SED1354 [EPSON]

Color Graphics LCD/CRT Controller; 彩色图形LCD / CRT控制器
SED1354
型号: SED1354
厂家: EPSON COMPANY    EPSON COMPANY
描述:

Color Graphics LCD/CRT Controller
彩色图形LCD / CRT控制器

控制器 CD
文件: 总472页 (文件大小:2660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SED1354 Color Graphics LCD/CRT Controller  
SED1354  
TECHNICAL MANUAL  
Document Number: X19A-Q-002-10  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-Q-002-10  
TECHNICAL MANUAL  
Issue Date: 98/11/27  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Customer Support Information  
Comprehensive Support Tools  
Seiko Epson Corp. provides to the system designer and computer OEM manufacturer a complete set  
of resources and tools for the development of graphics systems.  
Evaluation / Demonstration Board  
• Assembled and fully tested graphics evaluation board with installation guide and schematics.  
• To borrow an evaluation board, please contact your local Seiko Epson Corp. sales representative.  
Chip Documentation  
• Technical manual includes Data Sheet, Application Notes, and Programmer’s Reference.  
Software  
• OEM Utilities.  
• User Utilities.  
• Evaluation Software.  
• To obtain these programs, contact Application Engineering Support.  
Application Engineering Support  
Engineering and Sales Support is provided by:  
Japan  
North America  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Seiko Epson Corporation  
Electronic Devices Marketing Division  
421-8, Hino, Hino-shi  
Tokyo 191-8501, Japan  
Tel: 042-587-5812  
Epson Electronics America, Inc.  
150 River Oaks Parkway  
San Jose, CA 95134, USA  
Tel: (408) 922-0200  
Fax: (408) 922-0238  
http://www.eea.epson.com  
10F, No. 287  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
TECHNICAL MANUAL  
Issue Date: 98/11/27  
SED1354  
X19A-Q-002-10  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-Q-002-10  
TECHNICAL MANUAL  
Issue Date: 98/11/27  
Epson Research and Development  
Page 5  
Vancouver Design Center  
Table of Contents  
INTRODUCTION  
SED1354 Color Graphics LCD / CRT Controller Product Brief  
SPECIFICATION  
SED1354 Hardware Functional Specification  
PROGRAMMER’S REFERENCE  
SED1354 Programming Notes and Examples  
SED1354 Register Summary  
UTILITIES  
1354CFG.EXE File Configuration Program  
1354SHOW Demonstration Program  
1354SPLT Display Utility  
1354VIRT Display Utility  
1354PLAY Diagnostic Utility  
1354BMP Demonstration Program  
1354PWR Software Suspend Power Sequencing Utility  
DRIVERS  
Windows® CE Display Drivers  
EVALUATION  
SDU1354B0C Rev. 1 ISA Bus Evaluation Board User Manual  
SDU1354-D9000 Evaluation Board User Guide  
APPLICATION NOTES  
Power Consumption  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Interfacing to the NEC VR4102 Microprocessor  
Interfacing the SED1354 to the Motorola MCF5307 Microprocessor  
Interfacing the SED1354/55 to the Motorola MC68328 Microprocessor  
Interfacing the SED1354 to the Motorola MPC821 Microprocessor  
Interfacing the SED1354 to the PC Card Bus  
Interfacing to the Toshiba MIPS TX3912 Processor  
TECHNICAL MANUAL  
Issue Date: 98/11/27  
SED1354  
X19A-Q-002-10  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-Q-002-10  
TECHNICAL MANUAL  
Issue Date: 98/11/27  
ENERGY  
SAVING  
EPSON  
GRAPHICS  
SED1354  
SED1354 COLOR GRAPHICS LCD/CRT CONTROLLER  
October 1998  
DESCRIPTION  
The SED1354 is a low cost, low power, color/monochrome LCD/CRT controller interfacing to a wide range of CPUs  
and LCDs. The SED1354 architecture is designed to meet the requirements of embedded markets such as Office  
Automation equipment, Mobile Communications devices and Hand-Held PCs where Windows CE may serve as a  
primary operating system.  
The SED1354 supports LCD interfaces with data widths up to 16-bits. Using Frame Rate Modulation (FRM), it can  
display 16 shades of gray on monochrome LCD panels, up to 4096 colors on passive color LCD, and 64K colors on  
active matrix TFT LCD panels. CRT support is handled through the use of an external RAMDAC interface allowing  
simultaneous display of both the CRT and LCD panel. A 16-bit memory interface supports up to 2M bytes of FPM-  
DRAM or EDO-DRAM. Supports flexible operating voltages from 2.7V to 5.5V.  
Display Modes  
FEATURES  
1/2/4/8/16 bit-per-pixel (bpp) support on LCD.  
Memory Interface  
1/2/4/8 bit-per-pixel (bpp) on CRT.  
16-bit EDO-DRAM or FPM-DRAM interface.  
Up to 16 shades of gray using FRM on  
monochrome passive LCD panels.  
Memory size options:  
512K bytes using one 256K×16 device.  
2M bytes using one 1M×16 device.  
Up to 4096 colors on passive LCD panels.  
Up to 64K colors on active matrix TFT LCD in  
16 bpp modes.  
Addressable as a single linear address space.  
CPU Interface  
Split Screen Display: allows two different images to  
be simultaneously displayed.  
Supports the following interfaces:  
Hitachi SH-3.  
Virtual Display Support: displays images larger  
than the panel size through the use of panning.  
Motorola M68K.  
ISA bus.  
MPU bus interface with programmable READY.  
i386/486 bus.  
Philips MIPS PR31500/31700.  
NEC MIPS VR4102.  
Double Buffering/multi-pages: provides smooth ani-  
mation and instantaneous screen update.  
Acceleration of screen updates by allocating full  
display buffer bandwidth to CPU.  
CPU write buffer.  
Clock Source  
Single clock input for both pixel and memory clocks.  
Display Support  
4/8-bit monochrome passive LCD interface.  
Memory clock can be input clock or (input clock/2),  
providing flexibility to use CPU bus clock as input.  
4/8/16-bit color passive LCD interface.  
Single-panel, single-drive displays.  
Dual-panel, dual-drive displays.  
Pixel clock can be memory clock or (memory clock/  
2), (memory clock/3) or (memory clock/4).  
Power Down Modes  
Direct support for 9/12-bit TFT; 18-bit TFT is sup-  
ported up to 64K color depth (16-bit data).  
Two power down modes: one software / one hardware.  
LCD Power Sequencing.  
External RAMDAC support using the upper byte of  
the LCD data bus for the RAMDAC pixel data bus.  
General Purpose IO pins  
Up to 12 General Purpose IO pins are available.  
Simultaneous display of CRT and 4/8-bit passive  
or 9-bit TFT panels, regardless of resolution.  
Operating Voltage  
2.7 volts to 5.5 volts.  
Maximum resolution of 800x600 pixels at a color  
depth of 16 bpp.  
Package  
128-pin QFP15 surface mount package  
X19A-C-002-10  
1
GRAPHICS  
SED1354  
SYSTEM BLOCK DIAGRAM  
RAMDAC  
EDO-DRAM  
FPM-DRAM  
Analog Out  
CRT  
Control  
Digital Out  
CPU  
Clock  
SED1354  
Flat Panel  
Actual Size  
FOR SYSTEM INTEGRATION SERVICES  
FOR WINDOWS® CE CONTACT:  
Epson Research & Development, Inc.  
Suite #320 - 11120 Horseshoe Way  
Richmond, B.C., Canada V7A 5H7  
Tel: (604) 275-5151  
Fax: (604) 275-2167  
Email: wince@erd.epson.com  
http://www.erd.epson.com  
CONTACT YOUR SALES REPRESENTATIVE FOR THESE  
COMPREHENSIVE DESIGN TOOLS:  
SED1354 Technical Manual  
SDU1354 Evaluation Boards  
Windows CE Display Driver  
CPU Independent Software Utilities  
Japan  
Seiko Epson Corporation  
North America  
Epson Electronics America, Inc.  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Electronic Devices Marketing Division  
150 River Oaks Parkway  
421-8, Hino, Hino-shi  
San Jose, CA 95134, USA  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: (408) 922-0200  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Tel: 042-587-5812  
Fax: (408) 922-0238  
http://www.eea.epson.com.com  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
Copyright ©1997, 1998 Epson Research and Development, Inc. All rights reserved.  
VDC  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/  
EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are  
accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. Microsoft, Windows, and the Windows CE Logo are registered trademarks of Microsoft Corporation.  
2
X19A-C-002-10  
SED1354 Color Graphics LCD/CRT Controller  
Hardware Functional Specification  
Document Number: X19A-A-002-16  
Copyright © 1997, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.2 Overview Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2 CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.3 Display Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.4 Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.5 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.7 Package and Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3
4
Typical System Implementation Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.2 Functional Block Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Display FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Look-Up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
Pin Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 Pinout Diagram for SED1354F0A . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.2 Pinout Diagram for SED1354F1A . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.3 Pinout Diagram for SED1354F2A . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.4 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CRT and External RAMDAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.5 Summary of Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.6 Multiple Function Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6
7
D.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
A.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1 CPU Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1.1  
SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 4  
Epson Research and Development  
Vancouver Design Center  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
MC68K Bus 1 Interface Timing (e.g. MC68000) . . . . . . . . . . . . . . . . . . . . . . . .38  
MC68K Bus 2 Interface Timing (e.g. MC68030) . . . . . . . . . . . . . . . . . . . . . . . .40  
Generic MPU Interface Synchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Generic MPU Interface Asynchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . .44  
7.2 Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
7.3 Memory Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.3.7  
7.3.8  
7.3.9  
EDO-DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
EDO-DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
EDO-DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
EDO-DRAM CAS Before RAS Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . .53  
EDO-DRAM Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
FPM-DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
FPM-DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
FPM-DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
FPM-DRAM CAS# Before RAS# Refresh Timing . . . . . . . . . . . . . . . . . . . . . . .61  
7.3.10 FPM-DRAM Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
7.4 Display Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
Power-On/Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Suspend Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Single Monochrome 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Single Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Single Color 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Single Color 8-Bit Panel Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Single Color 8-Bit Panel Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Single Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Dual Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
7.4.10 Dual Color 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
7.4.11 Dual Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
7.4.12 16-Bit TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
7.4.13 CRT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
7.4.14 External RAMDAC Read / Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
8
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
8.1 Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
8.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
Revision Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Memory Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Panel/Monitor Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Display Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Clock Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Power Save Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Miscellaneous Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Look-Up Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 5  
Vancouver Design Center  
8.2.9  
External RAMDAC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
9
Display Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
9.1 Image Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
9.2 Half Frame Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
10 Display Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.1 Display Mode Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
10.2 Image Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
11 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
11.1 Maximum MCLK: PCLK Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
11.2 Frame Rate Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
12 Look-Up Table Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
12.1 Gray Shade Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
12.2 Color Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
13 Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
13.1 Hardware Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
13.2 Software Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
13.3 Power Save Mode Function Summary . . . . . . . . . . . . . . . . . . . . . . . . .129  
13.4 Pin States in Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
14 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
14.1 QFP15-128 (SED1354F0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
14.2 TQFP15-128 (SED1354F1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
14.3 QFP20-144 (SED1354F2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 7  
Vancouver Design Center  
List of Tables  
Table 2-1: SED1354 Series Package list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5-1: Host Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5-2: Memory Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5-3: LCD Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5-4: Clock Input Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5-5: CRT and RAMDAC Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5-6: Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5-7: Power Supply Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5-8: Summary of Power On / Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 5-9: Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5-10: Memory Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5-11: LCD, CRT, RAMDAC Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 6-1: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6-2: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6-3: Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6-4: Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7-1: SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 7-2: MC68K Bus 1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 7-3: MC68K Bus 2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 7-4: Generic MPU Interface Synchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 7-5: Generic MPU Interface Asynchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 7-6: Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 7-7: EDO DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 7-8: EDO DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 7-9: EDO DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 7-10: EDO-DRAM CAS Before RAS Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 7-11: EDO-DRAM Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 7-12: FPM DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 7-13: FPM-DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 7-14: FPM-DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 7-15: FPM-DRAM CAS# Before RAS# Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 7-16: FPM-DRAM CBR Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 7-17: LCD Panel Power-On/Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 7-18: LCD Panel Suspend Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 7-19: Single Monochrome 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 7-20: Single Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 7-21: Single Color 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 7-22: Single Color 8-Bit Panel A.C. Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 7-23: Single Color 8-Bit Panel A.C. Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 7-24: Single Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 8  
Epson Research and Development  
Vancouver Design Center  
Table 7-25: Dual Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Table 7-26: Dual Color 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Table 7-27: Dual Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Table 7-28: TFT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Table 7-29: CRT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Table 7-30: Generic Bus RAMDAC Read / Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Table 8-1: SED1354 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Table 8-2: DRAM Refresh Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Table 8-3: Panel Data Width Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Table 8-4: FPLINE Polarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Table 8-5: FPFRAME Polarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Table 8-6: Simultaneous Display Option Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Table 8-7: Number of Bits-Per-Pixel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Table 8-8: Pixel Panning Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 8-9: PCLK Divide Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 8-10: Suspend Refresh Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 8-11: Minimum Memory Timing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Table 8-12: RAS-to-CAS Delay Timing Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 8-13: RAS Precharge Timing Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 8-14: Optimal NRC, NRP, and NRCD Values at Maximum MCLK Frequency . . . . . . . . . . . . . 109  
Table 8-15: RGB Index Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Table 9-1: SED1354 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 11-1: Maximum PCLK Frequency with EDO-DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 11-2: Maximum PCLK Frequency with FPM-DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 11-3: Example Frame Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Table 12-1: Look-Up Table Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 13-1: Power Save Mode Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Table 13-2: Pin States in Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 9  
Vancouver Design Center  
List of Figures  
Figure 3-1: Typical System Diagram – SH-3 Bus, 1Mx16 FPM/EDO-DRAM . . . . . . . . . . . . . . . . . 14  
Figure 3-2: Typical System Diagram – MC68K Bus 1, 1Mx16 FPM/EDO-DRAM (16-Bit MC68000) . . . . 15  
Figure 3-3: Typical System Diagram – MC68K Bus 2, 256Kx16 FPM/EDO-DRAM (32-Bit MC68030) . . 15  
Figure 3-4: Typical System Diagram – Generic Bus, 1Mx16 FPM/EDO-DRAM . . . . . . . . . . . . . . . 16  
Figure 4-1: System Block Diagram Showing Datapaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 5-1: Pinout Diagram of F0A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5-2: Pinout Diagram of F1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5-3: Pinout Diagram of F2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 7-1: SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 7-2: MC68K Bus 1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 7-3: MC68K Bus 2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 7-4: Generic MPU Interface Synchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 7-5: Generic MPU Interface Asynchronous Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 7-6: Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 7-7: EDO-DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 7-8: EDO-DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 7-9: EDO-DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 7-10: EDO-DRAM CAS Before RAS Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 7-11: EDO-DRAM Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 7-12: FPM-DRAM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 7-13: FPM-DRAM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 7-14: FPM-DRAM Read-Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 7-15: FPM-DRAM CAS# Before RAS# Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 7-16: FPM-DRAM CBR Self-Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 7-17: LCD Panel Power-On/Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 7-18: LCD Panel Suspend Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 7-19: Single Monochrome 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 7-20: Single Monochrome 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 7-21: Single Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 7-22: Single Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 7-23: Single Color 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 7-24: Single Color 4-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 7-25: Single Color 8-Bit Panel Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 7-26: Single Color 8-Bit Panel A.C. Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 7-27: Single Color 8-Bit Panel Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 7-28: Single Color 8-Bit Panel A.C. Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 7-29: Single Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 7-30: Single Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 7-31: Dual Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 7-32: Dual Monochrome 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 10  
Epson Research and Development  
Vancouver Design Center  
Figure 7-33: Dual Color 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 7-34: Dual Color 8-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 7-35: Dual Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 7-36: Dual Color 16-Bit Panel A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 7-37: 16-Bit TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 7-38: TFT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 7-39: CRT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 7-40: CRT A.C. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 7-41: Generic Bus RAMDAC Read / Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 9-1: Display Buffer Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 10-1: 1/2/4/8 Bit-Per-Pixel Format Memory Organization . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 10-2: 15/16 Bit-Per-Pixel Format Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 10-3: Image Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 12-1: 1 Bit-Per-Pixel – 2-Level Gray-Shade Mode Look-Up Table Architecture . . . . . . . . . . . . 122  
Figure 12-2: 2 Bit-Per-Pixel – 4-Level Gray-Shade Mode Look-Up Table Architecture . . . . . . . . . . . . 123  
Figure 12-3: 4 Bit-Per-Pixel – 16-Level Gray-Shade Mode Look-Up Table Architecture . . . . . . . . . . . 123  
Figure 12-4: 1 Bit-Per-Pixel – 2-Level Color Look-Up Table Architecture . . . . . . . . . . . . . . . . . . 124  
Figure 12-5: 2 Bit-Per-Pixel – 4-Level Color Mode Look-Up Table Architecture . . . . . . . . . . . . . . . 125  
Figure 12-6: 4 Bit-Per-Pixel – 16-Level Color Mode Look-Up Table Architecture . . . . . . . . . . . . . . 126  
Figure 12-7: 8 Bit-Per-Pixel – 256-Level Color Mode Look-Up Table Architecture . . . . . . . . . . . . . . 127  
Figure 14-1: Mechanical Drawing QFP15-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 14-2: Mechanical Drawing TQFP15-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 14-3: Mechanical Drawing QFP20-144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 11  
Vancouver Design Center  
1 Introduction  
1.1 Scope  
This is the Functional Specification for the SED1354 Series Color Graphics LCD/CRT Controller  
Chip. Included in this document are timing diagrams, AC and DC characteristics, register descrip-  
tions, and power management descriptions. This document is intended for two audiences: Video  
Subsystem Designers and Software Developers.  
1.2 Overview Description  
The SED1354 is a low cost, low power color/monochrome LCD/CRT controller interfacing to a  
wide range of CPUs and LCDs. The SED1354 architecture is designed to meet the requirements of  
embedded markets such as Office Automation equipment, Mobile Communications devices and  
Hand-Held PCs where Windows CE may serve as a primary operating system.  
The SED1354 supports LCD interfaces with data widths up to 16 bits. Using Frame Rate Modulation  
(FRM), it can display 16 shades of gray on monochrome LCD panels, up to 4096 colors on passive  
color LCDs, and 64K colors on active matrix TFT LCD panels. CRT support is handled through the  
use of an external RAMDAC interface allowing simultaneous display of both the CRT and LCD  
panel. A 16-bit memory interface supports up to 2M bytes of FPM-DRAM or EDO-DRAM. Flexible  
operating voltages from 2.7V to 5.5V provide for very low power consumption.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 12  
Epson Research and Development  
Vancouver Design Center  
2 Features  
2.1 Memory Interface  
• 16-bit DRAM interface:  
• EDO-DRAM up to 40MHz data rate (80M bytes per second).  
• FPM-DRAM up to 25MHz data rate (50M bytes per second).  
• Memory size options:  
• 512K bytes using one 256K×16 device.  
• 2M bytes using one 1M×16 device.  
• A configuration register can be programmed to enhance performance by tailoring the memory  
control output timing to the DRAM device.  
2.2 CPU Interface  
• Supports the following interfaces:  
• 8/16-bit Hitachi SH-3 bus interface.  
• 16-bit interface to 16/32-bit Motorola MC68K microprocessors/microcontrollers.  
• Philips MIPS PR31500 / PR31700.  
• NEC MIPS VR4102.  
• 8/16-bit generic interface bus.  
• One-Stage write buffer for minimum wait-state CPU writes.  
• Registers are memory-mapped; M/R# pin selects between memory and register address space.  
• The complete 2M byte display buffer address space is directly and contiguously available  
through the 21-bit address bus.  
2.3 Display Support  
• 4/8-bit monochrome or 4/8/16-bit color passive LCD interface for single-panel, single-drive  
displays.  
• 8-bit monochrome or 8/16-bit color passive LCD interface for dual-panel, dual-drive displays.  
• Direct support for 9/12-bit TFT, 18/24-bit TFT are supported up to 64K color depth (16-bit data).  
• External RAMDAC support using the upper byte of the LCD data bus for the RAMDAC pixel  
data bus.  
• Simultaneous display of CRT and 4/8-bit passive panel or 9-bit TFT panel:  
• Normal mode for cases where LCD and CRT image sizes are identical.  
• Line-Doubling mode for simultaneous display of 240-line images on 240-line LCD and 480-  
line CRT.  
• Even-Scan and interlace modes for simultaneous display of 480-line images on 240-line LCD  
and 480-line CRT.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 13  
Vancouver Design Center  
2.4 Display Modes  
• 1/2/4/8/16 bit-per-pixel modes supported on LCD.  
• 1/2/4/8 bit-per-pixel modes supported on CRT.  
• Up to 16 shades of gray by FRM on monochrome passive LCD panels; a 16x4 Look-Up Table is  
used to map 1/2/4 bit-per-pixel modes into these shades.  
• Up to 4096 colors on color passive LCD panels; three 16x4 Look-Up Tables are used to map  
1/2/4/8 bit-per-pixel modes into these colors, 16 bit-per-pixel mode is mapped directly using the  
4 most significant bits of the red, green and blue colors.  
• Up to 64K colors in 16 bit-per-pixel mode on TFT panels.  
• Split screen mode – allows two different images to be simultaneously displayed.  
• Virtual display mode – displays images larger than the panel size through the use of panning and  
scrolling.  
• Double buffering / multi-pages – for smooth animation and instantaneous screen update.  
• Fast-Update feature – accelerates screen update by allocating full display buffer bandwidth to  
CPU (see REG[23h] bit 7).  
2.5 Clock Source  
2.6 Miscellaneous  
• Single clock input for both pixel and memory clocks.  
• Memory clock can be input clock or (input clock)/2 – this provides flexibility to use CPU bus  
clock as input clock.  
• Pixel clock can be memory clock, (memory clock)/2, (memory clock)/3 or (memory clock)/4.  
• The memory data bus MD[15:0], is used to configure the chip at power-on.  
• Up to 12 General Purpose Input/Output pins are available:  
• GPIO0 is always available.  
• GPIO[3:1] are available if upper Memory Address pins are not required for DRAM support.  
• GPIO[11:4] are available if there is no external RAMDAC.  
• Suspend power save mode is initiated by hardware or software.  
• The SUSPEND# pin is used either as an input to initiate Suspend mode, or as a General Purpose  
Output that can be used to control the LCD backlight – its power-on polarity is selected by an  
MD configuration pin.  
2.7 Package and Pin  
Table 2-1: SED1354 Series Package list  
Name  
Package  
QFP15  
Pin  
128  
128  
144  
SED1354F0A  
SED1354F1A  
SED1354F2A  
TQFP15  
QFP20  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 14  
Epson Research and Development  
Vancouver Design Center  
3 Typical System Implementation Diagrams  
Power  
Management  
Oscillator  
SH-3  
BUS  
M/R#  
CS#  
A21  
CSn#  
A[20:0]  
D[15:0]  
AB[20:0]  
DB[15:0]  
FPDAT[15:8]  
FPDAT[7:0]  
FPSHIFT  
UD[7:0]  
LD[7:0]  
4/8/16-bit  
FPSHIFT  
WE1#  
BS#  
WE1#  
BS#  
LCD  
SED1354  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
Display  
RD/WR#  
RD#  
RD/WR#  
RD#  
FPLINE  
MOD  
WE0#  
WAIT#  
WE0#  
WAIT#  
LCDPWR  
CKIO  
BUSCLK  
RESET#  
RESET#  
1Mx16  
FPM/EDO-DRAM  
Figure 3-1: Typical System Diagram – SH-3 Bus, 1Mx16 FPM/EDO-DRAM  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 15  
Vancouver Design Center  
.
Power  
Oscillator  
Management  
MC68000  
BUS  
A[23:21]  
FC0, FC1  
M/R#  
CS#  
Decoder  
Decoder  
A[20:1]  
D[15:0]  
AB[20:1]  
DB[15:0]  
FPDAT[15:8]  
FPDAT[7:0]  
FPSHIFT  
UD[7:0]  
LD[7:0]  
4/8/16-bit  
LCD  
FPSHIFT  
LDS#  
AB0#  
SED1354  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
FPLINE  
MOD  
Display  
UDS#  
AS#  
WE1#  
BS#  
R/W#  
RD/WR#  
WAIT#  
DTACK#  
LCDPWR  
BCLK  
BUSCLK  
RESET#  
RESET#  
1Mx16  
FPM/EDO-DRAM  
Figure 3-2: Typical System Diagram – MC68K Bus 1, 1Mx16 FPM/EDO-DRAM (16-Bit MC68000)  
Power  
Oscillator  
Management  
MC68030  
BUS  
A[31:21]  
FC0, FC1  
M/R#  
CS#  
Decoder  
Decoder  
A[20:0]  
AB[20:0]  
DB[15:0]  
FPDAT[15:8]  
FPDAT[7:0]  
FPSHIFT  
UD[7:0]  
D[31:16]  
LD[7:0]  
4/8/16-bit  
LCD  
FPSHIFT  
DS#  
AS#  
WE1#  
BS#  
SED1354  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
FPLINE  
MOD  
Display  
R/W#  
RD/WR#  
RD#  
SIZ1  
SIZ0  
WE0#  
WAIT#  
DSACK1#  
LCDPWR  
BCLK  
BUSCLK  
RESET#  
RESET#  
256Kx16  
FPM/EDO-DRAM  
Figure 3-3: Typical System Diagram – MC68K Bus 2, 256Kx16 FPM/EDO-DRAM (32-Bit MC68030)  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 16  
Epson Research and Development  
Vancouver Design Center  
.
Power  
Oscillator  
Management  
GENERIC  
BUS  
M/R#  
CS#  
A21  
CSn#  
A[20:0]  
D[15:0]  
AB[20:0]  
DB[15:0]  
FPDAT[15:8]  
FPDAT[7:0]  
FPSHIFT  
UD[7:0]  
LD[7:0]  
4/8/16-bit  
FPSHIFT  
LCD  
WE0#  
WE1#  
RD0#  
RD1#  
WAIT#  
WE0#  
WE1#  
SED1354  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
Display  
FPLINE  
MOD  
RD#  
RD/WR#  
WAIT#  
LCDPWR  
BCLK  
BUSCLK  
RESET#  
RESET#  
1Mx16  
FPM/EDO-DRAM  
Figure 3-4: Typical System Diagram – Generic Bus, 1Mx16 FPM/EDO-DRAM  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 17  
Vancouver Design Center  
4 Block Description  
4.1 Functional Block Diagram  
16-bit FPM/EDO  
DRAM  
Memory  
Controller  
Power Save  
Clocks  
Register  
CPU  
R/W  
LCD  
I/F  
LCD  
Display  
FIFO  
DAC  
Data  
Host  
CPU / MPU  
I/F  
Look-Up  
Table  
DAC  
Control  
CRTC  
Pixel Clock  
Bus Clock  
Memory Clock  
Figure 4-1: System Block Diagram Showing Datapaths  
4.2 Functional Block Descriptions  
4.2.1 Host Interface  
The Host Interface block provides the means for the CPU/MPU to communicate with the display  
buffer and internal registers, via one of the supported bus interfaces.  
4.2.2 Memory Controller  
The Memory Controller block arbitrates between CPU accesses and display refresh accesses as well  
as generates the necessary signals to interface to one of the supported 16-bit memory devices (FPM-  
DRAM or EDO-DRAM).  
4.2.3 Display FIFO  
The Display FIFO block fetches display data from the Memory Controller for display refresh.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 18  
Epson Research and Development  
Vancouver Design Center  
4.2.4 Look-Up Table  
The Look-Up Table block contains three 16x4 Look-Up Tables, one for each primary color. In  
monochrome mode only one of these Look-Up Tables is selected and used.  
4.2.5 LCD Interface  
The LCD Interface block performs frame rate modulation for passive LCD panels. It also generates  
the correct data format and timing control signals for various LCD and TFT panels.  
4.2.6 Power Save  
The Power Save block contains the power save mode circuitry.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 19  
Vancouver Design Center  
5 Pin Out  
5.1 Pinout Diagram for SED1354F0A  
96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64  
97  
98  
MD1  
COREVDD  
DACP0  
63  
62  
61  
60  
59  
MD13  
99  
MD2  
DACWR#  
100  
101  
102  
103  
104  
MD12  
DACRS0  
DACRS1  
MD3  
MD11  
MD4  
HRTC  
VRTC  
VSS  
58  
57  
56  
55  
54  
53  
52  
51  
50  
MD10  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
CLKI  
MD5  
MD9  
SUSPEND#  
TESTEN  
BUSCLK  
VSS  
MD6  
MD8  
MD7  
IOVDD  
AB20  
VSS  
LCAS#  
UCAS#  
WE#  
49  
48  
47  
AB19  
AB18  
SED1354F0A  
AB17  
RAS#  
IOVDD  
MA9  
115  
116  
117  
46  
45  
44  
AB16  
AB15  
AB14  
MA11  
118  
119  
43  
42  
AB13  
MA8  
MA10  
MA7  
MA0  
MA6  
MA1  
MA5  
MA2  
AB12  
AB11  
120  
121  
122  
41  
40  
AB10  
AB9  
AB8  
AB7  
AB6  
AB5  
AB4  
AB3  
39  
38  
37  
123  
124  
125  
126  
127  
128  
36  
35  
34  
33  
MA4  
MA3  
COREVDD  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 5-1: Pinout Diagram of F0A  
Package type: 128 pin surface mount QFP15  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 20  
Epson Research and Development  
Vancouver Design Center  
5.2 Pinout Diagram for SED1354F1A  
96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64  
63  
97  
MD1  
COREVDD  
98  
MD13  
DACP0  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
99  
MD2  
DACWR#  
100  
MD12  
DACRS0  
101  
DACRS1  
MD3  
MD11  
MD4  
102  
HRTC  
103  
VRTC  
104  
VSS  
MD10  
105  
CLKI  
MD5  
MD9  
106  
SUSPEND#  
107  
TESTEN  
MD6  
108  
BUSCLK  
MD8  
109  
VSS  
MD7  
110  
IOVDD  
VSS  
111  
AB20  
LCAS#  
UCAS#  
WE#  
112  
49  
48  
47  
AB19  
113  
AB18  
SED1354F1A  
114  
AB17  
AB16  
AB15  
AB14  
AB13  
RAS#  
IOVDD  
MA9  
115  
116  
117  
46  
45  
44  
MA11  
118  
119  
43  
42  
MA8  
MA10  
MA7  
MA0  
MA6  
MA1  
MA5  
MA2  
AB12  
AB11  
120  
121  
122  
41  
40  
AB10  
AB9  
AB8  
AB7  
AB6  
AB5  
AB4  
AB3  
39  
38  
37  
123  
124  
125  
126  
127  
128  
36  
35  
34  
33  
MA4  
MA3  
COREVDD  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 5-2: Pinout Diagram of F1A  
Package type: 128 pin surface mount TQFP15  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 21  
Vancouver Design Center  
5.3 Pinout Diagram for SED1354F2A  
10810710610510410310210110099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
72  
NC  
NC  
NC  
NC  
MD1  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
COREVDD  
DACP0  
MD13  
MD2  
DACWR#  
MD12  
DACRS0  
DACRS1  
MD3  
MD11  
MD4  
HRTC  
VRTC  
VSS  
MD10  
MD5  
MD9  
MD6  
CLKI  
SUSPEND#  
TESTEN  
BUSCLK  
VSS  
MD8  
MD7  
VSS  
IOVDD  
AB20  
LCAS#  
UCAS#  
WE#  
AB19  
AB18  
SED1354F2A  
RAS#  
IOVDD  
AB17  
AB16  
AB15  
MA9  
AB14  
MA11  
AB13  
MA8  
MA10  
MA7  
MA0  
MA6  
MA1  
MA5  
MA2  
AB12  
AB11  
AB10  
AB9  
AB8  
AB7  
AB6  
AB5  
MA4  
AB4  
AB3  
NC  
MA3  
COREVDD  
NC  
NC  
NC  
1
2 3  
4
5
6 7  
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
Figure 5-3: Pinout Diagram of F2A  
Package type: 144 pin surface mount QFP20  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 22  
Epson Research and Development  
Vancouver Design Center  
5.4 Pin Description  
Key:  
I
=
=
=
=
=
=
=
=
=
Input  
O
Output  
IO  
P
Bi-Directional (Input/Output)  
Power pin  
C
CMOS level input  
CD  
CS  
COx  
TSx  
CMOS level input with pull-down resistor (typical values of 100K/180Kat 5V/3.3V respectively)  
CMOS level Schmitt input  
CMOS output driver, x denotes driver type (1=3/-1.5mA, 2=6/-3mA, 3=12/-6mA)  
Tri-state CMOS output driver, x denotes driver type (1=3/-1.5mA, 2=6/-3mA, 3=12/-6mA)  
Tri-state CMOS output driver with pull-down resistor (typical values of 100K/180Kat 5V/3.3V  
respectively), x denotes driver type (1=3/-1.5mA, 2=6/-3mA, 3=12/-6mA)  
TSxD  
CNx  
=
=
CMOS low-noise output driver, x denotes driver type (1=3/-1.5mA, 2=6/-3mA, 3=12/-6mA)  
5.4.1 Host Interface  
Table 5-1: Host Interface Pin Descriptions  
Pin #  
Reset =  
0 Value  
Pin Name Type  
Driver  
Description  
This pin has multiple functions.  
F0A  
F1A  
F2A  
For SH-3 mode, this pin inputs system address bit 0 (A0).  
For MC68K Bus 1, this pin inputs the lower data strobe (LDS#).  
For MC68K Bus 2, this pin inputs system address bit 0 (A0).  
For Generic Bus, this pin inputs system address bit 0 (A0).  
AB0  
I
I
3
5
CS  
C
Hi-Z  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32 for  
summary.  
111-128 125-142  
1, 2  
AB[20:1]  
Hi-Z  
System address bus bits [20:1].  
3,4  
System data bus. Unused data pins should be connected to IO  
VDD  
.
For SH-3 mode, these pins are connected to D[15:0].  
For MC68K Bus 1, these pins are connected to D[15:0].  
For MC68K Bus 2, these pins are connected to D[31:16] for 32-  
bit devices (e.g. MC68030) or D[15:0] for 16-bit devices (e.g.  
MC68340).  
DB[15:0] IO  
16-31  
18-33  
C/TS2  
Hi-Z  
For Generic Bus, these pins are connected to D[15:0].  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32 for  
summary.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 23  
Vancouver Design Center  
Table 5-1: Host Interface Pin Descriptions (Continued)  
Pin #  
Reset =  
0 Value  
Pin Name Type  
Driver  
Description  
This pin has multiple functions.  
F0A  
F1A  
F2A  
For SH-3 mode, this pin inputs the write enable signal for the  
upper data byte (WE1#).  
For MC68K Bus 1, this pin inputs the upper data strobe  
(UDS#).  
WE1#  
I
9
11  
CS  
Hi-Z  
For MC68K Bus 2, this pin inputs the data strobe (DS#).  
For Generic Bus, this pin inputs the write enable signal for the  
upper data byte (WE1#).  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
This input pin is used to select between the memory and register  
address spaces of the SED1354. M/R# is set high to access the  
memory and low to access the registers. See Section 8.1,  
“Register Mapping” on page 90.  
M/R#  
I
5
4
7
C
Hi-Z  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
Chip select input. See Table 5-9: “Host Bus Interface Pin  
Mapping,” on page 32.  
CS#  
I
I
6
C
C
Hi-Z  
Hi-Z  
System bus clock. See Table 5-9: “Host Bus Interface Pin  
Mapping,” on page 32.  
BUSCLK  
108  
122  
This pin has multiple functions.  
For SH-3 mode, this pin inputs the bus start signal (BS#).  
For MC68K Bus 1, this pin inputs the address strobe (AS#).  
For MC68K Bus 2, this pin inputs the address strobe (AS#).  
BS#  
I
6
8
CS  
Hi-Z  
For Generic Bus, this pin must be tied to IO VDD  
.
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
This pin has multiple functions.  
For SH-3 mode, this pin inputs the RD/WR# signal. The  
SED1354 needs this signal for early decode of the bus cycle.  
For MC68K Bus 1, this pin inputs the R/W# signal.  
For MC68K Bus 2, this pin inputs the R/W# signal.  
RD/WR#  
I
10  
12  
CS  
Hi-Z  
For Generic Bus, this pin inputs the read command for the  
upper data byte (RD1#).  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
This pin has multiple functions.  
For SH-3 mode, this pin inputs the read signal (RD#).  
For MC68K Bus 1, this pin must be tied to IO VDD  
.
RD#  
I
7
9
CS  
Hi-Z  
For MC68K Bus 2, this pin inputs the bus size bit 1 (SIZ1).  
For Generic Bus, this pin inputs the read command for the  
lower data byte (RD0#).  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 24  
Epson Research and Development  
Vancouver Design Center  
Table 5-1: Host Interface Pin Descriptions (Continued)  
Pin #  
Reset =  
0 Value  
Pin Name Type  
Driver  
Description  
This pin has multiple functions.  
F0A  
F1A  
F2A  
For SH-3 mode, this pin inputs the write enable signal for the  
lower data byte (WE0#).  
For MC68K Bus 1, this pin must be tied to IO VDD.  
WE0#  
I
8
10  
CS  
Hi-Z  
For MC68K Bus 2, this pin inputs the bus size bit 0 (SIZ0).  
For Generic Bus, this pin inputs the write enable signal for the  
lower data byte (WE0#).  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
The active polarity of the WAIT# output is configurable on the  
rising edge of RESET# - see Section 5.5, “Summary of  
Configuration Options” on page 31.  
This pin has multiple functions.  
For SH-3 mode, this pin outputs the wait request signal  
(WAIT#); MD5 must be pulled low during reset by the internal  
pull-down resistor.  
For MC68K Bus 1, this pin outputs the data transfer  
acknowledge signal (DTACK#); MD5 must be pulled high  
during reset by an external pull-up resistor.  
WAIT#  
O
13  
15  
TS2  
Hi-Z  
For MC68K Bus 2, this pin outputs the data transfer and size  
acknowledge bit 1 (DSACK1#); MD5 must be pulled high  
during reset by an external pull-up resistor.  
For Generic Bus, this pin outputs the wait signal (WAIT#); MD5  
must be pulled low during reset by the internal pull-down  
resistor.  
See Table 5-9: “Host Bus Interface Pin Mapping,” on page 32.  
Active low input to clear all internal registers and to force all  
signals to their inactive states.  
RESET#  
I
11  
13  
CS  
Input 0  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 25  
Vancouver Design Center  
5.4.2 Memory Interface  
Table 5-2: Memory Interface Pin Descriptions  
Pin #  
Reset = 0  
Driver  
Pin Name Type  
Description  
F0A  
F1A  
Value  
F2A  
This pin has multiple functions.  
For dual CAS# DRAM, this is the column address strobe for  
the lower byte (LCAS#).  
LCAS#  
O
O
50  
56  
CO1  
CO1  
Output 1  
For single CAS# DRAM, this is the column address strobe  
(CAS#).  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
This pin has multiple functions.  
For dual CAS# DRAM, this is the column address strobe for  
the upper byte (UCAS#).  
UCAS#  
49  
55  
Output 1  
For single CAS# DRAM, this is the write enable signal for the  
upper byte (UWE#).  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
This pin has multiple functions.  
For dual CAS# DRAM, this is the write enable signal (WE#).  
For single CAS# DRAM, this is the write enable signal for the  
lower byte (LWE#).  
WE#  
O
O
48  
47  
54  
53  
CO1  
CO1  
Output 1  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
RAS#  
Output 1 Row address strobe.  
These pins have multiple functions.  
67, 65, 76, 70,  
63, 61, 68, 66,  
59, 57, 64, 62,  
55, 53, 60, 58,  
52, 54, 59, 61,  
56, 58, 63, 65,  
60, 62, 67, 69,  
Bi-directional memory data bus.  
During reset, these pins are inputs and their states at the  
rising edge of RESET# are used to configure the chip.  
Internal pull-down resistors (typical values of  
100KΩ/100KΩ/120Kat 5.0V/3.3V/3.0V respectively) pull  
the reset states to 0. External pull-up resistors can be used  
to pull the reset states to 1. See Section 5.5, “Summary of  
Configuration Options” on page 31.  
Hi-Z  
(pulled 0)  
MD[15:0] IO  
CD2/TS1  
64, 66  
75, 77  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 26  
Epson Research and Development  
Vancouver Design Center  
Table 5-2: Memory Interface Pin Descriptions (Continued)  
Pin #  
Reset = 0  
Value  
Pin Name Type  
Driver  
Description  
F0A  
F1A  
F2A  
43, 41, 46, 44,  
39, 37, 42, 40,  
MA[8:0]  
O
35, 34, 41, 43, CO1  
36, 38, 45, 47,  
Output 0 Multiplexed memory address.  
This pin has multiple functions.  
40  
49  
For 2M byte DRAM, this is memory address bit 9 (MA9).  
For asymmetrical 512K byte DRAM, this is memory address  
bit 9 (MA9).  
Hi-Z /  
MA9  
IO  
45  
51  
C/TS1  
Output 01  
For symmetrical 512K byte DRAM, this pin can be used as  
general purpose IO (GPIO3).  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
This pin has multiple functions.  
For asymmetrical 2M byte DRAM, this is memory address bit  
10 (MA10).  
Hi-Z /  
MA10  
IO  
IO  
42  
44  
48  
50  
C/TS1  
C/TS1  
For symmetrical 2M byte DRAM and all 512K byte DRAM,  
this pin can be used as general purpose IO (GPIO1).  
Output 01  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
This pin has multiple functions.  
For asymmetrical 2M byte DRAM, this is memory address bit  
11 (MA11).  
Hi-Z /  
MA11  
For symmetrical 2M byte DRAM and all 512K byte DRAM,  
this pin can be used as general purpose IO (GPIO2).  
Output 01  
See Table 5-10: “Memory Interface Pin Mapping,” on page 32  
for summary.  
1
When configured as IO pins.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 27  
Vancouver Design Center  
5.4.3 LCD Interface  
Table 5-3: LCD Interface Pin Descriptions  
Pin #  
Reset =  
Driver  
Pin Name  
Type  
Description  
F0A  
F!A  
0 Value  
F2A  
FPDAT[8:0]  
O
88, 82-75 98, 92-85 CN3  
Output 0 Panel Data  
These pins have multiple functions.  
Panel Data for 16-bit panels.  
FPDAT[15:9] O  
95-89  
105-99  
CN3  
Output 0  
Pixel Data for external RAMDAC support.  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
FPFRAME  
FPLINE  
O
O
O
69  
70  
73  
79  
80  
83  
CN3  
CN3  
CN3  
Output 0 Frame Pulse  
Output 0 Line Pulse  
FPSHIFT  
Output 0 Shift Clock Pulse  
LCD power control output. The active polarity of this output  
is selected by the state of MD10 at the rising edge of  
RESET# - see Section 5.5, “Summary of Configuration  
Options” on page 31.  
LCDPWR  
O
71  
81  
CO1  
Output1  
This output is controlled by the power save mode circuitry -  
see Section 13, “Power Save Modes” on page 128 for  
details.  
This pin has multiple functions which are automatically  
selected depending on panel type used.  
For TFT panels, this is the display enable output  
(DRDY).  
For passive LCDs with Format 1 interfaces, this is the  
2nd Shift Clock (FPSHIFT2).  
DRDY  
O
72  
82  
CN3  
Output 0  
For all other LCD panels, this is the LCD backplane bias  
signal (MOD).  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33 and REG[02h] for details.  
1
Output may be 1 or 0.  
5.4.4 Clock Input  
Table 5-4: Clock Input Pin Description  
Pin #  
Reset =  
Driver  
Pin Name Type  
Description  
F0A  
F1A  
0 Value  
F2A  
Input clock for the internal pixel clock (PCLK) and memory  
clock (MCLK). PCLK and MCLK are derived from CLKI – see  
REG[19h] for details.  
CLKI  
I
105  
119  
C
Hi-Z  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 28  
Epson Research and Development  
Vancouver Design Center  
5.4.5 CRT and External RAMDAC Interface  
Table 5-5: CRT and RAMDAC Interface Pin Descriptions  
Pin #  
Reset =  
0 Value  
Pin Name  
Type  
Driver  
Description  
F0A  
F1A  
F2A  
This pin has multiple functions.  
Read signal for external RAMDAC support.  
General Purpose IO (GPIO4).  
Hi-Z /  
DACRD#  
IO  
84  
99  
94  
C/TS1  
Output 11  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Write signal for external RAMDAC support.  
General Purpose IO (GPIO7).  
Hi-Z /  
DACWR#  
DACRS1  
DACRS0  
DACP0  
IO  
IO  
IO  
IO  
113  
C/TS1  
C/TS1  
C/TS1  
C/CN3  
Output 11  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Register Select bit 1 for external RAMDAC support.  
General Purpose IO (GPIO9).  
Hi-Z /  
101  
100  
98  
115  
114  
112  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Register Select bit 0 for external RAMDAC support.  
General Purpose IO (GPIO8).  
Hi-Z /  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Pixel Data bit 0 for external RAMDAC support.  
General Purpose IO (GPIO6).  
Hi-Z /  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 29  
Vancouver Design Center  
Table 5-5: CRT and RAMDAC Interface Pin Descriptions (Continued)  
Pin #  
Reset =  
0 Value  
Pin Name  
Type  
Driver  
Description  
F0A  
F1A  
F2A  
This pin has multiple functions.  
Horizontal Retrace signal for CRT.  
General Purpose IO (GPIO10).  
Hi-Z /  
HRTC  
IO  
102  
116  
C/CN3  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Vertical Retrace signal for CRT.  
General Purpose IO (GPIO11).  
Hi-Z /  
VRTC  
IO  
103  
117  
C/CN3  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
This pin has multiple functions.  
Blanking signal for DAC.  
Hi-Z /  
BLANK#  
DACCLK  
IO  
O
85  
86  
95  
96  
C/CN3  
C/CN3  
General Purpose IO (GPIO5).  
Output 01  
See Table 5-11: “LCD, CRT, RAMDAC Interface Pin  
Mapping,” on page 33.  
Output 0 Pixel Clock for RAMDAC.  
1
When configured as IO pins  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 30  
Epson Research and Development  
Vancouver Design Center  
5.4.6 Miscellaneous  
Table 5-6: Miscellaneous Pin Descriptions  
Pin #  
Reset = 0  
Driver  
Pin Name  
Type  
Description  
F0A  
F1A  
Value  
F2A  
This pin has multiple functions.  
When MD9 = 0 at rising edge of RESET#, this pin is  
an active-low input used to place the SED1354 into  
suspend mode; see Section 13, “Power Save Modes”  
on page 128 for details.  
Hi-Z /  
SUSPEND# IO  
106  
120  
CS/TS1  
Output1  
When MD[10:9] = 01 at rising edge of RESET#, this  
pin is an output with a reset state of 0. Its state is  
controlled by REG[21h] bit 7.  
When MD[10:9] = 11 at rising edge of RESET#, this  
pin is an output with a reset state of 1. Its state is  
controlled by REG[21h] bit 7.  
GPIO0  
TSTEN  
IO  
I
12  
14  
C/TS1  
CD  
Hi-Z  
General Purpose IO pin 0.  
Test Enable. This in should be connected to VSS for  
normal operation.  
Hi-Z  
(pulled 0)  
107  
121  
1, 2, 35-  
38, 71-  
74, 107-  
110,  
NC  
-
-
-
-
No connect  
143, 144  
1
When configured as IO pin. Output may be 1 or 0.  
5.4.7 Power Supply  
Table 5-7: Power Supply Pin Descriptions  
Pin #  
Pin Name  
Type  
Driver  
Description  
F0A  
F1A  
F2A  
COREVDD  
IOVDD  
P
P
33, 97  
39, 111  
P
P
Core VDD  
IO VDD  
14, 46,  
83, 110  
16, 52,  
93, 124  
15, 32,  
51, 68,  
74, 87,  
96, 104,  
109  
17, 34,  
57, 78,  
84, 97,  
106, 118,  
123,  
VSS  
P
P
Common VSS  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 31  
Vancouver Design Center  
5.5 Summary of Configuration Options  
Table 5-8: Summary of Power On / Reset Options  
value on this pin at rising edge of RESET# is used to configure:  
(1/0)  
Pin Name  
1
0
MD0  
8-bit host bus interface  
16-bit host bus interface  
Select host bus interface:  
000 = SH-3 bus interface  
001 = MC68K bus 1 (e.g. MC68000)  
010 = MC68K bus 2 (e.g. MC68030)  
MD[3:1]  
011 = Generic bus interface (e.g. Philips MIPS PR31500/PR31700; NEC MIPS VR4102)  
1XX = reserved  
MD4  
MD5  
Little Endian  
Big Endian  
WAIT# is active high (1 = insert wait state)  
WAIT# is active low (0 = insert wait state)  
Memory Address/GPIO configuration:  
00 = symmetrical 256K×16 DRAM. MA[8:0]  
= DRAM address. MA[11:9]  
= GPIO[2:1] and GPIO3.  
MD[7:6]  
MD8  
01 = symmetrical 1M×16 DRAM.  
10 = asymmetrical 256K×16 DRAM. MA[9:0]  
11 = asymmetrical 1M×16 DRAM.  
MA[9:0]  
= DRAM address. MA[11:10] = GPIO[2:1].  
= DRAM address. MA[11:10] = GPIO[2:1].  
MA[11:0] = DRAM address.  
Configure DACRD#, BLANK#, DACP0, DACWR#,  
DACRS0, DACRS1, HRTC, VRTC as General  
Purpose IO (GPIO[11:4]).  
Configure DACRD#, BLANK#, DACP0, DACWR#,  
DACRS0, DACRS1, HRTC, VRTC as DAC and CRT  
outputs.  
MD9  
SUSPEND# pin configured as GPO output.  
Active low LCDPWR or GPO polarities.  
Not used.  
SUSPEND# pin configured as SUSPEND# input.  
Active high LCDPWR or GPO polarities.  
MD10  
MD[15:11]  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
 
