : millimeter  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 34/37  
ESMT  
F25L01PA  
PACKING  
DIMENSIONS  
8-CONTACT  
USON ( 2x3 mm )  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
0.50  
0.00  
0.20  
2.90  
0.10  
1.90  
1.50  
Min  
0.55  
Min  
0.60  
0.05  
0.30  
3.10  
0.30  
2.10  
1.70  
Min  
Norm  
0.022  
Max  
0.020  
0.000  
0.008  
0.114  
0.004  
0.075  
0.059  
0.024  
0.002  
0.012  
0.122  
0.012  
0.083  
0.067  
A
A1  
b
0.02  
0.001  
0.25  
0.010  
3.00  
0.118  
D
0.20  
0.008  
D1  
E
2.00  
0.079  
1.60  
0.063  
E1  
e
0.50 BSC  
0.45  
0.020 BSC  
0.018  
0.40  
0.30  
0.50  
0.40  
0.016  
0.012  
0.020  
0.016  
L
0.35  
0.014  
L1  
Controlling dimension : millimeter  
(Revision date : Mar 25 2013)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 35/37  
ESMT  
F25L01PA  
Revision History  
Revision  
Date  
Description  
0.1  
2010.03.09  
Original  
1. Modify surface mount lead soldering temperature  
2. Add package description into pin configurations  
3. Delete TPU-READ & TPU-WRITE  
0.2  
2010.04.02  
0.3  
1.0  
2010.05.14  
2010.08.06  
Modify WSON packing dimension  
1. Delete Preliminary  
2. Modify the specification of Tw(typ)  
1. Modify voltage  
2. Modify the specification of IDDR1~4,IDDW,ISB1~2  
TDS,TDH,TV,TSE and TCE(max)  
3. Delete TCLCH, TCHCL, byte programming time, chip  
programming time and 100MHz for Dual Output  
,
1.1  
1.2  
1.3  
2012.10.22  
2012.11.06  
2013.04.03  
Add TSSOP package  
1. Add USON package  
2. Correct the description of Block Protection, Block  
Protection Lock-Down  
3. Modify Ambient Operating Temperature  
4. Correct protection level (0) of block protection table  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 36/37  
ESMT  
F25L01PA  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or  
by any means without the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at  
the time of publication. ESMT assumes no responsibility for any error in  
this document, and reserves the right to change the products or  
specification in this document without notice.  
The information contained herein is presented only as a guide or  
examples for the application of our products. No responsibility is  
assumed by ESMT for any infringement of patents, copyrights, or other  
intellectual property rights of third parties which may result from its use.  
No license, either express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of ESMT or  
others.  
Any semiconductor devices may have inherently a certain rate of failure.  
To minimize risks associated with customer's application, adequate  
design and operating safeguards against injury, damage, or loss from  
such failure, should be provided by the customer when making  
application designs.  
ESMT's products are not authorized for use in critical applications such  
as, but not limited to, life support devices or system, where failure or  
abnormal operation may directly affect human lives or cause physical  
injury or property damage. If products described here are to be used for  
such kinds of application, purchaser must do its own quality assurance  
testing appropriate to such applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Apr. 2013  
Revision: 1.3 37/37  

相关型号:

F25L01PA-50PG

Flash, 1MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L01PA-50PG2D

Flash, 1MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L01PA-50SG2D

Flash, 1MX1, PDSO8, 4.40 MM, 0.65 MM PITCH, ROHS COMPLIANT, TSSOP-8
ESMT

F25L01PA-86PG2D

Flash, 1MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-100DG

Flash, 4MX1, PDIP8, 0.300 INCH, 2.54 MM PITCH, ROHS COMPLIANT, PLASTIC, DIP-8
ESMT

F25L04PA-100HG

Flash, 4MX1, PDSO8, 6 X 5 MM, 1.27 MM PITCH, ROHS COMPLIANT, WSON-8
ESMT

F25L04PA-100PAG

Flash, 4MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-100PAG2D

Flash, 4MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-100PG

Flash, 4MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-50PAG

Flash, 4MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-50PAG2D

Flash, 4MX1, PDSO8, 0.208 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT

F25L04PA-50PG

Flash, 4MX1, PDSO8, 0.150 INCH, 1.27 MM PITCH, ROHS COMPLIANT, SOIC-8
ESMT