 
Page 32  
Epson Research and Development  
Vancouver Design Center  
5.6 Multiple Function Pin Mapping  
Table 5-9: Host Bus Interface Pin Mapping  
SED1354  
Pin Names  
SH-3  
MC68K Bus 1  
MC68K Bus 2  
Generic MPU  
AB[20:1]  
AB0  
A[20:1]  
A0  
A[20:1]  
LDS#  
A[20:1]  
A0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
D[15:0]  
D[31:16]  
DS#  
D[15:0]  
UDS#  
WE1#  
External Decode  
CSn#  
External Decode  
External Decode  
CLK  
External Decode  
External Decode  
CLK  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
CKIO  
BS#  
AS#  
AS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD/WR#  
RD#  
R/W#  
R/W#  
Connect to IO VDD  
Connect to IO VDD  
DTACK#  
SIZ1  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
SIZ0  
WE0#  
WAIT#  
RESET#  
DSACK1#  
RESET#  
WAIT#  
RESET#  
RESET#  
Table 5-10: Memory Interface Pin Mapping  
FPM/EDO-DRAM  
SED1354  
Pin Names  
Sym 256Kx16  
2-CAS# 2-WE#  
Asym 256Kx16  
2-CAS# 2-WE#  
DQ[15:0]  
A[8:0]  
Sym 1Mx16  
Asym 1Mx16  
2-CAS#  
2-WE#  
2-CAS#  
2-WE#  
MD[15:0]  
MA[8:0]  
MA9  
GPIO31  
A9  
MA10  
GPIO11  
GPIO21  
A10  
A11  
MA11  
UCAS#  
LCAS#  
WE#  
UCAS#  
UWE#  
CAS#  
LWE#  
UCAS#  
UWE#  
CAS#  
LWE#  
UCAS#  
LCAS#  
WE#  
UWE#  
CAS#  
LWE#  
UCAS#  
LCAS#  
WE#  
UWE#  
CAS#  
LWE#  
LCAS#  
WE#  
LCAS#  
WE#  
RAS#  
RAS#  
Note  
1. All GPIO pins default to input on reset, and unless programmed otherwise should be  
connected to either VSS or IO VDD if not used.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 33  
Vancouver Design Center  
Table 5-11: LCD, CRT, RAMDAC Interface Pin Mapping  
Monochrome Passive  
Panel  
Color Passive Panel  
Color TFT Panel  
SED1354  
Single  
Single  
CRT  
Pin Names  
Single  
Dual  
8-bit  
Single  
4-bit  
Dual  
16-bit  
Format 1  
Format 2  
1
4-bit  
8-bit  
8-bit  
8-bit  
FPFRAME  
FPLINE  
8-bit  
9-bit  
12-bit 18-bit  
2
FPFRAME  
FPLINE  
FPSHIFT  
DRDY  
Note  
2
Note  
2
FPSHIFT  
Note  
2
MOD  
FPSHIFT2  
MOD  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
DRDY  
Note  
2
FPDAT0  
FPDAT1  
FPDAT2  
FPDAT3  
FPDAT4  
FPDAT5  
FPDAT6  
FPDAT7  
FPDAT8  
FPDAT9  
driven 0  
driven 0  
driven 0  
driven 0  
D0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
driven 0  
driven 0  
driven 0  
driven 0  
D0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
LD4  
LD5  
LD6  
LD7  
R2  
R1  
R3  
R2  
R1  
G3  
G2  
G1  
B3  
B2  
B1  
R0  
R5  
R4  
R3  
G5  
G4  
G3  
B5  
B4  
B3  
R2  
R1  
G2  
G1  
G0  
B2  
B1  
Note  
2
Note  
2
R0  
Note  
2
G2  
Note  
2
G1  
Note  
2
D1  
D1  
G0  
Note  
2
D2  
D2  
B2  
Note  
2
D3  
D3  
B1  
Note  
2
driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0  
driven 0 driven 0  
driven 0 driven 0  
driven 0 driven 0  
B0  
Note  
driven 0  
DACP7  
DACP6  
DACP5  
DACP4  
DACP3  
DACP2  
DACP1  
DACRD#  
BLANK#  
DACP0  
DACWR#  
DACRS0  
DACRS1  
HRTC  
FPDAT10 driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0  
driven 0 G0  
FPDAT11 driven 0 driven 0 driven 0 driven 0 driven 0  
FPDAT12 driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0 UD4 driven 0 driven 0  
driven 0 driven 0 UD5 driven 0 driven 0  
FPDAT13 driven 0 driven 0 driven 0 driven 0 driven 0  
FPDAT14 driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0 UD6 driven 0  
B0  
FPDAT15 driven 0 driven 0 driven 0 driven 0 driven 0  
driven 0 driven 0 UD7 driven 0 driven 0  
3
DACRD#  
BLANK#  
DACP0  
GPIO4  
3
3
3
3
3
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
DACWR#  
DACRS0  
DACRS1  
HRTC  
3
3
GPIO10  
GPIO11  
VRTC  
VRTC  
DACCLK  
driven 0  
DACCLK  
Note  
1. Although 18-bit TFT panels are supported only 16 data bits (64K colors) are available  
- R0 and B0 are not used.  
2. If no LCD is active these pins are driven low.  
3. All GPIO pins default to input on reset, and unless programmed otherwise should be  
connected to either VSS or IO VDD if not used.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 34  
Epson Research and Development  
Vancouver Design Center  
6 D.C. Characteristics  
Table 6-1: Absolute Maximum Ratings  
Symbol  
Core VDD  
Parameter  
Rating  
Units  
Supply Voltage  
VSS - 0.3 to 4.6  
VSS - 0.3 to 6.0  
V
IO VDD  
VIN  
Supply Voltage  
V
Input Voltage  
VSS - 0.3 to IO VDD + 0.5  
VSS - 0.3 to IO VDD + 0.5  
-65 to 150  
V
VOUT  
TSTG  
TSOL  
Output Voltage  
V
Storage Temperature  
Solder Temperature/Time  
° C  
° C  
260 for 10 sec. max at lead  
Table 6-2: Recommended Operating Conditions  
Condition Min  
VSS = 0 V  
Symbol  
Parameter  
Supply Voltage  
Typ  
3.0/3.3  
3.0/3.3/5.0 5.5  
Max  
Units  
Core VDD  
IO VDD  
VIN  
2.7  
2.7  
3.6  
V
V
V
Supply Voltage  
VSS = 0 V  
Input Voltage  
VSS  
-40  
IO VDD  
85  
TOPR  
Operating Temperature  
25  
° C  
Table 6-3: Input Specifications  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Low Level Input Voltage  
CMOS inputs  
IO VDD  
IO VDD  
IO VDD  
IO VDD  
=
=
=
=
3.0  
3.3  
5.0  
0.8  
0.8  
1.0  
V
V
V
VIL  
High Level Input Voltage  
CMOS inputs  
3.0  
3.3  
5.0  
1.9  
2.0  
3.5  
V
V
V
VIH  
VT+  
VT-  
Positive-Going Threshold  
CMOS Schmitt inputs  
3.0  
3.3  
5.0  
1.0  
1.1  
2.0  
2.3  
2.4  
4.0  
V
V
V
Negative-Going Threshold  
CMOS Schmitt inputs  
3.0  
3.3  
5.0  
0.5  
0.6  
0.8  
1.7  
1.8  
3.1  
V
V
V
VDD = Max  
IH = IO VDD  
VIL = VSS  
IIZ  
Input Leakage Current  
Input Pin Capacitance  
Pull-down Resistance  
V
-1  
1
µA  
CIN  
10  
pF  
VIN = VDD = 3.0  
= 3.3  
60  
50  
50  
120  
100  
100  
300  
300  
300  
kΩ  
kΩ  
kΩ  
HRPD  
= 5.0  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 35  
Vancouver Design Center  
Table 6-4: Output Specifications  
Condition Min  
Symbol  
Parameter  
Typ  
Max  
Units  
Low Level Output Voltage  
Type 1 - TS1, CO1, TS1D  
Type 2 - TS2, CO2  
IOL = 3mA  
IOL = 6mA  
IOL = 12mA  
VOL  
0.4  
V
V
Type 3 - TS3, CO3  
High Level Output Voltage  
Type 1 - TS1, CO1, TS1D  
Type 2 - TS2, CO2  
IOL = -1.5 mA  
OL = -3 mA  
VOH  
IO VDD - 0.4  
I
Type 3 - TS3, CO3  
IOL = -6 mA  
IO VDD = Max  
IOZ  
Output Leakage Current  
VOH = VDD  
-1  
1
µA  
VOL = VSS  
COUT  
CBID  
Output Pin Capacitance  
10  
10  
pF  
pF  
Bidirectional Pin Capacitance  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 36  
Epson Research and Development  
Vancouver Design Center  
7 A.C. Characteristics  
Conditions:  
IO VDD = 2.7V to 5.5V unless otherwise specified  
TA = -40° C to 85° C  
Trise and Tfall for all inputs must be 5 nsec (10% ~ 90%)  
CL = 50pF (Bus / MPU Interface)  
CL = 100pF (LCD Panel Interface)  
CL = 10pF (Display Buffer Interface)  
CL = 10pF (CRT / DAC Interface)  
7.1 CPU Interface Timing  
7.1.1 SH-3 Interface Timing  
t1  
t2  
t3  
CKIO  
t4  
t5  
A[20:0], M/R#  
RD/WR#  
t6  
t7  
BS#  
t8  
t12  
CSn#  
t9  
t10  
WEn#  
RD#  
t12  
t11  
WAIT#  
t14  
t13  
D[15:0](write)  
t15  
t16  
D[15:0](read)  
Figure 7-1: SH-3 Interface Timing  
Note  
The SH-3 Wait State Control Register for the area in which the SED1354 resides must be set to a  
non-zero value.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 37  
Vancouver Design Center  
Table 7-1: SH-3 Interface Timing  
Symbol  
Parameter  
Min  
25  
5
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
Clock period  
Clock pulse width high  
Clock pulse width low  
t3  
5
t4  
4
A[20:0], M/R#, RD/WR# setup to CKIO  
A[20:0], M/R#, RD/WR# hold from CS#  
BS# setup  
t5  
0
t6  
3
t7  
0
BS# hold  
t8  
0
CSn# setup  
t92  
t10  
t111  
t12  
t13  
t14  
t15  
t16  
3
Falling edge RD# to D[15:0] driven  
Rising edge CSn# to WAIT# tri-state  
Falling edge CSn# to WAIT# driven  
CKIO to WAIT# delay  
0
4
1
11  
15  
3
0
D[15:0] setup to first CKIO after BS# (write cycle)  
D[15:0] hold (write cycle)  
0
0
D[15:0] valid to WAIT# rising edge (read cycle)  
Rising edge RD# to D[15:0] tri-state (read cycle)  
2
9
1. If the SED1354 host interface is disabled, the timing for WAIT# driven is relative to the falling  
edge of CSn# or the first positive edge of CKIO after A[20:0] and M/R# become valid,  
whichever occurs later.  
2. If the SED1354 host interface is disabled, the timing for D[15:0] driven is relative to the falling  
edge of RD# or the first positive edge of CKIO after A[20:0] and M/R# become valid,  
whichever occurs later.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 38  
Epson Research and Development  
Vancouver Design Center  
7.1.2 MC68K Bus 1 Interface Timing (e.g. MC68000)  
t1  
t2 t3  
CLK  
t4  
t5  
A[20:1]  
M/R#  
t6  
CS#  
AS#  
t16  
UDS#  
LDS#  
t8  
t7  
R/W#  
t9  
t10  
DTACK#  
t11  
t12  
D[15:0](write)  
t13  
t15  
t14  
D[15:0](read)  
Figure 7-2: MC68K Bus 1 Interface Timing  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 39  
Vancouver Design Center  
Table 7-2: MC68K Bus 1 Interface Timing  
Symbol  
Parameter  
Min  
30  
5
Max  
Units  
ns  
t1  
t2  
t3  
Clock period  
ns  
Clock pulse width high  
Clock pulse width low  
5
ns  
A[20:1], M/R# setup to first CLK where CS# = 0 AS# = 0, and  
either UDS#=0 or LDS# = 0  
t4  
4
ns  
t5  
t6  
0
0
5
0
1
1
ns  
ns  
ns  
ns  
ns  
ns  
A[20:1], M/R# hold from AS#  
CS# hold from AS#  
t7  
R/W# setup to before to either UDS#=0 or LDS# = 0  
R/W# hold from AS#  
t8  
t91  
AS# = 0 and CS# = 0 to DTACK# driven high  
AS# high to DTACK# high impedance  
t10  
5
D[15:0] valid to second CLK where CS# = 0 AS# = 0, and either  
UDS#=0 or LDS# = 0 (write cycle)  
t11  
t12  
t132  
t14  
t15  
t16  
0
0
3
0
2
3
ns  
ns  
ns  
ns  
ns  
ns  
D[15:0] hold from falling edge of DTACK# (write cycle)  
Falling edge of UDS#=0 or LDS# = 0 to D[15:0] driven (read  
cycle)  
D[15:0] valid to DTACK# falling edge (read cycle)  
UDS# and LDS# high to D[15:0] invalid/high impedance (read  
cycle)  
11  
AS# high setup to CLK  
1. If the SED1354 host interface is disabled, the timing for DTACK# driven high is relative to the  
falling edge of AS# or the first positive edge of CLK after A[20:1] and M/R# become valid,  
whichever occurs later.  
2. If the SED1354 host interface is disabled, the timing for D[15:0] driven is relative to the falling  
edge of UDS#/LDS# or the first positive edge of CLK after A[20:1] and M/R# become valid,  
whichever occurs later.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 40  
Epson Research and Development  
Vancouver Design Center  
7.1.3 MC68K Bus 2 Interface Timing (e.g. MC68030)  
t1  
t2  
t3  
CLK  
t4  
t5  
A[20:0]  
SIZ[1:0] M/R#  
t6  
CS#  
AS#  
t16  
DS#  
t7  
t9  
t8  
R/W#  
t10  
DSACK1#  
D[31:16](write)  
D[31:16](read)  
t11  
t12  
t15  
t13  
t14  
Figure 7-3: MC68K Bus 2 Interface Timing  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 41  
Vancouver Design Center  
Table 7-3: MC68K Bus 2 Interface Timing  
Symbol  
Parameter  
Min  
30  
5
Max  
Units  
ns  
t1  
t2  
t3  
Clock period  
ns  
Clock pulse width high  
Clock pulse width low  
5
ns  
A[20:0], SIZ[1:0], M/R# setup to first CLK where CS# = 0 AS# =  
0, and either UDS#=0 or LDS# = 0  
t4  
4
ns  
t5  
t6  
0
0
5
0
1
1
ns  
ns  
ns  
ns  
ns  
ns  
A[20:0], SIZ[1:0], M/R# hold from AS#  
CS# hold from AS#  
t7  
R/W# setup to DS#  
t8  
t91  
R/W# hold from AS#  
AS# = 0 and CS# = 0 to DSACK1# driven high  
AS# high to DSACK1# high impedance  
t10  
5
D[31:16] valid to second CLK where CS# = 0 AS# = 0, and  
either UDS#=0 or LDS# = 0 (write cycle)  
t11  
t12  
t132  
t14  
t15  
t16  
0
0
3
0
2
3
ns  
ns  
ns  
ns  
ns  
ns  
D[31:16] hold from falling edge of DSACK1# (write cycle)  
Falling edge of UDS# = 0 or LDS# = 0 to D[31:16] driven (read  
cycle)  
D[31:16] valid to DSACK1# falling edge (read cycle)  
UDS# and LDS# high to D[31:16] invalid/high impedance (read  
cycle)  
11  
AS# high setup to CLK  
1. If the SED1354 host interface is disabled, the timing for DSACK1# driven high is relative to  
the falling edge of AS# or the first positive edge of CLK after A[20:0] and M/R# become  
valid, whichever occurs later.  
2. If the SED1354 host interface is disabled, the timing for D[15:0] driven is relative to the falling  
edge of UDS#/LDS# or the first positive edge of CLK after A[20:1] and M/R# becomes valid,  
whichever occurs later.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 42  
Epson Research and Development  
Vancouver Design Center  
7.1.4 Generic MPU Interface Synchronous Timing  
TBCLK  
BCLK  
t2  
t2  
t1  
t1  
t1  
t1  
t1  
t2  
A[20:0]  
M/R#  
Valid  
t2  
CS#  
t3  
t2  
t2  
t1  
RD0#,RD1#  
WE0#,WE1#  
t4  
t5  
t6  
Hi-Z  
Hi-Z  
WAIT#  
t8  
t7  
Hi-Z  
Hi-Z  
Hi-Z  
D[15:0](write)  
Valid  
t10  
t11  
t9  
Hi-Z  
Valid  
D[15:0](read)  
Figure 7-4: Generic MPU Interface Synchronous Timing  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 43  
Vancouver Design Center  
Table 7-4: Generic MPU Interface Synchronous Timing  
Symbol  
Parameter  
Min  
25  
1
Max  
Units  
TBCLK  
t1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus clock period  
A[20:0], M/R#, CS#, RD0#,RD1#,WE0#,WE1# hold time  
A[20:0], M/R#, CS#, RD0#,RD1#,WE0#,WE1# setup time  
RD0#,RD1#,WE0#,WE1# high to A[20:0], M/R# invalid and CS# high  
RD0#,RD1#,WE0#,WE1# low and CS# low to WAIT# driven low  
BCLK to WAIT# high  
t2  
5
t3  
t41  
0
1
7
15  
6
t5  
0
t6  
1
RD0#,RD1#,WE0#,WE1# high to WAIT# high impedance  
D[15:0] valid to second BCLK where RD0#,RD1#,WE0#,WE1# low and CS#  
low (write cycle)  
t7  
5
ns  
t8  
0
3
0
2
ns  
ns  
D[15:0] hold from WE0#, WE1# high (write cycle)  
RD0#,RD1# low to D[15:0] driven (read cycle)  
D[15:0] valid to WAIT# high (read cycle)  
t92  
t10  
t11  
15  
10  
RD0#, RD1# high to D[15:0] high impedance (read cycle)  
1. If the SED1354 host interface is disabled, the timing for WAIT# driven low is relative to the  
falling edge of CS# and RD0#, RD1#, WE0#, WE1# or the first positive edge of BCLK after  
A[20:0] and M/R# become valid, whichever occurs later.  
2. If the SED1354 host interface is disabled, the timing for D[15:0] driven is relative to the falling  
edge of RD0#, RD1# or the first positive edge of BCLK after A[20:0] and M/R# become  
valid, whichever occurs later.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 44  
Epson Research and Development  
Vancouver Design Center  
7.1.5 Generic MPU Interface Asynchronous Timing  
TBCLK  
BCLK  
A[20:0]  
M/R#  
Valid  
t1  
CS#  
t2  
RD0#,RD1#  
t3  
WE0#,WE1#  
t5  
t4  
Hi-Z  
Hi-Z  
WAIT#  
t7  
t6  
Hi-Z  
Hi-Z  
Valid  
D[15:0](write)  
t9  
t10  
t8  
Hi-Z  
Hi-Z  
D[15:0](read)  
Valid  
Figure 7-5: Generic MPU Interface Asynchronous Timing  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 45  
Vancouver Design Center  
Table 7-5: Generic MPU Interface Asynchronous Timing  
Symbol  
Parameter  
Min  
25  
4
Max  
Units  
TBCLK  
t1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus clock period  
RD0#, RD1#, WE0#, WE1# low to CS# low  
t2  
0
A[20:0], M/R# valid to RD0#, RD1#, WE0#, WE1# low  
RD0#, RD1#, WE0#, WE1# high to A[20:0], CS#, M/R# invalid and CS# high  
CS# low to WAIT# driven low  
t3  
t41  
0
1
7
6
t5  
1
RD0#, RD1#, WE0#, WE1# high to WAIT# high impedance  
WE0#, WE1# low to D[15:0] valid (write cycle)  
D[15:0] hold from WE0#, WE1# high (write cycle)  
RD0#, RD1# low to D[15:0] driven (read cycle)  
D[15:0] valid to WAIT# high (read cycle)  
t6  
20  
t7  
t82  
0
3
0
2
15  
10  
t9  
t10  
RD0#, RD1# high to D[15:0] high impedance (read cycle)  
1. If the SED1354 host interface is disabled, the timing for WAIT# driven low is relative to the  
falling edge of CS# or the first positive edge of BCLK after A[20:0] and M/R# become valid,  
whichever occurs later.  
2. If the SED1354 host interface is disabled, the timing for D[15:0] driven is relative to the falling  
edge of RD0#, RD1# or the first positive edge of BCLK after A[20:0] and M/R# become valid,  
whichever occurs later.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 46  
Epson Research and Development  
Vancouver Design Center  
7.2 Clock Input Requirements  
Clock Input Waveform  
t
t
PWH  
PWL  
V
IH  
V
IL  
TCLKI  
Figure 7-6: Clock Input Requirements  
Table 7-6: Clock Input Requirements  
Symbol  
TCLKI  
TPCLK  
TMCLK  
tPWH  
Parameter  
Input Clock Period (CLKI)  
Min  
12.5  
25  
Typ  
Max  
Units  
ns  
Pixel Clock Period (PCLK) not shown  
Memory Clock Period (MCLK) not shown  
Input Clock Pulse Width High (CLKI)  
Input Clock Pulse Width Low (CLKI)  
ns  
25  
ns  
45%  
45%  
55%  
55%  
TCLKI  
TCLKI  
tPWL  
Note  
When CLKI is more than 40MHz, REG[19h] bit 2 must be set to 1 (MCLK = CLKI/2).  
There is no minimum frequency for CLKI.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 47  
Vancouver Design Center  
7.3 Memory Interface Timing  
7.3.1 EDO-DRAM Read Timing  
t1  
Memory  
Clock  
t2  
t3  
t4  
t5  
t7  
t8  
t9  
t6  
R
C1  
C2  
C3  
C4  
MA  
RAS#  
CAS#  
t10  
t11  
t14  
t12  
t16  
t15  
t13  
MD(Read)  
d1  
d2  
d3  
d4  
Figure 7-7: EDO-DRAM Read Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 48  
Epson Research and Development  
Vancouver Design Center  
Table 7-7: EDO DRAM Read Timing  
Parameter  
Symbol  
Min  
25  
Typ  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
Memory clock period  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
Column address setup time  
5 t1  
t2  
4 t1  
3 t1  
2.45 t1  
2 t1  
t3  
t4  
1.45 t1  
0.45 t1 - 1  
t1 - 1  
t5  
t6  
t7  
t8  
t9  
0.45 t1 - 1  
0.45 t1 - 1  
0.45 t1  
0.45 t1 - 1  
1 t1  
Column address hold time  
CAS# pulse width  
0.55 t1 + 1  
0.55 t1  
CAS# precharge time  
RAS# hold time  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
2 t1 - 1  
1.45 t1 - 1  
1 t1 - 1  
t10  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
2 t1 - 2  
2 t1  
ns  
t11  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1 t1 - 2  
1 t1  
ns  
ns  
ns  
RAS# to CAS# delay time (REG[22h] bits [3:2] = 01)  
1.45 t1 - 2  
1.55 t1  
3 t1 - 11  
Access time from RAS#  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
t12  
Access time from RAS#  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
2 t1 - 11  
ns  
Access time from RAS# (REG[22h] bits [3:2] = 01)  
Access time from CAS#  
2.45 t1 - 12  
t1 - 10  
ns  
ns  
ns  
ns  
ns  
t13  
t14  
t15  
t16  
1.45 t1 - 6  
Access time from CAS# precharge, column address  
Read Data hold after CAS# low  
2
2
Read Data turn-off delay from RAS#  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 49  
Vancouver Design Center  
7.3.2 EDO-DRAM Write Timing  
t1  
Memory  
Clock  
t2  
t5  
t6  
t8  
t9  
t4  
t3  
R
C1  
t12  
C2  
C3  
C4  
MA  
t7  
RAS#  
CAS#  
WE#  
t13  
t10  
t11  
t14 t15  
d1  
d2  
d3  
d4  
MD(Write)  
Figure 7-8: EDO-DRAM Write Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 50  
Epson Research and Development  
Vancouver Design Center  
Table 7-8: EDO DRAM Write Timing  
Parameter  
Symbol  
Min  
25  
Typ  
Max  
Units  
ns  
t1  
Memory clock period  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
5 t1  
ns  
t2  
4 t1  
ns  
3 t1  
ns  
2.45 t1  
2 t1  
ns  
t3  
t4  
ns  
1.45 t1  
0.45 t1 - 1  
t1 - 1  
ns  
ns  
ns  
t5  
t6  
t7  
t8  
t9  
0.45 t1 - 1  
ns  
Column address setup time  
Column address hold time  
CAS# pulse width  
0.45 t1 - 1  
0.45 t1  
ns  
ns  
ns  
0.55 t1 + 1  
0.55 t1  
0.45 t1 - 1  
CAS# precharge time  
1 t1  
ns  
ns  
ns  
ns  
RAS# hold time  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
2 t1 - 1  
t10  
1.45 t1 - 1  
1 t1 - 1  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
2 t1 - 2  
1 t1 - 2  
2 t1  
ns  
ns  
t11  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1 t1  
RAS# to CAS# delay time (REG[22h] bits [3:2] = 01)  
Write command setup time  
Write command hold time  
1.45 t1 - 2  
0.45 t1 - 1  
0.45 t1  
1.55 t1  
ns  
ns  
ns  
ns  
ns  
t12  
t13  
t14  
t15  
0.45 t1 - 3  
0.45 t1 - 2  
Write Data setup time  
Write Data hold time  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 51  
Vancouver Design Center  
7.3.3 EDO-DRAM Read-Write Timing  
t1  
Memory  
Clock  
t2  
t3  
t4  
t5  
t6  
MA  
R
C1  
C2  
C3  
RAS#  
CAS#  
WE#  
t7  
t8  
t10  
t9  
MD(Read)  
MD(Write)  
d1  
d2  
d3  
Figure 7-9: EDO-DRAM Read-Write Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 52  
Epson Research and Development  
Vancouver Design Center  
Table 7-9: EDO DRAM Read-Write Timing  
Parameter  
Symbol  
Min  
25  
Typ  
Max  
Units  
ns  
t1  
Memory clock period  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
5 t1  
ns  
t2  
4 t1  
ns  
3 t1  
ns  
2.45 t1  
2 t1  
ns  
t3  
t4  
ns  
1.45 t1  
0.45 t1 - 1  
t1 - 1  
ns  
ns  
ns  
t5  
t6  
0.45 t1 - 1  
ns  
Column address setup time  
0.45 t1 - 1  
2 t1 - 1  
ns  
ns  
ns  
ns  
Column address hold time  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
t7  
1.45 t1 - 1  
1 t1 - 1  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
2 t1 - 2  
1 t1 - 2  
2 t1  
ns  
ns  
t8  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1 t1  
RAS# to CAS# delay time (REG[22h] bits [3:2] = 01)  
Read Data turn-off delay from WE#  
1.45 t1 - 2  
0
1.55 t1  
ns  
ns  
ns  
ns  
t9  
1.45 t1  
0.45 t1  
Write Data delay from WE# (REG[22h] bit 7 = 0)  
Write Data delay from WE# (REG[22h] bit 7 = 1)  
t10  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 53  
Vancouver Design Center  
7.3.4 EDO-DRAM CAS Before RAS Refresh Timing  
t1  
Memory  
Clock  
t2  
t3  
RAS#  
CAS#  
t4  
t5  
t6  
Figure 7-10: EDO-DRAM CAS Before RAS Refresh Timing  
Table 7-10: EDO-DRAM CAS Before RAS Refresh Timing  
Symbol  
Parameter  
Min  
25  
Typ  
Max  
Units  
ns  
t1  
Memory clock period  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
CAS# precharge time (REG[22h] bits [3:2] = 00)  
1.45 t1  
0.45 t1  
5 t1  
ns  
t2  
ns  
ns  
t3  
4 t1  
ns  
3 t1  
ns  
2 t1  
ns  
t4  
t5  
CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
1 t1  
ns  
0.45 t1 - 2  
ns  
CAS# setup time (REG[22h] bits [3:2] = 00 or 10)  
1 t1 - 2  
2 t1 - 1  
ns  
ns  
ns  
ns  
CAS# setup time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
t6  
1.45 t1 - 1  
1 t1 - 1  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 54  
Epson Research and Development  
Vancouver Design Center  
7.3.5 EDO-DRAM Self-Refresh Timing  
Restarted for  
active mode  
Stopped for  
suspend mode  
t1  
Memory  
Clock  
t5  
t2  
RAS#  
CAS#  
t3  
t4  
Figure 7-11: EDO-DRAM Self-Refresh Timing  
Table 7-11: EDO-DRAM Self-Refresh Timing  
Symbol  
Parameter  
Min  
25  
Typ  
Max  
Units  
ns  
t1  
Memory clock period  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
CAS# precharge time (REG[22h] bits [3:2] = 00)  
1.45 t1  
0.45 t1  
2 t1  
ns  
t2  
t3  
ns  
ns  
CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
1 t1  
ns  
0.45 t1 - 2  
ns  
CAS# setup time (REG[22h] bits [3:2] = 00 or 10)  
t4  
t5  
1 t1 - 2  
2 t1 - 1  
ns  
ns  
ns  
ns  
CAS# setup time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
1.45 t1 - 1  
1 t1 - 1  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 55  
Vancouver Design Center  
7.3.6 FPM-DRAM Read Timing  
t1  
Memory  
Clock  
t2  
t8  
t5  
t6  
t9  
t3  
t4  
R
C1  
C2  
C3  
C4  
MA  
RAS#  
CAS#  
t7  
t10  
t11  
t15  
t12  
t13  
t14  
MD(Read)  
d2  
d1  
d3  
d4  
Figure 7-12: FPM-DRAM Read Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 56  
Epson Research and Development  
Vancouver Design Center  
Table 7-12: FPM DRAM Read Timing  
Parameter  
Symbol  
Min  
40  
Typ  
Max  
Units  
ns  
t1  
Memory clock  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
5 t1  
ns  
t2  
4 t1  
ns  
3 t1  
ns  
2 t1  
ns  
t3  
t4  
1.45 t1  
1 t1  
ns  
ns  
t1 - 1  
0.45 t1 - 1  
0.45 t1 - 1  
ns  
ns  
t5  
t6  
t7  
t8  
t9  
ns  
Column address set-up time  
Column address hold time  
CAS# pulse width  
0.45 t1 - 1  
0.45 t1  
ns  
ns  
ns  
0.55 t1 + 1  
0.55 t1  
0.45 t1 - 1  
CAS# precharge time  
0.45 t1  
2 t1 - 1  
ns  
ns  
ns  
ns  
RAS# hold time  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
t10  
1.45 t1 - 1  
1 t1 - 1  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1.45 t1 - 2  
2.45 t1 - 2  
1.55 t1  
2.55 t1  
ns  
ns  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
t11  
RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits [3:2] = 01)  
RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits [3:2] = 01)  
1 t1 - 2  
2 t1 - 2  
1 t1  
2 t1  
ns  
ns  
Access time from RAS#  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
2 t1 - 2  
3 t1 - 2  
ns  
ns  
Access time from RAS#  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
t12  
1.45 t1 - 2  
2.45 t1 - 2  
0.45 t1 - 1  
1 t1 - 2  
ns  
ns  
ns  
ns  
ns  
Access time from RAS# (REG[22h] bit 4 = 1 and bits [3:2] = 01)  
Access time from RAS# (REG[22h] bit 4 = 0 and bits [3:2] = 01)  
Access time from CAS#  
t13  
t14  
t15  
Access time from CAS# precharge  
2
Read Data hold from CAS# or RAS#  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 57  
Vancouver Design Center  
7.3.7 FPM-DRAM Write Timing  
t1  
Memory  
Clock  
t2  
t5  
t6  
t8  
t9  
t3  
t4  
R
C1  
C2  
C3  
t7  
C4  
MA  
RAS#  
CAS#  
WE#  
t12  
t13  
t10  
t11  
t14 t15  
d3  
MD(Write)  
d1  
d2  
d4  
Figure 7-13: FPM-DRAM Write Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 58  
Epson Research and Development  
Vancouver Design Center  
Table 7-13: FPM-DRAM Write Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
t1  
Memory clock  
40  
5 t1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
t2  
4 t1  
3 t1  
2 t1  
t3  
t4  
1.45 t1  
1 t1  
t1 - 1  
0.45 t1 - 1  
t5  
t6  
t7  
t8  
t9  
Column address set-up time  
Column address hold time  
CAS# pulse width  
0.45 t1 - 1  
0.45 t1 - 1  
0.45 t1  
ns  
ns  
ns  
ns  
0.55 t1 + 1  
0.55 t1  
CAS# precharge time  
0.45 t1 - 1  
RAS# hold time  
0.45 t1  
2 t1 - 1  
ns  
ns  
ns  
ns  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
t10  
1.45 t1 - 1  
1 t1 - 1  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1.45 t1 - 2  
2.45 t1 - 2  
1.55 t1  
2.55 t1  
ns  
ns  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
t11  
RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits [3:2] = 01)  
RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits [3:2] = 01)  
1 t1 - 2  
2 t1 - 2  
1 t1  
2 t1  
ns  
ns  
t12  
t13  
t14  
t15  
Write command setup time  
Write command hold time  
Write Data setup time  
Write Data hold time  
0.45 t1 - 1  
0.45 t1  
ns  
ns  
ns  
ns  
0.45 t1 - 3  
0.45 t1 - 2  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 59  
Vancouver Design Center  
7.3.8 FPM-DRAM Read-Write Timing  
t1  
Memory  
Clock  
t2  
t3  
t4  
t5  
t6  
R
C1  
C2  
C3  
MA  
RAS#  
CAS#  
WE#  
t7  
t8  
t10  
t9  
d1  
d2  
MD(Read)  
MD(Write)  
d3  
Figure 7-14: FPM-DRAM Read-Write Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 60  
Epson Research and Development  
Vancouver Design Center  
Table 7-14: FPM-DRAM Read-Write Timing  
Symbol  
Parameter  
Min  
40  
Typ  
Max  
Units  
ns  
t1  
Memory clock  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
Row address setup time (REG[22h] bits [3:2] = 00)  
Row address setup time (REG[22h] bits [3:2] = 01)  
Row address setup time (REG[22h] bits [3:2] = 10)  
Row address hold time (REG[22h] bits [3:2] = 00 or 10)  
Row address hold time (REG[22h] bits [3:2] = 01)  
5 t1  
ns  
t2  
4 t1  
ns  
3 t1  
ns  
2 t1  
ns  
t3  
t4  
1.45 t1  
1 t1  
ns  
ns  
t1 - 1  
0.45 t1 - 1  
0.45 t1 - 1  
ns  
ns  
t5  
t6  
ns  
Column address set-up time  
0.45 t1 - 1  
2 t1 - 1  
ns  
ns  
ns  
ns  
Column address hold time  
RAS# precharge time (REG[22h] bits [3:2] = 0)  
RAS# precharge time (REG[22h] bits [3:2] = 01)  
RAS# precharge time (REG[22h] bits [3:2] = 10)  
t7  
1.45 t1 - 1  
1 t1 - 1  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 1 and bits [3:2] = 00 or 10)  
1.45 t1 - 2  
2.45 t1 - 2  
1.55 t1  
2.55 t1  
ns  
ns  
RAS# to CAS# delay time  
(REG[22h] bit 4 = 0 and bits [3:2] = 00 or 10)  
t8  
RAS# to CAS# delay time (REG[22h] bit 4 = 1 and bits [3:2] = 01)  
RAS# to CAS# delay time (REG[22h] bit 4 = 0 and bits [3:2] = 01)  
1 t1 - 2  
2 t1 - 2  
2
1 t1  
2 t1  
ns  
ns  
ns  
t9  
Read Data turn-off delay from CAS#  
Write Data enable delay from WE#  
t10  
0.45 t1  
ns  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 61  
Vancouver Design Center  
7.3.9 FPM-DRAM CAS# Before RAS# Refresh Timing  
t1  
Memory  
Clock  
t2  
t3  
RAS#  
CAS#  
t5  
t4  
t6  
Figure 7-15: FPM-DRAM CAS# Before RAS# Refresh Timing  
Table 7-15: FPM-DRAM CAS# Before RAS# Refresh Timing  
Symbol  
Parameter  
Min  
40  
Typ  
Max  
Units  
ns  
t1  
Memory clock  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
Random read or write cycle time (REG[22h] bits [6:5] = 00)  
Random read or write cycle time (REG[22h] bits [6:5] = 01)  
Random read or write cycle time (REG[22h] bits [6:5] = 10)  
CAS# precharge time (REG[22h] bits [3:2] = 00)  
2 t1  
ns  
t2  
1 t1  
ns  
5 t1  
ns  
t3  
4 t1  
ns  
3 t1  
ns  
2 t1  
ns  
t4  
t5  
t6  
CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
1 t1  
ns  
0.45 t1 - 2  
2.45 t1 - 1  
1.45 t1 - 1  
ns  
CAS# setup time (CAS# before RAS# refresh)  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
ns  
ns  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 62  
Epson Research and Development  
Vancouver Design Center  
7.3.10 FPM-DRAM Self-Refresh Timing  
Restarted for  
active mode  
Stopped for  
suspend mode  
t1  
Memory  
Clock  
t5  
t2  
RAS#  
CAS#  
t4  
t3  
Figure 7-16: FPM-DRAM CBR Self-Refresh Timing  
Table 7-16: FPM-DRAM CBR Self-Refresh Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
ns  
t1  
40  
2 t1  
Memory clock  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# to CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
CAS# precharge time (REG[22h] bits [3:2] = 00)  
ns  
t2  
1 t1  
ns  
2 t1  
ns  
t3  
t4  
t5  
CAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
1 t1  
ns  
0.45 t1 - 2  
2.45 t1 - 1  
1.45 t1 - 1  
ns  
CAS# setup time (CAS# before RAS# refresh)  
RAS# precharge time (REG[22h] bits [3:2] = 00)  
RAS# precharge time (REG[22h] bits [3:2] = 01 or 10)  
ns  
ns  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 63  
Vancouver Design Center  
7.4 Display Interface  
7.4.1 Power-On/Reset Timing  
TRESET#  
RESET#  
LCD ENABLE  
(REG[0Dh] bit 0)  
Inactive  
Active  
Active  
LCDPWR  
FPFRAME  
FPLINE  
FPSHIFT  
FPDAT[15:0]  
DRDY  
Active  
t1  
t2  
Figure 7-17: LCD Panel Power-On/Reset Timing  
Table 7-17: LCD Panel Power-On/Reset Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
100  
us  
TRESET# RESET# pulse time  
LCD Enable bit high to FPLINE, FPSHIFT, FPDAT[15:0], DRDY  
active  
T
FPFRAME + 6TPCLK  
ns  
t1  
t2  
FPLINE, FPSHIFT, FPDAT[15:0], DRDY active to LCDPWR, on  
and FPFRAME active  
128  
Frames  
Note  
Where TFPFRAME is the period of FPFRAME and TPCLK is the period of the pixel clock.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 64  
Epson Research and Development  
Vancouver Design Center  
7.4.2 Suspend Timing  
SUSPEND#  
Software Suspend  
Note 1  
t1  
Note 2  
CLKI  
t2  
t3  
LCDPWR  
Active  
Inactive  
Active  
FPFRAME  
t4  
t5  
FPLINE  
Active  
Active  
Inactive  
DRDY  
FPSHIFT  
Active  
FPDAT[15:0]  
Active  
t6  
t7  
Memory Access  
Allowed  
Allowed  
Not Allowed  
Figure 7-18: LCD Panel Suspend Timing  
Table 7-18: LCD Panel Suspend Timing  
Symbol  
Parameter  
Min  
128  
0
Typ  
Max  
Units  
t1  
t2  
Frames  
Frames  
LCDPWR inactive to CLKI inactive  
1
1
SUSPEND# active to FPFRAME, LCDPWR inactive  
First CLKI after SUSPEND# inactive to FPFRAME, LCDPWR  
active  
t3  
t4  
t5  
Frames  
Frames  
Frames  
LCDPWR inactive to FPLINE, FPSHIFT, FPDAT[15:0], DRDY  
active  
128  
First CLKI after SUSPEND# inactive to FPLINE, FPSHIFT,  
FPDAT[15:0], DRDY active  
0
0
t6  
t7  
8
MCLK  
MCLK  
LCDPWR inactive to Memory Access not allowed  
First CLKI after SUSPEND# inactive to Memory Access allowed  
Note  
1. t3, t5, and t7 are measured from the first CLKI after SUSPEND# inactive.  
2. CLKI may be active throughout SUSPEND# active.  
3. Where MCLK is the period of the memory clock.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 65  
Vancouver Design Center  
7.4.3 Single Monochrome 4-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE1  
LINE2  
LINE3  
LINE4  
LINE239 LINE240  
LINE1  
LINE2  
UD[3:0], UD[3:0]  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
UD3  
1-317  
1-318  
1-319  
1-320  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
UD2  
UD1  
1-7  
1-8  
UD0  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 320x240 panel  
Figure 7-19: Single Monochrome 4-Bit Panel Timing  
VDP =  
VNDP = Vertical Non-Display Period  
HDP = Horizontal Display Period  
Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP = Horizontal Non-Display Period  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 66  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
MOD  
t5  
Data Timing  
FPLINE  
t6  
t7  
t8  
t10  
t11  
t12  
t9  
FPSHIFT  
UD[3:0]  
t13  
t14  
1
2
Figure 7-20: Single Monochrome 4-Bit Panel A.C. Timing  
Table 7-19: Single Monochrome 4-Bit Panel A.C. Timing  
Symbol  
Parameter  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE pulse width  
Min  
Typ  
Max  
Units  
t1  
t2  
note 2  
9
Ts (note 1)  
Ts  
t3  
9
note 3  
note 4  
note 5  
t14 + 2  
4
t4  
FPLINE period  
t5  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
t7  
Ts  
Ts  
t8  
t9  
note 6  
18  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT rising edge  
FPSHIFT pulse width high  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
2
2
FPSHIFT pulse width low  
2
UD[3:0] setup to FPSHIFT falling edge  
UD[3:0] hold to FPSHIFT falling edge  
2
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t4min - 9Ts  
3. t4min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0]) + 1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 25] Ts  
6. t9min = [((REG[05h] bits [4:0]) + 1)*8 - 16] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 67  
Vancouver Design Center  
7.4.4 Single Monochrome 8-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
LINE1  
LINE2  
UD[3:0], LD[3:0]  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
1-633  
1-1  
1-2  
1-3  
1-4  
1-5  
1-9  
UD3  
UD2  
1-10  
1-634  
1-635  
1-636  
1-637  
1-638  
1-639  
1-640  
1-11  
1-12  
1-13  
UD1  
UD0  
LD3  
1-6  
1-7  
1-8  
1-14  
1-15  
1-16  
LD2  
LD1  
LD0  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-21: Single Monochrome 8-Bit Panel Timing  
VDP  
VNDP = Vertical Non-Display Period  
HDP = Horizontal Display Period  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
HNDP = Horizontal Non-Display Period  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 68  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t4  
t3  
t5  
Data Timing  
FPLINE  
t6  
t7  
t8  
t10  
t11  
t12  
t9  
FPSHIFT  
t13  
t14  
UD[3:0]  
LD[3:0]  
1
2
Figure 7-22: Single Monochrome 8-Bit Panel A.C. Timing  
Table 7-20: Single Monochrome 8-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
t1  
t2  
note 2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE pulse width  
9
Ts (note 1)  
Ts  
t3  
9
note 3  
note 4  
note 5  
t14 + 4  
8
t4  
FPLINE period  
t5  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
t7  
Ts  
Ts  
t8  
t9  
note 6  
18  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT rising edge  
FPSHIFT pulse width high  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
4
4
FPSHIFT pulse width low  
4
UD[3:0], LD[3:0] setup to FPSHIFT falling edge  
UD[3:0], LD[3:0] hold to FPSHIFT falling edge  
4
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t4min - 9Ts  
3. t4min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0]) + 1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 23] Ts  
6. t9min = [((REG[05h] bits [4:0]) + 1)*8 - 14] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 69  
Vancouver Design Center  
7.4.5 Single Color 4-Bit Panel Timing  
VNDP  
VDP  
FPFRAME  
FPLINE  
MOD  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
LINE1  
LINE2  
UD[3:0]  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
1-R1 1-G2 1-B3  
1-B319  
UD3  
UD2  
UD1  
UD0  
1-R320  
1-G320  
1-B320  
1-G1 1-B2  
1-R4  
1-G4  
1-B1  
1-R2  
1-R3  
1-G3 1-B4  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-23: Single Color 4-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP = Vertical Non-Display Period  
HDP = Horizontal Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP = Horizontal Non-Display Period  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 70  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
MOD  
t5  
Data Timing  
FPLINE  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
FPSHIFT  
UD[3:0]  
t13  
t14  
1
2
Figure 7-24: Single Color 4-Bit Panel A.C. Timing  
Table 7-21: Single Color 4-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
t1  
t2  
note 2  
9
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE pulse width  
Ts (note 1)  
Ts  
t3  
9
t4  
note 3  
note 4  
note 5  
t14 + 0.5  
1
FPLINE period  
t5  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
t7  
Ts  
Ts  
t8  
t9  
note 6  
19  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT rising edge  
FPSHIFT pulse width high  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
0.45  
0.45  
0.45  
0.45  
FPSHIFT pulse width low  
UD[3:0], setup to FPSHIFT falling edge  
UD[3:0], hold from FPSHIFT falling edge  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t4min - 9Ts  
3. t4min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 26] Ts  
6. t9min = [((REG[05h] bits [4:0]) + 1)*8 - 17] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 71  
Vancouver Design Center  
7.4.6 Single Color 8-Bit Panel Timing (Format 1)  
VNDP  
VDP  
FPFRAME  
FPLINE  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
LINE1  
LINE2  
UD[3:0], LD[3:0]  
FPLINE  
HDP  
HNDP  
FPSHIFT  
FPSHIFT2  
1-R1  
1-B1  
1-G2  
1-R3  
1-B3  
1-G4  
1-G1  
1-G6  
1-R7  
1-B7  
1-G8  
1-R9  
1-B6 1-B11 1-R12  
1-G7 1-G12 1-B12  
1-R8 1-R13 1-G13  
1-B8 1-B13 1-R14  
1-G9 1-G14 1-B14  
1-R636  
UD3  
UD2  
UD1  
UD0  
LD3  
LD2  
LD1  
LD0  
1-B636  
1-G637  
1-R2  
1-B2  
1-G3  
1-R4  
1-B4  
1-R638  
1-B638  
1-B9 1-R10 1-R15 1-G15  
1-G10 1-B10 1-B15 1-R16  
1-R11 1-G11 1-G16 1-B16  
1-G639  
1-R640  
1-B640  
1-R5 1-G5  
1-B5 1-R6  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-25: Single Color 8-Bit Panel Timing (Format 1)  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 72  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
FPLINE  
Data Timing  
t5a  
t5b  
t6  
t7  
t9  
t8a  
t10  
t11  
FPSHIFT  
t8b  
FPSHIFT2  
t12  
t13  
UD[3:0]  
LD[3:0]  
1
2
Figure 7-26: Single Color 8-Bit Panel A.C. Timing (Format 1)  
Table 7-22: Single Color 8-Bit Panel A.C. Timing (Format 1)  
Symbol  
Parameter  
Min  
note 2  
9
Typ  
Max  
Units  
t1  
t2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE pulse width  
Ts (note 1)  
Ts  
t3  
9
t4  
note 3  
note 4  
note 5  
t14 + 2  
4
FPLINE period  
t5a  
t5b  
t6  
FPSHIFT2 falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPLINE falling edge to FPSHIFT2 rising, FPSHIFT falling edge  
FPSHIFT2, FPSHIFT period  
Ts  
Ts  
t7  
t8a  
t8b  
t9  
note 6  
note 7  
18  
FPSHIFT falling edge to FPLINE falling edge  
FPSHIFT2 falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT rising edge  
FPSHIFT2, FPSHIFT pulse width high  
Ts  
Ts  
Ts  
Ts  
Ts  
t10  
t11  
t12  
t13  
2
2
FPSHIFT2, FPSHIFT pulse width low  
1
UD[3:0], LD[3:0] setup to FPSHIFT2 rising, FPSHIFT falling edge  
UD[3:0], LD[3:0] hold from FPSHIFT2 rising, FPSHIFT falling edge  
1
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t4min - 9Ts  
3. t4min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[05h] bits [4:0]) + 1)*8 - 27]+T11 Ts  
5. t5min = [((REG[05h] bits [4:0]) + 1)*8 - 27] Ts  
6. t8min = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts  
7. t8min = [((REG[05h] bits [4:0]) + 1)*8 - 18]+T11 Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 73  
Vancouver Design Center  
7.4.7 Single Color 8-Bit Panel Timing (Format 2)  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
LINE1  
LINE2  
UD[3:0], LD[3:0]  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
1-R1  
1-G1  
1-B1  
1-R2  
1-G2  
1-B2  
1-B3  
1-G6  
1-G638  
UD3  
UD2  
UD1  
UD0  
LD3  
LD2  
LD1  
LD0  
1-B638  
1-R639  
1-R4  
1-G4  
1-B4  
1-R5  
1-G5  
1-B6  
1-R7  
1-G7  
1-B7  
1-R8  
1-G8  
1-B8  
1-G639  
1-B639  
1-R640  
1-G640  
1-B640  
1-R3 1-B5  
1-G3 1-R6  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-27: Single Color 8-Bit Panel Timing (Format 2)  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 74  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t3  
t4  
t5  
Data Timing  
FPLINE  
t6  
t8  
t9  
t7  
t14  
t11  
t10  
FPSHIFT  
t12  
t13  
UD[3:0]  
LD[3:0]  
1
2
Figure 7-28: Single Color 8-Bit Panel A.C. Timing (Format 2)  
Table 7-23: Single Color 8-Bit Panel A.C. Timing (Format 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Ts (note 1)  
Ts  
t1  
t2  
note 2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
9
t3  
note 3  
t4  
9
FPLINE pulse width  
t5  
note 4  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
note 5  
t7  
note 6  
t8  
t14 + 2  
t9  
2
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t10  
t11  
t12  
t13  
t14  
FPSHIFT pulse width low  
1
FPSHIFT pulse width high  
1
UD[3:0], LD[3:0] setup to FPSHIFT falling edge  
UD[3:0], LD[3:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
1
18  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t3min - 9Ts  
3. t3min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 26] Ts  
6. t7min = [((REG[05h] bits [4:0]) + 1)*8 - 17] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 75  
Vancouver Design Center  
7.4.8 Single Color 16-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
UD[7:0], LD[7:0]  
LINE1  
LINE2  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
1-G6 1-B11  
1-G635  
1-R1  
1-B1  
UD7  
UD6  
UD5  
UD4  
UD3  
UD2  
UD1  
UD0  
LD7  
LD6  
LD5  
LD4  
LD3  
LD2  
LD1  
LD0  
1-G12  
1-R13  
1-G636  
1-R637  
1-B637  
1-G638  
1-R639  
1-R7  
1-B7  
1-G2  
1-R3  
1-B3  
1-G4  
1-G8 1-B13  
1-R9 1-G14  
1-B9 1-R15  
1-G10 1-B15  
1-R5  
1-B639  
1-G640  
1-G16  
1-B5 1-R11  
1-B6  
1-G7  
1-R8  
1-B8  
1-G1  
1-R12  
1-B12  
1-G13  
1-R14  
1-R636  
1-B636  
1-G637  
1-R638  
1-B638  
1-G639  
1-R640  
1-R2  
1-B2  
1-G3  
1-B14  
1-R4  
1-B4  
1-G5  
1-G9  
1-R10 1-G15  
1-B10  
1-R16  
1-R6 1-G11 1-B16  
1-B640  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-29: Single Color 16-Bit Panel Timing  
VDP  
VNDP = Vertical Non-Display Period  
HDP = Horizontal Display Period  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP = Horizontal Non-Display Period  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 76  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t3  
t4  
t5  
Data Timing  
FPLINE  
t6  
t8  
t9  
t10  
t14  
t11  
t7  
FPSHIFT  
t12  
t13  
1
UD[7:0]  
LD[7:0]  
2
Figure 7-30: Single Color 16-Bit Panel A.C. Timing  
Table 7-24: Single Color 16-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Ts (note 1)  
Ts  
t1  
t2  
note 2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
9
t3  
note 3  
t4  
9
FPLINE pulse width  
t5  
note 4  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
note 5  
t7  
note 6  
t8  
t14 + 3  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t9  
5
2
t10  
t11  
t12  
t13  
t14  
FPSHIFT pulse width low  
2
FPSHIFT pulse width high  
2
UD[7:0], LD[7:0] setup to FPSHIFT falling edge  
UD[7:0], LD[7:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
2
18  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t3min - 9Ts  
3. t3min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [(REG[05h] bits [4:0]) + 1)*8 - 25] Ts  
6. t7min = [((REG[05h] bits [4:0]) + 1)*8 - 16] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 77  
Vancouver Design Center  
7.4.9 Dual Monochrome 8-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE 1/241  
LINE 2/242  
LINE 3/243  
LINE 4/244  
LINE 239/479 LINE 240/480  
LINE 1/241  
LINE 2/242  
UD[3:0], LD[3:0]  
FPLINE  
MOD  
HNDP  
HDP  
FPSHIFT  
1-1  
1-5  
1-637  
1-638  
1-639  
1-640  
UD3  
UD2  
UD1  
UD0  
LD3  
LD2  
LD1  
LD0  
1-2  
1-6  
1-3  
1-7  
1-8  
1-4  
241-1  
241-2  
241-3  
241-4  
241-5  
241-6  
241-7  
241-8  
241-637  
241-638  
241-639  
241-640  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-31: Dual Monochrome 8-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 78  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t4  
t3  
t5  
Data Timing  
FPLINE  
t6  
t8  
t9  
t10  
t14  
t11  
t7  
FPSHIFT  
t12  
t13  
1
2
UD[3:0]  
LD[3:0]  
Figure 7-32: Dual Monochrome 8-Bit Panel A.C. Timing  
Table 7-25: Dual Monochrome 8-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Ts (note 1)  
Ts  
t1  
t2  
note 2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
9
t3  
note 3  
t4  
9
FPLINE pulse width  
t5  
note 4  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
note 5  
t7  
note 6  
t8  
t14 + 2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t9  
4
2
t10  
t11  
t12  
t13  
t14  
FPSHIFT pulse width low  
2
FPSHIFT pulse width high  
2
UD[3:0], LD[3:0] setup to FPSHIFT falling edge  
UD[3:0], LD[3:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
2
10  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t3min - 9Ts  
3. t3min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 17] Ts  
6. t7min = [((REG[05h] bits [4:0]) + 1)*8 - 8] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 79  
Vancouver Design Center  
7.4.10 Dual Color 8-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
UD[3:0], LD[3:0]  
LINE 1/241  
LINE 2/242  
LINE 239/479 LINE 240/480  
LINE 1/241  
FPLINE  
MOD  
HNDP  
HDP  
FPSHIFT  
UD3  
UD2  
UD1  
UD0  
LD3  
LD2  
LD1  
LD0  
1-G2  
1-B2  
1-R3  
1-G3  
1-G6  
1-B6  
1-R7  
1-G7  
1-R1  
1-G1  
1-B1  
1-R2  
1-B3  
1-R4  
1-R5  
1-G5  
1-B5  
1-R6  
1-B7  
1-B639  
1-R8  
1-G8  
1-B8  
1-R640  
1-G640  
1-B640  
1-G4  
1-B4  
241-  
B639  
241-B7  
241-R1 241-G2 241-B3 241-R5 241-G6  
241-R4 241-G5  
241-  
R640  
241-G1 241-B2  
241-B1 241-R3 241-G4 241-B5 241-R7  
241-B6  
241-R8  
241-G8  
241-  
G640  
241-  
B640  
241-R2 241-G3 241-B4 241-R6 241-G7 241-B8  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-33: Dual Color 8-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 80  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t4  
t3  
t5  
Data Timing  
FPLINE  
t6  
t8  
t9  
t14  
t11  
t10  
t7  
FPSHIFT  
t12  
t13  
1
2
UD[3:0]  
LD[3:0]  
Figure 7-34: Dual Color 8-Bit Panel A.C. Timing  
Table 7-26: Dual Color 8-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Ts (note 1)  
Ts  
t1  
t2  
note 2  
9
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
t3  
note 3  
9
t4  
FPLINE pulse width  
t5  
note 4  
note 5  
note 6  
t14 + 1  
1
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
t7  
t8  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t9  
t10  
t11  
t12  
t13  
t14  
0.45  
0.45  
0.45  
0.45  
11  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
UD[3:0], LD[3:0] setup to FPSHIFT falling edge  
UD[3:0], LD[3:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t3min - 9Ts  
3. t3min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts  
6. t7min = [((REG[05h] bits [4:0]) + 1)*8 - 9] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 81  
Vancouver Design Center  
7.4.11 Dual Color 16-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
MOD  
LINE 1/241  
LINE 2/242  
LINE 3/243  
LINE 4/244  
LINE 239/479 LINE 240/480  
LINE 1/241  
LINE 2/242  
UD[7:0], LD[7:0]  
FPLINE  
MOD  
HDP  
HNDP  
FPSHIFT  
1-R1,  
1-B3,  
1-G638,  
UD7, LD7  
UD6, LD6  
UD5, LD5  
UD4, LD4  
UD3, LD3  
UD2, LD2  
UD1, LD1  
UD0, LD0  
241-B3  
241-R1  
241-G638  
1-G1,  
241-G1  
1-R4,  
241-R4  
1-B638,  
241-B638  
1-G4,  
241-G4  
1-R639,  
241-R639  
1-B1,  
241-B1  
1-R2,  
241-R2  
1-B4,  
241-B4  
1-G639,  
241-G639  
1-B639,  
241-B639  
1-G2,  
241-G2  
1-R5,  
241-R5  
1-G5,  
241-G5  
1-R640,  
241-R640  
1-B2,  
241-B2  
1-R3,  
241-R3  
1-B5,  
241-B5  
1-G640,  
241-G640  
1-G3,  
241-G3  
1-R6,  
241-R6  
1-B640,  
241-B640  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 7-35: Dual Color 16-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
HNDP  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 82  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
FPLINE  
MOD  
t4  
t3  
t5  
Data Timing  
FPLINE  
t6  
t8  
t9  
t7  
t14  
t11  
t10  
FPSHIFT  
t12  
t13  
UD[7:0]  
LD[7:0]  
1
2
Figure 7-36: Dual Color 16-Bit Panel A.C. Timing  
Table 7-27: Dual Color 16-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Ts (note 1)  
Ts  
t1  
t2  
note 2  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
9
t3  
note 3  
t4  
9
FPLINE pulse width  
t5  
note 4  
MOD delay from FPLINE falling edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
t6  
note 5  
t7  
note 6  
t8  
t14 + 2  
t9  
2
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t10  
t11  
t12  
t13  
t14  
FPSHIFT pulse width low  
1
FPSHIFT pulse width high  
1
UD[7:0], LD[7:0] setup to FPSHIFT falling edge  
UD[7:0], LD[7:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
1
10  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t1min = t3min - 9Ts  
3. t3min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0]) + 1)*8] Ts  
4. t5min = [((REG[04h] bits [6:0])+1)*8 - 1] Ts  
5. t6min = [((REG[05h] bits [4:0]) + 1)*8 - 18] Ts  
6. t7min = [((REG[05h] bits [4:0]) + 1)*8 - 9] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 83  
Vancouver Design Center  
7.4.12 16-Bit TFT Panel Timing  
VNDP  
VDP  
FPFRAME  
FPLINE  
LINE480  
LINE1  
LINE480  
R[5:1], G[5:0], B[5:1]  
DRDY  
FPLINE  
HDP  
HNDP1  
HNDP2  
FPSHIFT  
DRDY  
R[5:1]  
G[5:0]  
1-1  
1-2  
1-640  
1-1  
1-1  
1-2  
1-2  
1-640  
1-640  
B[5:1]  
Note: DRDY is used to indicate the first pixel  
Example Timing for 640x480 panel  
Figure 7-37: 16-Bit TFT Panel Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
HNDP  
= HNDP1 + HNDP2 = ((REG[05h] bits [4:0]) + 1)*8Ts  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 84  
Epson Research and Development  
Vancouver Design Center  
t8  
t9  
FPFRAME  
t12  
FPLINE  
t6  
FPLINE  
DRDY  
t15  
t7  
t17  
t14  
t1  
t11  
t13  
t4  
t16  
t2  
t3  
FPSHIFT  
t5  
R[5:1]  
G[5:0]  
B[5:1]  
1
2
639  
640  
t10  
Note: DRDY is used to indicate the first pixel  
Figure 7-38: TFT A.C. Timing  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 85  
Vancouver Design Center  
Table 7-28: TFT A.C. Timing  
Parameter Min  
Symbol  
Typ  
Max  
Units  
1
Ts (note 1)  
FPSHIFT period  
FPSHIFT pulse width high  
t1  
t2  
t3  
t4  
t5  
t6  
0.45  
Ts  
Ts  
Ts  
Ts  
0.45  
FPSHIFT pulse width low  
data setup to FPSHIFT falling edge  
data hold from FPSHIFT falling edge  
FPLINE cycle time  
0.45  
0.45  
note 2  
note 3  
note 4  
note 5  
note 6  
0.45  
FPLINE pulse width low  
t7  
t8  
FPFRAME cycle time  
t9  
FPFRAME pulse width low  
horizontal display period  
t10  
t11  
Ts  
Ts  
FPLINE setup to FPSHIFT falling edge  
FPFRAME falling edge to FPLINE falling edge  
phase difference  
t12  
note 7  
t13  
t14  
t15  
t16  
t17  
0.45  
note 8  
note 9  
0.45  
DRDY to FPSHIFT falling edge setup time  
DRDY pulse width  
DRDY falling edge to FPLINE falling edge  
DRDY hold from FPSHIFT falling edge  
FPLINE Falling edge to DRDY active  
Ts  
Ts  
note 10  
250  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t6min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0])+1)*8] Ts  
3. t7min = [((REG[07h] bits [3:0])+1)*8] Ts  
4. t8 min = [((REG[09h] bits [1:0], REG[08h] bits [7:0])+1) + ((REG[0Ah] bits [5:0])+1)] lines  
5. t9min = [((REG[0Ch] bits [2:0])+1)] lines  
6. t10min = [((REG[04h] bits [6:0])+1)*8] Ts  
7. t12min = [((REG[06h] bits [4:0])+1)*8] Ts  
8. t14min = [((REG[04h] bits [6:0])+1)*8] Ts  
9. t15min = [((REG[06h] bits [4:0])+1)*8 - 2] Ts  
10. t17min = [((REG[05h] bits [4:0])+1)*8 - ((REG[06h] bits [4:0])+1)*8 + 2]  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 86  
Epson Research and Development  
Vancouver Design Center  
7.4.13 CRT Timing  
Example Timing for 640x480 CRT  
VNDP  
VDP  
VRTC  
HRTC  
LINE480  
LINE480  
LINE1  
DACP[7:0]  
BLANK#  
HRTC  
HDP  
HNDP1  
HNDP2  
DACCLK  
BLANK#  
DACD[7:0]  
1-1  
1-2  
1-640  
Figure 7-39: CRT Timing  
VDP  
= Vertical Display Period  
= (REG[09h] bits [1:0], REG[08h] bits [7:0]) + 1  
= (REG[0Ah] bits [5:0]) + 1  
VNDP  
HDP  
= Vertical Non-Display Period  
= Horizontal Display Period  
= Horizontal Non-Display Period  
= ((REG[04h] bits [6:0]) + 1)*8Ts  
HNDP  
= HNDP1 + HNDP2  
= ((REG[05h] bits [4:0]) + 1)*8Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 87  
Vancouver Design Center  
t8  
t9  
VRTC  
HRTC  
t12  
t6  
HRTC  
t15  
t7  
BLANK#  
t14  
t1  
t11  
t13  
t4  
t16  
t2  
t3  
DACCLK  
t5  
DACD[7:0]  
1
2
639  
640  
t10  
Figure 7-40: CRT A.C. Timing  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 88  
Epson Research and Development  
Vancouver Design Center  
Table 7-29: CRT A.C. Timing  
Symbol  
Parameter  
Min  
1
Typ  
Max  
Units  
Ts (note 1)  
DACCLK period  
t1  
t2  
t3  
t4  
t5  
t6  
0.45  
0.45  
Ts  
Ts  
Ts  
Ts  
DACCLK pulse width high  
DACCLK pulse width low  
0.45  
0.45  
data setup to DACCLK rising edge  
data hold from DACCLK rising edge  
HRTC cycle time  
note 2  
note 3  
note 4  
note 5  
note 6  
0.45  
HRTC pulse width (shown active low)  
VRTC cycle time  
t7  
t8  
t9  
VRTC pulse width (shown active low)  
horizontal display period  
t10  
t11  
Ts  
Ts  
HRTC setup to DACCLK rising edge  
VRTC falling edge to FPLINE falling edge  
phase difference  
t12  
note 7  
t13  
t14  
t15  
t16  
0.45  
note 8  
note 9  
0.45  
BLANK# to DACCLK rising edge setup time  
BLANK# pulse width  
BLANK# falling edge to HRTC falling edge  
BLANK# hold from DACCLK rising edge  
Ts  
1. Ts  
= pixel clock period = memory clock, [memory clock]/2, [memory clock]/3, [memory clock]/4 (see REG[19h] bits [1:0])  
2. t6min = [((REG[04h] bits [6:0])+1)*8 + ((REG[05h] bits [4:0])+1)*8] Ts  
3. t7min = [((REG[07h] bits [3:0])+1)*8] Ts  
4. t8 min = [((REG[09h] bits [1:0], REG[08h] bits [7:0])+1) + ((REG[0Ah] bits [6:0])+1)] lines  
5. t9min = [((REG[0Ch] bits [2:0])+1)] lines  
6. t10min = [((REG[04h] bits [6:0])+1)*8] Ts  
7. t12min = [((REG[06h] bits [4:0])+1)*8] Ts  
8. t14min = [((REG[04h] bits [6:0])+1)*8] Ts  
9. t15min = [((REG[06h] bits [4:0])+1)*8 - 2] Ts  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 89  
Vancouver Design Center  
7.4.14 External RAMDAC Read / Write Timing  
Read  
t1  
t2  
AB[20:0]  
CS#  
M/R#  
DACRS[1:0]  
Valid RD# Command  
(depends on CPU bus)  
t4  
t3  
DACRD#  
Write  
Valid WR# command  
(depends on CPU bus)  
t5  
DACWR#  
t6  
Figure 7-41: Generic Bus RAMDAC Read / Write Timing  
Table 7-30: Generic Bus RAMDAC Read / Write Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
TBCLK  
t1  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus clock period  
10  
10  
33  
14  
AB[20:0], CS#, M/R# delay to DACRS[1:0]  
DACRS[1:0] hold from AB[20:0], CS#, M/R# negated  
Valid RD# command to DACRS[1:0] delay  
DACRD# hold from valid RD# command negated  
Valid WR# command to DACWR# delay  
DACWR# pulse width low  
t2  
t3  
8
3
t4  
t5  
2 TBCLK  
2.45 TBCLK  
t6  
2.55 TBCLK  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 90  
Epson Research and Development  
Vancouver Design Center  
8 Registers  
8.1 Register Mapping  
The SED1354 registers are all memory mapped. The system must provide the external address  
decoding through the CS# and M/R# input pins. When CS# = 0 and M/R# = 0, the registers are  
mapped by address bits AB[5:0], e.g. REG[00h] is mapped to AB[5:0] = 000000, REG[01h] is  
mapped to AB[5:0] = 000001. See the table below:  
Table 8-1: SED1354 Addressing  
CS#  
M/R#  
Access  
Register access:  
REG[00h] is addressed when AB[5:0] = 0  
REG[01h] is addressed when AB[5:0] = 1  
REG[n] is addressed when AB[5:0] = n  
0
0
Memory access: the 2M byte display buffer is addressed by  
AB[20:0]  
0
1
1
X
SED1354 not selected  
8.2 Register Descriptions  
Note  
Unless specified otherwise, all register bits are reset to 0 during power up. Reserved bits should  
be written 0 when programming unless otherwise noted.  
8.2.1 Revision Code Register  
Revision Code Register  
REG[00h]  
RO  
Product Code Product Code Product Code Product Code Product Code Product Code Revision  
Revision  
Code Bit 0  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Code Bit 1  
bits 7-2  
Product Code Bits [5:0]  
This is a read-only register that indicates the product code of the chip. The product code is 000001.  
bits 1-0  
Revision Code Bits [1:0]  
This is a read-only register that indicates the revision code of the chip. The revision code is 00.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 91  
Vancouver Design Center  
8.2.2 Memory Configuration Registers  
Memory Configuration Register  
REG[01h]  
RW  
Refresh Rate Refresh Rate Refresh Rate  
n/a  
n/a  
WE# Control n/a  
Memory Type  
Bit 2  
Bit 1  
Bit 0  
bits 6-4  
DRAM Refresh Rate Select Bits [2:0]  
These bits specify the amount of divide from the input clock (CLKI) to generate the DRAM refresh  
clock rate, which is equal to 2(ValueOfTheseBits + 6)  
.
Table 8-2: DRAM Refresh Rate Selection  
Refresh Rate for 33MHz  
Refresh Rate  
Bits [2:0]  
DRAM Refresh  
Time/256 Cycles  
CLKI Divide Amount  
CLKI  
520 kHz  
260 kHz  
130 kHz  
65 kHz  
33 kHz  
16 kHz  
8 kHz  
000  
001  
010  
011  
100  
101  
110  
111  
64  
0.5 ms  
1 ms  
128  
256  
2 ms  
512  
4 ms  
1024  
2048  
4096  
8192  
8 ms  
16 ms  
32 ms  
64 ms  
4 kHz  
bit 2  
bit 0  
WE# Control  
When this bit = 1, 2-WE# DRAM is selected. When this bit = 0 2-CAS# DRAM is selected.  
Memory Type  
When this bit = 1, FPM-DRAM is selected. When this bit = 0, EDO-DRAM is selected.  
This bit should be changed only when there are no read/write DRAM cycles. This condition occurs  
when both the Display FIFO is disabled (REG[23h] bit 7 = 1) and the Half Frame Buffer is disabled  
(REG[1Bh] bit 0 = 1). For programming information, see SED1354 Programming Notes and  
Examples, document number X19A-G-002-xx.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 92  
Epson Research and Development  
Vancouver Design Center  
8.2.3 Panel/Monitor Configuration Registers  
Panel Type Register  
REG[02h]  
RW  
TFT/Passive  
Dual/Single  
Panel Data  
Width Bit 1  
Panel Data  
Width Bit 0  
Panel Data  
Color/Mono  
n/a  
n/a  
LCD Panel  
Format Select Panel Select Panel Select  
Select  
bits 5-4  
Panel Data Width Bits [1:0]  
These bits select passive LCD/TFT panel data width size.  
Table 8-3: Panel Data Width Selection  
Passive LCD Panel Data  
Panel Data Width Bits [1:0]  
TFT Panel Data Width Size  
Width Size  
00  
01  
10  
11  
4-bit  
9-bit  
12-bit  
8-bit  
16-bit  
16-bit  
Reserved  
Reserved  
bit 3  
bit 2  
bit 1  
Panel Data Format Select  
When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. This bit must be  
set to 0 for all other LCD panel formats.  
Color/Mono Panel Select  
When this bit = 1, color passive LCD panel is selected. When this bit = 0, monochrome passive  
LCD panel is selected.  
Dual/Single Panel Select  
When this bit = 1, dual passive LCD panel is selected. When this bit = 0, single passive LCD panel  
is selected.  
Setting this bit for single panel mode should be done only when the Half Frame Buffer is idle. The  
Half Frame Buffer is idle during vertical non-display periods or while in suspend mode. For  
programming information, see SED1354 Programming Notes and Examples, document number  
X19A-G-002-xx.  
bit 0  
TFT/Passive LCD Panel Select  
When this bit = 1, TFT panel is selected. When this bit = 0, passive LCD panel is selected.  
MOD Rate Register  
REG[03h]  
RW  
MOD Rate  
Bit 5  
MOD Rate  
Bit 4  
MOD Rate  
Bit 3  
MOD Rate  
Bit 2  
MOD Rate  
Bit 1  
MOD Rate  
Bit 0  
n/a  
n/a  
bits 5-0  
MOD Rate Bits [5:0]  
For a non-zero value these bits specify the number of FPLINE between toggles of the MOD output  
signal. When these bits are all 0’s the MOD output signal toggles every FPFRAME. These bits are  
for passive LCD panels only.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 93  
Vancouver Design Center  
Horizontal Display Width Register  
REG[04h]  
RW  
Horizontal  
Display  
Horizontal  
Display  
Horizontal  
Display  
Horizontal  
Display  
Horizontal  
Display  
Horizontal  
Display  
Horizontal  
Display  
n/a  
Width Bit 6  
Width Bit 5  
Width Bit 4  
Width Bit 3  
Width Bit 2  
Width Bit 1  
Width Bit 0  
bits 6-0  
Horizontal Display Width Bits [6:0]  
These bits specify the LCD panel and/or the CRT horizontal display width as follows.  
Contents of this Register = (Horizontal Display Width ÷ 8) - 1  
For passive LCD panels the Horizontal Display Width must be divisible by 16, and for TFT LCD  
panels/CRTs the Horizontal Display Width must be divisible by 8. The maximum horizontal dis-  
play width is 1024 pixels.  
Note  
This register must be programmed such that REG[04h] 3 (32 pixels)  
Horizontal Non-Display Period Register  
REG[05h]  
RW  
Horizontal  
Horizontal  
Horizontal  
Horizontal  
Horizontal  
n/a  
n/a  
n/a  
Non-Display  
Period Bit 4  
Non-Display  
Period Bit 3  
Non-Display  
Period Bit 2  
Non-Display  
Period Bit 1  
Non-Display  
Period Bit 0  
bits 4-0  
Horizontal Non-Display Period Bits [4:0]  
These bits specify the horizontal non-display period width in 8-pixel resolution as follows.  
Contents of this Register = (Horizontal Non-Display Period ÷ 8) - 1  
The minimum value which should be programmed into this register is 3 (32 pixels). The maximum  
value which can be programmed into this register is 1F, which gives a horizontal non-display period  
width of 256 pixels.  
Note  
This register must be programmed such that  
REG[05h] 3 and (REG[05h] + 1) (REG[06h] + 1) + (REG[07h] bits [3:0] + 1)  
HRTC/FPLINE Start Position Register  
REG[06h]  
RW  
HRTC/  
HRTC/  
HRTC/  
HRTC/  
HRTC/  
n/a  
n/a  
n/a  
FPLINE Start FPLINE Start FPLINE Start FPLINE Start FPLINE Start  
Position Bit 4 Position Bit 3 Position Bit 2 Position Bit 1 Position Bit 0  
bits 4-0  
HRTC/FPLINE Start Position Bits [4:0]  
For CRTs and TFTs, these bits specify the delay from the start of the horizontal non-display period  
to the leading edge of the HRTC pulse and FPLINE pulse respectively.  
Contents of this Register = (HRTC/FPLINE Start Position ÷ 8) - 1  
The maximum HRTC start delay is 256 pixels.  
Note  
This register must be programmed such that  
(REG[05h] + 1) (REG[06h] + 1) + (REG[07h] bits [3:0] + 1)  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 94  
Epson Research and Development  
Vancouver Design Center  
HRTC/FPLINE Pulse Width Register  
REG[07h]  
RW  
HRTC/  
HRTC/  
HRTC/  
HRTC/  
HRTC  
Polarity  
Select  
FPLINE  
Polarity  
Select  
FPLINE  
Pulse Width  
Bit 3  
FPLINE  
Pulse Width  
Bit 2  
FPLINE  
Pulse Width  
Bit 1  
FPLINE  
Pulse Width  
Bit 0  
n/a  
n/a  
bit 7  
bit 6  
HRTC Polarity Select  
For CRTs, this bit selects the polarity of the HRTC. When this bit = 1, the HRTC pulse is active  
high. When this bit = 0, the HRTC pulse is active low.  
FPLINE Polarity Select  
This bit selects the polarity of the FPLINE for TFT and passive LCD. When this bit = 1, the  
FPLINE pulse is active high for TFT and active low for passive LCD. When this bit = 0, the  
FPLINE pulse is active low for TFT and active high for passive LCD.  
Table 8-4: FPLINE Polarity Selection  
FPLINE Polarity Select  
Passive LCD FPLINE Polarity  
active high  
TFT FPLINE Polarity  
active low  
0
1
active low  
active high  
bits 3-0  
HRTC/FPLINE Pulse Width Bits [3:0]  
For CRTs and TFTs, these bits specify the pulse width of HRTC and FPLINE respectively. For pas-  
sive LCDs, FPLINE is automatically created and these bits have no effect.  
HRTC/FPLINE pulse width (pixels) = (HRTC/FPLINE Pulse Width Bits [3:0] + 1) × 8.  
The maximum HRTC pulse width is 128 pixels.  
Note  
This register must be programmed such that  
(REG[05h] + 1) (REG[06h] + 1) + (REG[07h] bits [3:0] + 1)  
Vertical Display Height Register 0  
REG[08h]  
RW  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Vertical  
Display  
Height Bit 7  
Height Bit 6  
Height Bit 5  
Height Bit 4  
Height Bit 3  
Height Bit 2  
Height Bit 1  
Height Bit 0  
Vertical Display Height Register 1  
REG[09h]  
RW  
Vertical  
Vertical  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Display  
Display  
Height Bit 9  
Height Bit 8  
REG[08h] bits 7-0  
REG[09h] bits 1-0  
Vertical Display Height Bits [9:0]  
These bits specify the LCD panel and/or the CRT vertical display height, in 1-line resolution. For a  
dual LCD panel only configuration, this register should be programmed to half the panel size.  
Vertical display height in number of lines = (ContentsOfThisRegister) + 1.  
The maximum vertical display height is 1024 lines.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 95  
Vancouver Design Center  
Vertical Non-Display Period Register  
REG[0Ah]  
RW  
Vertical  
Non-Display  
Period Status  
(RO)  
Vertical  
Non-Display  
Period Bit 5  
Vertical  
Non-Display  
Period Bit 4  
Vertical  
Non-Display  
Period Bit 3  
Vertical  
Non-Display  
Period Bit 2  
Vertical  
Non-Display  
Period Bit 1  
Vertical  
Non-Display  
Period Bit 0  
n/a  
bit 7  
Vertical Non-Display Period Status  
This is a read-only status bit. A “1” indicates that a vertical non-display period is occurring. A “0”  
indicates that display output is in a vertical display period.  
Note  
When configured for a dual panel, this bit will toggle at twice the frame rate.  
bits 5-0  
Vertical Non-Display Period Bits [5:0]  
These bits specify the vertical non-display period height in 1-line resolution.  
Vertical non-display period height in number of lines = (ContentsOfThisRegister) + 1.  
The maximum vertical non-display period height is 64 lines.  
Note  
This register must be programmed such that  
REG[0Ah] 1 and (REG[0Ah] bits [5:0] + 1) (REG[0Bh] + 1) + (REG[0Ch] bits [2:0] + 1)  
VRTC/FPFRAME Start Position Register  
REG[0Bh]  
RW  
VRTC/  
FPFRAME  
VRTC/  
FPFRAME  
VRTC/  
FPFRAME  
VRTC/  
FPFRAME  
VRTC/  
FPFRAME  
VRTC/  
FPFRAME  
n/a  
n/a  
Start Position Start Position Start Position Start Position Start Position Start Position  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
bits 5-0  
VRTC/FPFRAME Start Position Bits [5:0]  
For CRTs and TFTs, these bits specify the delay in lines from the start of the vertical non-display  
period to the leading edge of the VRTC pulse and FPFRAME pulse respectively. For passive LCDs,  
FPFRAME is automatically created and these bits have no effect.  
VRTC/FPFRAME start position (lines) = VRTC/FPFRAME Start Position Bits [5:0] + 1.  
The maximum VRTC start delay is 64 lines.  
Note  
This register must be programmed such that  
(REG[0Ah] bits [5:0] + 1) (REG[0Bh] + 1) + (REG[0Ch] bits [2:0] + 1)  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 96  
Epson Research and Development  
Vancouver Design Center  
VRTC/FPFRAME Pulse Width Register  
REG[0Ch]  
RW  
VRTC/  
VRTC/  
VRTC/  
FPFRAME  
Polarity  
Select  
VRTCPolarity  
Select  
FPFRAME  
Pulse Width  
Bit 2  
FPFRAME  
Pulse Width  
Bit 1  
FPFRAME  
Pulse Width  
Bit 0  
n/a  
n/a  
n/a  
bit 7  
VRTC Polarity Select  
For CRTs, this bit selects the polarity of the VRTC. When this bit = 1, the VRTC pulse is active  
high. When this bit = 0, the VRTC pulse is active low.  
bit 6  
FPFRAME Polarity Select  
This bit selects the polarity of the FPFRAME for TFT and passive LCD. When this bit = 1, the  
FPFRAME pulse is active high for TFT and active low for passive LCD. When this bit = 0, the  
FRAME pulse is active low for TFT and active high for passive LCD.  
Table 8-5: FPFRAME Polarity Selection  
Passive LCD FPFRAME  
FPFRAME Polarity Select  
TFT FPFRAME Polarity  
Polarity  
active high  
active low  
0
1
active low  
active high  
bits 2-0  
VRTC/FPFRAME Pulse Width Bits [2:0]  
For CRTs and TFTs, these bits specify the pulse width of VRTC and FPFRAME respectively. For  
passive LCDs, FPFRAME is automatically created and these bits have no effect.  
VRTC/FPFRAME pulse width (lines) = VRTC/FPFRAME Pulse Width Bits [2:0] + 1.  
The maximum VRTC pulse width is 8 lines.  
Note  
This register must be programmed such that  
(REG[0Ah] bits [5:0] + 1) (REG[0Bh] + 1) + (REG[0Ch] bits [2:0] + 1)  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 97  
Vancouver Design Center  
8.2.4 Display Configuration Registers  
Display Mode Register  
REG[0Dh]  
RW  
Simultaneous Simultaneous  
Number Of  
Bits/Pixel  
Select Bit 2  
Number Of  
Bits/Pixel  
Select Bit 1  
Number Of  
Bits/Pixel  
Select Bit 0  
Display  
Option Select Option Select  
Bit 1 Bit 0  
Display  
n/a  
CRT Enable  
LCD Enable  
bits 6-5  
Simultaneous Display Option Select Bits [1:0]  
These bits are used to select one of four different simultaneous display mode options: Normal, Line  
Doubling, Interlace, or Even Scan Only. The purpose of these modes is to manipulate the vertical  
resolution of the image so that it fits on both CRT, typically 640 x 480, and LCD. The following  
gives descriptions of the four modes using a 640x480 CRT as an example:  
Table 8-6: Simultaneous Display Option Selection  
Simultaneous Display Option Select Bits [1:0]  
Simultaneous Display Option  
Normal  
00  
01  
10  
11  
Line Doubling  
Interlace  
Even Scan Only  
Note  
1. Line doubling option is not supported with dual panel.  
2. Dual Panel Considerations  
When configured for a dual panel LCD and using Simultaneous Display,  
the Half Frame Buffer Disable, REG[1Bh] bit 0, must be set to 1. This will result in a  
lower contrast on the LCD panel, which then may require adjustment.  
Normal - the image is the same on both displays, i.e. 640x240. CRT parameters determine the LCD  
image. The LCD image will appear to be washed out due to the 1/525 duty cycle of the CRT.  
Line Doubling - each line is sent to the CRT twice, giving a 640x480 image which has a long  
aspect ratio. The image on the LCD has each line sent twice but only one FPLINE. This gives a  
duty cycle of 2/525, which is very close to the LCD only mode duty cycle of 1/242, so the image on  
the LCD will have almost the same contrast as that of a single LCD.  
Interlace - odd frames receive odd scan lines and even frames receive even scan lines. The  
640x480 image on the CRT will be normal while the image on the 640x240 LCD will appear to be  
squashed, though text will be readable.  
Even Scan Only - the 640x480 image on the CRT is normal. The LCD (640x240) only receives the  
even scan lines. The image on the LCD does not flicker, but it may be hard to read text.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 98  
Epson Research and Development  
Vancouver Design Center  
bits 4-2  
Number of Bits-Per-Pixel Select Bits [2:0]  
These bits select the number of bits-per-pixel (bpp) for the displayed data.  
Note  
15 and 16-bpp modes bypass the LUT and are supported as 12-bpp on passive panels and 15/16-  
bpp on TFT panels. These modes are not supported on CRT. See Figure 10-2: “15/16 Bit-Per-  
Pixel Format Memory Organization,” on page 117 for a description of passive panel support.  
Table 8-7: Number of Bits-Per-Pixel Selection  
Number Of Bits-Per-Pixel Select Bits [2:0]  
Number of Bits-Per-Pixel  
000  
001  
1
2
010  
4
011  
8
15  
100  
101  
16  
110-111  
Reserved  
bit 1  
bit 0  
CRT Enable  
This bit enables the CRT control signals.  
Note  
REG[02h] bit 1 must = 0 when in CRT only mode.  
LCD Enable  
This bit enables the LCD control signals. Programming this bit from a 0 to a 1 starts the LCD  
power-on sequence. Programming this bit from a 1 to a 0 starts the LCD power-off sequence.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 99  
Vancouver Design Center  
Screen 1 Line Compare Register 0  
REG[0Eh]  
RW  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Screen 1  
Line  
Compare Bit 7 Compare Bit 6 Compare Bit 5 Compare Bit 4 Compare Bit 3 Compare Bit 2 Compare Bit 1 Compare Bit 0  
Screen 1 Line Compare Register 1  
REG[0Fh]  
RW  
Screen 1  
Line  
Screen 1  
Line  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Compare Bit 9 Compare Bit 8  
REG[0Eh] bits 7-0  
REG[0Fh] bits 1-0  
Screen 1 Line Compare Bits [9:0]  
In split screen mode, the panel is divided into screen 1 and screen 2, with screen 1 above screen 2.  
This is the 10-bit value that specifies the screen 1 size in 1-line resolution for split screen mode.  
Split screen 1 vertical size in number of lines = (ContentsOfThisRegister) + 1.  
Where ContentsOfThisRegister is a 10-bit value comprising of these registers. The maximum  
screen 1 vertical size is 1024 lines. Screen 2 is visible only if the screen 1 line compare is less than  
the vertical panel size. The starting address for screen 1 is given by the Screen 1 Display Start  
Address registers. The starting address for screen 2 is given by the Screen 2 Display Start Address  
registers. See Section 10.2, “Image Manipulation” on page 118 and SED1354 Programming Notes  
and Examples, document number X19A-G-002-xx, Section 4 for more details.  
Note  
For normal operation (no split screen) this register must be set greater than the vertical display  
height REG[08h] and REG[09h] (e.g. set to 3FFh).  
Screen 1 Display Start Address Register 0  
REG[10h]  
RW  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Screen 1 Display Start Address Register 1  
REG[11h]  
RW  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
Screen 1 Display Start Address Register 2  
REG[12h]  
RW  
Start Address Start Address Start Address Start Address  
n/a  
n/a  
n/a  
n/a  
Bit 19 Bit 18 Bit 17 Bit 16  
REG[10h] bits 7-0  
REG[11h] bits 7-0  
REG[12h] bits 3-0  
Screen 1 Start Address Bits [19:0]  
This register forms the 20-bit address for the starting word of the screen 1 image in the display  
buffer. Note that this is a word address. An entry of 0000h into these registers represents the first  
word of display memory, an entry of 0001h represents the second word of display memory, and so  
on. See Section 10, “Display Configuration” on page 116 for details.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 100  
Epson Research and Development  
Vancouver Design Center  
Screen 2 Display Start Address Register 0 RW  
REG[13h]  
RW  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Screen 2 Display Start Address Register 1  
REG[14h]  
RW  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
Screen 2 Display Start Address Register 2  
REG[15h]  
RW  
Start Address Start Address Start Address Start Address  
n/a  
n/a  
n/a  
n/a  
Bit 19 Bit 18 Bit 17 Bit 16  
REG[13h] bits 7-0  
REG[14h] bits 7-0  
REG[15h] bits 3-0  
Screen 2 Start Address Bits [19:0]  
This register forms the 20-bit address for the starting word of the screen 2 image in the display  
buffer. Note that this is a word address. An entry of 0000h into these registers represents the first  
word of display memory, an entry of 0001h represents the second word of display memory, and so  
on. See Section 10, “Display Configuration” on page 116 for details.  
Memory Address Offset Register 0  
REG[16h]  
RW  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Memory  
Address  
Offset Bit 7  
Offset Bit 6  
Offset Bit 5  
Offset Bit 4  
Offset Bit 3  
Offset Bit 2  
Offset Bit 1  
Offset Bit 0  
Memory Address Offset Register 1  
REG[17h]  
RW  
Memory  
Memory  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Address  
Address  
Offset Bit 9  
Offset Bit 8  
REG[16] bits 7-0  
REG[17] bits 1-0  
Memory Address Offset Bits [9:0]  
These bits are the 10-bit address offset from the starting word of line “n” to the starting word of line  
“n + 1”. This value is applied to both screen 1 and screen 2.  
Note  
This value is in words and must be programmed REG[04h].  
A virtual image can be formed by setting this register to a value greater than the width of the dis-  
play. The displayed image is a window into the larger virtual image.  
See Section 10, “Display Configuration” on page 116 for details.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 101  
Vancouver Design Center  
b
Pixel Panning Register  
REG[18h]  
RW  
Screen 2  
Screen 2  
Screen 2  
Screen 2  
Screen 1  
Screen 1  
Screen 1  
Screen 1  
Pixel Panning Pixel Panning Pixel Panning Pixel Panning Pixel Panning Pixel Panning Pixel Panning Pixel Panning  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
This register is used to control the horizontal pixel panning of screen 1 and screen 2. Each screen  
can be independently panned to the left by programming its respective Pixel Panning Bits to a non-  
zero value. This value represents the number of pixels panned. The maximum pan value is dependent  
on the display mode as shown in the table below.  
Table 8-8: Pixel Panning Selection  
Number of Bits-Per-Pixel  
Screen 2 Pixel Panning Bits Used  
1
Bits [3:0]  
Bits [2:0]  
Bits [1:0]  
Bit 0  
2
4
8
15/16  
---  
Smooth horizontal panning can be achieved by a combination of this register and the Display Start  
Address register. See Section 10, on page 116 and SED1354 Programming  
“Display Configuration”  
Notes and Examples, document number X19A-G-002-xx, Section 4 for details.  
bits 7-4  
bits 3-0  
Screen 2 Pixel Panning Bits [3:0]  
Pixel panning bits for screen 2.  
Screen 1 Pixel Panning Bits [3:0]  
Pixel panning bits for screen 1.  
8.2.5 Clock Configuration Register  
Clock Configuration Register  
REG[19h]  
RW  
MCLK Divide PCLK Divide PCLK Divide  
n/a  
n/a  
n/a  
n/a  
n/a  
Select  
Select Bit 1  
Select Bit 0  
bit 2  
MCLK Divide Select  
When this bit = 1 the memory clock (MCLK) frequency is half of the input clock frequency. When  
this bit = 0 the memory clock frequency is equal to the input clock frequency.  
bits 1-0  
PCLK Divide Select Bits [1:0]  
These bits determine the amount of divide from the memory clock to generate the pixel clock (PCLK):  
Table 8-9: PCLK Divide Selection  
PCLK Divide Select Bits [1:0]  
MCLK/PCLK Frequency Ratio  
00  
01  
10  
11  
1
2
3
4
See Section 11.2,  
on page 120 for selection of PCLK frequency.  
“Frame Rate Calculation”  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 102  
Epson Research and Development  
Vancouver Design Center  
8.2.6 Power Save Configuration Registers  
Power Save Configuration Register  
REG[1Ah]  
RW  
Suspend  
Refresh  
Select Bit 1  
Suspend  
Refresh  
Select Bit 0  
Software  
Suspend  
Mode Enable  
LCD Power  
Disable  
n/a  
n/a  
n/a  
n/a  
bit 3  
LCD Power Disable  
When this bit = 1 the LCDPWR output is directly forced to the Off state. The LCDPWR “On/Off”  
state is configured by MD10 at the rising edge of RESET#. When this bit = 0 the LCDPWR output  
is controlled by the panel on/off sequencing logic. See Table 5-8: “Summary of Power On / Reset  
Options,” on page 31.  
bits 2-1  
Suspend Refresh Select Bits [1:0]  
These bits specify the type of DRAM refresh to use in Suspend mode.  
Table 8-10: Suspend Refresh Selection  
Suspend Refresh Select Bits [1:0]  
DRAM Refresh Type  
CBR Refresh  
00  
01  
1x  
Self-Refresh  
No Refresh  
Note  
These bits should not be changed when suspend mode is enabled.  
bit 0  
Software Suspend Mode Enable  
When this bit = 1 software suspend mode is enabled. When this bit = 0 software suspend mode is disabled.  
8.2.7 Miscellaneous Registers  
Miscellaneous Disable Register  
REG[1Bh]  
RW  
Host  
Interface  
Disable  
Half Frame  
Buffer Disable  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
bit 7  
Host Interface Disable  
This bit must be programmed to 0 to enable the Host Interface. This bit goes high on reset. When  
this bit is high, all memory and all registers except REG[1Ah] (read-only), REG[28h] through  
REG[2Fh], and REG[1Bh] are inaccessible.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 103  
Vancouver Design Center  
bit 0  
Half Frame Buffer Disable  
This bit is used to disable the Half Frame Buffer.  
When this bit = 1, the Half Frame Buffer is disabled. When this bit = 0, the Half Frame Buffer is  
enabled. When a single panel is selected, the Half Frame Buffer is automatically disabled and this  
bit has no hardware effect.  
The Half Frame Buffer is needed to fully support dual panels. Disabling the Half Frame Buffer  
reduces memory bandwidth requirements and increases the supportable pixel clock frequency, but  
results in reduced contrast on the LCD panel. This mode is not normally used except in special  
circumstances such as simultaneous display on a CRT and dual panel LCD. See Section 11.2 on  
page 120 for details.  
Note  
The Half Frame Buffer should be disabled only when idle. The Half Frame Buffer is idle during  
vertical non-display periods (i.e. when REG[0Ah] bit 7 = 1), or while in suspend mode. For  
programming information, see SED1354 Programming Notes and Examples, document number  
X19A-G-002-xx.  
MD Configuration Readback Register 0  
REG[1Ch]  
RO  
MD0 Status  
MD7 Status  
MD6 Status  
MD5 Status  
MD4 Status  
MD3 Status  
MD2 Status  
MD1 Status  
MD Configuration Readback Register 1  
REG[1Dh]  
RO  
MD15  
Status  
MD14  
Status  
MD13  
Status  
MD12  
Status  
MD11  
Status  
MD10  
Status  
MD9  
Status  
MD8  
Status  
REG[1Ch] bits 7-0  
REG[1Dh] bits 7-0  
MD[15:0] Configuration Status  
These are read-only status bits for the MD[15:0] pins configuration status at the rising edge of  
RESET#.  
See Table 5-8: “Summary of Power On / Reset Options,” on page 31.  
GPIO Configuration Register 0  
REG[1Eh]  
RW  
GPIO0 Pin  
GPIO7 Pin  
IO Config.  
GPIO6 Pin  
IO Config.  
GPIO5 Pin  
IO Config.  
GPIO4 Pin  
IO Config.  
GPIO3 Pin  
IO Config.  
GPIO2 Pin  
IO Config.  
GPIO1 Pin  
IO Config.  
IO Config.  
bit 7  
bit 6  
GPIO7 Pin IO Configuration  
When this bit = 1, GPIO7 is configured as an output. When this bit = 0 (default), GPIO7 is config-  
ured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO7,  
otherwise the DACWR# pin is controlled automatically and this bit will have no effect on hard-  
ware.  
GPIO6 Pin IO Configuration  
When this bit = 1, GPIO6 is configured as an output. When this bit = 0 (default), GPIO6 is config-  
ured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO6,  
otherwise the DACP0 pin is controlled automatically and this bit will have no effect on hardware.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 104  
Epson Research and Development  
Vancouver Design Center  
bit 5  
GPIO5 Pin IO Configuration  
When this bit = 1, GPIO5 is configured as an output. When this bit = 0 (default), GPIO5 is config-  
ured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO5,  
otherwise the BLANK# pin is controlled automatically and this bit will have no effect on hardware.  
bit 4  
bit 3  
GPIO4 Pin IO Configuration  
When this bit = 1, GPIO4 is configured as an output. When this bit = 0 (default), GPIO4 is config-  
ured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO4,  
otherwise the DACRD# pin is controlled automatically and this bit will have no effect on hardware.  
GPIO3 Pin IO Configuration  
When this bit = 1, GPIO3 is configured as an output. When this bit = 0 (default), GPIO3 is config-  
ured as an input. Note the MD[7:6] pins must be properly configured at the rising edge of RESET#  
to enable GPIO3, otherwise the MA9 pin is controlled automatically and this bit will have no effect  
on hardware.  
bit 2  
bit 1  
bit 0  
GPIO2 Pin IO Configuration  
When this bit = 1, GPIO2 is configured as an output. When this bit = 0 (default), GPIO2 is config-  
ured as an input. Note the MD[7:6] pins must be properly configured at the rising edge of RESET#  
to enable GPIO2, otherwise the MA10 pin is controlled automatically and this bit will have no  
effect on hardware.  
GPIO1 Pin IO Configuration  
When this bit = 1, GPIO1 is configured as an output. When this bit = 0 (default), GPIO1 is config-  
ured as an input. Note the MD[7:6] pins must be properly configured at the rising edge of RESET#  
to enable GPIO1, otherwise the MA11 pin is controlled automatically and this bit will have no  
effect on hardware.  
GPIO0 Pin IO Configuration  
When this bit = 1, GPIO0 is configured as an output. When this bit = 0 (default), GPIO0 is config-  
ured as an input.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 105  
Vancouver Design Center  
GPIO Configuration Register 1  
REG[1Fh]  
RW  
GPIO8 Pin  
GPIO11 Pin  
IO Config.  
GPIO10 Pin  
IO Config.  
GPIO9 Pin  
IO Config.  
n/a  
n/a  
n/a  
n/a  
IO Config.  
bit 3  
GPIO11 Pin IO Configuration  
When this bit = 1, GPIO11 is configured as an output. When this bit = 0 (default), GPIO11 is con-  
figured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable  
GPIO11, otherwise the VRTC pin is controlled automatically and this bit will have no effect on  
hardware.  
bit 2  
bit 1  
GPIO10 Pin IO Configuration  
When this bit = 1, GPIO10 is configured as an output. When this bit = 0 (default), GPIO10 is con-  
figured as an input. Note the MD8 pin must be high at the rising edge of RESET# to enable  
GPIO10, otherwise the HRTC pin is controlled automatically and this bit will have no effect on  
hardware.  
GPIO9 Pin IO Configuration  
When this bit = 1, GPIO9 is configured as an output. When this bit = 0 (default), GPIO9 is config-  
ured as an input.  
Note  
GPIO9 and GPIO8 must always be set to the same function (both to input or both to output).  
The MD8 pin must be high at the rising edge of RESET# to enable GPIO9, otherwise the DACRS1  
pin is controlled automatically and this bit will have no effect on hardware.  
bit 0  
GPIO8 Pin IO Configuration  
When this bit = 1, GPIO8 is configured as an output. When this bit = 0 (default), GPIO8 is config-  
ured as an input.  
Note  
GPIO8 and GPIO9 must always be set to the same function (both to input or both to output).  
The MD8 pin must be high at the rising edge of RESET# to enable GPIO8, otherwise the DACRS0  
pin is controlled automatically and this bit will have no effect on hardware.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 106  
Epson Research and Development  
Vancouver Design Center  
GPIO Status / Control Register 0  
REG[20h]  
RW  
GPIO7 Pin  
IO Status  
GPIO6 Pin  
IO Status  
GPIO5 Pin  
IO Status  
GPIO4 Pin  
IO Status  
GPIO3 Pin  
IO Status  
GPIO2 Pin  
IO Status  
GPIO1 Pin  
IO Status  
GPIO0 Pin  
IO Status  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
GPIO7 Pin IO Status  
When GPIO7 is configured as an output, a “1” in this bit drives GPIO7 to high and a “0” in this bit  
drives GPIO7 to low. When GPIO7 is configured as an input, a read from this bit returns the status  
of GPIO7. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO7, other-  
wise the DACWR# pin is controlled automatically and this bit will have no effect on hardware.  
GPIO6 Pin IO Status  
When GPIO6 is configured as an output, a “1” in this bit drives GPIO6 to high and a “0” in this bit  
drives GPIO6 to low. When GPIO6 is configured as an input, a read from this bit returns the status  
of GPIO6. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO6, other-  
wise the DACP0 pin is controlled automatically and this bit will have no effect on hardware.  
GPIO5 Pin IO Status  
When GPIO5 is configured as an output, a “1” in this bit drives GPIO5 to high and a “0” in this bit  
drives GPIO5 to low. When GPIO5 is configured as an input, a read from this bit returns the status  
of GPIO5. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO5, other-  
wise the BLANK# pin is controlled automatically and this bit will have no effect on hardware.  
GPIO4 Pin IO Status  
When GPIO4 is configured as an output, a “1” in this bit drives GPIO4 to high and a “0” in this bit  
drives GPIO4 to low. When GPIO4 is configured as an input, a read from this bit returns the status  
of GPIO4. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO4, other-  
wise the DACRD# pin is controlled automatically and this bit will have no effect on hardware.  
GPIO3 Pin IO Status  
When GPIO3 is configured as an output, a “1” in this bit drives GPIO3 to high and a “0” in this bit  
drives GPIO3 to low. When GPIO3 is configured as an input, a read from this bit returns the status  
of GPIO3. Note the MD[7:6] pins must be properly configured at the rising edge of RESET# to  
enable GPIO3, otherwise the MA9 pin is controlled automatically and this bit will have no effect on  
hardware.  
bit 2  
bit 1  
bit 0  
GPIO2 Pin IO Status  
When GPIO2 is configured as an output, a “1” in this bit drives GPIO2 to high and a “0” in this bit  
drives GPIO2 to low. When GPIO2 is configured as an input, a read from this bit returns the status  
of GPIO2. Note the MD[7:6] pins must be properly configured at the rising edge of RESET# to  
enable GPIO2, otherwise the MA11 pin is controlled automatically and this bit will have no effect  
on hardware.  
GPIO1 Pin IO Status  
When GPIO1 is configured as an output, a “1” in this bit drives GPIO1 to high and a “0” in this bit  
drives GPIO1 to low. When GPIO1 is configured as an input, a read from this bit returns the status  
of GPIO1. Note the MD[7:6] pins must be properly configured at the rising edge of RESET# to  
enable GPIO1, otherwise the MA10 pin is controlled automatically and this bit will have no effect  
on hardware.  
GPIO0 Pin IO Status  
When GPIO0 is configured as an output, a “1” in this bit drives GPIO0 to high and a “0” in this bit  
drives GPIO0 to low. When GPIO0 is configured as an input, a read from this bit returns the status  
of GPIO0.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 107  
Vancouver Design Center  
GPIO Status / Control Register 1  
REG[21h]  
RW  
GPIO8 Pin  
IO Status  
GPO  
Control  
GPIO11 Pin  
IO Status  
GPIO10 Pin  
IO Status  
GPIO9 Pin  
IO Status  
n/a  
n/a  
n/a  
bit 7  
GPO Control  
This bit is used to control the state of the SUSPEND# pin when it is configured as GPO. The SUS-  
PEND# pin can be used as a power-down input (SUSPEND#) or as an output (GPO) possibly used  
for controlling the LCD backlight power:  
• When MD9 = 0 at rising edge of RESET#, SUSPEND# is an active-low Schmitt input used to  
put the SED1354 into suspend mode - see Section 13, “Power Save Modes” on page 128 for  
details.  
• When MD[10:9] = 01 at rising edge of RESET#, SUSPEND# is an output with a reset state of 1.  
• When MD[10:9] = 11 at rising edge of RESET#, SUSPEND# is an output with a reset state of 0.  
When this bit = 0 the GPO output is set to the reset state. When this bit = 1 the GPO output pin is  
set to the inverse of the reset state.  
bit 3  
bit 2  
bit 1  
bit 0  
GPIO11 Pin IO Status  
When GPIO11 is configured as an output, a “1” in this bit drives GPIO11 to high and a “0” in this  
bit drives GPIO11 to low. When GPIO11 is configured as an input, a read from this bit returns the  
status of GPIO11. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO11,  
otherwise the VRTC pin is controlled automatically and this bit will have no effect on hardware.  
GPIO10 Pin IO Status  
When GPIO10 is configured as an output, a “1” in this bit drives GPIO10 to high and a “0” in this  
bit drives GPIO10 to low. When GPIO10 is configured as an input, a read from this bit returns the  
status of GPIO10. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO10,  
otherwise the HRTC pin is controlled automatically and this bit will have no effect on hardware.  
GPIO9 Pin IO Status  
When GPIO9 is configured as an output, a “1” in this bit drives GPIO9 to high and a “0” in this bit  
drives GPIO9 to low. When GPIO9 is configured as an input, a read from this bit returns the status  
of GPIO9. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO9, other-  
wise the DACRS1 pin is controlled automatically and this bit will have no effect on hardware.  
GPIO8 Pin IO Status  
When GPIO8 is configured as an output, a “1” in this bit drives GPIO8 to high and a “0” in this bit  
drives GPIO8 to low. When GPIO8 is configured as an input, a read from this bit returns the status  
of GPIO8. Note the MD8 pin must be high at the rising edge of RESET# to enable GPIO8, other-  
wise the DACRS0 pin is controlled automatically and this bit will have no effect on hardware.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 108  
Epson Research and Development  
Vancouver Design Center  
Performance Enhancement Register 0  
REG[22h]  
RW  
RAS#  
Precharge  
Timing Bit 1  
RAS#  
Precharge  
Timing Bit 0  
EDO Read-  
Write Delay  
RC Timing  
Value Bit 1  
RC Timing  
Value Bit 0  
RAS# to  
CAS# Delay  
n/a  
Reserved  
Note  
Changing this register to non-zero value, or to a different non-zero value, should be done only  
when there are no read/write DRAM cycles. This condition occurs when both the Display FIFO  
is disabled (REG[23h] bit 7 = 1) and the Half Frame Buffer is disabled (REG[1Bh] bit 0 = 1). For  
programming information, see SED1354 Programming Notes and Examples, document number  
X19A-G-002-xx.  
bit 7  
EDO Read-Write Delay  
This bit is used for EDO-DRAM to select the delay during the read-write transition. A “0” selects 2  
MCLK delay for the read-write transition. A “1” selects 1 MCLK delay for the read-write DRAM.  
This bit has no effect for FPM-DRAM which always uses 1 MCLK delay for the read-write transi-  
tion. This bit may be programmed to 1 when the MCLK frequency is less than 30MHz.  
bits 6-5  
RC Timing Value (NRC) Bits [1:0]  
These bits select the DRAM random-cycle timing parameter, tRC. These bits specify the number  
(NRC) of MCLK periods (TM) used to create tRC. NRC should be chosen to meet tRC as well as  
tRAS, the RAS pulse width. Use the following two formulae to calculate NRC then choose the larger  
value. Note, these formulae assume an MCLK duty cycle of 50 +/- 5%.  
NRC  
NRC  
= Round-Up (tRC/TM)  
= Round-Up (tRAS/TM + NRP  
= Round-Up (tRAS/TM + 1.55)  
)
if NRP = 1 or 2  
if NRP = 1.5  
The resulting tRC is related to NRC as follows:  
tRC  
= (NRC) TM  
Table 8-11: Minimum Memory Timing Selection  
Minimum Random Cycle  
REG[22h] Bits [6:5]  
NRC  
Width (tRC  
)
00  
01  
10  
11  
5
5 TM  
4
3
4 TM  
3 TM  
Reserved  
Reserved  
bit 4  
RAS# to CAS# Delay (NRCD)  
This bit selects the DRAM RAS# to CAS# delay parameter, tRCD. This bit specifies the number  
(NRCD) of MCLK periods (TM) used to create tRCD. NRCD must be chosen to satisfy the RAS#  
access time, tRAC. Note, these formulae assume an MCLK duty cycle of 50 +/- 5%.  
NRCD  
= Round-Up((tRAC + 5)/TM - 1)  
= 2  
= Round-Up(tRAC/TM - 1)  
= Round-Up(tRAC/TM - 0.45)  
if EDO and NRP = 1 or 2  
if EDO and NRP = 1.5  
if FPM and NRP = 1 or 2  
if FPM and NRP = 1.5  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
 
Epson Research and Development  
Page 109  
Vancouver Design Center  
Note that for EDO-DRAM and NRP = 1.5, this bit is automatically forced to 0 to select 2 MCLK for  
NRCD. This is done to satisfy the CAS# address setup time, tASC  
.
The resulting tRC is related to NRCD as follows:  
tRC  
tRC  
tRC  
tRC  
= (NRCD) TM  
= (1.5) TM  
= (NRCD + 0.5) TM if FPM and NRP = 1 or 2  
= (NRCD) TM if FPM and NRP = 1.5  
if EDO and NRP = 1 or 2  
if EDO and NRP = 1.5  
Table 8-12: RAS-to-CAS Delay Timing Select  
REG[22h] Bit 4  
NRCD  
RAS# to CAS# Delay (tRCD)  
0
1
2
1
2 TM  
1 TM  
bits 3-2  
RAS# Precharge Timing (NRP) Bits [1:0]  
Minimum Memory Timing for RAS precharge  
These bits select the DRAM RAS# Precharge timing parameter, tRP. These bits specify the number  
(NRP) of MCLK periods (TM) used to create tRP - see the following formulae. Note, these formulae  
assume an MCLK duty cycle of 50 +/- 5%.  
NRP  
= 1  
if (tRP/TM) < 1  
= 1.5  
= 2  
if 1 (tRP/TM) < 1.45  
if (tRP/TM) 1.45  
The resulting tRC is related to NRP as follows:  
tRC  
tRC  
= (NRP + 0.5) TM  
= (NRP) TM  
if FPM refresh cycle and NRP = 1 or 2  
for all other  
Table 8-13: RAS Precharge Timing Select  
REG[22h] Bits [3:2]  
NRP  
RAS# Precharge Width (tRP)  
00  
01  
10  
11  
2
1.5  
1
2 TM  
1.5 TM  
1 TM  
Reserved  
Reserved  
Optimal DRAM Timing  
The following table contains the optimally programmed values of NRC, NRP, and NRCD for different  
DRAM types, at maximum MCLK frequencies.  
Table 8-14: Optimal NRC, NRP, and NRCD Values at Maximum MCLK Frequency  
DRAM Speed  
TM  
(ns)  
25  
NRC  
(#MCLK)  
4
NRP  
(#MCLK)  
1.5  
NRCD  
(#MCLK)  
2
DRAM Type  
(ns)  
50  
EDO  
60  
70  
60  
70  
30  
33  
40  
50  
4
5
4
3
1.5  
2
1.5  
1.5  
2
2
2
1
FPM  
bit 0  
Reserved  
Must be set to 0.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 110  
Epson Research and Development  
Vancouver Design Center  
Performance Enhancement Register 1  
REG[23h]  
Display FIFO Display FIFO Display FIFO Display FIFO Display FIFO  
Display FIFO  
Disable  
n/a  
n/a  
Threshold  
Bit 4  
Threshold  
Bit 3  
Threshold  
Bit 2  
Threshold  
Bit 1  
Threshold  
Bit 0  
bit 7  
Display FIFO Disable  
When this bit = 1 the display FIFO is disabled and all data outputs are forced to zero (i.e. the screen  
is blanked). This allows the SED1354 to be dedicated to service CPU to memory accesses. When  
this bit = 0 the display FIFO is enabled.  
bits 4-0  
Display FIFO Threshold Bits [4:0]  
These bits should be set to a value of 10h upon initialization as this provides the best overall perfor-  
mance for all display modes.  
8.2.8 Look-Up Table Registers  
The SED1354 has three internal 16 position, 4-bit wide Look-Up Tables. The 4-bit value  
programmed into each table position determines the color weighting of display data; the output gray  
shade is derived from the Green Look-Up Table. These tables are bypassed in 15/16-bpp mode.  
These three 16 position Look-Up Tables can be arranged in many different configurations to accom-  
modate all the gray shade / color display modes.  
Look-Up Table Address Register  
REG[24h]  
RW  
RGB Index  
Bit 1  
RGB Index  
Bit 0  
LUT Address LUT Address LUT Address LUT Address  
n/a  
n/a  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
bits 5-4  
RGB Index Bits [1:0]  
These bits are also used to provide access to the three internal Look-Up Tables (RGB).  
Table 8-15: RGB Index Selection  
RGB Index Bits [1:0]  
Look-Up Table Access  
Auto-Increment R, G, B LUT  
Auto-Increment Red LUT only  
Auto-Increment Green LUT only  
Auto-Increment Blue LUT only  
Pointer Sequence  
R[n], G[n], B[n], R[n+1], G[n+1] . . .  
R[n], R[n+1], R[n+2] . . .  
00  
01  
10  
11  
G[n], G[n+1], G[n+2] . . .  
B[n], B[n+1], B[n+2] . . .  
A write to this register with RGB Index bits = 00 selected will position the internal pointer to the  
Red LUT. Each read/write access to the LUT data will increment the counter to point to the next  
LUT in order (R to G to B to R...). A read/write access to the Blue LUT will also automatically  
increment the LUT address by 1. This provides an efficient method for sequential writing of RGB  
data.  
When the RGB Index bits = 01, 10, or 11, the internal pointer always points to the respective R, G,  
or B LUT. A read/write access to the LUT data will increment the LUT address by 1.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 111  
Vancouver Design Center  
bits 3-0  
LUT Address Bits [3:0]  
These 4 bits provide a pointer into the 16 position Look-Up Table currently selected for CPU  
read/write access.  
The Look-Up Table configuration (e.g. 1/2/4 banks) does not affect the read/write access from the  
CPU as all 16 positions can be accessed sequentially.  
Look-Up Table Data Register  
REG[26h]  
RW  
LUT Data  
LUT Data  
Bit 3  
LUT Data  
Bit 2  
LUT Data  
Bit 1  
n/a  
n/a  
n/a  
n/a  
Bit 0  
bits 3-0  
LUT Data Bits [3:0]  
These 4 bits are the gray shade/color values used for display data output. They are programmed into  
the 4-bit Look-Up Table positions pointed to by LUT Address bits [3:0] and RGB Index bits [1:0]  
(if in color display modes).  
For example: in a 16-level gray shade display mode, a data value of 0001b (4 bits-per-pixel) will  
point to Look-Up Table position one and display the 4-bit gray shade corresponding to the value  
programmed into that location.  
Look-Up Table Bank Select Register  
REG[27h]  
RW  
Red Bank  
Select Bit 1  
Red Bank  
Select Bit 0  
Blue Bank  
Select Bit 1  
Blue Bank  
Select Bit 0  
Green Bank  
Select Bit 1  
Green Bank  
Select Bit 0  
n/a  
n/a  
bit 5-4  
Red Bank Select Bits [1:0]  
In 2-bpp mode, the 16 position Red LUT is arranged into four, 4 position “banks.” These two bits  
control which bank is currently selected.  
In 8-bpp mode, the 16 position Red LUT is arranged into two, 8 position “banks.” Only bit 0 of  
these two bits controls which bank is currently selected.  
These bits have no effect in 1-bpp, 4-bpp, 15/16-bpp mode, or all monochrome modes.  
bit 3-2  
Blue Bank Select Bits [1:0]  
In both 2-bpp and 8-bpp modes, the 16 position Blue LUT is arranged into four 4 position “banks.”  
These two bits control which bank is currently selected.  
These bits have no effect in 1-bpp, 4-bpp, 15/16-bpp mode, or all monochrome modes.  
bits 1-0  
Green Bank Select Bits [1:0]  
In 2-bpp mode, the 16 position Green LUT is arranged into four, 4 position “banks.” These two bits  
control which bank is currently selected.  
In 8-bpp mode, the 16 position Green LUT is arranged into two, 8 position “banks.” Only bit 0 of  
these two bits controls which bank is currently selected.  
These bits have no effect in 1-bpp, 4-bpp, and 15/16-bpp modes.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 112  
Epson Research and Development  
Vancouver Design Center  
8.2.9 External RAMDAC Control Registers  
Note  
1. In a Little-Endian architecture, the RAMDAC should be connected to the low byte of the  
CPU data bus and the following registers are accessed at the lower address given for  
each register (28h, 2Ah, 2Ch, and 2Eh).  
In a Big-Endian architecture, the RAMDAC should be connected to the high byte of the  
CPU data bus and the following registers are accessed at the higher address given for  
each register (29h, 2Bh, 2Dh, and 2Fh).  
2. When accessing the External RAMDAC Control registers with either of the architectures  
described in note 1, accessing the adjacent unused registers is prohibited.  
3. To access the RAMDAC registers the CRT enable bit, REG[0Dh] bit 1, must be set to 1.  
RAMDAC Pixel Read Mask Register  
REG[28h] or REG[29h]  
RW  
RAMDAC  
RAMDAC  
Data Bit 7  
RAMDAC  
Data Bit 6  
RAMDAC  
Data Bit 5  
RAMDAC  
Data Bit 4  
RAMDAC  
Data Bit 3  
RAMDAC  
Data Bit 2  
RAMDAC  
Data Bit 1  
Data Bit 0  
bits 7-0  
RAMDAC Pixel Read Mask Bits [7:0]  
A CPU read or write to this register will generate a DACRD# or DACWR# pulse and DACRS1 = 1  
and DACRS0 = 0 to the external RAMDAC for a pixel read mask register access. The RAMDAC  
data must be transferred directly between the system data bus and the external RAMDAC through  
either data bus bits [7:0] in a Little-Endian system or data bus bits [15:8] in a Big-Endian system.  
RAMDAC Read Mode Address Register  
REG[2Ah] or REG[2Bh]  
RW  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
Address Bit 7 Address Bit 6 Address Bit 5 Address Bit 4 Address Bit 3 Address Bit 2 Address Bit 1 Address Bit 0  
bits 7-0  
RAMDAC Read Mode Address Bits [7:0]  
A CPU read or write to this register will generate a DACRD# or DACWR# pulse and DACRS1 = 1  
and DACRS0 = 1 to the external RAMDAC for a read-mode address register access. The RAM-  
DAC address must be transferred directly between the system data bus and the external RAMDAC  
through either data bus bits [7:0] in a Little-Endian system or data bus bits [15:8] in a Big-Endian  
system.  
RAMDAC Write Mode Address Register  
REG[2Ch] or REG[2Dh]  
RW  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
RAMDAC  
Address Bit 7 Address Bit 6 Address Bit 5 Address Bit 4 Address Bit 3 Address Bit 2 Address Bit 1 Address Bit 0  
bits 7-0  
RAMDAC Write Mode Address Bits [7:0]  
A CPU read or write to this register will generate a DACRD# or DACWR# pulse and DACRS1 = 0  
and DACRS0 = 0 to the external RAMDAC for a write-mode address register access. The RAM-  
DAC address must be transferred directly between the system data bus and the external RAMDAC  
through either data bus bits [7:0] in a Little-Endian system or data bus bits [15:8] in a Big-Endian  
system.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 113  
Vancouver Design Center  
RAMDAC Palette Data Register  
REG[2Eh] or REG[2Fh]  
RW  
RAMDAC  
RAMDAC  
Data Bit 7  
RAMDAC  
Data Bit 6  
RAMDAC  
Data Bit 5  
RAMDAC  
Data Bit 4  
RAMDAC  
Data Bit 3  
RAMDAC  
Data Bit 2  
RAMDAC  
Data Bit 1  
Data Bit 0  
bits 7-0  
RAMDAC Palette Data Bits [7:0]  
A CPU read or write to this register will generate a DACRD# or DACWR# pulse and DACRS1 = 0  
and DACRS0 = 1 to the external RAMDAC for a palette data register access. The RAMDAC data  
must be transferred directly between the system data bus and the external RAMDAC through either  
data bus bits [7:0] in a Little-Endian system or data bus bits [15:8] in a Big-Endian system.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 114  
Epson Research and Development  
Vancouver Design Center  
9 Display Buffer  
The system addresses the display buffer through the CS#, M/R#, and AB[20:0] input pins. When  
CS# = 0 and M/R# = 1, the display buffer is addressed by bits AB[20:0] as shown in the following  
table.  
Table 9-1: SED1354 Addressing  
CS#  
M/R#  
Access  
Register access:  
REG[00h] is addressed when AB[5:0] = 0  
REG[01h] is addressed when AB[5:0] = 1  
REG[n] is addressed when AB[5:0] = n  
0
0
Memory access: the 2M byte display buffer is addressed by  
AB[20:0]  
0
1
1
X
SED1354 not selected  
The display buffer address space is always 2M bytes. However, the physical display buffer may be  
either 512K bytes or 2M bytes. See Section 5.5, “Summary of Configuration Options” on page 31.  
The 512K byte display buffer is replicated in the 2M byte address space as shown below.  
512K byte Memory  
AB[20:0]  
2M byte Memory  
000000h  
Image Buffer  
07FFFFh  
080000h  
Half-Frame Buffer  
Image Buffer  
Half-Frame Buffer  
0FFFFFh  
100000h  
Image Buffer  
Image Buffer  
Half-Frame Buffer  
17FFFFh  
180000h  
Image Buffer  
Half-Frame Buffer  
Half-Frame Buffer  
1FFFFFh  
Figure 9-1: Display Buffer Addressing  
The display buffer will contain an image buffer and may also contain a half-frame buffer.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 115  
Vancouver Design Center  
9.1 Image Buffer  
The image buffer contains the formatted display data - see Section 10.1, “Display Mode Data  
Format” on page 116.  
The displayed image(s) may take up only a portion of the image buffer; the remaining area can be  
used for multiple images - possibly for animation or general storage. See Section 10, “Display  
Configuration” on page 116 for details on the relationship between the image buffer and the display.  
9.2 Half Frame Buffer  
In dual panel mode, with the half frame buffer enabled, the top of the display buffer is allocated to  
the half-frame buffer. The size of the half frame buffer is a function of the panel resolution and  
whether the panel is color or monochrome:  
Half Frame Buffer Size (in bytes) = (panel width x panel length) * factor / 16  
where factor = 4 for color panel  
= 1 for monochrome panel  
For example, for a 640x480 8 bpp color panel the half frame buffer size is 75K bytes. In a 512K byte  
display buffer, the half-frame buffer resides from 6D400h to 7FFFFh. In a 2M byte display buffer,  
the half-frame buffer resides from 1ED400h to 1FFFFFh.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 116  
Epson Research and Development  
Vancouver Design Center  
10 Display Configuration  
10.1 Display Mode Data Format  
1-bpp:  
bit 7  
bit 0  
P
P
P P P  
3
P P  
P
7
0
1
2
4
5
6
A
A
A
A
A
A
A
A
7
Byte 0  
0
1
2
3
4
5
6
P
= (A )  
n
n
Panel Display  
Host Address  
2-bpp:  
Display Buffer  
bit 7  
bit 0  
P P P  
P
P P P P  
3
2
0
1
4
5
6
7
A
A
B
B
A
A
B
B
A
A
B
B
A
A
B
B
0
4
0
4
1
5
1
5
2
6
2
6
3
7
3
7
Byte 0  
Byte 1  
P
= (A , B )  
n n  
n
Panel Display  
Host Address  
4-bpp:  
Display Buffer  
bit 7  
bit 0  
P P P P  
P P P P  
7
0
3
1
2
4
5 6  
A
A
A
B
B
B
C
C
C
D
D
D
A
A
A
B
B
B
C
C
C
D
D
D
0
2
4
0
2
4
0
2
4
0
2
4
1
3
5
1
3
5
1
3
5
1
3
5
Byte 0  
Byte 1  
Byte 2  
P
= (A , B , C , D )  
n n n n  
n
Panel Display  
Host Address  
8-bpp:  
Display Buffer  
3-3-2 RGB  
bit 7  
2
bit 0  
0
P P P P  
P P P P  
0
1
2
3
4
5
6
7
1
1
1
0
0
0
0
2
2
2
1
1
1
1
B
G
B
0
Byte 0  
Byte 1  
Byte 2  
R
R
R
R
G
G
G
R
0
G
G
G
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
0
0
2
1
1
B
B
G
G
B
1
R
1
R
R
2-0  
2-0  
1-0  
P
= (R  
, G  
, B  
n
)
n
n
n
0
2
B
2
R
2
Panel Display  
Host Address  
Display Buffer  
Figure 10-1: 1/2/4/8 Bit-Per-Pixel Format Memory Organization  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 117  
Vancouver Design Center  
15-bpp:  
P P P P  
P P P P  
0
1
2
3
4
5
6
7
5-5-5 RGB  
bit 7  
2
bit 0  
0
1
4
0
4
3
1
2
G
0
G
B
B
0
G
R
B
0
B
0
TFT  
= (R  
B
0
0
0
Byte 0  
Byte 1  
Byte 2  
Byte 3  
0
4-0  
4-1  
4-0  
4-1  
4-0  
P
, G  
, B  
)
n
n
n
n
n
4
3
2
1
0
3
G
B
R
G
R
B
R
B
G
0
R
B
0
0
0
0
0
0
Passive  
= (R  
4-1  
2
1
4
0
1
3
2
0
P
, G  
, B  
)
G
1
G
R
B
1
n
n
n
1
1
1
1
1
1
4
4
1
0
3
2
3
G
Panel Display  
R
R
R
G
1
R
1
1
1
1
1
1
Display Buffer  
Host Address  
16-bpp:  
5-6-5 RGB  
P P P P  
P P P P  
0
1
2
3
4
5
6
7
bit 7  
2
bit 0  
0
1
4
3
0
1
2
TFT  
= (R  
G
0
G
R
G
R
B
B
0
B
B
0
B
0
0
0
0
Byte 0  
0
4-0  
4-1  
5-0  
5-2  
4-0  
P
, G  
, B  
)
n
n
n
n
n
4
3
2
1
0
4
5
3
R
0
R
R
0
G
B
G
B
G
0
0
0
0
Byte 1  
Byte 2  
Byte 3  
0
0
Passive  
= (R  
4-1  
2
1
0
4
3
2
1
0
P
, G  
, B  
)
G
1
G
R
G
R
B
B
1
n
n
n
B
1
1
1
1
1
1
4
3
2
1
0
5
4
3
R
1
R
R
1
G
G
G
1
1
1
1
1
1
Panel Display  
Display Buffer  
Host Address  
Figure 10-2: 15/16 Bit-Per-Pixel Format Memory Organization  
Note  
1. The Host-to-Display mapping described here assumes that a Little-Endian interface is  
being used.  
2. For 8/15/16 bit-per-pixel formats, Rn, Gn, Bn represent the red, green, and blue color  
components.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 118  
Epson Research and Development  
Vancouver Design Center  
10.2 Image Manipulation  
The figure below shows how screen 1 and screen 2 images stored in the image buffer are positioned  
on the display. The screen 1 and screen 2 images can be parts of a larger virtual image or images.  
• (REG[17h], REG[16h]) defines the width of the virtual image(s).  
• (REG[12h], REG[11h], REG[10h]) defines the starting word of the screen 1,  
(REG[15h], REG[14h], REG[13h]) defines the starting word of the screen 2.  
• REG[18h] bits [3:0] define the starting pixel within the starting word for screen 1,  
REG[18h] bits[7:4] define the starting pixel within the starting word for screen 2.  
• (REG[0Fh],REG[0Eh]) define the last line of screen 1, the remainder of the display is taken up  
by screen 2.  
Image Buffer  
Display  
(REG[12h], REG[11h], REG[10h])  
REG[18h] bits [3:0]  
((REG[09h], REG[08h])+1) lines  
Screen 1  
Line 0  
Line 1  
Screen 1  
Line (REG[0Fh], REG[0Eh])  
(REG[15h], REG[14h], REG[13h])  
REG[18h] bits [7:4]  
Screen 2  
Screen 2  
((REG[04h]+1)*8) pixels  
(REG[17h], REG[16h])  
Figure 10-3: Image Manipulation  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 119  
Vancouver Design Center  
11 Clocking  
11.1 Maximum MCLK: PCLK Ratios  
Table 11-1: Maximum PCLK Frequency with EDO-DRAM  
Maximum PCLK Allowed  
Display type  
NRC  
1 bpp  
2 bpp  
4 bpp  
8 bpp  
16 bpp  
• Single Panel.  
• CRT.  
• Dual Monochrome/Color Panel with Half Frame Buffer  
Disabled.  
5, 4, 3  
MCLK  
• Simultaneous CRT + Single Panel.  
• Simultaneous CRT + Dual Monochrome/Color Panel  
with Half Frame Buffer Disabled.  
• Dual Monochrome Panel with Half Frame Buffer  
Enabled.  
5
4
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
• Simultaneous CRT + Dual Monochrome Panel with  
Half Frame Buffer Enable.  
3
MCLK  
MCLK MCLK/2 MCLK/2 MCLK/2  
• Dual Color Panel with Half Frame Buffer Enabled.  
5
4
3
MCLK/2 MCLK/2 MCLK/2 MCLK/3 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
• Simultaneous CRT + Dual Color Panel with Half  
Frame Buffer Enable.  
Table 11-2: Maximum PCLK Frequency with FPM-DRAM  
Maximum PCLK allowed  
Display type  
NRC  
1 bpp  
2 bpp  
4 bpp  
8 bpp  
16 bpp  
• Single Panel.  
• CRT.  
• Dual Monochrome/Color Panel with Half Frame Buffer  
Disabled.  
5, 4, 3  
MCLK  
• Simultaneous CRT + Single Panel.  
• Simultaneous CRT + Dual Monochrome/Color Panel  
with Half Frame Buffer Disabled.  
• Dual Monochrome Panel with Half Frame Buffer  
Enabled.  
5
4
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/2  
• Simultaneous CRT + Dual Monochrome Panel with  
Half Frame Buffer Enable.  
3
MCLK  
MCLK  
MCLK MCLK/2 MCLK/2  
• Dual Color Panel with Half Frame Buffer Enabled.  
5
4
3
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/3  
MCLK/2 MCLK/2 MCLK/2 MCLK/2 MCLK/2  
• Simultaneous CRT + Dual Color Panel with Half  
Frame Buffer Enable.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 120  
Epson Research and Development  
Vancouver Design Center  
11.2 Frame Rate Calculation  
The frame rate is calculated using the following formula:  
PCLKmax  
FrameRate = ----------------------------------------------------------------------------------------  
(HDP + HNDP) × (VDP + VNDP)  
Where:  
VDP  
= Vertical Display Period  
= REG[09h] bits [1:0], REG[08h] bits [7:0] + 1  
= REG[0Ah] bits [5:0] + 1  
= in table below  
VNDP = Vertical Non-Display Period  
HDP  
= Horizontal Display Period  
= ((REG[04h] bits [6:0]) + 1) * 8Ts  
= ((REG[05h] bits [4:0]) + 1) * 8Ts  
= given in table below  
HNDP = Horizontal Non-Display Period  
Ts  
= Pixel Clock  
= PCLK  
Table 11-3: Example Frame Rates  
Maximum  
Pixel  
Clock  
Maximum Frame  
Rate (Hz)  
Color  
Depth  
(bpp)  
Minimum  
Panel  
HNDP(Ts)  
DRAM Type1  
(Speed Grade)  
Display  
Resolution  
Panel4  
CRT  
(MHz)  
• Single Panel.  
1/2/4/8  
16  
32  
56  
32  
56  
32  
56  
32  
56  
32  
56  
32  
32  
32  
32  
80  
78  
60  
60  
85  
85  
-
800x6002  
640x480  
640x240  
480x320  
320x240  
800x6002,3  
640x480  
• CRT.  
• Dual Monochrome/Color Panel  
with Half Frame Buffer Disabled.5  
1/2/4/8  
16  
123  
119  
247  
242  
243  
232  
471  
441  
80  
• Simultaneous CRT + Single Panel.  
1/2/4/8  
16  
• Simultaneous CRT + Dual  
Monochrome/Color Panel with Half  
Frame Buffer Disabled.5  
50ns  
EDO-DRAM  
40  
-
1/2/4/8  
16  
-
MClk = 40MHz  
-
NRC = 4  
NRP = 1.5  
NRCD = 2  
1/2/4/8  
16  
-
-
• Dual Color with Half Frame Buffer  
Enabled.  
1/2/4/8  
16  
20  
13.3  
20  
-
53  
-
• Dual Mono with Half Frame Buffer  
Enabled.  
1/2/4/8  
16  
123  
82  
-
13.3  
-
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 121  
Vancouver Design Center  
Table 11-3: Example Frame Rates  
Maximum  
Pixel  
Clock  
Maximum Frame  
Rate (Hz)  
Color  
Depth  
(bpp)  
Minimum  
Panel  
HNDP(Ts)  
DRAM Type1  
(Speed Grade)  
Display  
Resolution  
Panel4  
CRT  
(MHz)  
• Single Panel.  
• CRT.  
1/2/4/8  
16  
32  
56  
32  
56  
32  
56  
32  
56  
32  
56  
32  
32  
32  
32  
32  
56  
32  
56  
32  
56  
32  
56  
32  
56  
32  
32  
32  
32  
32  
32  
32  
66  
65  
55  
55  
78  
78  
-
800x6002  
640x480  
640x240  
480x320  
320x240  
800x6002,3  
640x480  
800x6002  
640x480  
640x240  
480x320  
320x240  
• Dual Mono/Color Panel with Half  
Frame Buffer Disabled.5  
1/2/4/8  
16  
101  
98  
• Simultaneous CRT + Single Panel.  
1/2/4/8  
16  
203  
200  
200  
196  
388  
380  
66  
• Simultaneous CRT + Dual  
Mono/Color Panel with Half Frame  
Buffer Disabled.5  
60ns  
EDO-DRAM  
33  
-
1/2/4/8  
16  
-
MClk = 33MHz  
NRC = 4  
-
NRP = 1.5  
1/2/4/8  
16  
-
NRCD = 2  
-
• Dual Color with Half Frame Buffer  
Enabled.  
1/2/4/8  
16  
16.5  
11  
-
43  
-
• Dual Mono with Half Frame Buffer  
Enabled.  
1/2/4/8  
16  
16.5  
11  
103  
68  
-
-
• Single Panel.  
• CRT.  
1/2/4/8  
16  
50  
-
48  
-
• Dual Mono/Color Panel with Half  
Frame Buffer Disabled.5  
1/2/4/8  
16  
77  
60  
60  
-
75  
• Simultaneous CRT + Single Panel.  
1/2/4/8  
16  
142  
136  
152  
145  
294  
280  
50  
• Simultaneous CRT + Dual  
Mono/Color Panel with Half Frame  
Buffer Disabled.5  
25  
-
60ns  
FPM-DRAM  
1/2/4/8  
16  
-
-
MClk = 25MHz  
NRC = 4  
NRP = 1.5  
1/2/4/8  
-
16  
-
• Dual Mono with Half Frame Buffer  
Enabled.  
800x6002 1/2/4/8/16  
12.5  
12.5  
12.5  
12.5  
8.33  
12.5  
8.33  
-
NRCD = 2  
640x480  
640x400  
1/2/4/8/16  
1/2/4/8/16  
1/2/4/8  
16  
77  
-
92  
-
• Dual Color with Half Frame Buffer  
Enabled.  
50  
-
800x6002,3  
33  
-
1/2/4/8  
16  
77  
-
640x480  
51  
-
1. Must set NRC = 4MCLK. See REG[22h], “Performance Enhancement Register 0”.  
2. 800x600 @ 16 bpp requires 2M bytes of display buffer for all display types.  
3. 800x600 @ 8 bpp on a dual color panel requires 2M bytes of display buffer if the half frame  
buffer is enabled.  
4. Optimum frame rates for panels range from 60Hz to 150Hz. If the maximum refresh rate is too  
high for a panel, MCLK should be reduced or PCLK should be divided down.  
5. Half Frame Buffer disabled by REG[1Bh] bit 0.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 122  
Epson Research and Development  
Vancouver Design Center  
12 Look-Up Table Architecture  
Table 12-1: Look-Up Table Configurations  
Display Mode  
4-Bit Wide Look-Up Table  
GREEN  
RED  
BLUE  
Black & White  
4-level gray  
16-level gray  
2 color  
1 bank of 2 entries  
4 banks of 4 entries  
1 bank of 16 entries  
1 bank of 2 entries  
4 banks of 4 entries  
1 bank of 16 entries  
2 banks of 8 entries  
1 bank of 2 entries  
4 banks of 4 entries  
1 bank of 16 entries  
2 banks of 8 entries  
1 bank of 2 entries  
4 banks of 4 entries  
1 bank of 16 entries  
4 banks of 4 entries  
4 color  
16 color  
256 color  
Indicates the look-up table is not used for that display mode  
The following depictions are intended to show the display data output path only. The CPU R/W  
access to the individual Look-Up Tables is not affected by the various “banking” configurations.  
12.1 Gray Shade Display Modes  
1 Bit-Per-Pixel Mode  
Green Look-Up Table  
Entry  
Select  
Logic  
4-bit display data output  
0
1
0
1
1-bit pixel data  
Figure 12-1: 1 Bit-Per-Pixel 2-Level Gray-Shade Mode Look-Up Table Architecture  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 123  
Vancouver Design Center  
2 Bit-Per-Pixel Mode  
Green Look-Up Table  
Bank 0  
0
1
2
3
00  
01  
Bank 1  
4
5
6
7
Selected Bank  
00  
01  
10  
11  
Entry  
Select  
Logic  
Bank  
Select  
Logic  
4-bit display data output  
Bank 2  
8
9
A
B
10  
11  
Bank 3  
C
D
E
F
Bank Select bits [1:0]  
REG[27h] bits [1:0]  
2-bit pixel data  
Note: the above depiction is intended to show the display data output path only. The CPU R/W access to the individual  
Look-Up Tables is not affected by the various “banking” configurations.  
Figure 12-2: 2 Bit-Per-Pixel 4-Level Gray-Shade Mode Look-Up Table Architecture  
4 Bit-Per-Pixel Mode  
Green Look-Up Table  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Entry  
Select  
Logic  
4-bit display data output  
4-bit pixel data  
Figure 12-3: 4 Bit-Per-Pixel 16-Level Gray-Shade Mode Look-Up Table Architecture  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 124  
Epson Research and Development  
Vancouver Design Center  
12.2 Color Display Modes  
1 Bit-Per-Pixel Color Mode  
Red Look-Up Table  
0
1
Entry  
Select  
Logic  
0
1
4-bit Red data output  
1-bit pixel data  
Green Look-Up Table  
Entry  
Select  
Logic  
0
1
4-bit Green data output  
4-bit Blue data output  
0
1
Blue Look-Up Table  
0
1
Entry  
Select  
Logic  
0
1
Figure 12-4: 1 Bit-Per-Pixel 2-Level Color Look-Up Table Architecture  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 125  
Vancouver Design Center  
2 Bit-Per-Pixel Color Mode  
Red Look-Up Table  
Bank 0  
0
1
2
3
00  
01  
Bank 1  
4
5
6
7
Selected Bank  
Selected Bank  
Selected Bank  
00  
01  
10  
11  
Entry  
Select  
Logic  
Bank  
4-bit Red data output  
4-bit Green data output  
4-bit Blue data output  
Select  
Logic  
Bank 2  
8
9
A
B
10  
Bank 3  
C
D
E
F
11  
Bank Select bits [1:0]  
REG[27h] bits [5:4]  
2-bit pixel data  
Green Look-Up Table  
Bank 0  
0
1
2
3
00  
01  
Bank  
Select  
Logic  
Bank 1  
4
5
6
7
00  
01  
10  
11  
Entry  
Select  
Logic  
Bank 2  
8
9
A
B
10  
Bank 3  
C
D
E
F
11  
Bank Select bits [1:0]  
REG[27h] bits [1:0]  
Blue Look-Up Table  
Bank 0  
0
1
2
3
00  
01  
Bank  
Select  
Logic  
Bank 1  
4
5
6
7
00  
01  
10  
11  
Entry  
Select  
Logic  
Bank 2  
8
9
A
B
10  
Bank 3  
C
D
E
F
11  
Bank Select bits [1:0]  
REG[27h] bits [3:2]  
Figure 12-5: 2 Bit-Per-Pixel 4-Level Color Mode Look-Up Table Architecture  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 126  
Epson Research and Development  
Vancouver Design Center  
4 Bit-Per-Pixel Color Mode  
Red Look-Up Table  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Entry  
Select  
Logic  
4-bit Red data output  
4-bit Green data output  
4-bit Blue data output  
4-bit pixel data  
Green Look-Up Table  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Entry  
Select  
Logic  
Blue Look-Up Table  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Entry  
Select  
Logic  
Figure 12-6: 4 Bit-Per-Pixel 16-Level Color Mode Look-Up Table Architecture  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 127  
Vancouver Design Center  
8 Bit-Per-Pixel Color Mode  
256 Color Data Format:  
Red Look-Up Table  
Bank 0  
7
6
5
4
3
2
1
0
R2 R1 R0 G2 G1 G0 B1 B0  
0
1
2
3
4
5
6
7
Selected Bank  
0
000  
001  
010  
011  
100  
101  
110  
111  
Entry  
Select  
Logic  
Bank  
Select  
Logic  
4-bit Red data output  
Bank 1  
8
9
A
B
C
D
E
F
1
Bank Select bit  
REG[27h] bit 4  
3-bit pixel data  
Green Look-Up Table  
Bank 0  
0
1
2
3
4
5
6
7
Selected Bank  
0
000  
001  
010  
011  
100  
101  
110  
111  
Entry  
Select  
Logic  
Bank  
Select  
Logic  
4-bit Green data output  
Bank 1  
8
9
A
B
C
D
E
F
1
Bank Select bit  
REG[27h] bit 0  
3-bit pixel data  
Blue Look-Up Table  
Bank 0  
0
1
2
3
00  
01  
Bank 1  
4
5
6
7
Selected Bank  
00  
01  
10  
11  
Entry  
Select  
Logic  
Bank  
4-bit Blue data output  
Select  
Logic  
Bank 2  
8
9
A
B
10  
Bank 3  
C
D
E
F
11  
Bank Select bits [1:0]  
REG[27h] bits [3:2]  
2-bit pixel data  
Figure 12-7: 8 Bit-Per-Pixel 256-Level Color Mode Look-Up Table Architecture  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 128  
Epson Research and Development  
Vancouver Design Center  
13 Power Save Modes  
Two Power Save Modes have been incorporated into the SED1354 to accommodate the important  
need for power reduction in the hand-held devices market. These modes are hardware suspend and  
software suspend.  
13.1 Hardware Suspend  
• Register read/write disallowed.  
• Memory read/write disallowed.  
• LCD outputs are forced low (see Note 1 of Section 13.4, “Pin States in Power Save Modes” on  
page 129).  
• LCDPWR forced to Off state.  
• CRT outputs are disabled.  
• If suspend mode CBR refresh is selected, all internal modules and clocks except the Memory I/F  
are shut down.  
• If suspend mode self-refresh or no-refresh is selected, all internal modules and clocks are shut  
down.  
13.2 Software Suspend  
• Register read/write allowed except for RAMDAC registers.  
• Memory read/write disallowed.  
• LCD outputs are forced low (see Note 1 of Section 13.4, “Pin States in Power Save Modes” on  
page 129).  
• LCDPWR forced to Off state.  
• CRT outputs are disabled.  
• If suspend mode CBR refresh is selected, all internal modules and clocks except the Host Bus I/F  
and the Memory I/F are shut down.  
• If suspend mode self-refresh or no-refresh is selected, all internal modules and clocks except the  
Host Bus I/F are shut down.  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 129  
Vancouver Design Center  
13.3 Power Save Mode Function Summary  
Table 13-1: Power Save Mode Function Summary  
Power Save Mode (PSM)  
Function  
Normal  
(Active)  
Software  
Suspend  
Hardware  
Suspend  
Display Active?  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Register Access Possible?  
Memory Access Possible?  
Host Bus Interface Running?  
Memory Interface Running?  
Yes (1)  
No  
Yes  
No (2)  
No (2)  
Note  
(1) except for RAMDAC registers.  
(2) Yes if CBR suspend mode refresh is selected.  
13.4 Pin States in Power Save Modes  
Table 13-2: Pin States in Power Save Modes  
Pin State  
Pins  
Normal  
(Active)  
Software  
Suspend  
Hardware  
Suspend  
Forced Low (1)  
Off  
LCD outputs  
LCDPWR  
Active  
Forced Low (1)  
Off  
On  
DRAM outputs  
Active  
Active  
Active  
Refresh Only (2)  
Disabled (3)  
Active (4)  
Refresh Only (2)  
Disabled (3)  
Disabled  
CRT / DAC outputs  
Host Interface outputs  
Note  
1. FPFRAME and FPLINE are forced to their inactive states as defined by REG[0Ch] bit 6  
and REG[07h] bit 6 respectively.  
2. Selectable: may be CBR refresh, self-refresh or no refresh at all.  
3. DACWR#, DACRD#, DACRS0, DACRS1 are active but DACCLK is disabled.  
4. Active for non-DAC register access only.  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 130  
Epson Research and Development  
Vancouver Design Center  
14 Mechanical Data  
14.1 QFP15-128 (SED1354F0A)  
QFP15 - 128 pin  
Unit: mm  
16.0 ± 0.4  
14.0 ± 0.1  
96  
65  
97  
64  
Index  
128  
33  
1
32  
0.4  
0.16 ± 0.1  
0~10°  
0.5 ± 0.2  
1.0  
Figure 14-1: Mechanical Drawing QFP15-128  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
Epson Research and Development  
Page 131  
Vancouver Design Center  
14.2 TQFP15-128 (SED1354F1A)  
TQFP15 - 128 pin  
Unit: mm  
16 ±0.4  
14 ±0.1  
96  
65  
97  
64  
INDEX  
128  
33  
1
32  
+0.05  
- 0.03  
0.4  
0.16  
+0.05  
- 0.025  
0.125  
0°  
10 °  
0.5 ±0.2  
1
Figure 14-2: Mechanical Drawing TQFP15-128  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354  
X19A-A-002-16  
Page 132  
Epson Research and Development  
Vancouver Design Center  
14.3 QFP20-144 (SED1354F2A)  
QFP20 - 144 pin  
Unit: mm  
22 ±0.4  
20 ±0.1  
108  
73  
109  
72  
INDEX  
144  
37  
1
36  
+0.1  
- 0.05  
0.5  
0.2  
+0.05  
- 0.025  
0.125  
0°  
10 °  
0.5 ±0.2  
1
Figure 14-3: Mechanical Drawing QFP20-144  
SED1354  
X19A-A-002-16  
Hardware Functional Specification  
Issue Date: 99/05/18  
SED1354 Color Graphics LCD/CRT Controller  
Programming Notes and Examples  
Document Number: X19A-G-002-06  
Copyright © 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table Of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Programming the SED1354 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 Registers Requiring Special Consideration . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
REG[01] bit 0 - Memory Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
REG[22] bits 7-2 - Performance Enhancement Register 0 . . . . . . . . . . . . . . . . . . . .8  
REG[02] bit 1 - Dual/Single Panel Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
REG[1B] bit 0 - Half Frame Buffer Disable . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
REG[23] Display FIFO: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2 Register Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2.1  
2.2.2  
2.2.3  
Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Initialization Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Re-Programming Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3 Disabling the Half Frame Buffer Sequence: . . . . . . . . . . . . . . . . . . . . . . 11  
3
Display Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1 Display Buffer Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2 Display Buffer Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades) . . . . . . . . . . . . . 12  
Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades) . . . . . . . . . . . . . 12  
Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades) . . . . . . . . . . . . 13  
Memory Organization for Eight Bit-per-pixel (256 Colors) . . . . . . . . . . . . . . . . . . 13  
Memory Organization for 15 Bit-per-pixel (32768 Colors) . . . . . . . . . . . . . . . . . . . 14  
Memory Organization for 16 Bit-per-pixel (65536 Colors) . . . . . . . . . . . . . . . . . . . 14  
3.3 Look-Up Table (LUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3.1  
3.3.2  
Look-Up Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Look-Up Table Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Advanced Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1 Virtual Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1.1  
4.1.2  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.2 Panning and Scrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.2.1  
4.2.2  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.3 Split Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.3.1  
4.3.2  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5
LCD Power Sequencing and Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . 30  
5.1 Introduction to LCD Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.2 Introduction to Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.4 Suspend Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 4  
Epson Research and Development  
Vancouver Design Center  
5.4.1  
5.4.2  
Suspend Enable Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Suspend Disable Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.5 LCD Enable/Disable Sequencing (Reg[0D] bit 0) . . . . . . . . . . . . . . . . . . . . 32  
6
CRT Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.1.1  
6.1.2  
CRT Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Simultaneous Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7
8
Identifying the SED1354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Hardware Abstraction Layer (HAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.2 API for 1354HAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Screen Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Color Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Register Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
9
Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.1.1  
9.1.2  
Sample code using 1354HAL API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Sample code without using 1354HAL API . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Appendix A  
Supported Panel Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
A.1 Supported Panel Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List Of Tables  
Table 2-1: Initializing the SED1354 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 3-1: Pixel Storage for 1 bpp (2 Colors/Gray Shades) in One Byte of Display Buffer. . . . . . . . . . . 12  
Table 3-2: Pixel Storage for 2 bpp (4 Colors/Gray Shades) in One Byte of Display Buffer. . . . . . . . . . . 12  
Table 3-3: Pixel Storage for 4 bpp (16 Colors/Gray Shades) in One Byte of Display Buffer . . . . . . . . . . 13  
Table 3-4: Pixel Storage for 8 bpp (256 Colors) in One Byte of Display Buffer . . . . . . . . . . . . . . . . 13  
Table 3-5: Pixel Storage for 15 bpp (32768 Colors) in Two Bytes of Display Buffer . . . . . . . . . . . . . . 14  
Table 3-6: Pixel Storage for 16 bpp (65536 Colors) in Two Bytes of Display Buffer . . . . . . . . . . . . . . 14  
Table 3-7: Look-Up Table Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3-8: Recommended LUT Values for 1 bpp Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 3-9: Recommended LUT Values for 2 bpp Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 3-10: Recommended LUT Values to Simulate VGA Default 16 Color Palette. . . . . . . . . . . . . . . 19  
Table 3-11: Recommended LUT Values For 8 bpp Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 3-12: Examples of 256 Pixel Colors Using Linear LUT . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3-13: Recommended LUT Values for 1 bpp Gray Shades . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3-14: Recommended LUT Values for 2 bpp Gray Shades . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3-15: Recommended LUT Values for 8 bpp Gray Shade . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4-1: Number of Pixels Panned Using Start Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 4-2: Active Pixel Pan Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 6-1: RAMDAC Register Mapping for Little/Big-Endian . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 6-2: Related Register Data for CRT Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6-3: 8 bpp Recommended RAMDAC palette data for Simultaneous Display. . . . . . . . . . . . . . . 35  
Table 6-4: Related register data for Simultaneous Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 9-1: Passive Single Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 9-2: Passive Dual Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 9-3: TFT Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
List of Figures  
Figure 4-1: Viewport Inside a Virtual Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 4-2: 320x240 Single Panel For Split Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This guide describes how to program the SED1354 Color Graphics LCD/CRT Controller. The guide  
presents the basic concepts of the LCD/CRT controller and provides methods to directly program  
the registers. It explains some of the advanced techniques used and the special features of the  
SED1354.  
The guide also introduces the hardware Abstraction Layer (HAL), which is designed to simplify the  
programming of the SED1354. Most SED135x, SED137x and SED138x products support the HAL  
allowing OEMs to switch chips with relative ease.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Programming the SED1354 Registers  
This section describes how to program the SED1354 registers that require special consideration. It  
also provides the correct sequence for initializing the SED1354 and disabling the half frame buffer.  
For further information on the any of the registers described below, refer to the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx.  
2.1 Registers Requiring Special Consideration  
2.1.1 REG[01] bit 0 - Memory Type  
This bit must not be changed during a DRAM R/W access. Configuring this bit during a DRAM  
Refresh will not cause any problems.  
Note  
This register should be programmed only during initialization and never changed after that.  
However, it still must be programmed BEFORE the internal blocks start to R/W the memory (see  
Register Initialization in Section 2.1.5).  
2.1.2 REG[22] bits 7-2 - Performance Enhancement Register 0  
This bit must not be changed during a DRAM R/W access. Configuring this bit during a DRAM  
Refresh will not cause any problems.  
Note  
This register should be programmed only during initialization and never changed after that.  
However, it still must be programmed BEFORE the internal blocks start to R/W the memory (see  
Register Initialization in Section 2.1.5).  
2.1.3 REG[02] bit 1 - Dual/Single Panel Type  
This bit must not be changed while the Half Frame Buffer (HFB) is active.  
Note  
This register should be programmed only during initialization and never changed after that.  
However, it still must be programmed BEFORE the HFB starts to R/W the memory (see Register  
Initialization in Section 2.1.5).  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 9  
Vancouver Design Center  
2.1.4 REG[1B] bit 0 - Half Frame Buffer Disable  
This bit must not be changed while the HFB is active.  
This register 'might' be disabled during normal operation for two reasons:  
1. to increase bandwidth for simultaneous display.  
2. to test 'all' available memory.  
To disable the HFB see Section 2.3, “Disabling the Half Frame Buffer Sequence:” on page 11.  
Note  
The HFB is enabled after RESET (default condition). It will start to Read and Write the DRAM  
if the DUAL bit set + (Horizontal resolution > 0) + HFB enabled (default power-on state).  
2.1.5 REG[23] Display FIFO:  
This register can be asynchronously enabled/disabled.  
Note  
The Display FIFO starts to access DRAM after RESET.  
2.2 Register Initialization  
2.2.1 Initialization Sequence  
To initialize the SED1354 after POWER-ON or a HARDWARE RESET, do the following:  
1. Enable the host interface (REG[1Bh] bit 7=0).  
2. Disable the display FIFO (REG[23h] bit 7=1) after stopping FIFO accesses to the DRAM.  
3. Set memory type (REG[01h] bit 0).  
4. Set performance register (REG[22h]).  
5. Set dual/single panel (REG[02h] bit 1).  
6. Program all other registers as required.  
7. Enable the display FIFO (REG[23h] bit 7=0).  
8. Enable display.  
Note  
The Half Frame Buffer does not actually start to access DRAM until step 5, therefore, this  
initialization sequence will not cause any problems.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
 
Page 10  
Epson Research and Development  
Vancouver Design Center  
2.2.2 Initialization Example  
This section presents an example of how to initialize the SED1354 registers.  
Example 1: Initialize the registers for a 16 color 640x480 dual passive LCD using a 16 bit  
data interface; assume 2M byte of display buffer.  
Program the SED1354 registers in the following order with the data supplied. Note that for this  
example, it is assumed that the arrays “unsigned char RED[16], GREEN[16], BLUE[16]” are  
defined and initialized for the required colors. For example, RED[2], GREEN[2], and BLUE[2] refer  
to the color components of pixel value 2.  
In addition, it is assumed that there is no external RAMDAC since only the LCD is being  
programmed. Consequently, the RAMDAC registers are not programmed.  
For code examples, see Section 9, “Sample Code” on page 54.  
Table 2-1: Initializing the SED1354 Registers  
Operation  
REG[1Bh] = 0x00  
Description  
Enable Host Interface  
Disable the Display FIFO  
Set Memory Type  
REG[23h] = 0x80  
REG[01h] = 0x30  
REG[22h] = 0x24  
REG[02h] = 0x26  
REG[03h] = 0x00  
REG[04h] = 0x4F  
REG[05h] = 0x1F  
REG[06h] = 0x00  
REG[07h] = 0x00  
Set Performance Register  
Set Dual/Single Panel  
MOD Rate  
Horizontal Display Width  
Horizontal Non-Display Period  
HSYNC Start Position  
HSYNC Pulse Width  
REG[08h] = 0xEF  
REG[09h] = 0x00  
Vertical Display Height  
REG[0Ah] = 0x01  
REG[0Bh] = 0x00  
REG[0Ch] = 0x00  
Vertical Non-Display Period  
VSYNC Start Position  
VSYNC Pulse Width  
REG[0Eh] = 0xFF  
REG[0Fh] = 0x03  
Screen 1 Line Compare  
REG[10h] = 0x00  
REG[11h] = 0x00  
REG[12h] = 0x00  
Screen 1 Display Start Address  
REG[13h] = 0x00  
REG[14h] = 0x00  
REG[15h] = 0x00  
Screen 2 Display Start Address  
Memory Address Offset  
REG[16h] = 0xA0  
REG[17h] = 0x00  
REG[18h] = 0x00  
REG[19h] = 0x01  
REG[1Ah] = 0x00  
Pixel Panning  
Clock Configuration  
Power Save Configuration  
REG[1Eh] = 0x00  
REG[1Fh] = 0x00  
General I/O Configuration  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 11  
Vancouver Design Center  
Table 2-1: Initializing the SED1354 Registers (Continued)  
REG[20h] = 0x00  
REG[21h] = 0x00  
General I/O Control  
REG[24h] = 0x00  
Look-Up Table Address  
for (index = 0; index < 16; ++index) {  
REG[26h] = RED[index];  
REG[26h] = GREEN[index];  
REG[26h] = BLUE[index];  
}
Update Look-Up Table based on the  
RED[16], GREEN[16], and BLUE[16]  
tables defined earlier in your  
program.  
REG[27h] = 0x00  
REG[23h] = 0x10  
REG[0Dh] = 0x09  
Look-Up Table Bank Select  
Enable the Display FIFO  
Enable Display  
2.2.3 Re-Programming Registers  
The only register which may require modification after the initialization sequence is the Half Frame  
Buffer. The Memory Type, DUAL/SINGLE, and the Performance Register bits should never be  
modified after initialization.  
2.3 Disabling the Half Frame Buffer Sequence:  
The Half Frame Buffer can be ENABLED asynchronously.  
To DISABLE the Half Frame Buffer, do the following:  
1. Disable the display FIFO REG[23] bit 7=1.  
2. Set the horizontal resolution to 0 (REG[04]=0).  
Setting the horizontal resolution = 0 will shut-off any Half Frame Buffer DRAM accesses  
within 1024 PCLK's or less (1024 PCLK’s is the worst case)  
3. Wait for VNDP 1->0->1 transitions (REG[0A] bit 7).  
Waiting for 1 FRAME delay will guarantee that the Half Frame Buffer is idle.  
4. Disable the Half Frame Buffer (REG[1B] bit 0=1).  
5. Re-program the horizontal resolution to your original value.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 12  
Epson Research and Development  
Vancouver Design Center  
3 Display Buffer  
This section discusses how the SED1354 stores pixels in the display buffer and where the display  
buffer is located.  
3.1 Display Buffer Location  
The SED1354 requires either a 512K byte or a 2M byte block of memory to be decoded by the  
system. System logic will determine the location of this memory block; the SDU1354B0C evalu-  
ation board decodes the display buffer at the 12M byte location of system memory.  
3.2 Display Buffer Organization  
3.2.1 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)  
Eight pixels are grouped into one byte of display buffer as shown below:  
Table 3-1: Pixel Storage for 1 bpp (2 Colors/Gray Shades) in One Byte of Display Buffer  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pixel 0  
Bit 0  
Pixel 1  
Bit 0  
Pixel 2  
Bit 0  
Pixel 3  
Bit 0  
Pixel 4  
Bit 0  
Pixel 5  
Bit 0  
Pixel 6  
Bit 0  
Pixel 7  
Bit 0  
One bit-per-pixel provides two shades of gray by indexing into positions 0 and 1 of the Green Look-  
Up Table (LUT) and two levels of color by indexing into positions 0 and 1 of the Red/Green/Blue  
LUTs.  
3.2.2 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)  
Four pixels are grouped into one byte of display buffer as shown below:  
Table 3-2: Pixel Storage for 2 bpp (4 Colors/Gray Shades) in One Byte of Display Buffer  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pixel 0  
Bit 1  
Pixel 0  
Bit 0  
Pixel 1  
Bit 1  
Pixel 1  
Bit 0  
Pixel 2  
Bit 1  
Pixel 2  
Bit 0  
Pixel 3  
Bit 1  
Pixel 3  
Bit 0  
Two bit-per-pixel provides four shades of gray by indexing into positions 0 through 3 of the Green  
LUT and four levels of color by indexing into positions 0 through 3 of the Red/Green/Blue LUTs.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 13  
Vancouver Design Center  
3.2.3 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)  
Two pixels are grouped into one byte of display buffer as shown below:  
Table 3-3: Pixel Storage for 4 bpp (16 Colors/Gray Shades) in One Byte of Display Buffer  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pixel 0  
Bit 3  
Pixel 0  
Bit 2  
Pixel 0  
Bit 1  
Pixel 0  
Bit 0  
Pixel 1  
Bit 3  
Pixel 1  
Bit 2  
Pixel 1  
Bit 1  
Pixel 1  
Bit 0  
Four bit-per-pixel provides sixteen shades of gray by indexing into positions 0 through F of the  
Green LUT and 16 levels of color by indexing into positions 0 through F of the Red/Green/Blue  
LUTs.  
3.2.4 Memory Organization for Eight Bit-per-pixel (256 Colors)  
One pixel is stored in one byte of display buffer as shown below:  
Table 3-4: Pixel Storage for 8 bpp (256 Colors) in One Byte of Display Buffer  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Red Bit 2  
Red Bit 1  
Red Bit 0  
Green Bit 2  
Green Bit 1  
Green Bit 0  
Blue Bit 1  
Blue Bit 0  
As shown above, the 256 color pixel is divided into three parts: three bits for red, three bits for green,  
and two bits for blue. The red bits represent an index into the red LUT, the green bits represent an  
index into the green LUT, and the blue bits represent an index into the blue LUT. Although eight bit-  
per-pixel only makes sense for a color panel, this memory model can be set on a monochrome panel,  
however only eight shades of gray will be visible.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 14  
Epson Research and Development  
Vancouver Design Center  
3.2.5 Memory Organization for 15 Bit-per-pixel (32768 Colors)  
One pixel is stored in two bytes of display buffer as shown below:  
Table 3-5: Pixel Storage for 15 bpp (32768 Colors) in Two Bytes of Display Buffer  
Bit 15  
Reserved  
Bit 7  
Bit 14  
Red Bit 4  
Bit 6  
Bit 13  
Red Bit 3  
Bit 5  
Bit 12  
Red Bit 2  
Bit 4  
Bit 11  
Red Bit 1  
Bit 3  
Bit 10  
Red Bit 0  
Bit 2  
Bit 9  
Green Bit 4  
Bit 1  
Bit 8  
Green Bit 3  
Bit 0  
Green Bit 2  
Green Bit 1  
Green Bit 0  
Blue Bit 4  
Blue Bit 3  
Blue Bit 2  
Blue Bit 1  
Blue Bit 0  
As shown above, the 32768 color pixel is divided into four parts: five bits for red, five bits for green,  
and five bits for blue and one reserved bit. The output bypasses the LUT and goes directly into the  
Frame Rate Modulator. Although 15 bit-per-pixel only make sense for a color panel, this memory  
model can be set on a monochrome panel, however only 16 shades of gray will be visible.  
3.2.6 Memory Organization for 16 Bit-per-pixel (65536 Colors)  
One pixel is stored in two bytes of display buffer as shown below:  
Table 3-6: Pixel Storage for 16 bpp (65536 Colors) in Two Bytes of Display Buffer  
Bit 15  
Red Bit 4  
Bit 7  
Bit 14  
Red Bit 3  
Bit 6  
Bit 13  
Red Bit 2  
Bit 5  
Bit 12  
Red Bit 1  
Bit 4  
Bit 11  
Red Bit 0  
Bit 3  
Bit 10  
Green Bit 5  
Bit 2  
Bit 9  
Green Bit 4  
Bit 1  
Bit 8  
Green Bit 3  
Bit 0  
Green Bit 2  
Green Bit 1  
Green Bit 0  
Blue Bit 4  
Blue Bit 3  
Blue Bit 2  
Blue Bit 1  
Blue Bit 0  
As shown above, the 65536 color pixel is divided into three parts: five bits for red, six bits for green,  
and five bits for blue. The output bypasses the LUT and goes directly into the Frame Rate Modulator.  
Although 16 bit-per-pixel only make sense for a color panel, this memory model can be set on a  
monochrome panel, however only 16 shades of gray will be visible.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 15  
Vancouver Design Center  
3.3 Look-Up Table (LUT)  
This section provides a description of the LUT registers, followed by a description of the color and  
gray shade LUTs and a discussion of the banks available in the 2 and 8 bit-per-pixel (bpp) modes.  
The SED1354 LUT is only used for the panel interface. The optional RAMDAC is used to determine  
the colors for the CRT. See Section 6, “CRT Considerations” on page 33.  
3.3.1 Look-Up Table Registers  
REG[24h] Look-Up Table Address Register  
Read/Write  
RGB Index  
RGB Index  
Bit 0  
LUT Address LUT Address LUT Address LUT Address  
n/a  
n/a  
Bit 1  
REG[26h] Look-Up Table Data Register  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read/Write  
LUT Data  
Bit 3  
LUT Data  
Bit 2  
LUT Data  
Bit 1  
LUT Data  
Bit 0  
n/a  
n/a  
n/a  
n/a  
REG[27h] Look-Up Table Bank Register  
Read/Write  
Red Bank  
Select Bit 1  
Red Bank  
Select Bit 0  
Blue Bank  
Select Bit 1  
Blue Bank  
Select Bit 0  
Green Bank  
Select Bit 1  
Green Bank  
Select Bit 0  
n/a  
n/a  
The SED1354 LUT Registers are located at offsets 24h, 26h and 27h. They consist of a LUT address  
register, data register and bank register. Refer to the SED1354 Hardware Functional Specification  
document number X19A-A-002-xx for more details.  
RGB Index  
Selects which LUT to program. If set for Auto-increment, it will start at the Red LUT of the Index  
selected. Then with consecutive writes/reads it will increment to Green, then Blue of the same index,  
it will then increment the index and start at the Red LUT again.  
Auto-increment algorithm:  
1. Set RGB Index to 0 for Auto-increment, set LUT address to 0 (i.e. REG[24h]=00h).  
2. While count < or = to (16*3), write data byte to REG[26h].  
R, G or B Index select algorithm:  
1. Set RGB Index to R(01b), G(10b), or B(11b), set LUT address to 0 (e.g.  
REG[24h]=10h).  
2. While count < or = 16, write data byte to REG[26h], increment LUT address.  
LUT Address  
Selects start index of the LUT in which to read data from, or write data to. Bank select has no effect  
on the CPU read/write to the LUT.  
LUT Data  
4-bit data value to write.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 16  
Epson Research and Development  
Vancouver Design Center  
Bank Select Bits  
LUT banks are provided to give the application developer a choice of colors/gray shades. While the  
chosen color depth (bpp) may limit the simultaneous colors available, the panel is capable of storing  
different combinations of colors in banks. This is useful when an application developer chooses to  
set Bank 0 to low intensity colors and set Bank 1 to high intensity. The application can easily switch  
between low intensity output and high intensity output by using one register write.  
Only two display modes support these bits: 2 bpp and 8 bpp. All other modes either bypass the LUT  
or have only Bank 0 starting at Index 00h.  
In 2 bpp mode, the 16 entry LUTs are logically split into 4 groups of 4 entries for each of R, G, B.  
Bank 0 = Indexes 00-03h  
Bank 1 = Indexes 04-07h  
Bank 2 = Indexes 08-0Bh  
Bank 3 = Indexes 0C-0Fh  
In 8 bpp mode, the 16 entry LUTs are logically split into 2 groups of 8 entries for both Red and Green  
as follows:  
Bank 0 = Indexes 00-07h  
Bank 1 = Indexes 08-0Fh  
For Blue the 16 entry LUT is logically split into 4 groups of 4 entries as follows:  
Bank 0 = Indexes 00-03h  
Bank 1 = Indexes 04-07h  
Bank 2 = Indexes 08-0Bh  
Bank 3 = Indexes 0C-0Fh  
The bank select bits only affect data output. CPU access to the LUT indexes are done directly as in  
the example below:  
To program index 3 of the current LUT, with Green bank select bits set to 11b and 2 bpp gray shade  
mode selected, you would program LUT address to [[3(bank select value)*4(entries in  
LUT]+3(index to modify)-1(to zero-base the value)]=14(0Eh).  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 17  
Vancouver Design Center  
3.3.2 Look-Up Table Organization  
• The Look-Up Table (LUT) treats the value of a pixel as an index into an array of colors or gray  
shades. For example, a pixel value of zero would point to the first LUT entry; a pixel value of 7  
would point to the eighth LUT entry.  
• The value inside each LUT entry represents the intensity of the given color or gray shade. This  
value ranges between 0 and 0Fh.  
• The SED1354 LUT is linear; increasing the LUT number results in a lighter color or gray shade.  
For example, a LUT entry of 0Fh into the red Look-Up entry will always result in a bright red  
output.  
Table 3-7: Look-Up Table Configurations  
Effective Grays/Colors on  
4-Bit Wide Look-Up Table  
Display Mode  
an Passive Panel  
RED  
GREEN  
BLUE  
1 bpp gray  
2 bpp gray  
4 bpp gray  
8 bpp gray  
15 bpp gray  
16 bpp gray  
1 bpp color  
2 bpp color  
4 bpp color  
8 bpp color  
15 bpp color  
16 bpp color  
1 bank of 2  
4 banks of 4  
1 bank of 16  
2 banks of 8  
2 gray shades  
4 gray shades  
16 gray shades  
8 gray shades  
16 gray shades  
16 gray shades  
2 colors  
1 bank of 2  
4 banks of 4  
1 bank of 16  
2 banks of 8  
1 bank of 2  
4 banks of 4  
1 bank of 16  
2 banks of 8  
1 bank of 2  
4 banks of 4  
1 bank of 16  
4 banks of 4  
4 colors  
16 colors  
256 colors  
4096 colors*  
4096 colors*  
*
On a TFT panel the effective colors are determined by the interface width. (i.e. 9-bit=512, 12-bit=4096, 18-bit=64K  
colors) Passive panels are limited to 12-bits (4096) through the frame rate modulator.  
Indicates the look-up table is not used for that display mode  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 18  
Epson Research and Development  
Vancouver Design Center  
Color Modes  
In color mode, the SED1354 supports three, 16 position, 4 bit wide color LUTs (red, green, and  
blue). Depending on the selected pixel size, these LUTs will provide from 1 to 4 banks.  
1 bpp Color  
In 1 bpp color mode, the LUT is limited to a single 2 entry bank per color. The LUT bank select bits  
have no effect in this mode.  
The following table shows the recommended values for obtaining a Black-and-White mode while  
on a color panel.  
Table 3-8: Recommended LUT Values for 1 bpp Color Mode  
Address  
00  
Red  
00  
0F  
00  
00  
00  
00  
00  
00  
Green  
00  
Blue  
00  
Address  
08  
Red  
00  
00  
00  
00  
00  
00  
00  
00  
Green  
00  
Blue  
00  
01  
0F  
0F  
00  
09  
00  
00  
02  
00  
0A  
00  
00  
03  
00  
00  
0B  
00  
00  
04  
00  
00  
0C  
00  
00  
05  
00  
00  
0D  
00  
00  
06  
00  
00  
0E  
00  
00  
07  
00  
00  
0F  
00  
00  
2 bpp Color  
In 2 bpp color mode, the 16 LUT entries are divided into four separate 4 entry banks per color.  
The following table demonstrates recommended LUT data values which produce Bank 0 = low  
intensity, Bank 1 = high intensity, Bank 2 = inverted low intensity, Bank 3 = inverted high intensity.  
Table 3-9: Recommended LUT Values for 2 bpp Color Mode  
Address  
00  
Red  
00  
Green  
00  
Blue  
00  
Address  
08  
Red  
07  
Green  
07  
Blue  
07  
01  
03  
03  
03  
09  
05  
05  
05  
02  
05  
05  
05  
0A  
03  
03  
03  
03  
07  
07  
07  
0B  
00  
00  
00  
04  
00  
00  
00  
0C  
0F  
0D  
0A  
00  
0F  
0F  
0D  
0A  
00  
05  
0A  
0D  
0F  
0A  
0D  
0F  
0A  
0D  
0F  
0D  
0D  
0A  
06  
0E  
07  
0F  
00  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 19  
Vancouver Design Center  
4 bpp Color  
In 4 bpp color mode, the LUT is limited to a single 16 entry bank per color. The LUT bank select  
bits have no effect in this mode.  
The following table is a recommended set of data values to simulate the 16 colors in a VGA. The  
second recommendation for this mode is to program the register values to data values equalling the  
register number. (i.e. R[0] = 0, G[0]=0, B[0]=0, R[1]=1 ... R[F]=0Fh ...)  
Table 3-10: Recommended LUT Values to Simulate VGA Default 16 Color Palette  
Address  
00  
Red  
00  
Green  
00  
Blue  
00  
Address  
08  
Red  
00  
00  
00  
00  
0F  
0F  
0F  
0F  
Green  
00  
Blue  
00  
01  
00  
00  
0A  
00  
09  
00  
0F  
00  
02  
00  
0A  
0A  
0F  
03  
00  
0A  
0A  
00  
0B  
0F  
0F  
00  
04  
0A  
0A  
0A  
0A  
00  
0C  
00  
05  
00  
0A  
00  
0D  
00  
0F  
00  
06  
0A  
0E  
0F  
07  
0A  
0A  
0F  
0F  
0F  
8 bpp Color  
In 8 bpp color mode, pixel bits [7:5] represent the red LUT index, bits [4:2] represent the green LUT  
index, and bits [1:0] represent the blue LUT index. It is recommended that the three LUTs are  
programmed according to the following format:  
Table 3-11: Recommended LUT Values For 8 bpp Color Mode  
Address  
00  
Red  
00  
Green  
00  
Blue  
00  
01  
03  
03  
05  
02  
05  
05  
0A  
03  
07  
07  
0F  
04  
09  
09  
bank 1  
bank 1  
bank 1  
bank 1  
05  
0B  
0D  
0F  
0B  
0D  
0F  
06  
07  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 20  
Epson Research and Development  
Vancouver Design Center  
This recommended palette assumes that you are using only bank 0 of the three color components.  
By programming in the above fashion the following colors will result:  
Table 3-12: Examples of 256 Pixel Colors Using Linear LUT  
Pixel Value  
Pixel Value  
Color  
Color  
(binary)  
(binary)  
000 000 00  
000 000 10  
000 100 00  
000 100 10  
100 000 00  
100 000 10  
100 100 00  
100 100 10  
black  
dark blue  
dark green  
dark cyan  
dark red  
000 000 00  
000 000 11  
000 111 00  
000 111 11  
111 000 00  
111 000 11  
111 111 00  
111 111 11  
black  
bright blue  
bright green  
bright cyan  
bright red  
dark magenta  
dark yellow  
gray  
bright magenta  
bright yellow  
white  
15 bpp Color  
Since the Look-Up Table is bypassed in this mode, the LUT programming is unimportant. The  
colors on the display are derived from only the top 4 bits of each color combination. Resulting in a  
maximum of 212=4096 colors.  
16 bpp Color  
Since the Look-Up Table is bypassed in this mode, the LUT programming is unimportant. The  
colors on the display are derived from only the top 4 bits of each color combination. Resulting in a  
maximum of 212=4096 colors.  
Gray Shade Modes  
In gray shade mode, the SED1354 treats the Green LUT as a 16 position, 4 bit wide monochrome  
LUT. Depending on the selected pixel size, this LUT will provide from 1 to 4 banks.  
1 bpp Gray Shade  
The SED1354 has no true Black-and-White mode. 1 bpp Gray consists of a single bank of two  
entries. For Black-and-White mode, the LUT entry must be programmed as such:  
.
Table 3-13: Recommended LUT Values for 1 bpp Gray Shades  
Look-Up Table  
Index  
Data  
(hex)  
(hex)  
00  
01  
00  
0F  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 21  
Vancouver Design Center  
2 bpp Gray Shade  
In 2 bpp gray shade mode, the 16 LUT entries are divided into four separate banks, each having four  
entries:  
Table 3-14: Recommended LUT Values for 2 bpp Gray Shades  
Look-Up Table  
Index  
Data  
(hex)  
(hex)  
00  
01  
02  
03  
00  
05  
0A  
0F  
4 bpp Gray Shade  
In 4 bpp gray shade mode, the pixel value indexes into one of 16 LUT entries. The LUT bank bits  
are ignored in this mode. The recommendation for this mode is to program the register values to data  
values equalling the register number (i.e. G[0] = 0, G[1]=1, G[2]=2, ... G[F]=0Fh).  
8 bpp Gray Shade  
When the SED1354 is configured for 8 bpp gray shade mode, bits [7:5] are ignored, bits [4:2]  
represent the green LUT index, and bits [1:0] are ignored. Only 3 bits of the 8 that actually represent  
any shade value, therefore the maximum gray shade combination is 8 shades. If this limitation is  
deemed appropriate for your application, it is recommended that the LUTs are programmed  
according to the following format: Red and Blue LUT entries are not important, Green LUT indexes  
0-7 should be programmed 0-F as in the table below:  
Table 3-15: Recommended LUT Values for 8 bpp Gray Shade  
LUT Address  
Green LUT Data  
00  
01  
02  
03  
04  
05  
06  
07  
00  
02  
04  
06  
08  
0A  
0C  
0F  
This recommended LUT assumes that you are using only bank 0.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 22  
Epson Research and Development  
Vancouver Design Center  
15 bpp Gray Shade  
Since the Look-Up Table is bypassed in this mode, the LUT programming is unimportant. The gray  
shades on the display are derived from the 4 most significant bits of the Green component of the  
pixel data. Resulting in a maximum of 24=16 colors.  
16 bpp Gray Shade  
Since the Look-Up Table is bypassed in this mode, the LUT programming is unimportant. The gray  
shades on the display are derived from the 4 most significant bits of the Green component of the  
pixel data. Resulting in a maximum of 24=16 colors.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 23  
Vancouver Design Center  
4 Advanced Techniques  
This section presents information on the following:  
• virtual display  
• panning and scrolling  
• split screen display  
4.1 Virtual Display  
A virtual display is when the image to be displayed is larger than the physical display device in either  
the horizontal dimension, the vertical dimension, or both. To view the image, the physical display is  
used as a window or viewport into the display buffer, allowing the user to see a portion of the entire  
image. This viewport can be panned and scrolled, enabling the user to view the entire image.  
The size of the virtual display is limited by the amount of available display buffer. In the case of an  
SED1354 with 2M byte of display buffer, the maximum virtual width ranges from 16,368 pixels in  
1 bpp mode to 1023 pixels in 16 bpp mode. The maximum vertical size at the horizontal maximum  
is 1025 lines. By trading off horizontal size a greater vertical size can be achieved.  
Seldom are the maximum sizes required. Figure 4-1: “Viewport Inside a Virtual Display,” depicts  
a more typical use of a virtual display. An image of 640x480 pixels can be viewed by navigating a  
320x240 pixel viewport around the image using panning and scrolling.  
320x240  
Viewport  
640x480  
“Virtual” Display  
Figure 4-1: Viewport Inside a Virtual Display  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
 
 
Page 24  
Epson Research and Development  
Vancouver Design Center  
4.1.1 Registers  
REG[16h] Memory Address Offset Register 0  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
REG[17h] Memory Address Offset Register 1  
Memory  
Address  
Offset  
Memory  
Address  
Offset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Bit 9  
Bit 8  
Registers [16h] and [17h] form a ten bit value referred to as the memory offset. This offset is the  
number of words from the first byte of one line of display buffer to the first byte in the next line. This  
value takes into account the number of non-displayed pixels on each line.  
Different color depths have different numbers of pixels per word. To represent an offset of a given  
number of pixels the offset registers will contain different values at different color depths. The  
formula to calculate the offset to write to these registers is:  
offset_register = pixels_per_line / pixels_per_word  
4.1.2 Examples  
Example 2: Determine the offset value required for 800 pixels at a color depth of 8 bpp.  
A color depth of 8 bpp means each pixel requires one byte therefore each word contains two pixels.  
offset = pixels_per_line / pixels_per_word = 800 / 2 = 400 = 0x190 words  
Register [17h] would be set to 0x01 and register [16h] would be set to 0x90.  
Example 3: Program the Memory Address Offset Registers to support a 16 color (4 bpp)  
640x480 virtual display on a 320x240 LCD panel.  
To create a virtual display the offset registers must be programmed to the horizontal size of the larger  
“virtual” image. After determining the amount of memory used by each line, do a calculation to see  
if there is enough memory to support the desired number of lines.  
1. Initialize the SED1354 registers for a 320x240 panel. (See Section 2.2, “Register Initialization” on  
page 9).  
2. Determine the number of words required per line (the offset). In this case we want a width of  
640 pixels and there are four pixels to every word.  
offset = pixels_per_line / pixels_per_word = 640 / 4 = 160 words = 0xA0 words  
3. Check that we have enough memory for the required virtual height.  
Each line uses 160 words and we need 480 lines (160*480) for a total of 76,800 words, less than  
the minimum supported memory size of 512K bytes. It is safe to continue with these values.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 25  
Vancouver Design Center  
4. Program the Memory Address Offset Registers. Register [17h] will be set to 0 and register  
[16h] will be set to 0xA0.  
4.2 Panning and Scrolling  
Panning and scrolling are typically used to navigate within an image which is too large to be shown  
completely on the display device. Although the image is stored entirely in display buffer, only a  
portion is actually visible at any given time.  
Panning and scrolling refers to the direction the viewport appears to move. Panning describes the  
action where the viewport moves horizontally. When panning to the right the image in the viewport  
appears to slide to the left. A pan to the left causes the image to appear as if it’s sliding to the right.  
Scrolling describes the up and down motion of the viewport. Scrolling down causes the image to  
appear to slide upwards and scrolling up results in an image that appears to slide downwards.  
On the SED1354 panning is performed by setting two components: the start address registers  
provide a word granularity in movement (more than one pixel) while the pixel panning register  
allows panning at the pixel level. Scrolling requires changing only the start address registers.  
There is an order these registers should be accessed to provide the smoothest apparent movement  
possible. Understanding the sequence of operations performed by the SED1354 will make it  
apparent why the order should be followed.  
The start address is latched at the beginning of each frame, the pixel panning value is latched  
immediately upon being set. Setting the registers in the wrong sequence or at the wrong time will  
result in a “tearing” or jitter on the display. The correct sequence for programing these registers is:  
1. Wait until just after a vertical non-display period (read register [0Ah] and watch bit 7 for the  
non-display status).  
2. Update the start address registers.  
3. Wait until the next vertical non-display period.  
4. Update the pixel paning register.  
Note  
The SED1354 provides a false indication of vertical non-display period when used with a dual  
panel display. In this case it is impossible to identify the false signal from the true non-display  
period. The result is that panning operations at less than 15 bpp may exhibit an occasional tear as  
the result of updating registers in the wrong order. This effect is barely noticeable at 8 bpp but  
becomes pronounced at 4 bpp, and lower, color depths. Setting the registers out of sequence will  
make the tear more apparent.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 26  
Epson Research and Development  
Vancouver Design Center  
4.2.1 Registers  
REG[10h] Screen 1 Display Start Address 0  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
REG[11h] Screen 1 Display Start Address 1  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 15  
REG[12h] Screen 1 Display Start Address 2  
n/a n/a n/a  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Start Address Start Address Start Address Start Address  
Bit 19 Bit 18 Bit 17 Bit 16  
n/a  
These three registers form the address of the word in the display buffer where screen 1 will start  
displaying from. Changing these registers by one will cause a change of 0 to 16 pixels depending on  
the current color depth. Refer to the following table to see the minimum number of pixels affected  
by a change of one to these registers.  
Table 4-1: Number of Pixels Panned Using Start Address  
Color Depth (bpp) Pixels per Word  
Number of Pixels Panned  
1
2
16  
8
16  
8
4
4
4
8
2
2
15  
16  
1
1
1
1
REG[18h] Pixel Panning Register  
Screen 2  
Pixel Pan  
Bit 3  
Screen 2  
Pixel Pan  
Bit 2  
Screen 2  
Pixel Pan  
Bit 1  
Screen 2  
Pixel Pan  
Bit 0  
Screen 1  
Pixel Pan  
Bit 3  
Screen 1  
Pixel Pan  
Bit 2  
Screen 1  
Pixel Pan  
Bit 1  
Screen 1  
Pixel Pan  
Bit 0  
The pixel panning register offers finer control over pixel pans than is available with the Start Address  
Registers. Using this register it is possible to pan the displayed image one pixel at a time. Depending  
on the current color depth certain bits of the pixel pan register are not used. The following table  
shows this.  
Table 4-2: Active Pixel Pan Bits  
Color Depth (bpp) Pixel Pan bits used  
1
bits [3:0]  
bits [2:0]  
bits [1:0]  
bit 0  
2
4
8
15/16  
---  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
 
Epson Research and Development  
Page 27  
Vancouver Design Center  
4.2.2 Examples  
For the examples in this section assume that the display system has been set up to view a 640x480  
pixel image in a 320x200 viewport. Refer to Section 2.2, “Register Initialization” on page 9 and  
Section 4.1, “Virtual Display” on page 23 for assistance with these settings.  
Example 4: Panning - Right and Left  
To pan to the right, increment the pixel pan value. If the pixel pan value is now equal to the current  
color depth then set the pixel pan value to zero and increment the start address value. To pan to the  
left decrement the pixel pan value. If the pixel pan value is now less than zero set it to the color depth  
(bpp) less one and decrement the start address value.  
The following pans to the right by one pixel in 4 bpp display mode.  
1. It’s better to keep one value (call it pan_value) to track both the pixel panning and start address  
rather than maintain separate values for each of these.  
2. To pan to the right increment pan_value.  
pan_value = pan_value + 1  
3. Mask off the values from pan_value for the pixel panning and start address register portions. In  
this case, 4 bpp, the lower two bits are the pixel panning value and the upper bits are the start  
address.  
pixel_pan = pan_value AND 3  
start_address = pan_value SHR 3  
(shift right by 3 gives words)  
4. Write the pixel panning and start address values to their respective registers using the proce-  
dure outlined in the registers section.  
Example 5: Scrolling - Up and Down  
To scroll down, increase the value in the Screen 1 Display Start Address Register by the number of  
words in one virtual scan line. To scroll up, decrease the value in the Screen 1 Display Start Address  
Register by the number of words in one virtual scan line.  
Example 6: Scroll down one line for a 16 color 640x480 virtual image using a 320x240 single  
panel LCD.  
1. To scroll down we need to know how many words each line takes up. At sixteen colors (4 bpp)  
each byte contains two pixels so each word contains 4 pixels.  
words (offset) = pixels_per_line / pixels_per_word = 640 / 4 = 160 = 0xA0  
We now know how much to add to the start address to scroll down one line.  
2. Increment the start address by the number of words per virtual line.  
start_address = start_address + words  
3. Separate the start address value into three bytes. Write the LSB to register [10h] and the MSB  
to register [12h].  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 28  
Epson Research and Development  
Vancouver Design Center  
4.3 Split Screen  
Occasionally the need arises to display two distinct images on the display. For example, we may  
want to write a game where the main play area will be rapidly updated and we want an unchanging  
status display at the bottom of the screen.  
The Split Screen feature of the SED1354 allows a programmer to set up a display for such an appli-  
cation. The figure below illustrates setting up a 320x240 panel to have Image 1 displaying from scan  
line 0 to scan line 99 and image 2 displaying from scan line 100 to scan line 239. Although this  
example picks specific values, image 1 and image 2 can be shown as varying portions of the screen.  
Scan Line 0  
...  
Image 1  
Image 2  
Scan Line 99  
Scan Line 100  
...  
Scan Line 239  
Screen 1 Display Line Count Register = 99 lines  
Figure 4-2: 320x240 Single Panel For Split Screen  
4.3.1 Registers  
The other registers required for split screen operations, [10h] through [12h] (Screen 1 Display Start  
Address) and [18h] (Pixel Panning Register), are described in section 4.2.1 on page 26.  
REG[0E] Screen 1 Line Compare Register 0  
Line Line Line  
Line  
Line  
Line  
Line  
Line  
Compare Bit 7 Compare Bit 6 Compare Bit 5 Compare Bit 4 Compare Bit 3 Compare Bit 2 Compare Bit 1 Compare Bit 0  
REG[0F] Screen 1 Line Compare Register 1  
Line  
Line  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Compare Bit 9 Compare Bit 8  
These two registers form a value known as the line compare. When the line compare value is equal  
to or greater than the physical number of lines being displayed there is no visible effect on the  
display. When the line compare value is less than the number of physically displayed lines, display  
operation works like this:  
1. From the end of vertical non-display to the number of lines indicated by line compare the dis-  
play data will be from the memory pointed to by the Screen 1 Display Start Address.  
2. After line compare lines have been displayed the display will begin showing data from Screen  
2 Display Start Address memory.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 29  
Vancouver Design Center  
REG[13h] Screen 2 Display Start Address Register 0  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
REG[14h] Screen 2 Display Start Address Register 1  
Start Address Start Address Start Address Start Address Start Address Start Address Start Address Start Address  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
REG[15h] Screen 2 Display Start Address Register 2  
n/a n/a n/a n/a  
Start Address Start Address Start Address Start Address  
Bit 19 Bit 18 Bit 17 Bit 16  
These three registers form the twenty bit offset to the first word in display buffer that will be shown  
in the screen 2 portion of the display.  
Screen 1 memory is always the first memory displayed at the top of the screen followed by screen  
2 memory. However, the start address for the screen 2 image may in fact be lower in memory than  
that of screen 1 (i.e. screen 2 could be coming from offset 0 in the display buffer while screen 1 was  
coming from an offset located several thousand bytes into display buffer). While not particularly  
useful, it is possible to set screen 1 and screen 2 to the same address.  
4.3.2 Examples  
Example 7: Display 380 scanlines of image 1 and 100 scanlines of image 2. Image 2 is locat-  
ed immediately after image 1 in the display buffer. Assume a 640x480 display  
and a color depth of 1 bpp.  
1. The value for the line compare is not dependent on any other setting so we can set it immedi-  
ately (380 = 0x17C).  
Write the line compare registers [0Fh] with 0x01 and register [0Eh] with 0x7C.  
2. Screen 1 is coming from offset 0 in the display buffer. Although not necessary, ensure that the  
screen 1 start address is set to zero.  
Write 0x00 to registers [10h], [11h] and [12h].  
3. Calculate the size of the screen 1 image (so we know where the screen 2 image is located).  
This calculation must be performed on the virtual size (offset register). Since a virtual size was  
not specified assume the virtual size to be the same as the physical size.  
offset = pixels_per_line / pixels_per_word = 640 / 16 = 40 words per line  
screen1_size = offset * lines = 40 * 480 = 19,200 words = 0x4B00 words  
4. Set the screen 2 start address to the value we just calculated.  
Write the screen 2 start address registers [13h], [14h] and [15h] with the values 0x00, 0x4B  
and 0x00 respectively.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 30  
Epson Research and Development  
Vancouver Design Center  
5 LCD Power Sequencing and Power Save Modes  
5.1 Introduction to LCD Power Sequencing  
LCD Power Sequencing allows the LCD power supply to discharge prior to shutting down the LCD  
signals. Power sequencing is required to prevent long term damage to the panel and to avoid  
unsightly “lines” on power down and start-up.  
LCD Power Sequencing is performed on the SED1354 through a software procedure even when  
using hardware power save modes. Most “green” systems today use some sort of software power  
down procedure in conjunction with external circuitry to set hardware suspend modes. These proce-  
dures typically save/restore state information, or provide a timer prior to initiating power down. The  
SED1354 requires a timer between the time the LCD power is disabled and the time the LCD signals  
are shut down. Conversely, the LCD signals must be active prior to the power supply starting up. For  
simplicity, we have chosen to use the same time value for power up and power down procedures.  
The time interval required varies depending on the power supply design. The power supply on the  
SDU1354B0C Evaluation board requires 0.5 seconds to fully discharge. Your power supply design  
may vary.  
Below are the procedures for all cases in which power sequencing is required.  
5.2 Introduction to Power Save Modes  
The SED1354 has two power save modes. One is hardware-initiated via the SUSPEND# pin, the  
other is software-initiated through REG[1A] bit 0. Both require power sequencing as described  
above.  
5.3 Registers  
Register bits discussed in this section are highlighted.  
Display Mode Register  
REG[0D]  
Simultaneous Simultaneous  
Number of  
BPP Select  
Bit 2  
Number of  
BPP Select  
Bit 1  
Number of  
BPP Select  
Bit 0  
Display  
Option Select Option Select  
Bit 1 Bit 0  
Display  
n/a  
CRT Enable  
LCD Enable  
Power Save Configuration Register  
REG[1A]  
Suspend  
Refresh  
Select Bit 1  
Suspend  
Refresh  
Select Bit 0  
Software  
Suspend  
Mode Enable  
LCD Power  
Disable  
n/a  
n/a  
n/a  
n/a  
Suspend Refresh Select bits [1:0] should be set on power up depending on the type of DRAM  
available. See the Hardware Functional Specification, document number X19A-A-002-xx.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 31  
Vancouver Design Center  
All other bits should be masked into the register on a write. i.e. do a read, modify with mask, and  
write to set the bits.  
5.4 Suspend Sequencing  
Care must be taken when enabling Suspend Mode with respect to the external Power Supply used to  
provide the LCD Drive voltage. The LCD Drive voltage must be 0V before removing the LCD  
interface signals to prevent panel damage.  
Controlling the LCD Drive Power Supply can be done using the SED1354 LCDPWR# output signal  
or by 'other' means. The following example assumes that the LCDPWR# pin is being used.  
5.4.1 Suspend Enable Sequence  
Enable Suspend (Software Suspend= REG[1A] bit 0=1) or (Hardware Suspend enabled by the  
SUSPEND# input pin (MA9=0)): LCDPWR# will go to its inactive state within one vertical frame,  
while maintaining the LCD interface signals for 128 Vertical Frames (with the exception of  
FPFRAME(#?) which goes inactive at the same time as LCDPWR#).  
If 128 frames is not enough 'time' to allow the LCD Drive power supply to decay to 0V, LCDPWR#  
can be controlled manually using REG[1A] bit 3.  
After the 128 frame delay, the various clock sources may be disabled (depending on the specific  
application and DRAM Refresh options). The actual 'time' for the 128 frame delay can be shortened  
by using the following example.  
Shortening the 128 Frame delay using Software Suspend  
1. Disable the Display FIFO: blank the screen.  
2. Change the Horizontal and Vertical resolution to the minimum values allowed by the registers.  
3. Enable Software Suspend: this same 128 frame delay still applies however the actual frame period  
is now greatly reduced.  
4. Restore the Horizontal and Vertical resolution registers to their original values.  
5. Disable Software Suspend.  
6. Enable the Display FIFO.  
Shortening the 128 Frame Delay using Hardware SUSPEND#  
Due to the fact that the registers can not be programmed in Hardware Suspend Mode, the following  
routine must be followed to shorten the delay:  
1. Disable the Display FIFO: blank the screen.  
2. Change the Horizontal and Vertical resolutions to the minimum values as allowed by the registers.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 32  
Epson Research and Development  
Vancouver Design Center  
3. Enable Hardware Suspend: this same 128 frame delay still applies however the actual frame  
period is now greatly reduced.  
4. Disable Hardware Suspend.  
5. Restore the Horzontal and Vertical resolution registers to their original values.  
6. Enable the Display FIFO.  
5.4.2 Suspend Disable Sequence  
Disable Suspend (either {REG[1A] bit 0 = 0, or SUSPEND# pin inactive): LCDPWR# and  
FPFRAME will start within 1 frame, while the remaining LCD interface signals will start immedi-  
ately.  
5.5 LCD Enable/Disable Sequencing (Reg[0D] bit 0)  
In an LCD only product, the LCD Enable bit should only be disabled automatically by using a Power  
Save Mode. In a product having both a CRT and LCD, this bit will need to be controlled manually  
- examples for both situations are given below.  
LCD Enable / Disable using Power Save Modes  
In all supported Power Save Modes, the LCD Enable bit and associated functionality is automati-  
cally controlled by the internal Power Save circuitry. See above for Power Save sequences.  
LCD Enable / Disable using Manual Control  
It may become necessary to enable / disable the LCD when switching back and forth to and from the  
CRT. In this case care must be taken when disabling the LCD with respect to the external Power  
Supply used to provide the LCD Drive voltage. The LCD Drive voltage must be 0V before removing  
the LCD interface signals to prevent panel damage.  
Enable  
Setting REG[0D] bit 0=1: immediately enables the LCD interface signals. Note: FPLINE,  
FPSHIFT2/DRY signals are always toggling regardless of the state of this bit and are only shut-  
down completely during Power Save Modes. The LCDPWR# pin will go to its active state immedi-  
ately after the LCD Enable bit is set.  
Disable  
Setting REG[0D] bit 0=0: LCDPWR# will go to its inactive state within one vertical frame, while  
maintaining the LCD interface signals for 128 Vertical Frames (with the exception of FPFRAME  
which goes inactive at the same time as LCDPWR#).  
If 128 frames is not enough 'time' to allow the LCD Drive power supply to decay to 0V, LCDPWR#  
can be controlled manually using REG[1A] bit 3.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 33  
Vancouver Design Center  
6 CRT Considerations  
6.1 Introduction  
The CRT timing is based on both the “VESA Monitor Timing Standards Version 1.0” and “Frame  
Rate Calculation (Chapter 11)” in SED1354 Hardware Functional Specification. The following  
sections describe CRT considerations.  
6.1.1 CRT Only  
For CRT only, the Dual/Single Panel Select bit of Panel Type Register (REG[02h]) must first be set  
to single passive LCD panel. The monitor configuration registers then need to be set to follow the  
VESA timing standard.  
Note  
If only the CRT is used, it is also useful to disable the LCD power (set REG[1Ah] bit 4 = 1). This  
will reduce power consumption.  
To program the external RAMDAC, set the CRT Enable bit in the Display Mode Register  
(REG[0Dh]) to 1. Once the CRT is enabled, the GPIO registers will be automatically set to access  
the external RAMDAC. Next, program the RAMDAC Write Mode Address register and the  
RAMDAC Palette Data register as desired (refer to sample code in 9.1.2 for details).  
When programming the RAMDAC control registers, connect the RAMDAC to the low-byte of the  
CPU data bus for Little-Endian architecture and the high-byte for Big-Endian architecture. The  
RAMDAC registers are mapped as follows:  
Table 6-1: RAMDAC Register Mapping for Little/Big-Endian  
Register Name  
Little-Endian  
REG[28h]  
REG[2Ah]  
REG[2Ch]  
REG[2Eh]  
Big-Endian  
REG[29h]  
REG[2Bh]  
REG[2Dh]  
Reg[2Fh]  
RAMDAC Pixel Read Mask  
RAMDAC Read Mode Address  
RAMDAC Write Mode Address  
RAMDAC Palette Data  
Note  
When accessing the External RAMDAC Control registers with either of the Little-Endian or  
Big-Endian architectures described above, accessing the adjacent unused registers is prohibited.  
Table 6-2 shows some example register data for setting up CRT only mode for certain combinations  
of resolutions, frame rates and pixel clocks. All the examples in this chapter are assumed to be for a  
Little-Endian system, 8 bpp color depth and 2M bytes of 60ns EDO-DRAM.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 34  
Epson Research and Development  
Vancouver Design Center  
Table 6-2: Related Register Data for CRT Only  
640X480@60Hz 640X480@75Hz 800X600@56Hz 800X600@60Hz  
Register  
Notes  
PCLK=25.175MHz  
0100 1111  
0001 0011  
0000 0001  
0000 1011  
1101 1111  
0000 0001  
0010 1100  
0000 1001  
0000 0001  
0000 1110  
0000 0000  
0000 0000  
PCLK=31.500MHz  
0100 1111  
0001 1000  
0000 0001  
0000 0111  
1101 1111  
0000 0001  
0001 0011  
0000 0000  
0000 0010  
0000 1110  
0000 0000  
0000 0000  
PCLK=36.0 MHz  
0110 0011  
0001 1011  
0000 0010  
1000 1000  
0101 0111  
0000 0010  
0001 1000  
0000 0000  
1000 0001  
0000 1110  
0000 0000  
0000 0000  
PCLK=40.0 MHz  
0110 0011  
0001 1111  
0000 0100  
1000 1111  
0101 0111  
0000 0010  
0001 1011  
0000 0000  
1000 0011  
0000 1110  
0000 0000  
0000 0000  
REG[04h]  
REG[05h]  
REG[06h]  
REG[07h]  
REG[08h]  
REG[09h]  
REG[0Ah]  
REG[0Bh]  
REG[0Ch]  
REG[0Dh]  
REG[19h]  
REG[2Ch]  
REG[2Eh]  
set horizontal display width  
set horizontal non-display period  
set HSYNC start position  
set HSYNC polarity and pulse width  
set vertical display height bits 7-0  
set vertical display height bits 9-8  
set vertical non-display period  
set VSYNC start position  
set VSYNC polarity and pulse width  
set 8 bpp and CRT enable  
set MCLK and PCLK divide  
set write mode address to 0  
load RAMDAC palette data  
6.1.2 Simultaneous Display  
For Simultaneous Display, only 4/8-bit single passive LCD panels and 9-bit active matrix TFT  
panels can be used. Simultaneous Display requires that the panel timing be taken from the CRT  
timing registers and thereby limits the number of useful modes supported.  
The configuration of both CRT and panel must not violate the limitations as described in “Frame  
Rate Calculation” (Chapter 11) of the SED1354 Hardware Functional Specification. For example,  
on a 640x480 single panel, the maximum values of both the panel pixel clock and CRT frame rate  
are 40 MHz and 85 Hz respectively. When pixel depth is less than 8 bpp, the RAMDAC is  
programmed with the same values as the Look-Up Table. The SED1354 does not support Simulta-  
neous Display in a color depth greater than 8 bpp.  
When color depth is 8 bpp, the RAMDAC should be programmed to mimic the recommended values  
in the Look-Up Table as described in Section 3.3.2. The recommendation is that the intensities of  
the three prime colors (RGB) be distributed evenly. Table 6-3 shows the recommended RAMDAC  
palette data for 8 bpp Simultaneous Display. Table 6-4 shows the related register data for some  
possible CRT options with an 8-bit Color 640X480 single passive panel.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 35  
Vancouver Design Center  
Table 6-3: 8 bpp Recommended RAMDAC palette data for Simultaneous Display  
Address  
00  
R
G
B
Address  
20  
R
G
B
Address  
40  
R
G
B
Address  
60  
R
G
B
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
09  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
01  
21  
41  
61  
02  
22  
42  
62  
03  
23  
43  
63  
04  
24  
44  
64  
05  
25  
45  
65  
06  
26  
46  
66  
07  
27  
47  
67  
08  
28  
48  
68  
09  
29  
49  
69  
0A  
0B  
0C  
0D  
0E  
0F  
10  
2A  
2B  
2C  
2D  
2E  
2F  
30  
4A  
4B  
4C  
4D  
4E  
4F  
50  
6A  
6B  
6C  
6D  
6E  
6F  
70  
11  
31  
51  
71  
12  
32  
52  
72  
13  
33  
53  
73  
14  
34  
54  
74  
15  
35  
55  
75  
16  
36  
56  
76  
17  
37  
57  
77  
18  
38  
58  
78  
19  
39  
59  
79  
1A  
1B  
1C  
1D  
1E  
1F  
3A  
3B  
3C  
3D  
3E  
3F  
5A  
5B  
5C  
5D  
5E  
5F  
7A  
7B  
7C  
7D  
7E  
7F  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 36  
Epson Research and Development  
Vancouver Design Center  
Addres  
s
Addres  
s
Addres  
s
Addres  
R
G
B
R
G
B
R
G
B
R
G
B
s
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
2D  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
09  
09  
09  
09  
12  
12  
12  
12  
1B  
1B  
1B  
1B  
24  
24  
24  
24  
2D  
2D  
2D  
2D  
36  
36  
36  
36  
3F  
3F  
3F  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
00  
15  
2A  
3F  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 37  
Vancouver Design Center  
Table 6-4: Related register data for Simultaneous Display  
640X480@75Hz 640X480@60Hz  
Notes  
Register  
PCLK=40.0MHz  
0100 1111  
0001 1101  
0000 0011  
0000 0111  
1000 1111  
0000 0001  
0010 1100  
0000 0000  
1000 0010  
0000 1111  
0000 0000  
0000 0000  
PCLK=40.0MHz  
0100 1111  
0001 0011  
0000 0001  
0000 1011  
1101 1111  
0000 0001  
0010 1100  
0000 1001  
0000 0001  
0000 1111  
0000 0000  
0000 0000  
REG[04h]  
REG[05h]  
REG[06h]  
REG[07h]  
REG[08h]  
REG[09h]  
REG[0Ah]  
REG[0Bh]  
REG[0Ch]  
REG[0Dh]  
REG[19h]  
REG[24h]  
REG[26h]  
REG[27h]  
set horizontal display width  
set horizontal non-display period  
set HSYNC start position  
set HSYNC polarity and pulse width  
set vertical display height bits 7-0  
set vertical display height bits 9-8  
set vertical non-display period  
set VSYNC start position  
set VSYNC polarity and pulse width  
set 8 bpp and CRT enable  
set MCLK and PCLK divide  
set look-up table address to 0  
load look-up table  
0000 0000  
0000 0000  
set look-up table to bank 0  
program  
RAMDAC  
program  
RAMDAC  
REG[2Ch]  
REG[2Eh]  
set write mode address to 0  
load RAMDAC palette data  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 38  
Epson Research and Development  
Vancouver Design Center  
7 Identifying the SED1354  
Unlike previous generations of SED135x products, the SED1354 can be identified at any time after  
power-on/reset. The SED1354 and future SED135x products can be identified by reading  
REG[00h]. The value of this register for the SED1354F0A is 04h.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 39  
Vancouver Design Center  
8 Hardware Abstraction Layer (HAL)  
8.1 Introduction  
The HAL is a processor independent programming library provided by Seiko Epson. HAL provides  
an easy method to program and configure the SED1354. HAL allows easy porting from one  
SED135x product to another and between system architectures. HAL is included in the utilities  
provided with the SED1354 evaluation system.  
8.2 API for 1354HAL  
The following is a description of the HAL library. Updates and revisions to the HAL may include  
new functions not included in the following documentation  
8.2.1 Initialization  
int seDeRegisterDevice(int device)  
Description: Removes a device's handle from the HAL library.  
Parameter: device - registered device ID  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
void seGetHalVersion(const char **pVersion, const char **pStatus,  
const char **pStatusRevision)  
Description: Gets HAL library version.  
Parameter: pVersion - must point to an allocated string of size VER_SIZE  
pStatus - must point to an allocated string of size STATUS_SIZE  
pStatusRevision - must point to an allocated string of size STAT_REV_SIZE  
Return Value: None  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 40  
Epson Research and Development  
Vancouver Design Center  
int seGetId(int device, BYTE *pId)  
Description: Reads the revision code register to determine the ID.  
Parameter: device - registered device ID  
pId - pointer to allocated byte. The following are the possible values set to *pId:  
ID_SED1354F0A  
ID_SED1373F0A  
ID_SED1355F0A  
ID_UNKNOWN  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
Note  
seGetId() will disable hardware suspend (on the Intel platform only), and will enable the host in-  
terface (on all platforms).  
int seInitHal(void)  
Description: Initializes HAL library variables. Must be called once when application starts. (see  
note below).  
Parameter: None  
Return Value: ERR_OK - operation completed with no problems  
Note  
For Intel platforms, seRegisterDevice() automatically calls seInitHal() once. Consecutive calls to  
seRegisterDevice() will not call seInitHal() again. For embedded platforms, the startup code  
which is linked in addition to the HAL library will call seInitHal(). In this case, seInitHal() is  
called before main() is called in the application.  
int seRegisterDevice(const DeviceInfoDef *pDeviceInfo, const  
DEVICE_CHIP_DEF *pDeviceChip, int *Device)  
Description: Registers a device with the HAL library. The setup for the device is provided in the  
structures *pDeviceInfo and *pDeviceChip. In addition, it allocates memory  
addressing space for accessing registers and the display buffer.  
Parameter: pDeviceInfo - pointer to HAL library structures  
pDeviceChip - pointer to HAL library structure dealing with chip specific features  
Device - pointer to an allocated INT. This routine will set *Device to the registered  
device ID.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_STD_DEVICE - device argument is not HAL_STDOUT or  
HAL_STDIN  
Note  
No registers are actually changed by calling seRegisterDevice().  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 41  
Vancouver Design Center  
int seSetInit(int device)  
Description: Sets the system to an operational state by initializing memory size, clocks, panel and  
CRT parameters,... etc.  
Parameter: device - registered device ID  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
ERR_FAILED - unable to complete operation because registers have not been  
initialized  
int seValidRegisteredDevice(int device)  
Description: Determines if the device handle is valid.  
Parameter: device - registered device ID  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
int seValidStdDevice(int device)  
Description: Determines if the device handle is HAL_STDOUT or HAL_STDIN.  
Parameter: device - registered device ID  
Return Value: ERR_OK - operation completed with no problems  
ERR_HAL_DEVICE_ERR - could not find free device handle  
8.2.2 Screen Manipulation  
int seDisplayEnable(int device, BYTE NewState)  
Description: Performs the necessary power sequencing to enable or disable the display.  
Parameter: device - registered device ID  
NewState - use the predefined definitions ENABLE and DISABLE.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
ERR_FAILED - unable to complete operation because registers have not been  
initialized  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 42  
Epson Research and Development  
Vancouver Design Center  
int seGetBitsPerPixel(int device, BYTE *pBitsPerPixel)  
Description: Determines the color depth of current display mode.  
Parameter: device - registered device ID  
pBitsPerPixel - if ERR_OK, *pBitsPerPixel set  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
ERR_COULD_NOT_GET_VALUE - value read from registers is invalid  
int seGetBytesPerScanline(int device, int *pBytes)  
Description: Determines the number of bytes per scan line of current display mode. It is assumed  
that the registers have already been correctly initialized before seGetBytesPer-  
Scanline() is called.  
Parameter: device - registered device ID  
pBytes - pointer to an integer which indicates the number of bytes per scan line  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
int seGetLastUsableByte(int device, DWORD *pLastByte)  
Description: Determines the address of the last byte in the display buffer which can be used by  
applications. Addresses following LastByte are reserved for system use (such as the  
half frame buffer for dual panels). It is assumed that the registers have already been  
correctly initialized before seGetLastUsableByte() is called.  
Parameter: device - registered device ID  
pLastByte - pointer to an integer which indicates the number of bytes per scan line  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid  
int seGetLinearDispAddr(int device, DWORD *pDispLogicalAddr)  
Description: Determines the logical address of the start of the display buffer. This address may  
be used in programs for direct control over the display buffer.  
Parameter: device - registered device ID  
pDispLogicalAddr - logical address is returned in this variable.  
Return Value: ERR_OK - operation completed with no problems.  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 43  
Vancouver Design Center  
int seGetScreenSize(int device, int *width, int *height)  
Description: Determines the width and height of the active display device (LCD or CRT).  
Parameter: device - registered device ID  
width - width of display in pixels  
height - height of display in pixels  
Return Value: ERR_OK - operation completed with no problems.  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seReadDisplayByte(int device, DWORD offset, BYTE *pByte)  
Description: Reads a byte from the display buffer.  
Parameter: device - registered device ID  
offset - offset (in bytes) from start of the display buffer  
pByte - returns value of byte.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seReadDisplayWord(int device, DWORD offset, WORD *pWord)  
Description: Reads a word from the display buffer.  
Parameter: device - registered device ID  
offset - offset (in bytes) from start of the display buffer  
pWord - returns value of word.  
Return Value: ERR_OK - operation completed with no problems.  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seReadDisplayDword(int device, DWORD offset, DWORD *pDword)  
Description: Reads a dword from the display buffer.  
Parameter: device - registered device ID  
offset - offset from start of the display buffer  
pDword - returns value of dword.  
Return Value: ERR_OK - operation completed with no problems.  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 44  
Epson Research and Development  
Vancouver Design Center  
int seSetBitsPerPixel(int device, BYTE BitsPerPixel)  
Description: Sets the number of bpp. This function is equivalent to a mode set.  
Parameter: device - registered device ID  
BitsPerPixel - desired number of bpp  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_COULD_NOT_GET_VALUE - value read from registers is invalid.  
ERR_HAL_BAD_ARG - argument BitsPerPixel is invalid.  
int seSplitInit(int device, DWORD Scrn1Addr, DWORD Scrn2Addr)  
Description: Sets the relevant registers for split screen.  
Parameter: device - registered device ID  
Scrn1Addr - starting address of top image (addr = 0 refers to beginning of the display  
buffer)  
Scrn2Addr - starting address of bottom image (addr = 0 refers to beginning of the  
display buffer)  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Note  
seSetInit() must first be called before calling seSplitInit(). This is because the VNDP is used for  
timing, and this would not be possible if the registers were not first initialized.  
int seSplitScreen(int device, BYTE WhichScreen, int VisibleScanlines)  
Description: Changes the relevant registers for moving the split screen up or down.  
Parameter: device - registered device ID  
WhichScreen - Use one of the following definitions: SCREEN1 or SCREEN2.  
SCREEN1 is the top screen.  
VisibleScanlines - number of lines to show for the selected screen  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_HAL_BAD_ARG - argument VisibleScanlines is negative or is greater than  
vertical panel size.  
Note  
seSplitInit() must have been called once before calling seSplitScreen().  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 45  
Vancouver Design Center  
int seVirtInit(int device, int xVirt, long *yVirt)  
Description: Creates a virtual display with the given horizontal size and determines the maximum  
number of available lines.  
Parameter: device - registered device ID  
xVirt - horizontal size of virtual display in pixels. Must be greater or equal to  
physical size of display.  
yVirt - seVirtInit() calculates the maximum number of lines available for virtual  
display and returns value in yVirt.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_HAL_BAD_ARG - argument xVirt is too large. Select xVirt such that the  
Memory Address Offset register does not exceed 0x3ff. The maximum allowable  
xVirt is 0x3ff * (16 / bpp). If bpp is 15, use the above equation with bpp = 16.  
Note  
seSetInit() must have been called before calling seVirtInit(). This is because the VNDP is used  
for timing, and this would not be possible if the registers were not first initialized.  
int seVirtMove(int device, BYTE WhichScreen, int x, int y)  
Description: Pans or scrolls the virtual display.  
Parameter: device - registered device ID  
WhichScreen - Use one of the following definitions: SCREEN1 or SCREEN2.  
SCREEN1 is the top screen.  
x - new starting X position in pixels  
y - new starting Y position in pixels  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_HAL_BAD_ARG - argument WhichScreen is not SCREEN1 or SCREEN2.  
- argument Y is too large.  
- bpp is invalid in HAL structure (this would occur if the application changed the  
registers directly instead of calling seSetBitsPerPixel()).  
Note  
seVirtInit() must have been called once before calling seVirtMove().  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 46  
Epson Research and Development  
Vancouver Design Center  
int seWriteDisplayBytes(int device, DWORD addr, BYTE val, DWORD  
count)  
Description: Writes one or more bytes to the display buffer.  
Parameter: device - registered device ID  
addr - offset from start of the display buffer  
val - value to write  
count - number of bytes to write  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seWriteDisplayWords(int device, DWORD addr, WORD val, DWORD  
count)  
Description: Writes one or more words to the display buffer.  
Parameter: device - registered device ID  
addr - offset from start of the display buffer  
val - value to write  
count - number of words to write  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seWriteDisplayDwords(int device, DWORD addr, DWORD val,  
DWORD count)  
Description: Writes one or more dwords to the display buffer.  
Parameter: device - registered device ID  
addr - offset from start of the display buffer  
val - value to write  
count - number of dwords to write  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 47  
Vancouver Design Center  
8.2.3 Color Manipulation  
int seGetDac(int device, BYTE *pDac)  
Description: Reads the entire DAC into an array.  
Parameter: device - registered device ID  
pDac - pointer to an array of BYTE dac[256][3]  
dac[x][0] == RED component  
dac[x][1] == GREEN component  
dac[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seGetDacEntry(int device, BYTE index, BYTE *pEntry)  
Description: Reads one DAC entry.  
Parameter: device - registered device ID  
index - index to DAC entry (0 to 255)  
pEntry - pointer to an array of BYTE entry[3]  
entry[x][0] == RED component  
entry[x][1] == GREEN component  
entry[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seGetLut(int device, BYTE *pLut)  
Description: Reads the entire LUT into an array.  
Parameter: device - registered device ID  
pLut - pointer to an array of BYTE lut[16][3]  
lut[x][0] == RED component  
lut[x][1] == GREEN component  
lut[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 48  
Epson Research and Development  
Vancouver Design Center  
int seGetLutEntry(int device, BYTE index, BYTE *pEntry);  
Description: Reads one LUT entry.  
Parameter: device - registered device ID  
index - index to LUT entry (0 to 15)  
pEntry - pointer to an array of BYTE entry[3]  
entry[x][0] == RED component  
entry[x][1] == GREEN component  
entry[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seSetDac(int device, BYTE *pDac)  
Description: Writes the entire DAC from an array into the DAC registers.  
Parameter: device - registered device ID  
pDac - pointer to an array of BYTE dac[256][3]  
dac[x][0] == RED component  
dac[x][1] == GREEN component  
dac[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seSetDacEntry(int device, BYTE index, BYTE *pEntry)  
Description: Writes one DAC entry.  
Parameter: device - registered device ID  
index - index to DAC entry (0 to 255)  
pEntry - pointer to an array of BYTE entry[3]  
entry[x][0] == RED component  
entry[x][1] == GREEN component  
entry[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 49  
Vancouver Design Center  
int seSetLut(int device, BYTE *pLut)  
Description: Writes the entire LUT from an array into the LUT registers.  
Parameter: device - registered device ID  
pLut - pointer to an array of BYTE lut[16][3]  
lut[x][0] == RED component  
lut[x][1] == GREEN component  
lut[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seSetLutEntry(int device, BYTE index, BYTE *pEntry)  
Description: Writes one LUT entry.  
Parameter: device - registered device ID  
index - index to LUT entry (0 to 15)  
pEntry - pointer to an array of BYTE entry[3]  
entry[x][0] == RED component  
entry[x][1] == GREEN component  
entry[x][2] == BLUE component  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seGet15BppInfo(int device, unsigned *RedMask, unsigned  
*GreenMask, unsigned *BlueMask)  
Description: Determines the bit fields for the red, green, and blue components of a 15 bpp stored  
in a WORD.  
Parameter: device - registered device ID  
RedMask - all bits set to 1 are used by the red component.  
GreenMask - all bits set to 1 are used by the green component.  
BlueMask - all bits set to 1 are used by the blue component.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 50  
Epson Research and Development  
Vancouver Design Center  
8.2.4 Drawing  
int seDrawLine(int device, int x1, int y1, int x2, int y2, DWORD color)  
Description: Draws a line on the display.  
Parameter: device - registered device ID.  
(x1, y1) - top left corner of line  
(x2, y2) - bottom right corner of line (see note below)  
color - color of line  
- For 1, 2, 4, and 8 bpp, color refers to the pixel value which points to the respective  
LUT/DAC entry.  
- For 15 and 16 bpp, color refers to the pixel value which stores the red, green, and  
blue intensities within a WORD.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Note  
seDrawLine() only draws horizontal and vertical lines, and that the line drawn does not include  
the endpoint (x2, y2).  
int seDrawText(int device, char *fmt, ...)  
Description: For Intel platforms, draws text to standard output. For embedded platforms, draws  
text to terminal.  
Parameter: device - registered device ID.  
fmt - identical to printf() formatting strings  
... - identical to printf() arguments for formatting strings  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_INVALID_STD_DEVICE - device is not HAL_STDOUT or HAL_STDIN  
(but don't use HAL_STDIN for seDrawText()).  
Note  
seDrawText() currently doesn't write text to the display buffer.  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 51  
Vancouver Design Center  
int seFillRect(int device, int x1, int y1, int x2, int y2, DWORD color)  
Description: Draws a solid rectangle on the display.  
Parameter: device - registered device ID  
(x1, y1) - top left corner of rectangle  
(x2, y2) - bottom right corner of rectangle (see note below)  
color - color of rectangle  
- For 1, 2, 4, and 8 bpp, color refers to the pixel value which points to the respective  
LUT/DAC entry. For 15 and 16 bpp, color refers to the pixel value which stores the  
red, green, and blue intensities within a WORD.  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
Note  
seFillRect() does not fill the rectangle's right and bottom sides.  
int seGetchar(void)  
Description: Gets a character from platform (typically from a terminal).  
Parameter: none  
Return Value: Character returned from platform.  
int sePutchar(int ch)  
Description: Writes a character to platform (typically to a terminal).  
Parameter: ch - character to send to platform  
Return Value: ERR_OK - operation completed with no problems  
ERR_FAILED - operation failed  
int sePutc(int device, int ch)  
Description: Writes a character to platform (typically to a terminal).  
Parameter: device - registered device ID  
ch - character to send to platform  
Return Value: ERR_OK - operation completed with no problems  
ERR_FAILED - operation failed  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 52  
Epson Research and Development  
Vancouver Design Center  
int seSetPixel(int device, int x, int y, DWORD color)  
Description: Writes a pixel to the display buffer.  
Parameter: device - Registered device ID  
x - horizontal coordinate of the pixel (starting from 0)  
y - vertical coordinate of the pixel (starting from 0)  
color - for 1,2,4,8 BPP: refers to index into LUT/DAC. For 15,16 BPP: defines color  
directly (not LUT/DAC index)  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
8.2.5 Register Manipulation  
int seGetReg(int device, int index, BYTE *pVal)  
Description: Reads a register value.  
Parameter: device - registered device ID  
index - register index  
pVal - returns value of the register  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
int seSetReg(int device, int index, BYTE val)  
Description: Writes a register value.  
Parameter: device - registered device ID  
index - register index  
val - value to write to the register  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
8.2.6 Miscellaneous  
int seDelay(int device, DWORD Seconds)  
Description: Delays for the given amount of time. For non-Intel platforms, the 1354 registers  
must be initialized and the VNDP set active (the VNDP is used as the timer).  
Parameter: device - registered device ID  
Seconds - delay time in seconds  
Return Value: ERR_OK - operation completed with no problems  
ERR_INVALID_REG_DEVICE - device argument is not valid.  
ERR_FAILED - registers have not been initialized (for non-Intel platforms).  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 53  
Vancouver Design Center  
WORD seRotateByteLeft(BYTE val, BYTE bits)  
Description: Rotates the bits in “val” left as many times as stated in “bits”.  
Parameter: val - value to rotate  
bits - how many bits to rotate  
Return Value: bits 15-8: non-zero if carry flag set  
bits 7-0: rotated byte  
WORD seRotateByteRight(BYTE val, BYTE bits)  
Description: Rotates the bits in “val” right as many times as stated in “bits”.  
Parameter: val - value to rotate bits - how many bits to rotate  
Return Value: bits 15-8: non-zero if carry flag set  
bits 7-0: rotated byte  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 54  
Epson Research and Development  
Vancouver Design Center  
9 Sample Code  
9.1 Introduction  
The following code samples demonstrate two approaches to initializing the SED1354 color graphics  
controller with/without using the 1354HAL API. These code samples are for example purposes only.  
9.1.1 Sample code using 1354HAL API  
/*  
**-------------------------------------------------------------------------  
**  
** Created 1998, Epson Research & Development  
**  
Vancouver Design Centre  
** Copyright (c) 1998 Epson Research and Development, Inc.  
** All rights reserved.  
**  
**-------------------------------------------------------------------------  
*/  
#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  
#include "hal.h"  
#include "appcfg.h"  
/*--------------------------------------------------------------------------*/  
void main(void)  
{
BYTE ChipId;  
int Device;  
switch (seRegisterDevice(&Cfg.DeviceInfo[0], &Cfg.DeviceChip, &Device))  
{
case ERR_OK:  
break;  
case HAL_DEVICE_ERR:  
printf("ERROR: Too many devices registered.\n");  
exit(1);  
default:  
printf("ERROR: Could not register SED1354 device.\n");  
exit(1);  
}
seGetId(Device, &ChipId);  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 55  
Vancouver Design Center  
if (ChipId != ID_SED1354F0A)  
{
printf("ERROR: Did not detect SED1354.\n");  
exit(1);  
}
if (seSetInit(Device) != ERR_OK)  
{
printf("ERROR: Could not initialize device.\n");  
exit(1);  
}
/***************************************************************************  
* Fill 2M bytes of memory with 0xffffffff (white)  
* Note that 0x200000 == 2 M bytes. Divide by 4 for number of Dwords to fill  
***************************************************************************/  
seWriteDisplayDwords(Device, 0, 0xffffffff, 0x200000/4);  
exit(0);  
}
9.1.2 Sample code without using 1354HAL API  
/*  
**===========================================================================  
** INIT1354.C - sample code demonstrating the initialization of the SED1354.  
**  
**  
Beta release 2.0 98-10-22  
** The code in this example will perform initialization to the following  
** specification:  
**  
** - 320 x 240 single 8-bit color passive panel.  
** - 75 Hz frame rate.  
** - 8 BPP (256 colors).  
** - 33 MHz input clock.  
** - 2 MB of 60 ns FPM memory.  
**  
**  
*** This is sample code only! ***  
** This means:  
** 1) Generic C is used. I assume that pointers can access the  
**  
**  
**  
relevant memory addresses (this is not always the case).  
i.e. using the 1354B0B card on an Intel 16 bit platform will require  
changes to use a DOS extender to access memory and registers.  
** 2) Register setup is done with discreet writes rather than being  
**  
**  
**  
table driven. This allows for clearer commenting. A real program  
would probably store the register settings in an array and loop  
through the array writing each element to a control register.  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 56  
Epson Research and Development  
Vancouver Design Center  
** 3) The pointer assignment for the register offset does not work on  
**  
**  
Intel 16 bit platforms.  
**---------------------------------------------------------------------------  
** Created 1998, Epson Research & Development  
**  
Vancouver Design Centre  
** Copyright (c) 1998 Epson Research and Development, Inc.  
** All rights reserved.  
**---------------------------------------------------------------------------  
**  
** $Header:  
**  
$
** $Revision: $  
**  
** $Log:  
**  
$
**===========================================================================  
*/  
unsigned char LUT8[8*3] = {  
0x00, 0x00, 0x00,  
0x02, 0x02, 0x05,  
0x04, 0x04, 0x0A,  
0x06, 0x06, 0x0F,  
0x09, 0x09, 0x00,  
0x0B, 0x0B, 0x00,  
0x0D, 0x0D, 0x00,  
0x0F, 0x0F, 0x00,  
};  
/*  
** REGISTER_OFFSET points to the starting address of the SED1354 registers  
*/  
#define REGISTER_OFFSET  
((unsigned char *) 0x1234)  
void main(void)  
{
unsigned char * pRegs;  
unsigned char * pLUT;  
int idx;  
int rgb;  
pRegs = REGISTER_OFFSET;  
/*  
** Initialize the chip.  
*/  
/*  
** Step 1: Enable the host interface.  
**  
** Register 1B: Miscellaneous Disable - host interface enabled, half frame  
**  
*/  
buffer enabled.  
*(pRegs + 0x1B) = 0x00;  
/* 0000 0000 */  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 57  
Vancouver Design Center  
/*  
** Step 2: Disable the display FIFO  
*/  
*(pRegs + 0x23) = 0x80;  
/*  
** Step 3: Set the memory type  
**  
** Register 1: Memory Configuration - 4 ms refresh, EDO  
*/  
*(pRegs + 0x01) = 0x30;  
/* 0011 0000 */  
/*  
** Step 4: Set the performance register  
**  
** Register 22: Performance Enhancement -  
*/  
*(pRegs + 0x22) = 0x24;  
/* 0010 0100 */  
/*  
** Step 5: Set dual/single panel  
**  
** Register 2: Panel Type - 8-bit, format 2, color, single, passive.  
*/  
*(pRegs + 0x02) = 0x1C;  
/*  
/* 0001 1100 */  
** Step 6: Set the rest of the registers in order.  
*/  
/*  
** Register 3: Mod Rate -  
*/  
*(pRegs + 0x03) = 0x00;  
/* 0000 0000 */  
/*  
** Register 4: Horizontal Display Width (HDP) - 320 pixels  
**  
*/  
(320 / 8) - 1 = 39t = 27h  
*(pRegs + 0x04) = 0x27;  
/*  
/* 0010 0111 */  
** Register 5: Horizontal Non-Display Period (HNDP)  
**  
**  
**  
**  
**  
**  
**  
**  
PCLK  
Frame Rate = -----------------------------  
(HDP + HNDP) * (VDP + VNDP)  
8,250,000  
= -----------------------------  
(320 + HNDP) * (240 + VNDP)  
** HNDP and VNDP must be calculated such that the desired frame rate  
** is achieved.  
*/  
*(pRegs + 0x05) = 0x0F;  
/*  
/* 0000 1111 */  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 58  
Epson Research and Development  
Vancouver Design Center  
** Register 6: HRTC/FPLINE Start Position - applicable to CRT/TFT only.  
*/  
*(pRegs + 0x06) = 0x00;  
/*  
/* 0000 0000 */  
** Register 7: HRTC/FPLINE Pulse Width - applicable to CRT/TFT only.  
*/  
*(pRegs + 0x07) = 0x00;  
/*  
/* 0000 0000*/  
** Registers 8-9: Vertical Display Height (VDP) - 240 lines.  
**  
*/  
240 - 1 = 239t = 0xEF  
*(pRegs + 0x08) = 0xEF;  
*(pRegs + 0x09) = 0x00;  
/*  
/* 1110 1111 */  
/* 0000 0000 */  
** Register A: Vertical Non-Display Period (VNDP)  
**  
**  
**  
*/  
This register must be programed with register 5 (HNDP)  
to arrive at the frame rate closest to the desired  
frame rate.  
*(pRegs + 0x0A) = 0x01;  
/*  
/* 0000 0001 */  
** Register B: VRTC/FPFRAME Start Position - applicable to CRT/TFT only.  
*/  
*(pRegs + 0x0B) = 0x00;  
/*  
/* 0000 0000 */  
** Register C: VRTC/FPFRAME Pulse Width - applicable to CRT/TFT only.  
*/  
*(pRegs + 0x0C) = 0x00;  
/*  
/* 0000 0000 */  
** Registers E-F: Screen 1 Line Compare - unless setting up for  
**  
*/  
split screen operation use 0x3FF.  
*(pRegs + 0x0E) = 0xFF;  
*(pRegs + 0x0F) = 0x03;  
/*  
/* 1111 1111 */  
/* 0000 0011 */  
** Registers 10-12: Screen 1 Display Start Address - start at the  
**  
*/  
first byte in display memory.  
*(pRegs + 0x10) = 0x00;  
*(pRegs + 0x11) = 0x00;  
*(pRegs + 0x12) = 0x00;  
/*  
/* 0000 0000 */  
/* 0000 0000 */  
/* 0000 0000 */  
** Register 13-15: Screen 2 Display Start Address - not applicable  
**  
*/  
unless setting up for split screen operation.  
*(pRegs + 0x13) = 0x00;  
*(pRegs + 0x14) = 0x00;  
*(pRegs + 0x15) = 0x00;  
/*  
/* 0000 0000 */  
/* 0000 0000 */  
/* 0000 0000 */  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 59  
Vancouver Design Center  
** Register 16-17: Memory Address Offset - this address represents the  
**  
**  
*/  
starting WORD. At 8BPP our 320 pixel width is 160  
WORDS  
*(pRegs + 0x16) = 0xA0;  
*(pRegs + 0x17) = 0x00;  
/* 1010 0000 */  
/* 0000 0000 */  
/*  
** Register 18: Pixel Panning -  
*/  
*(pRegs + 0x18) = 0x00;  
/*  
/* 0000 0000 */  
** Register 19: Clock Configuration - In this case we must divide  
**  
**  
*/  
MCLK by 4 to arrive at the best frequency to set  
our desired panel frame rate.  
*(pRegs + 0x19) = 0x03;  
/*  
/* 0000 0011 */  
** Register 1A: Power Save Configuration - enable LCD power, CBR refresh,  
**  
*/  
not suspended.  
*(pRegs + 0x1A) = 0x00;  
/*  
/* 0000 0000 */  
** Register 1C-1D: MD Configuration Readback - don't write anything to  
**  
*/  
/*  
these registers.  
** Register 1E-1F: General I/O Pins Configuration - these values  
**  
*/  
may need to be changed according to your system  
*(pRegs + 0x1E) = 0x00;  
*(pRegs + 0x1F) = 0x00;  
/*  
/* 0000 0000 */  
/* 0000 0000 */  
** Register 20-21: General I/O Pins Control - these values  
**  
*/  
may need to be changed according to your system  
*(pRegs + 0x20) = 0x00;  
*(pRegs + 0x21) = 0x00;  
/*  
/* 0000 0000 */  
/* 0000 0000 */  
** Registers 24-27: LUT control.  
**  
**  
**  
**  
For this example do a typical 8BPP LUT setup.  
In 8BPP mode only the first 8 red, first 8 green  
and first 4 blue values are used.  
** Setup the pointer to the LUT data and reset the LUT index register.  
** Then, loop writing each of the RGB LUT data elements.  
*/  
pLUT = LUT8;  
*(pRegs + 0x24) = 0;  
for (idx = 0; idx < 8; idx++)  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 60  
Epson Research and Development  
Vancouver Design Center  
{
for (rgb = 0; rgb < 3; rgb++)  
{
*(pRegs + 0x26) = *pLUT;  
pLUT++;  
}
}
/*  
** Registers 28-2E: RAMDAC - not used in this example. Programmed very  
**  
*/  
/*  
similarly to the LUT but all 256 entries are used.  
** Register 23: Performance Enhancement - display FIFO enabled, optimum  
**  
*/  
performance.  
*(pRegs + 0x23) = 0x10;  
/*  
/* 0001 0000 */  
** Register D: Display Mode - 8 BPP, LCD enable.  
*/  
*(pRegs + 0x0D) = 0x0D;  
/* 0000 1101 */  
}
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
Epson Research and Development  
Page 61  
Vancouver Design Center  
Appendix A Supported Panel Values  
A.1 Supported Panel Values  
The following tables show related register data for different panels. All the examples are based on  
8 bpp, 40MHz pixel clock and 2M bytes of 60 ns EDO-DRAM.  
Table 9-1: Passive Single Panel  
Passive  
Passive  
Passive  
Passive  
Passive  
16-Bit Single  
640X480@47Hz  
Color  
4-Bit Single 8-Bit Single 8-Bit Single 8-Bit Single  
320X240@60Hz 320X240@60Hz 640X480@60Hz 640X480@60Hz  
Register  
Notes  
Monochrome  
Color  
Monochrome  
Color  
REG[02h] 0000 0000 0001 0100 0001 0000 0001 0100  
REG[03h] 0000 0000 0000 0000 0000 0000 0000 0000  
REG[04h] 0010 0111 0010 0111 0100 1111 0100 1111  
REG[05h] 0001 0000 0001 0000 0000 0101 0000 0101  
REG[08h] 1110 1111 1110 1111 1101 1111 1101 1111  
REG[09h] 0000 0000 0000 0000 0000 0001 0000 0001  
REG[0Ah] 0000 0001 0000 0001 0000 0001 0000 0001  
REG[0Dh] 0000 1101 0000 1101 0000 1101 0000 1101  
REG[19h] 0000 0110 0000 0110 0000 0001 0000 0001  
REG[24h] 0000 0000 0000 0000 0000 0000 0000 0000  
0010 0100  
0000 0000  
0100 1111  
0000 0101  
1101 1111  
0000 0001  
0000 0001  
0000 1101  
0000 0001  
0000 0000  
load LUT  
set panel type  
set MOD rate  
set horizontal display width  
set horizontal non-display period  
set vertical display height bits 7-0  
set vertical display height bits 9-8  
set vertical non-display period  
set 8 bpp and LCD enable  
set MCLK and PCLK divide  
set Look-Up Table address to 0  
load Look-Up Table  
REG[26h] load LUT  
load LUT  
load LUT  
load LUT  
REG[27h] 0000 0000 0000 0000 0000 0000 0000 0000  
0000 0000  
set Look-Up Table to bank 0  
Table 9-2: Passive Dual Panel  
Passive  
8-Bit Dual  
640X480@60Hz  
Monochrome  
Passive  
8-Bit Dual  
Passive  
16-Bit Dual  
Register  
Notes  
640X480@60Hz 640X480@60Hz  
Color Color  
REG[02h] 0001 0010 0001 0110 0010 0110  
REG[03h] 0000 0000 0000 0000 0000 0000  
REG[04h] 0100 1111 0100 1111 0100 1111  
REG[05h] 0000 0101 0000 0101 0000 0101  
REG[08h] 1110 1111 1110 1111 1110 1111  
REG[09h] 0000 0000 0000 0000 0000 0000  
REG[0Ah] 0000 0001 0000 0001 0000 0001  
REG[0Dh] 0000 1101 0000 1101 0000 1101  
REG[19h] 0000 0011 0000 0011 0000 0011  
REG[1Bh] 0000 0000 0000 0000 0000 0000  
REG[24h] 0000 0000 0000 0000 0000 0000  
set panel type  
set MOD rate  
set horizontal display width  
set horizontal non-display period  
set vertical display height bits 7-0  
set vertical display height bits 9-8  
set vertical non-display period  
set 8 bpp and LCD enable  
set MCLK and PCLK divide  
enable half frame buffer  
set Look-Up Table address to 0  
load Look-Up Table  
REG[26h]  
load LUT  
load LUT  
load LUT  
REG[27h] 0000 0000 0000 0000 0000 0000  
set Look-Up Table to bank 0  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354  
X19A-G-002-06  
Page 62  
Epson Research and Development  
Vancouver Design Center  
Table 9-3: TFT Panel  
TFT 16-Bit  
Single  
640X480@47Hz  
Color  
Register  
Notes  
REG[02h] 0010 0101  
REG[03h] 0000 0000  
REG[04h] 0100 1111  
REG[05h] 0001 0011  
REG[06h] 0000 0110  
REG[07h] 0000 0111  
REG[08h] 1101 1111  
REG[09h] 0000 0001  
REG[0Ah] 0010 1101  
REG[0Bh] 0000 0000  
REG[0Ch] 0000 0010  
REG[0Dh] 0000 1101  
REG[19h] 0000 0001  
REG[24h] 0000 0000  
set panel type  
set MOD rate  
set horizontal display width  
set horizontal non-display period  
set HSYNC start position  
set HSYNC polarity and pulse width  
set vertical display height bits 7-0  
set vertical display height bits 9-8  
set vertical non-display period  
set VSYNC start position  
set VSYNC polarity and pulse width  
set 8 bpp and LCD enable  
set MCLK and PCLK divide  
set Look-Up Table address to 0  
load Look-Up Table  
REG[26h]  
load LUT  
REG[27h] 0000 0000  
set Look-Up Table to bank 0  
SED1354  
X19A-G-002-06  
Programming Notes and Examples  
Issue Date: 98/10/28  
SED1354F0A Register Summary  
X19A-Q-001-03  
2
REG[11h] SCREEN 1 DISPLAY START ADDRESS REGISTER 1  
Screen 1 Display Start Address  
Bit 12 Bit 11  
RW  
REG[22h] PERFORMANCE ENHANCEMENT REGISTER 0  
1/0  
n/a  
RW  
REG[00h] REVISION CODE REGISTER  
R0  
10  
11  
RAS# Precharge Timing  
RC Timing  
EDO Read/  
Write Delay  
RAS# to  
CAS# Delay  
Product Code  
Revision Code  
reserved  
Bit 15  
Bit 14  
Bit 13  
Bit 10  
Bit 9  
Bit 8  
RW  
Bit 1  
Bit 0  
Bit 1  
Bit 0  
0
0
0
0
0
1
0
0
REG[12h] SCREEN 1 DISPLAY START ADDRESS REGISTER 2  
n/a n/a n/a n/a  
REG[23h] PERFORMANCE ENHANCEMENT REGISTER 1  
RW  
REG[01h] MEMORY CONFIGURATION REGISTER  
1/0  
n/a  
RW  
Screen 1 Display Start Address  
Display FIFO Threshold  
Bit 2 Bit 1  
DisplayFIFO  
Disable  
4
n/a  
n/a  
Refresh Rate  
FPM/EDO  
Memory  
1
Bit 19  
Bit 18  
Bit 17  
Bit 1  
Bit 9  
Bit 16  
RW  
Bit 4  
Bit 3  
Bit 3  
Bit 3  
Bit 0  
RW  
n/a  
n/a  
WE# Control  
Bit 2  
Bit 1  
Bit 0  
REG[13h] SCREEN 2 DISPLAY START ADDRESS REGISTER 0  
Screen 2 Display Start Address  
Bit 4 Bit 3  
REG[24h] LOOK-UP TABLE ADDRESS REGISTER  
REG[02h] PANEL TYPE REGISTER  
Panel Data Width  
1/0  
RW  
RGB Index  
Look-Up Table Address  
Bit 2 Bit 1  
5
n/a  
n/a  
Panel Data  
Format  
Select  
TFT/  
Color/Mono Dual/Single  
Panel Select Panel Select  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 0  
RW  
Bit 1  
Bit 0  
Bit 0  
RW  
n/a  
n/a  
Passive  
Bit 1  
Bit 0  
Panel Select  
REG[14h] SCREEN 2 DISPLAY START ADDRESS REGISTER 1  
Screen 2 Display Start Address  
Bit 12 Bit 11  
REG[26h] LOOK-UP TABLE DATA REGISTER  
n/a n/a n/a  
REG[03h] MOD RATE REGISTER  
n/a n/a  
RW  
Look-Up Table Data  
Bit 2 Bit 1  
n/a  
MOD Rate  
Bit 3 Bit 2  
Bit 15  
Bit 14  
Bit 13  
Bit 10  
Bit 8  
RW  
Bit 0  
RW  
Bit 5  
Bit 4  
Bit 1  
Bit 1  
Bit 0  
RW  
REG[15h] SCREEN 2 DISPLAY START ADDRESS REGISTER 2  
n/a n/a n/a n/a  
REG[27h] LOOK-UP TABLE BANK SELECT REGISTER  
REG[04h] HORIZONTAL DISPLAY WIDTH REGISTER  
Horizontal Display Width = 8(REG + 1)  
Bit 4 Bit 3 Bit 2  
Screen 2 Display Start Address  
Red Bank Select  
Blue Bank Select  
Bit 1  
Green Bank Select  
Bit 0  
n/a  
n/a  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
RW  
Bit 1  
Bit 0  
Bit 0  
Bit 2  
Bit 2  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 1  
Bit 1  
Bit 1  
n/a  
Bit 6  
Bit 5  
Bit 0  
RW  
3
REG[16h] MEMORY ADDRESS OFFSET REGISTER 0  
Memory Address Offset  
REG[28h] OR REG[29h] RAMDAC PIXEL READ MASK REGISTER  
RW  
REG[05h] HORIZONTAL NON-DISPLAY PERIOD REGISTER  
Horizontal Non-Display Period = 8(REG + 1)  
Bit 3 Bit 2 Bit 1  
RAMDAC Data  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
n/a  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 0  
RW  
n/a  
n/a  
n/a  
Bit 4  
Bit 0  
RW  
3
REG[17h] MEMORY ADDRESS OFFSET REGISTER 1  
RW  
Memory Address Offset  
Bit 9 Bit 8  
REG[2Ah] OR REG[2Bh] RAMDAC READ MODE ADDRESS REGISTER  
REG[06h] HRTC/FPLINE START POSITION REGISTER  
HRTC/FPLINE Start Position = 8(REG + 1)  
Bit 3 Bit 2 Bit 1  
RAMDAC Address  
n/a  
n/a  
n/a  
n/a  
n/a  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 0  
RW  
n/a  
n/a  
n/a  
Bit 4  
Bit 0  
RW  
3
REG[18h] PIXEL PANNING REGISTER  
RW  
REG[2Ch] OR REG[2Dh] RAMDAC WRITE MODE ADDRESS REGISTER  
REG[07h] HRTC/FPLINE PULSE WIDTH REGISTER  
Screen 2 Pixel Panning  
Screen 1 Pixel Panning  
RAMDAC Address  
HRTC/FPLINE Pulse Width = 8(REG + 1)  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
n/a  
Bit 3  
n/a  
Bit 2  
Bit 1  
Bit 0  
RW  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 0  
RW  
HRTC  
Polarity  
FPLINE  
Polarity  
n/a  
n/a  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
3
REG[19h] CLOCK CONFIGURATION REGISTER  
n/a n/a n/a  
REG[2Eh] OR REG[2Fh] RAMDAC PALETTE DATA REGISTER  
8
REG[08h] VERTICAL DISPLAY HEIGHT REGISTER 0  
Vertical Display Height = (REG + 1)  
RW  
PCLK Divide  
RAMDAC Data  
MCLK  
Divide  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
n/a  
Bit 1  
Bit 0  
REG[1Ah] POWER SAVE CONFIGURATION REGISTER  
n/a n/a n/a n/a  
RW  
Notes  
9
REG[09h] VERTICAL DISPLAY HEIGHT REGISTER 1  
n/a n/a n/a n/a  
RW  
Vertical Display Height  
Bit 9 Bit 8  
Suspend Refresh Select  
1
n/a bits should be written 0.  
reserved bits must be written 0  
LCD Power  
Disable  
Software  
Suspend  
Bit 1  
Bit 0  
n/a  
2
3
These bits are used to identify the SED1354 at power on / RESET.  
When using Little-Endian the RAMDAC should be connected to the low byte of the CPU data bus and the lower  
register address given used. When using Big-Endian the RAMDAC should be connected to the high byte of the  
CPU data bus and the higher register address given used.  
REG[1Bh] MISCELLANIOUS DISABLE REGISTER  
RW  
REG[0Ah] VERTICAL NON-DISPLAY PERIOD REGISTER  
RW  
Host  
Half Frame  
Buffer  
Disable  
Interface  
Disable  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Vertical Non-Display Period (VNDP) = (REG + 1)  
Bit 4 Bit 3 Bit 2 Bit 1  
VNDP  
4
DRAM Refresh Rate Select  
n/a  
Status (RO)  
Bit 5  
Bit 0  
RW  
Refresh Rate  
Bits [2:0]  
Refresh Rate for 33MHz  
CLKI  
DRAM Refresh  
Time/256 cycles  
CLKI Divide Amount  
REG[1Ch] MD CONFIGURATION READBACK REGISTER 0  
RO  
REG[0Bh] VRTC/FPFRAME START POSITION REGISTER  
VRTC/FPFRAME Start Position = (REG + 1)  
MD7 Status MD6 Status MD5 Status MD4 Status MD3 Status MD2 Status MD1 Status MD0 Status  
000  
001  
010  
011  
100  
101  
110  
111  
64  
520 kHz  
260 kHz  
130 kHz  
65 kHz  
33 kHz  
16 kHz  
8 kHz  
0.5 ms  
1 ms  
n/a  
n/a  
128  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
REG[1Dh] MD CONFIGURATION READBACK REGISTER 1  
RO  
MD8  
Status  
256  
2 ms  
MD15  
Status  
MD14  
Status  
MD13  
Status  
MD12  
Status  
MD11  
Status  
MD10  
Status  
MD9  
512  
4 ms  
REG[0Ch] VRTC/FPFRAME PULSE WIDTH REGISTER  
RW  
VRTC/FPFRAME Pulse Width = (REG + 1)  
Status  
1024  
2048  
4096  
8192  
8 ms  
VRTC  
Polarity  
FPFRAME  
Polarity  
n/a  
n/a  
n/a  
REG[1Eh] GENERAL IO PINS CONFIGURATION REGISTER 0  
GPIO7 Pin GPIO6 Pin GPIO5 Pin GPIO4Pin GPIO3 Pin GPIO2 Pin GPIO1 Pin GPIO0 Pin  
RW  
Bit 2  
Bit 1  
Bit 0  
16 ms  
32 ms  
64 ms  
IO Config  
IO Config  
IO Config  
IO Config  
IO Config  
IO Config  
IO Config  
IO Config  
REG[0Dh] DISPLAY MODE REGISTER  
RW  
4 kHz  
6
Simultaneous Display  
7
Number Of Bits-Per-Pixel  
Bit 2 Bit 1  
REG[1Fh] GENERAL IO PINS CONFIGURATION REGISTER 1  
RW  
5
Panel Data Width Selection  
Option Select  
n/a  
CRT Enable LCD Enable  
RW  
GPIO11 Pin GPIO10 Pin GPIO9 Pin GPIO8 Pin  
Bit 1  
Bit 0  
Bit 0  
n/a  
n/a  
n/a  
n/a  
Passive LCD Panel Data  
Width Size  
TFT Panel Data Width  
Size  
IO Config  
IO Config  
IO Config  
IO Config  
Panel Data Width Bits [1:0]  
REG[0Eh] SCREEN 1 LINE COMPARE REGISTER 0  
Screen 1 Line Compare  
00  
01  
10  
11  
4-bit  
9-bit  
12-bit  
REG[20h] GENERAL IO PINS STATUS / CONTROL REGISTER 0  
RW  
8-bit  
16-bit  
GPIO7 Pin GPIO6 Pin GPIO5 Pin GPIO4 Pin GPIO3 Pin GPIO2 Pin GPIO1 Pin GPIO0 Pin  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
n/a  
Bit 1  
Bit 0  
IO Status  
IO Status  
IO Status  
IO Status  
IO Status  
IO Status  
IO Status  
IO Status  
16-bit  
Reserved  
Reserved  
REG[0Fh] SCREEN 1 LINE COMPARE REGISTER 1  
n/a n/a n/a n/a  
RW  
Screen 1 Line Compare  
REG[21h] GENERAL IO PINS STATUS / CONTROL REGISTER 1  
RW  
GPIO11 Pin GPIO10 Pin GPIO9 Pin GPIO8 Pin  
IO Status IO Status IO Status IO Status  
GPO Control  
n/a  
n/a  
n/a  
n/a  
Bit 9  
Bit 8  
REG[10h] SCREEN 1 DISPLAY START ADDRESS REGISTER 0  
Screen 1 Display Start Address  
Bit 4 Bit 3  
RW  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Page 1  
98/09/15  
SED1354F0A Register Summary  
X19A-Q-001-03  
6
Simultaneous Display Option Selection  
Simultaneous Display Option  
Simultaneous Display Option  
Select Bits [1:0]  
00  
Normal  
Line Doubling  
Interlace  
01  
10  
11  
Even Scan Only  
7
Number of Bits per Pixel Selection  
Number Of Bits/Pixel Select Bits [2:0]  
Number of Bits/Pixel  
000  
001  
1
2
010  
4
011  
8
15  
100  
101  
16  
110-111  
Reserved  
8
PCLK Divide Selection  
PCLK Divide Select Bits [1:0]  
MCLK/PCLK Frequency Ratio  
00  
01  
10  
11  
1
2
3
4
9
Suspend Refresh Selection  
Suspend Refresh Select Bits [1:0]  
DRAM Refresh Type  
CBR Refresh  
00  
01  
1x  
Self-Refresh  
No Refresh  
10 Minimum Memory Timing Selection  
RC Timing Bits [1:0]  
Minimum Random Cycle Width  
00  
5 MCLK  
4 MCLK  
3 MCLK  
Reserved  
01  
10  
11  
11 RAS Precharge Timing Select  
RAS Precharge Timing Bits [1:0]  
RAS Precharge Width  
2 MCLK  
00  
01  
10  
11  
1.5 MCLK  
1 MCLK  
Reserved  
Page 2  
98/09/15  
SED1354 Color Graphics LCD/CRT Controller  
1354CFG.EXE Configuration Program  
Document Number: X19A-B-001-03  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1354CFG.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Program Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Script Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1354CFG Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Viewing 1354CFG Menu Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Making 1354CFG Menu Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Files Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
View Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
AdvancedMemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PowerManagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Lookup Table (LUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Sample Program Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Figures  
Figure 1: 1354CFG Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 2: 1354CFG Open File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 3: 1354CFG Files Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 4: 1354CFG View Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 5: 1354CFG Current Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 6: 1354CFG Advanced Configuration (Partial View of Screen) . . . . . . . . . . . . . . . . . . . . . 14  
Figure 7: 1354CFG Device Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8: 1354CFG Panel Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9: 1354CFG Edit Panel Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10: 1354CFG Panel Parameter Edit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11: 1354CFG CRT Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12: 1354CFG Edit CRT Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13: 1354CFG CRT Parameter Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14: 1354CFG Advanced Memory Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 15: 1354CFG Edit Advanced Memory Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 16: 1354CFG Memory Parameter Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 17: 1354CFG Power Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 18: 1354CFG Edit Power Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 19: 1354CFG Power Parameter Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 20: 1354CFG LUT Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 21: 1354CFG Edit LUT Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 22: 1354CFG LUT Parameter Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 23: 1354CFG Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 24: 1354CFG Setup Parameter Edit For Register Location, Memory Location, and Memory Size.. . . . 27  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1354CFG.EXE  
1354CFG gives a software/hardware developer an easy way to modify panel types, modes, etc. for  
the SED1354 utilities without recompiling. Once the correct operating environment has been deter-  
mined, the software/hardware developer can modify the source code manually for a permanent  
change. 1354CFG changes the hardware configuration setup for each of the 1354 utilities, as well as  
any program designed by a software/hardware developer using the Hardware Abstraction Layer  
(HAL) library.  
• 1354CFG runs in two modes: one mode reads script files and the other mode is interactive.  
• In the interactive mode, the 1354CFG DOS-based program uses an interface similar to Windows  
to present one menu for each configuration section. Each section has its own dialog box showing  
all of the relevant elements for that section.  
• 1354CFG reads the configuration from a specific EXE file for Intel platforms, and from a  
specific S9 file for non-Intel platforms.  
• 1354CFG can select all EXE files for configuration writes.  
• 1354CFG prints or displays the configuration setup.  
• 1354CFG supports scripts to quickly reprogram all files to a given configuration setup. The  
given configuration is defined in an INI file.  
• 1354CFG is designed to work with a given version of the configuration setup structure. If the  
structure is of a different version, an error message is displayed and the program exits.  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 8  
Epson Research and Development  
Vancouver Design Center  
Program Requirements  
Video Controller  
: Any VGA  
Display Type  
BIOS  
: LCD or CRT  
: Any manufacturer’s VGA BIOS  
DOS Program  
DOS Version  
Windows Program  
Windows DOS Box  
: Yes  
: 3.0 or greater  
: No  
: Yes  
Windows DOS Full Screen : Yes, Windows 3.1x and Windows 95  
OS/2 DOS Full Screen : Yes  
Installation  
Copy the following files to a directory that is in the DOS path on your hard drive:  
1354CFG.EXE  
G032.EXE  
OBJCOPY.EXE  
Note  
G032.EXE and OBJCOPY.EXE are called by 1354CFG.EXE for non-Intel platforms. Neither  
program is intended to run independent of 1354CFG.  
Usage  
At the DOS Prompt, type 1354cfg.  
1354cfg.exe [filename.exe script.ini] [/?]  
Where:  
filename.exe  
script.ini  
is the 1354 utility to be modified  
is the list of HAL configuration changes  
(see See “Script Mode” on page 9)  
/?  
displays the usage screen  
no argument  
runs 1354CFG in the interactive mode  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 9  
Vancouver Design Center  
Script Mode  
In script mode, a file provides 1354CFG with all the information necessary to reconfigure the  
selected 1354 utility. Any changes which can be made by the interactive user interface can also be  
done by the script file.  
Note that it is not necessary to list all of the possible items in the script file. For example, if the script  
is only to change the panel resolution, the script would only have the following lines:  
;
;File TEST.INI  
;
Panel.x = 640  
Panel.y = 480  
To use this script file on the 1354PLAY utility, type the following:  
1354CFG 1354PLAY.EXE TEST.INI  
In this example, all of the other panel settings in the 1354 utility remain the same. In general,  
however, it is necessary to set several more panel parameters before the panel is properly configured.  
The full list of all the possible parameters to 1354CFG is included in the file 1354.INI.  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 10  
Epson Research and Development  
Vancouver Design Center  
Interactive Mode  
1354CFG Menu Bar  
Menu Bar  
Figure 1: 1354CFG Menu Bar  
1354CFG has four main menus: Files, View, Device, and Help. Menu contents can be viewed by  
using either the mouse or the keyboard.  
Viewing 1354CFG Menu Contents  
Mouse  
Move the on-screen arrow with the mouse and point at the desired menu. Click the left mouse button  
and the contents of the menu will be displayed.  
Keyboard  
Press: <Alt> <F> to select the Files menu.  
<Alt> <V> to select the View menu.  
<Alt> <D> to select the Device menu.  
<Alt> <H> to select the Help menu.  
<>, <>, or the highlighted letter in the menu to select a menu item.  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 11  
Vancouver Design Center  
Making 1354CFG Menu Selections  
In 1354CFG, a selection is made by clicking the left mouse button, or by pressing the tab and arrow  
keys on the keyboard. In the example below, there are three ways to select and open  
1354SHOW.EXE in the Files box in the Open File window (figure 2).  
Mouse  
• Click the left mouse button on 1354SHOW.EXE to highlight it in the Files box. Then click on  
the OK button.  
• Point to the file 1354SHOW.EXE with the arrow and click the left mouse button twice in rapid  
succession (double-clicking).  
Keyboard  
• Press <Tab> to highlight the Files box (or press <Alt><F>). Press <> to highlight  
1354SHOW.EXE. Press <Enter>.  
All selections in 1354CFG can be made in one of the three ways listed above.  
Figure 2: 1354CFG Open File  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
Page 12  
Epson Research and Development  
Vancouver Design Center  
Files Menu  
Figure 3: 1354CFG Files Menu  
The Files menu contains these functions:  
• Open - reads the HAL configuration for a given utility.  
Note  
A utility must be opened before any other menu command can be executed.  
• Save - saves the current changes to the opened file.  
• Save As - saves a file to a different name and/or different location.  
• Save All - saves modifications to all 1354 files that are in the same directory as the file being  
saved. This function ensures that the display parameters are consistent. “Save All” is only avail-  
able for utilities run on an Intel (EXE) platform.  
• Exit - exits the 1354CFG application.  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 13  
Vancouver Design Center  
View Menu  
Figure 4: 1354CFG View Menu  
The View menu displays the Current Configuration and the Advanced Configuration of an opened  
utility.  
In the Current or Advanced Configuration window, the configuration of an opened file can be  
viewed only, not edited. Configuration parameters must be edited in the Panel, CRT, Advanced  
Memory, Power Management, Look-Up Table, and Setup sub-menus in the Device menu.  
Some configuration parameters cannot be readily changed as they depend on several factors for  
consistency (eg. Frame Rate, Clock Divides etc.). Refer to the SED1354 “Functional Hardware  
Specification” manual, document number X19A-A-002-xx, and the SED1354 “Programming Notes  
and Examples” manual, document number X19A-G-002-xx for formulas and other information.  
Note  
Epson R&D Inc. cannot be held liable for damage done to the display as a result of software con-  
figuration errors.  
Cancel and Print commands are available in the Current/Advanced Configuration windows. Help is  
listed, but is not available for this version of 1354CFG.  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 14  
Epson Research and Development  
Vancouver Design Center  
Figure 5: 1354CFG Current Configuration  
Figure 6: 1354CFG Advanced Configuration (Partial View of Screen)  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 15  
Vancouver Design Center  
Device Menu  
Figure 7: 1354CFG Device Menu  
The Device menu contains the following sub-menus where parameters for a SED1354 utility can be  
edited:  
• Panel  
• CRT  
• Advanced Memory  
• Power Management  
• Look-Up Table  
• Setup  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 16  
Epson Research and Development  
Vancouver Design Center  
Panel  
Panel Setup  
When Panel is selected from the Device menu, the Panel Setup dialog box is displayed. To select a  
panel assignment, highlight it (in the example window below, “STN 4 Bit Mono Single 320x240”  
is highlighted) and click OK. If the highlighted panel assignment needs changes, click Edit and see  
the next section “Edit Panel Setup.”  
Whenever a panel assignment is edited or selected in the Panel Setup dialog box, the setup is copied  
to Current Configuration. The editing is automatically performed on the current configuration.  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the Panel Setup  
windows. In this version of 1354CFG, the Help files are unavailable.  
Figure 8: 1354CFG Panel Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 17  
Vancouver Design Center  
Edit Panel Setup  
When a selection is highlighted in the Panel Setup window and Edit is clicked, the Edit Panel Setup  
window is displayed. The Edit Panel Setup window lists parameters which can be edited, as shown  
below in Figure 9, “1354CFG Edit Panel Setup.” In this example window, “X Resolution: 320  
pixels” is highlighted.  
Figure 9: 1354CFG Edit Panel Setup  
Panel Parameter Edit  
When a selection is highlighted for editing in the Edit Panel Setup window and Edit is clicked, the  
Panel Parameter Edit window displays for parameter editing. See figure 10, “1354CFG Panel  
Parameter Edit” below. In this example window, “X Resolution: 320 pixels” can be edited.  
Figure 10: 1354CFG Panel Parameter Edit  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
 
Page 18  
Epson Research and Development  
Vancouver Design Center  
CRT  
CRT Setup  
When CRT is selected from the Device menu, the CRT Setup window is displayed. To select a CRT  
assignment, highlight it (in the example window below, “CRT 640x400 @ 85Hz,  
CLKI=33.333MHz” is highlighted) and click OK. If the highlighted CRT assignment needs  
changes, click Edit and see the next section “Edit CRT Setup.”  
Whenever a CRT assignment is edited or selected in the CRT Setup dialog box, the setup is copied  
to Current Configuration. The editing is automatically performed on the current configuration.  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the CRT setup windows.  
In this version of 1354CFG, the Help files are unavailable.  
Figure 11: 1354CFG CRT Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 19  
Vancouver Design Center  
Edit CRT Setup  
When a selection is highlighted in the CRT Setup window and Edit is clicked, the Edit CRT Setup  
window is displayed. The Edit CRT Setup window lists parameters which can be edited, as shown  
below in Figure 12, “1354CFG Edit CRT Setup.” In this example window, “Horiz Non-Display: 240  
pixels” is highlighted.  
Figure 12: 1354CFG Edit CRT Setup  
CRT Parameter Edit  
When a selection is highlighted for editing in the Edit CRT Setup window and Edit is clicked, the  
CRT Parameter Edit window displays for parameter editing. See figure 13, “1354CFG CRT  
Parameter Edit” below. In this example window, “Horiz Non-Display: 240 pixels” can be edited.  
Figure 13: 1354CFG CRT Parameter Edit  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
 
Page 20  
Epson Research and Development  
Vancouver Design Center  
Advanced Memory  
Memory Setup  
When Advanced Memory is selected from the Device menu, the Memory Setup dialog box is  
displayed. To select a memory assignment, highlight it ( in the example window below, “Memory  
Type 0” is highlighted) and click OK. If the highlighted memory assignment needs changes, click  
Edit and see the next section “Edit Memory Setup.”  
Whenever a memory assignment is edited or selected in the Memory Setup dialog box, the setup is  
copied to Current Configuration. The editing is automatically performed on the current configu-  
ration.  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the Memory setup  
windows. In this version of 1354CFG, the Help files are unavailable.  
Figure 14: 1354CFG Advanced Memory Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 21  
Vancouver Design Center  
Edit Advanced Memory Setup  
When a selection is highlighted in the Memory Setup window and Edit is clicked, the Edit Advanced  
Memory Setup window is displayed. The Edit Advanced Memory window lists parameters which  
can be edited, as shown below in Figure 15, “1354CFG Edit Advanced Memory Setup.” In this  
example window, “Refresh Time: 4000 Cycles” is highlighted.  
Figure 15: 1354CFG Edit Advanced Memory Setup  
Memory Parameter Edit  
When a selection is highlighted for editing in the Edit Advanced Memory Setup window and Edit is  
clicked, the Memory Parameter Edit window is displayed for parameter editing. See figure 16,  
“1354CFG Memory Parameter Edit” below. In this example window, “Refresh Time: 4000 Cycles”  
can be edited.  
Figure 16: 1354CFG Memory Parameter Edit  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
 
Page 22  
Epson Research and Development  
Vancouver Design Center  
Power Management  
Power Setup  
When Power Management is selected from the Device menu, the Power Setup dialog box is  
displayed. To select a power assignment, highlight it (in the example window below, “Power Type  
0” is highlighted) and click OK. If the highlighted power assignment needs changes, click Edit and  
see the next section “Edit Power Setup.”  
Whenever a power assignment is edited or selected in the Power Setup dialog box, the setup is  
copied to Current Configuration. The editing is automatically performed on the current configu-  
ration.  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the Power setup  
windows. In this version of 1354CFG, the Help files are unavailable.  
Figure 17: 1354CFG Power Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 23  
Vancouver Design Center  
Edit Power Setup  
When a selection is highlighted in the Power Setup window and Edit is clicked, the Edit Power Setup  
window is displayed. The Edit Power Setup window lists parameters which can be edited, as shown  
below in Figure 18, “1354CFG Edit Power Setup.” In this example window, “Suspend Refresh:  
CBR Refresh” is highlighted.  
Figure 18: 1354CFG Edit Power Setup  
Power Parameter Edit  
When a selection is highlighted for editing in the Edit Power Setup window and Edit is clicked, the  
Power Parameter Edit window displays for parameter editing. See figure 19, “1354CFG Power  
Parameter Edit” below. In this example window, “Suspend Refresh: CBR Refresh” can be edited.  
Figure 19: 1354CFG Power Parameter Edit  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
 
Page 24  
Epson Research and Development  
Vancouver Design Center  
Lookup Table (LUT)  
LUT Setup  
When Lookup Table is selected from the Device menu, the LUT Setup dialog box is displayed. To  
select a LUT assignment, highlight it (in the example window below, “LUT Internal 4 Color” is  
highlighted) and click OK. If the highlighted LUT assignment needs changes, click Edit and see the  
next section “Edit LUT Setup.”  
Whenever a LUT assignment is edited or selected in the LUT Setup dialog box, the setup is copied  
to Current Configuration. The editing is automatically performed on the current configuration.  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the LUT setup windows.  
In this version of 1354CFG, the Help files are unavailable.  
Figure 20: 1354CFG LUT Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 25  
Vancouver Design Center  
Edit LUT Setup  
When a selection is highlighted in the LUT Setup window and Edit is clicked, the Edit LUT Setup  
window is displayed. The Edit LUT Setup window lists parameters which can be edited, as shown  
below in Figure 21, “1354CFG Edit LUT Setup.” In this example window, “Bits Per Pixel: 2” is  
highlighted.  
Note  
A future release of 1354CFG will enable components in the lookup table palette to be edited.  
(For example, the red, green, and blue components of LUT palette entry 0Fh could be edited.)  
Figure 21: 1354CFG Edit LUT Setup  
LUT Parameter Edit  
When a selection is highlighted for editing in the Edit LUT Setup window and Edit is clicked, the  
LUT Parameter Edit window displays for parameter editing. See figure 22, “1354CFG LUT  
Parameter Edit” below. In this example window, “Bits Per Pixel: 2” can be edited.  
Figure 22: 1354CFG LUT Parameter Edit  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
 
 
Page 26  
Epson Research and Development  
Vancouver Design Center  
Setup  
When Setup is selected from the Device menu, the Setup dialog box is displayed. To select either  
Register Location, Memory Location, or Memory Size, highlight it (in the example window below,  
“Register Location: 00C00000 (hex)” is highlighted) and click OK. If the highlighted Setup  
assignment needs changes, click Edit and see the next section “Setup Parameter Edit.”  
In addition to OK, Cancel, and Edit commands, a Help command is listed in the Setup windows. In  
this version of 1354CFG, the Help files are unavailable.  
Figure 23: 1354CFG Setup  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 27  
Vancouver Design Center  
Setup Parameter Edit  
When a selection is highlighted in the Setup window and Edit is clicked, a Setup Parameter Edit  
window is displayed for parameter editing. The Setup Parameter Edit windows for Register  
Location, Memory Location, and Memory Size respectively are shown below.  
Figure 24: 1354CFG Setup Parameter Edit For Register Location, Memory Location, and Memory Size.  
Help Menu  
There are three files in the Help menu.  
• Help: not available in this version of 1354CFG.  
• Help on Help: not available in this version of 1354CFG.  
• About: displays copyright and program version information.  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-001-03  
Page 28  
Epson Research and Development  
Vancouver Design Center  
Comments  
It is assumed that the 1354CFG user is familiar with SED1354 hardware and software. Refer to the  
SED1354 “Functional Hardware Specification,” document number X19A-A-002-xx, and the  
SED1354 “Programming Notes and Examples” manual, document number X19A-G-002-xx for  
information.  
In addition, the 1354CFG user must know the hardware setup for the panel and CRT, and the setup  
for the given hardware platform (such as memory addresses and memory speed).  
Sample Program Messages  
ERROR: Could not open <filename>.  
Could not open the 1354 utility called <filename>. This message is generated from the command  
line: 1354CFG filename script.ini.  
ILLEGAL VALUE: Choose between 8 and 800, in multiples of 8 pixels.  
The user entered an invalid number when changing the Panel X Resolution.  
ERROR: Failed to open the file!  
The selected program does not have the HAL structure, therefore cannot be opened by 1354CFG.  
SED1354  
X19A-B-001-03  
1354CFG.EXE Configuration Program  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354SHOW Demonstration Program  
Document Number: X19A-B-002-04  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-002-04  
1354SHOW Demonstration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354SHOW  
1354SHOW demonstrates SED1354 display capabilities by drawing a pattern image at different  
pixel depths (i.e. 16 bits-per-pixel, 2 bits-per-pixel, etc.) on the display.  
The 1354SHOW display utility must be configured and/or compiled to work with your hardware  
platform. Consult documentation for the program 1354CFG.EXE which can be used to configure  
1354SHOW.  
This software is designed to work in both embedded and personal computer (PC) environments. For  
the embedded environment, it is assumed that the system has a means of downloading software from  
the PC to the target platform. Typically this is done by serial communications, where the PC uses a  
terminal program to send control commands and information to the target processor. Alternatively,  
the PC can program an EPROM, which is then placed in the target platform. Some target platforms  
can also communicate with the PC via a parallel port connection, or an Ethernet connection.  
SED1354 Supported Evaluation Platforms  
1354SHOW has been tested with the following SED1354 supported evaluation platforms:  
• PC system with an Intel 80x86 processor.  
• M68332BCC (Business Card Computer) board, revision B, with a Motorola MC68332  
processor.  
• M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola  
M68EC000 processor.  
• SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.  
If the platform you are using is different from the above, please see the SED1354 “Programming  
Notes and Examples” manual, document number X19A-G-002-xx.  
Installation  
PC platform: copy the file 1354SHOW.EXE to a directory that is in the DOS path on your hard  
drive.  
Embedded platform: download the program 1354SHOW to the system.  
1354SHOW Demonstration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-002-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Usage  
PC platform: at the prompt, type 1354show [b=??] [/a] [/lcd] [/crt]  
[/vertical] [/?].  
Embedded platform: execute 1354showand at the prompt, type the command line argument.  
Where:  
b=??  
starts 1354SHOW at a user specified bits-per-pixel (bpp)  
level, where ?? can be: 1, 2, 4, 8, 15, or 16  
/a  
automatically cycles through all video modes  
displays on the LCD panel  
displays on the CRT  
/lcd  
/crt  
/vertical  
/?  
displays vertical line pattern  
displays the help screen  
/noinit  
bypasses register initialization  
Comments  
• 1354SHOW cannot show a greater color depth than the display allows.  
• The PC must not have more than 12M bytes of system memory when used with the  
SDU1354B0C board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• To determine if the CRT will operate correctly when using a dual panel, refer to the “Maximum  
Frame Rates” table in the SED1354 “Functional Hardware Specification,” document number  
X19A-A-002-xx.  
• When editing in 1354CFG with CRT enabled and panel disabled, select “Single Panel” from the  
“Edit Panel Setup” submenu.  
• When a CRT is enabled, the CRT settings will override the panel settings. If a panel is also used,  
the CRT timing values will have to be changed to more closely match the panel's timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a panel with a 16-bit interface to the SED1354 when a CRT is also attached.  
Program Messages  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
ERROR: Did not detect SED1354.  
The HAL was unable to read the revision code register on the SED1354. Ensure that the SED1354  
hardware is installed and that the hardware platform has been set up correctly.  
SED1354  
X19A-B-002-04  
1354SHOW Demonstration Program  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354SPLT Display Utility  
Document Number: X19A-B-003-04  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-003-04  
1354SPLT Display Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354SPLT  
1354SPLT demonstrates SED1354 split screen capability by showing two different areas of  
display memory on the screen simultaneously. Screen 1 shows horizontal bars, and Screen 2  
shows vertical bars.  
Screen 1 memory is located at the start of the display buffer. Screen 2 memory is located immedi-  
ately after Screen 1 in the display buffer. On user input or elapsed time, the line compare register  
value is changed to adjust the amount of area displayed on either screen.  
The 1354SPLT display utility must be configured and/or compiled to work with your hardware  
platform. Consult documentation for the program 1354CFG.EXE which can be used to configure  
1354SPLT.  
This software is designed to work in both embedded and personal computer (PC) environments. For  
the embedded environment, it is assumed that the system has a means of downloading software from  
the PC to the target platform. Typically this is done by serial communications, where the PC uses a  
terminal program to send control commands and information to the target processor. Alternatively,  
the PC can program an EPROM, which is then placed in the target platform. Some target platforms  
can also communicate with the PC via a parallel port connection, or an Ethernet connection.  
SED1354 Supported Evaluation Platforms  
1354SPLT has been tested with the following SED1354 supported evaluation platforms:  
• PC system with an Intel 80x86 processor.  
• M68332BCC (Business Card Computer) board, revision B, with a Motorola MC68332  
processor.  
• M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola  
M68EC000 processor.  
• SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.  
If the platform you are using is different from the above, please see the SED1354 “Programming  
Notes and Examples” manual, document number X19A-G-002-xx.  
Installation  
PC platform: copy the file 1354SPLT.EXE to a directory that is in the DOS path on your hard drive.  
Embedded platform: download the program 1354SPLT to the system.  
1354SPLT Display Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-003-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Usage  
PC platform: at the prompt, type 1354splt [/a].  
Embedded platform: execute 1354spltand at the prompt, type the command line argument.  
Where:  
no argument  
/a  
enables manual split screen operation  
enables automatic split screen operation  
The following keyboard commands are for navigation within the program.  
Manual mode:  
moves Screen 2 up  
moves Screen 2 down  
covers Screen 1 with Screen 2  
displays only Screen 1  
HOME  
END  
Automatic mode:  
Both modes:  
Z
changes the direction of split-screen movement  
B
changes the color depth (bits-per-pixel)  
exits 1354SPLT  
ESC  
1354SPLT Example  
1. Type “1354splt /a” to automatically move the split screen.  
2. Press "b" to change the bits-per-pixel from 1 bit-per-pixel to 2 bits-per-pixel.  
3. Repeat step 2 for the remaining bits-per-pixel colour depths: 1, 2, 4, 8, 15, and 16.  
4. Press <ESC> to exit the program.  
SED1354  
X19A-B-003-04  
1354SPLT Display Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
Comments  
• The PC must not have more than 12M bytes of system memory when used with the  
SDU1354B0C board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• To determine if the CRT will operate correctly when using a dual panel, refer to the “Maximum  
Frame Rates” table in the SED1354 “Functional Hardware Specification,” document number  
X19A-A-002-xx.  
• When editing in 1354CFG with CRT enabled and panel disabled, select “Single Panel” from the  
“Edit Panel Setup” submenu.  
• When a CRT is enabled, the CRT settings will override the panel settings. If a panel is also used,  
the CRT timing values will have to be changed to more closely match the panel's timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a panel with a 16-bit interface to the SED1354 when a CRT is also attached.  
Program Messages  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
ERROR: Did not detect SED1354.  
The HAL was unable to read the revision code register on the SED1354. Ensure that the SED1354  
hardware is installed and that the hardware platform has been set up correctly.  
1354SPLT Display Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-003-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-003-04  
1354SPLT Display Utility  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354VIRT Display Utility  
Document Number: X19A-B-004-04  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-004-04  
1354VIRT Display Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354VIRT  
1354VIRT shows the virtual display capability of the SED1354. A virtual display is where the  
image to be displayed is larger than the physical display device (CRT or LCD) and can be viewed  
by panning and scrolling. 1354VIRT allows the display device to be used as a “window” to view the  
entire image.  
The 1354VIRT display utility must be configured and/or compiled to work with your hardware  
platform. Consult documentation for the program 1354CFG.EXE which can be used to configure  
1354VIRT.  
This software is designed to work in both embedded and personal computer (PC) environments. For  
the embedded environment, it is assumed that the system has a means of downloading software from  
the PC to the target platform. Typically this is done by serial communications, where the PC uses a  
terminal program to send control commands and information to the target processor. Alternatively,  
the PC can program an EPROM, which is then placed in the target platform. Some target platforms  
can also communicate with the PC via a parallel port connection, or an Ethernet connection.  
SED1354 Supported Evaluation Platforms  
1354VIRT has been tested with the following SED1354 supported evaluation platforms:  
• PC system with an Intel 80x86 processor.  
• M68332BCC (Business Card Computer) board, revision B, with a Motorola MC68332  
processor.  
• M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola  
M68EC000 processor.  
• SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.  
If the platform you are using is different from the above, please see the SED1354 “Programming  
Notes and Examples” manual, document number X19A-G-002-xx.  
Installation  
PC platform: copy the file 1354VIRT.EXE to a directory that is in the DOS path on your hard drive.  
Embedded platform: download the program 1354VIRT to the system.  
1354VIRT Display Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-004-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Usage  
PC platform: at the prompt, type 1354virt[/A][/W=???].  
Embedded platform: execute 1354virtand at the prompt, type the command line argument.  
Where:  
no argument  
/a  
panning and scrolling is performed manually  
panning and scrolling is performed automatically  
/w=???  
for manual mode, specifies the width of the virtual  
display which must be a multiple of 8 and less than  
1024 (the default width is 1024 pixels); the maximum  
height is based on the display memory and the width  
of the virtual display  
The following keyboard commands are for navigation within the program.  
Manual mode:  
scrolls up  
scrolls down  
pans to the left  
pans to the right  
HOME  
moves the display screen so that the upper right of the  
virtual screen shows in the upper right of the display  
END  
Z
moves the display screen so that the lower left of the  
virtual screen shows in the lower left of the display  
Automatic mode:  
Both modes:  
changes the direction of screen  
B
changes the color depth (bits-per-pixel)  
exits 1354VIRT  
ESC  
1354VIRT Example  
1. Type "1354virt /a" to automatically pan and scroll.  
2. Press "b" to change the bits-per-pixel from 1 bit-per-pixel to 2 bits-per-pixel.  
3. Repeat steps 1 and 2 for the following bits-per-pixel values:  
1, 2, 4, 8, 15, and 16.  
4. Press <ESC> to exit the program.  
SED1354  
X19A-B-004-04  
1354VIRT Display Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
Comments  
• The maximum virtual display width is 1024 pixels, except in 15 and 16 bits-per-pixel mode  
where the maximum width is 1023 pixels.  
• The PC must not have more than 12M bytes of system memory when used with the  
SDU1354B0C board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• To determine if the CRT will operate correctly when using a dual panel, refer to the “Maximum  
Frame Rates” table in the SED1354 “Functional Hardware Specification,” document number  
X19A-A-002-xx.  
• When editing in 1354CFG with CRT enabled and panel disabled, select “Single Panel” from the  
“Edit Panel Setup” submenu.  
• When a CRT is enabled, the CRT settings will override the panel settings. If a panel is also used,  
the CRT timing values will have to be changed to more closely match the panel's timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a panel with a 16-bit interface to the SED1354 when a CRT is also attached.  
Program Messages  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
ERROR: Did not detect SED1354.  
The HAL was unable to read the revision code register on the SED1354. Ensure that the SED1354  
hardware is installed and that the hardware platform has been set up correctly.  
1354VIRT Display Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-004-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-004-04  
1354VIRT Display Utility  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354PLAY Diagnostic Utility  
Document Number: X19A-B-005-04  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-005-04  
1354PLAY Diagnostic Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354PLAY  
1354PLAY allows the user to read/write to all SED1354 registers/look up tables and display  
memory.  
1354PLAY is similar to the DOS DEBUG program; commands are received from the standard input  
device, and output is sent to the standard output device (console for Intel, terminal for embedded  
platforms). This utility requires the target platform to support standard IO (stdio).  
1354PLAY commands can be entered interactively using a keyboard/monitor or they can be  
executed from a script file. Scripting is a powerful feature which allows command sequences to be  
used repeatedly without re-entry.  
The 1354PLAY display utility must be configured and/or compiled to work with your hardware  
platform. Consult documentation for the program 1354CFG.EXE which can be used to configure  
1354PLAY.  
This software is designed to work in both embedded and personal computer (PC) environments. For  
the embedded environment, it is assumed that the system has a means of downloading software from  
the PC to the target platform. Typically this is done by serial communications, where the PC uses a  
terminal program to send control commands and information to the target processor. Alternatively,  
the PC can program an EPROM, which is then placed in the target platform. Some target platforms  
can also communicate with the PC via a parallel port connection, or an Ethernet connection.  
SED1354 Supported Evaluation Platforms  
1354PLAY has been tested with the following SED1354 supported evaluation platforms:  
• PC system with an Intel 80x86 processor.  
• M68332BCC (Business Card Computer) board, revision B, with a Motorola MC68332  
processor.  
• M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola  
M68EC000 processor.  
• SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.  
If the platform you are using is different from the above, please see the SED1354 “Programming  
Notes and Examples” manual, document number X19A-G-002-xx.  
Installation  
PC platform: copy the file 1354PLAY.EXE to a directory that is in the DOS path on your hard  
drive.  
Embedded platform: download the program 1354PLAY to the system.  
1354PLAY Diagnostic Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-005-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Usage  
PC platform: at the prompt, type 1354play [/?].  
Embedded platform: execute 1354playand at the prompt, type the command line argument.  
Where: /? displays program revision information.  
The following commands are valid within the 1354PLAY program.  
X index [data]  
- Reads/writes the registers.  
- Writes data to the register specified by the index when  
“data” is specified; otherwise the register is read.  
XA  
- Reads all registers.  
D index [data1 data2 data3]  
- Reads/writes DAC values.  
- Writes data to the DAC index when “data” is  
specified; otherwise the register is read.  
- Data consists of 3 bytes: 1 red, 1 green, 1 blue.  
DA  
- Reads all DAC values.  
L index [data1 data2 data3]  
- Reads/writes Look-Up Table (LUT) values.  
- Writes data to the LUT index when “data” is  
specified; otherwise the LUT index is read.  
- Data consists of 3 bytes: 1 red, 1 green, 1 blue.  
LA  
- Reads all LUT values.  
F[W] addr1 addr2 data . . .  
- Fills bytes or words from address 1 to address 2 with  
data.  
- Data can be multiple values (e.g. F 0 20 1 2 3 4  
fills 0 to 0x20 with a repeating pattern of 1 2 3 4).  
R[W] addr [count]  
- Reads number of bytes or words from the address  
specified by “addr”. If “count” is not specified, then  
16 bytes/words are read.  
W[W] addr data . . .  
- Writes bytes or words of data to address specified  
by “addr”.  
- Data can be multiple values (e.g. W 0 1 2 3 4  
writes the byte values 1 2 3 4 starting at address 0).  
I
- Initializes the chip with user specified configuration.  
M [bpp]  
- Gets current mode information.  
- If “bpp” is specified then set that pixel depth.  
SED1354  
X19A-B-005-04  
1354PLAY Diagnostic Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
P 1|0  
- 1 = set/0 = reset hardware suspend (power mode).  
- This feature only works on the SDU1354B0B ISA  
evaluation board while operating in the x86  
environment.  
- Do not use with the SDU1354B0C evaluation board.  
H [lines]  
- Halts after lines of display. This feature halts the  
display during long read operations to prevent data  
from scrolling off the display.  
- Set 0 to disable.  
Q
?
- Quits this utility.  
- Displays Help information.  
1354PLAY Example  
1. Type "1354PLAY" to start the program.  
2. Type "?" for help.  
3. Type "i" to initialize the registers.  
4. Type "xa" to display the contents of the registers.  
5. Type "x 5" to read register 5.  
6. Type "x 3 10" to write 10 hex to register 3.  
7. Type "f 0 ffff aa" to fill the first FFFF hex bytes of display memory with AA hex.  
8. Type "f 0 1fffff aa" to fill 2M bytes of display memory.  
9. Type "r 0 ff" to read the first 100 hex bytes of display memory.  
10. Type "q" to exit the program.  
Scripting  
1354PLAY can be driven by a script file. This is useful when:  
• there is no display output and a current register status is required  
• various registers must be quickly changed to view results.  
A script file is an ASCII text file with one 1354PLAY command per line. All scripts must end with  
a “q” (quit) command.  
On a PC platform, a typical script command line is: “1354PLAY < dumpregs.scr > results.”  
This causes the file “dumpregs.scr” to be interpreted and the results to be sent to the file “results.”  
Example: Create an ASCII text file that contains the commands i, xa, and q.  
; This file initializes the SED1354 and reads the registers  
; Note: after a semi-colon (;), all characters on a line are ignored  
i
xa  
q
1354PLAY Diagnostic Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-005-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
Comments  
• All numeric values are considered to be hexadecimal unless identified otherwise. For example,  
10 = 10h = 16 decimal; 10t = 10 decimal; 010b = 2 decimal.  
• Redirecting commands from a script file (PC platform) allows those commands to be executed as  
though they were typed.  
• The PC must not have more than 12M bytes of memory when used with the SDU1354B0C  
board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• To determine if the CRT will operate correctly when using a dual panel, refer to the “Maximum  
Frame Rates” table in the SED1354 “Functional Hardware Specification,” document number  
X19A-A-002-xx.  
• When editing in 1354CFG with CRT enabled and panel disabled, select “Single Panel” from the  
“Edit Panel Setup” submenu.  
• When a CRT is enabled, the CRT settings will override the panel settings. If a panel is also used,  
the CRT timing values will have to be changed to more closely match the panel's timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a panel with a 16-bit interface to the SED1354 when a CRT is also attached.  
Program Messages  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
SED1354  
X19A-B-005-04  
1354PLAY Diagnostic Utility  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354BMP Demonstration Program  
Document Number: X19A-B-006-03  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-006-03  
1354BMP Demonstration Program  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354BMP  
1354BMP demonstrates SED1354 display capabilities by rendering bitmap images on the display.  
The 1354BMP display utility is designed to operate in a personal computer (PC) DOS environment  
and must be configured to work with your display hardware. Consult documentation for the program  
1354CFG.EXE which can be used to configure 1354BMP.  
1354BMP is not supported on non-PC platforms.  
Installation  
Usage  
Copy the file 1354BMP.EXE to a directory that is in the DOS path on your hard drive.  
At the prompt, type 1354bmp bmp file [/a] [/lcd] [/crt] [/?].  
Where:  
bmp file  
/a  
displays the bmp format file  
automatically exits after 5 seconds  
displays the image on a LCD  
displays the image on a CRT  
displays the Help screen  
/lcd  
/crt  
/?  
Comments  
• 1354BMP only currently decodes Windows BMP format images.  
• The PC must not have more than 12M bytes of memory when used with the SDU1354B0C  
board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• To determine if the CRT will operate correctly when using a dual panel, refer to the “Maximum  
Frame Rates” table in the SED1354 “Functional Hardware Specification,” document number  
X19A-A-002-xx.  
• When editing in 1354CFG with CRT enabled and panel disabled, select “Single Panel” from the  
“Edit Panel Setup” submenu.  
• When a CRT is enabled, the CRT settings will override the panel settings. If a panel is also used,  
the CRT timing values will have to be changed to more closely match the panel's timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a panel with a 16-bit interface to the SED1354 when a CRT is also attached.  
1354BMP Demonstration Program  
Issue Date: 98/10/29  
SED1354  
X19A-B-006-03  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Program Messages  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
ERROR: Did not detect SED1354.  
The HAL was unable to read the revision code register on the SED1354. Ensure that the SED1354  
hardware is installed and that the hardware platform has been set up correctly.  
SED1354  
X19A-B-006-03  
1354BMP Demonstration Program  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
1354PWR Software Suspend Power  
Sequencing Utility  
Document Number: X19A-B-007-03  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-007-03  
1354PWR Software Suspend Power Sequencing Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1354PWR  
The 1354PWR Software Suspend Power Sequencing Utility enables or disables the SED1354  
software suspend mode and LCD.  
Refer to the section titled “LCD Power Sequencing and Power Save Modes” in the SED1354  
“Programming Notes and Examples” manual, document number X19A-G-002-xx. Also, refer to the  
SED1354 “Functional Hardware Specification,” document number X19A-A-002-xx for further  
information.  
The 1354PWR display utility must be configured and/or compiled to work with your hardware  
platform. Consult documentation for the program 1354CFG.EXE which can be used to configure  
1354PWR.  
This software is designed to work in both embedded and personal computer (PC) environments. For  
the embedded environment, it is assumed that the system has a means of downloading software from  
the PC to the target platform. Typically this is done by serial communications, where the PC uses a  
terminal program to send control commands and information to the target processor. Alternatively,  
the PC can program an EPROM, which is then placed in the target platform. Some target platforms  
can also communicate with the PC via a parallel port connection, or an Ethernet connection.  
SED1354 Supported Evaluation Platforms  
1354PWR has been tested with the following SED1354 supported evaluation platforms:  
• PC system with an Intel 80x86 processor.  
• M68332BCC (Business Card Computer) board, revision B, with a Motorola MC68332  
processor.  
• M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola  
M68EC000 processor.  
• SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.  
If the platform you are using is different from the above, please see the SED1354 “Programming  
Notes and Examples” manual, document number X19A-G-002-xx.  
Installation  
PC platform: copy the file 1354PWR.EXE to a directory that is in the DOS path on your hard drive.  
Embedded platform: download the program 1354PWR to the system.  
1354PWR Software Suspend Power Sequencing Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-007-03  
Page 4  
Epson Research and Development  
Vancouver Design Center  
Usage  
PC platform: at the prompt, type 1354pwr [/software /lcd] [/enable /disable]  
[/i] [/?].  
Embedded platform: execute 1354pwrand at the prompt, type the command line argument.  
Where:  
/software  
/lcd  
selects software suspend  
selects the LCD  
/enable  
/disable  
/i  
activates software suspend or the LCD  
deactivates software suspend or the LCD  
initializes registers  
/?  
displays this usage message  
Examples  
To enable software suspend mode, use the following arguments:  
/software /enable  
To disable software suspend mode, use the following arguments:  
/software /disable  
To enable the LCD, use the following arguments:  
/lcd /enable  
To disable the LCD, use the following arguments:  
/lcd /disable  
Comments  
• The /iargument is to be used when the registers have not been previously initialized.  
• The PC must not have more than 8M bytes of memory when used with the SDU1354B0B board.  
• Follow simultaneous display guidelines for correct simultaneous display operation.  
• Do not use a dual panel with a CRT. Select “Panel Single” whenever using a CRT, even if a  
panel is not attached. Also, the panel section of 1354CFG must be programmed to “Single  
Panel.”  
• When a CRT is enabled, the settings for the CRT will override the panel settings. If a panel is  
also used, the CRT timing values will have to be changed to more closely match the panel's  
timing.  
• A CRT cannot show 15 or 16 bits-per-pixel.  
• Do not attach a 16-bit panel when using the CRT.  
SED1354  
X19A-B-007-03  
1354PWR Software Suspend Power Sequencing Utility  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
Program Messages  
ERROR: Unknown command line argument.  
An invalid command line argument was entered. Enter a valid command line argument.  
ERROR: Already selected SOFTWARE.  
Command line argument /softwarewas selected more than once. Select /softwareonly once.  
ERROR: Already selected HARDWARE.  
Command line argument /hardwarewas selected more than once. Select /hardwareonly once.  
ERROR: Already selected ENABLE.  
Command line argument /enablewas selected more than once. Select /enableonly once.  
ERROR: Already selected DISABLE.  
Command line argument /disablewas selected more than once. Select /disableonly once.  
ERROR: Select /software or /hardware.  
Neither command line argument /softwareor /hardwarewas selected. Select /softwareor  
/hardware.  
ERROR: Select /enable or /disable.  
Neither command line argument /enableor /disablewas selected. Select /enableor  
/disable.  
ERROR: Too many devices registered.  
There are too many display devices attached to the HAL. The HAL can only manage 10 devices  
simultaneously.  
ERROR: Could not register SED1354FOA device.  
A 1354 device was not found at the configured addresses. Check the configuration address using the  
1354CFG configuration program.  
ERROR: Did not detect SED1354.  
The HAL was unable to read the revision code register on the SED1354. Ensure that the SED1354  
hardware is installed and that the hardware platform has been set up correctly.  
1354PWR Software Suspend Power Sequencing Utility  
Issue Date: 98/10/29  
SED1354  
X19A-B-007-03  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-B-007-03  
1354PWR Software Suspend Power Sequencing Utility  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
Windows® CE Display Drivers  
Document Number: X19A-E-001-03  
Copyright © 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Microsoft and Windows are registered trademarks of Microsoft Corporation.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-E-001-03  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
Epson Research and Development  
Page 3  
Vancouver Design Center  
WINDOWS® CE DISPLAY DRIVERS  
The Windows CE display drivers are designed to support the SED1354 Color Graphics LCD/CRT  
Controller running under the Microsoft Windows CE operating system. Drivers are available for 4,  
8 and 16 bit-per-pixel modes.  
For updated source code, visit Epson R&D on the World Wide Web at www.erd.epson.com, or  
contact your Seiko Epson or Epson Electronics America sales representative.  
Program Requirements  
Video Controller  
: SED1354  
Display Type  
: LCD or CRT  
: CE Version 2.0  
Windows Version  
Example Driver Builds  
Build for the Hitachi D9000 and ETMA ODO Evaluation Systems  
To build a Windows CE v2.0 display driver for the Hitachi D9000 or ETMA ODO platform follow  
the instructions below. The instructions assume the SDU1354-D9000 evaluation board is plugged  
into slots 6 and 7 on the D9000/ODO platform, and the SEIKO EPSON common interface FPGA  
(ODO.RBF) is used to interface with the SED1354.  
Check to ensure that the DIP switches on the SDU1354-D9000 board are set as follows:  
DIP Switch  
1
2
3
4
ON  
ON  
OFF  
OFF  
1. Install Microsoft Windows NT v4.0.  
2. Install Microsoft Visual C/C++ v5.0.  
3. Install the Microsoft Windows CE Embedded Toolkit (ETK) by running SETUP.EXE from  
the ETK compact disc #1.  
4. Create a new project by following the procedure documented in “Creating a New Project  
Directory” from the Windows CE ETK v2.0. Alternately, use the current “DEMO7” project in-  
cluded with the ETK v2.0. Follow the steps below to create a “SH3 DEMO7” shortcut on the  
Windows NT v4.0 desktop which uses the current “DEMO7” project:  
a. Right click on the “Start” menu on the taskbar.  
b. Click on the item “Open All Users” and the “Start Menu” window will come up.  
c. Click on the icon “Programs”.  
d. Click on the icon “Windows CE Embedded Development Kit”.  
e. Drag the icon “SH3 DEMO1” onto the desktop using the right mouse button.  
f. Click on “Copy Here”.  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
SED1354  
X19A-E-001-03  
Page 4  
Epson Research and Development  
Vancouver Design Center  
g. Rename the icon “SH3 DEMO1” on the desktop to “SH3 DEMO7” by right clicking on  
the icon and choosing “rename”.  
h. Right click on the icon “SH3 DEMO7” and click on “Properties” to bring up the  
“SH3 DEMO7 Properties” window.  
i. Replace the string “DEMO1” under the entry “Target” with “DEMO7”.  
j. Click on “OK” to finish.  
5. Create a sub-directory named SED1354 under \wince\platform\odo\drivers\display.  
6. Copy the source code to the SED1354 subdirectory.  
7. Add an entry for the SED1354 in the file \wince\platform\odo\drivers\display\dirs.  
8. Modify the file PLATFORM.BIB (using any text editor such as NOTEPAD) to set the default  
display driver to the file SED1354.DLL. SED1354.DLL will be created during the build. Note  
that PLATFORM.BIB is located in X:\wince\platform\odo\files (where X: is the drive letter).  
You may replace the following lines in PLATFORM.BIB:  
IF ODO_NODISPLAY !  
IF ODO_DISPLAY_CITIZEN_8BPP  
ddi.dll  
ENDIF  
$(_FLATRELEASEDIR)\citizen.dll  
NK SH  
NK SH  
IF ODO_DISPLAY_CITIZEN_2BPP  
ddi.dll  
$(_FLATRELEASEDIR)\citizen.dll  
ENDIF  
IF ODO_DISPLAY_CITIZEN_8BPP !  
IF ODO_DISPLAY_CITIZEN_2BPP !  
ddi.dll  
ENDIF  
ENDIF  
ENDIF  
$(_FLATRELEASEDIR)\odo2bpp.dll  
NK SH  
with this line:  
ddi.dll  
$(_FLATRELEASEDIR)\SED1354.dll  
NK SH  
9. Edit the file MODE.H (located in X:\wince\platform\odo\drivers\display\SED1354) to set the  
desired screen resolution, color depth (bpp) and panel type. The sample code defaults to a  
640x480 color dual passive 16-bit LCD panel. To support one of the other listed panels,  
change the #define statement.  
SED1354  
X19A-E-001-03  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
Epson Research and Development  
Page 5  
Vancouver Design Center  
10. Edit the file PLATFORM.REG to set the same screen resolution and color depth (bpp) as in  
MODE.H. PLATFORM.REG is located in X:\wince\platform\odo\files. The display driver  
section of PLATFORM.REG should be:  
; Default for EPSON Display Driver  
; 640x480 at 8bits/pixel  
; Useful Hex Values (for the lazy developer types)  
; 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0  
[HKEY_LOCAL_MACHINE\Drivers\Display\SED1354]  
"CxScreen"=dword:280  
"CyScreen"=dword:1E0  
"Bpp"=dword:8  
11. Generate the proper building environment by double-clicking on the sample project icon  
(i.e., SH3 DEMO7).  
12. Type BLDDEMO <ENTER> at the DOS prompt of the SH3 DEMO7 window to generate a  
Windows CE image file (NK.BIN).  
Build For CEPC (X86)  
To build a Windows CE v2.0 display driver for the CEPC (X86) platform using a SDU1354B0C  
evaluation board, follow the instructions below:  
1. Install Microsoft Windows NT v4.0.  
2. Install Microsoft Visual C/C++ v5.0.  
3. Install the Microsoft Windows CE Embedded Toolkit (ETK) by running SETUP.EXE from  
the ETK compact disc #1.  
4. Create a new project by following the procedure documented in “Creating a New Project  
Directory” from the Windows CE ETK v2.0. Alternately, use the current “DEMO7” project in-  
cluded with the ETK v2.0. Follow the steps below to create a “X86 DEMO7” shortcut on the  
Windows NT v4.0 desktop which uses the current “DEMO7” project:  
a. Right click on the “Start” menu on the taskbar.  
b. Click on the item “Open All Users” and the “Start Menu” window will come up.  
c. Click on the icon “Programs”.  
d. Click on the icon “Windows CE Embedded Development Kit”.  
e. Drag the icon “X86 DEMO1” onto the desktop using the right mouse button.  
f. Click on “Copy Here”.  
g. Rename the icon “X86 DEMO1” on the desktop to “X86 DEMO7” by right clicking on  
the icon and choosing “rename”.  
h. Right click on the icon “X86 DEMO7” and click on “Properties” to bring up the  
“X86 DEMO7 Properties” window.  
i. Replace the string “DEMO1” under the entry “Target” with “DEMO7”.  
j. Click on “OK” to finish.  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
SED1354  
X19A-E-001-03  
Page 6  
Epson Research and Development  
Vancouver Design Center  
5. Create a sub-directory named SED1354 under \wince\platform\cepc\drivers\display.  
6. Copy the source code to the SED1354 subdirectory.  
7. Add an entry for the SED1354 in the file \wince\platform\cepc\drivers\display\dirs.  
SED1354  
X19A-E-001-03  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
Epson Research and Development  
Page 7  
Vancouver Design Center  
8. Modify the file CONFIG.BIB (using any text editor such as NOTEPAD) to set the system  
RAM size and the SED1354 IO port and display buffer address mapping. Note that  
CONFIG.BIB is located in X:\wince\platform\cepc\files (where X: is the drive letter). Since  
the SDU1354B0C maps the IO port to 0xC00000 and memory to 0xE00000, the CEPC  
machine should use the CMOS setup to create a 4M byte hole from address 0xC00000 to  
0xFFFFFF. The following lines should be in CONFIG.BIB:  
NK 80200000 00500000 RAMIMGE  
RAM 80700000 00500000 RAM  
Note  
SED1354.H should include the following lines:  
#define PhysicalVmemSize 0x00200000L  
#define PhysicalPortAddr 0x00C00000L  
#define PhysicalVmemAddr 0x00E00000L  
9. Edit the file PLATFORM.BIB (located in X:\wince\platform\cepc\files) to set the default dis-  
play driver to the file SED1354.DLL. SED1354.DLL will be created during the build in  
step 13.  
You may replace the following lines in PLATFORM.BIB:  
IF CEPC_DDI_VGA2BPP  
ddi.dll  
ENDIF  
$(_FLATRELEASEDIR)\ddi_vga2.dll NK SH  
IF CEPC_DDI_VGA8BPP  
ddi.dll  
$(_FLATRELEASEDIR)\ddi_vga8.dll NK SH  
ENDIF  
IF CEPC_DDI_VGA2BPP !  
IF CEPC_DDI_VGA8BPP !  
ddi.dll  
ENDIF  
$(_FLATRELEASEDIR)\ddi_s364.dll NK SH  
ENDIF  
with this line:  
ddi.dll  
$(_FLATRELEASEDIR)\SED1354.dll  
NK SH  
10. Edit the file MODE.H (located in X:\wince\platform\odo\drivers\display\SED1354) to set the  
desired screen resolution, color depth (bpp) and panel type. The sample code defaults to  
640x480 color dual passive 16-bit LCD panel. To support one of the other listed panels,  
change the #define statement.  
11. Edit the file PLATFORM.REG to set the same screen resolution and color depth (bpp) as in  
MODE.H. PLATFORM.REG is located in X:\wince\platform\cepc\files. The display driver  
section of PLATFORM.REG should be:  
; Default for EPSON Display Driver  
; 640x480 at 8bits/pixel  
; Useful Hex Values (for the lazy developer types)  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
SED1354  
X19A-E-001-03  
Page 8  
Epson Research and Development  
Vancouver Design Center  
; 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0  
[HKEY_LOCAL_MACHINE\Drivers\Display\SED1354]  
"CxScreen"=dword:280  
"CyScreen"=dword:1E0  
"Bpp"=dword:8  
12. Generate the proper building environment by double-clicking on the sample project icon  
(i.e. X86 DEMO7).  
13. Type BLDDEMO <ENTER> at the DOS prompt of the X86 DEMO7 window to generate a  
Windows CE image file (NK.BIN).  
SED1354  
X19A-E-001-03  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
Epson Research and Development  
Page 9  
Vancouver Design Center  
Example Installation  
Installation for Hitachi D9000 and ETMA ODO  
Follow the procedures from your Hitachi D9000 manual and download the following to the D9000  
platform:  
1. Download SEIKO EPSON’s common interface FPGA code (ODO.RBF) to the EEPROM of  
the D9000 system.  
2. Download the Windows CE binary ROM image (NK.BIN) to the FLASH memory of the  
D9000 system.  
Installation for CEPC Environment  
Windows CE v2.0 can be loaded on a PC using a floppy drive or a hard drive. The two methods are  
described below:  
1. To load CEPC from a floppy drive:  
a. Create a DOS bootable floppy disk.  
b. Edit CONFIG.SYS on the floppy disk to contain the following line only.  
device=a:\himem.sys  
c. Edit AUTOEXEC.BAT on the floppy disk to contain the following lines.  
mode com1:9600,n,8,1  
loadcepc /B:9600 /C:1 /D:2 c:\wince\release\nk.bin  
d. Copy LOADCEPC.EXE from c:\wince\public\common\oak\bin to the bootable  
floppy disk.  
e. Confirm that NK.BIN is located in c:\wince\release.  
f. Reboot the system from the bootable floppy disk.  
2. To load CEPC from a hard drive:  
a. Copy LOADCEPC.EXE to the root directory of the hard drive.  
b. Edit CONFIG.SYS on the hard drive to contain the following line only.  
device=c:\himem.sys  
c. Edit AUTOEXEC.BAT on the hard drive to contain the following lines.  
mode com1:9600,n,8,1  
loadcepc /B:9600 /C:1 /D:2 c:\wince\release\nk.bin  
d. Confirm that NK.BIN is located in c:\wince\release.  
e. Reboot the system from the hard drive.  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
SED1354  
X19A-E-001-03  
Page 10  
Epson Research and Development  
Vancouver Design Center  
Comments  
• Some of the D9000 systems may not be able to provide enough current for your LCD panel to  
operate properly. If this is the case, an external power supply should be connected to the panel.  
• The Seiko Epson Common Interface FPGA code assumes the display buffer starts at  
0x12200000 and IO starts at 0x12000000. If the display buffer or IO location is modified, the  
corresponding entries in the file SED1354.H have to be changed. SED1354.H is located in  
X:\wince\platform\odo\drivers\display\SED1354 (where X: is the drive letter).  
• The External RAMDAC is decoded at the even addresses on a little-endian system. The  
RAMDAC registers are mapped as follows:  
• RAMDAC Pixel Read Mask Register is REG[28h]  
• RAMDAC Read Mode Address Register is REG[2Ah]  
• RAMDAC Write Mode Address Register is REG[2Ch]  
• RAMDAC Palette Data Register is REG[2Eh]  
• The driver is CPU independent but will require another ODO.RBF file to support other CPUs  
when running on the Hitachi D9000 or ETMA ODO platform. Please check with Seiko Epson for  
the latest supported CPU ODO files.  
• As the time of this printing, the drivers have been tested on the SH-3 and x86 CPUs and have  
only been run with v2.0 of the ETK. We are constantly updating the drivers so please check our  
website at www.erd.epson.com, or contact your Seiko Epson or Epson Electronics America sales  
representative.  
SED1354  
X19A-E-001-03  
Windows® CE Display Drivers  
Issue Date: 98/12/21  
SED1354 Color Graphics LCD/CRT Controller  
SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual  
Document Number: X19A-G-004-05  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
3
4
5
6
Installation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
LCD / RAMDAC Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
CPU / BUS Interface Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
6.1 ISA Bus Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
6.2 Non-ISA Bus Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.3 DRAM Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.4 Decode Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.5 Clock Input Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.6 Monochrome LCD Panel Support . . . . . . . . . . . . . . . . . . . . . . . . .15  
6.7 Color Passive LCD Panel Support . . . . . . . . . . . . . . . . . . . . . . . . .15  
6.8 Color TFT LCD Panel Support . . . . . . . . . . . . . . . . . . . . . . . . . .15  
6.9 External CMOS RAMDAC Support . . . . . . . . . . . . . . . . . . . . . . . .15  
6.10 Power Save Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
6.11 Core VDD Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
6.12 IO VDD Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
6.13 Adjustable LCD Panel Negative Power Supply . . . . . . . . . . . . . . . . . . . .16  
6.14 Adjustable LCD Panel Positive Power Supply . . . . . . . . . . . . . . . . . . . .16  
6.15 CPU/Bus Interface Header Strips . . . . . . . . . . . . . . . . . . . . . . . . . .17  
6.16 Schematic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
7
8
Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Schematic Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 2-1: Configuration DIP Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2-2: Host Bus Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2-3: Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3-1: LCD Signal Connector (J6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4-1: CPU/BUS Connector (H1) Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4-2: CPU/BUS Connector (H2) Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 5-1: Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
List of Figures  
Figure 1: SED1354B0C Schematic Diagram (1 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 2: SED1354B0C Schematic Diagram (2 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 3: SED1354B0C Schematic Diagram (3 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 4: SED1354B0C Schematic Diagram (4 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 5: SED1354B0C Schematic Diagram (5 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 6: SED1354B0C Schematic Diagram (6 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This manual describes the setup and operation of the SDU1354B0C Rev. 1.0 Evaluation Board when  
used with the SED1354 Color Graphics LCD/CRT Controller in the ISA bus environment.  
For more information regarding the SED1354, refer to the SED1354 Hardware Functional Specifi-  
cation, document number X19A-A-002-xx.  
1.1 Features  
• 128 pin QFP15 package.  
• SMT technology for all appropriate devices.  
• 4/8-bit monochrome passive LCD panels support.  
• 4/8/16-bit color passive LCD panels support.  
• 9/12/18-bit LCD TFT panels support.  
• External RAMDAC support.  
• 16-bit ISA bus support.  
• Oscillator support for CLKI (up to 40.0MHz).  
• 5.0V 1M x 16 EDO-DRAM.  
• Support for software power save modes.  
• 3.3V Core VDD power supply.  
• Selectable 3.3V or 5.0V IO VDD power supply (via jumper JP2).  
• On-board adjustable LCD BIAS negative power supply (-14V to -24V).  
• On-board adjustable LCD BIAS positive power supply (+23V to +40V).  
• CPU/Bus interface header strips for non-ISA bus support.  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Installation and Configuration  
The SED1354 has 16 configuration inputs MD[15:0] which are read on the rising edge of RESET#.  
SED1354 configuration inputs MD[5:1] are fully configurable on this evaluation board for different  
host bus selections; one five-position DIP switch is provided for this purpose. All remaining config-  
uration inputs are hard-wired. See the SED1354 Hardware Functional Specification, document  
number X19A-A-002-xx for more information.  
When using the SDU1354B0C with the ISA bus, the following are the recommended settings.  
Table 2-1: Configuration DIP Switch Settings  
Switch Signal  
SW1-1 MD1  
SW1-2 MD2  
SW1-3 MD3  
SW1-4 MD4  
SW1-5 MD5  
Closed  
Open  
See “Host Bus Selection” table below See “Host Bus Selection” table below  
Little Endian  
Big Endian  
Wait# signal is active high  
Wait# signal is active low  
The polarity of the Configuration DIP Switches is closed = 1 or high; open = 0 or low.  
= required settings for ISA bus support.  
Table 2-2: Host Bus Selection  
MD3  
MD2  
MD1  
Option  
Host Bus Interface  
SH-3 bus interface  
0
0
0
1
0
0
0
1
0
1
1
x
1
0
1
x
2
3
4
5
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. ISA bus)  
Reserved  
Closed = 1 or high; open = 0 or low.  
= required settings for ISA bus support.  
Table 2-3: Jumper Settings  
Description  
BS# signal pin 6 selection  
3.3V/5.0V IO VDD selection  
DRDY signal selection  
1-2  
2-3  
NC, signal may be needed for  
68K bus and other bus support  
JP1  
JP2  
JP3  
Pulled-up to IO VDD for ISA bus  
5.0V IO VDD  
3.3V IO VDD  
Support for all panels which  
require MOD/DRDY signal  
Support for 8-bit panels which  
require 2 shift clocks  
.
= default settings for ISA bus and LCD panel support.  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
 
 
Epson Research and Development  
Page 9  
Vancouver Design Center  
3 LCD / RAMDAC Interface Pin Mapping  
Table 3-1: LCD Signal Connector (J6)  
Color TFT  
Color Passive  
Mono Passive  
External  
RAMDAC  
(CRT)  
SED1354  
Connector  
Pin No.  
Pin Names  
9-bit  
12-bit  
18-bit  
4-bit  
8-bit  
16-bit  
4-bit  
8-bit  
FPDAT0  
FPDAT1  
FPDAT2  
FPDAT3  
FPDAT4  
FPDAT5  
FPDAT6  
FPDAT7  
FPDAT8  
FPDAT9  
FPDAT10  
FPDAT11  
FPDAT12  
FPDAT13  
FPDAT14  
FPDAT15  
FPSHIFT  
DRDY  
1
R2  
R1  
R0  
G2  
G1  
G0  
B2  
B1  
B0  
R3  
R2  
R1  
G3  
G2  
G1  
B3  
B2  
B1  
R0  
R5  
R4  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
LD0  
LD1  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
3
5
R3  
LD2  
7
G5  
LD3  
9
G4  
UD0  
UD1  
UD2  
UD3  
UD0  
UD1  
UD2  
UD3  
LD4  
UD0  
UD1  
UD2  
UD3  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
G3  
B5  
B4  
B3  
R2  
LD5  
DACP7  
DACP6  
DACP5  
DACP4  
DACP3  
DACP2  
DACP1  
R1  
LD6  
G0  
G2  
LD7  
G1  
UD4  
UD5  
UD6  
UD7  
FPSHIFT  
G0  
B0  
B2  
B1  
FPSHIFT  
FPLINE  
FPSHIFT  
FPSHIFT  
FPSHIFT  
FPLINE  
FPSHIFT  
FPSHIFT2  
FPLINE  
FPSHIFT  
FPLINE  
FPSHIFT  
FPLINE  
FPLINE  
FPLINE  
FPLINE  
FPLINE  
FPFRAME  
DACP0  
FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME FPFRAME  
DACP0  
DACRD#  
DACWR#  
DACRS1  
DACRS0  
HRTC  
DACRD#  
DACWR#  
DACRS1  
DACRS0  
HRTC  
VRTC  
VRTC  
BLANK#  
DACCLK  
BLANK#  
PCLK  
2-26  
(Even Pins)  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/C  
28  
30  
32  
34  
36  
38  
VLCD  
VCC  
VLCD  
+5V  
VLCD  
+5V  
+5V  
+5V  
+5V  
+5V  
+12V  
VDDH  
MOD  
+5V  
+12V  
+5V  
+12V  
VDDH  
DRDY  
+12V  
+12V  
+12V  
+12V  
VDDH  
MOD  
+12V  
+12V  
VDDH  
DRDY  
DRDY  
DRDY  
FPSHIFT2  
MOD  
MOD  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCD  
PWR#  
LCDPWR  
40  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
 
Page 10  
Epson Research and Development  
Vancouver Design Center  
4 CPU / BUS Interface Connector Pinouts  
Table 4-1: CPU/BUS Connector (H1) Pinout  
Connector  
Pin No.  
Comments  
1
Connected to DB0 of the SED1354  
Connected to DB1 of the SED1354  
Connected to DB2 of the SED1354  
Connected to DB3 of the SED1354  
Ground  
2
3
4
5
6
Ground  
7
Connected to DB4 of the SED1354  
Connected to DB5 of the SED1354  
Connected to DB6 of the SED1354  
Connected to DB7 of the SED1354  
Ground  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Ground  
Connected to DB8 of the SED1354  
Connected to DB9 of the SED1354  
Connected to DB10 of the SED1354  
Connected to DB11 of the SED1354  
Ground  
Ground  
Connected to DB12 of the SED1354  
Connected to DB13 of the SED1354  
Connected to DB14 of the SED1354  
Connected to DB15 of the SED1354  
Connected to RESET# of the SED1354  
Ground  
Ground  
Ground  
12 volt supply  
12 volt supply  
Connected to WE0# of the SED1354  
Connected to WAIT# of the SED1354  
Connected to CS# of the SED1354  
Connected to MR# of the SED1354  
Connected to WE#1 of the SED1354  
Not connected  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
 
 
Epson Research and Development  
Page 11  
Vancouver Design Center  
Table 4-2: CPU/BUS Connector (H2) Pinout  
Connector  
Pin No.  
Comments  
1
Connected to AB0 of the SED1354  
Connected to AB1 of the SED1354  
Connected to AB2 of the SED1354  
Connected to AB3 of the SED1354  
Connected to AB4 of the SED1354  
Connected to AB5 of the SED1354  
Connected to AB6 of the SED1354  
Connected to AB7 of the SED1354  
Ground  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Ground  
Connected to AB8 of the SED1354  
Connected to AB9 of the SED1354  
Connected to AB10 of the SED1354  
Connected to AB11 of the SED1354  
Connected to AB12 of the SED1354  
Connected to AB13 of the SED1354  
Ground  
Ground  
Connected to AB14 of the SED1354  
Connected to AB14 of the SED1354  
Connected to AB16 of the SED1354  
Connected to AB17 of the SED1354  
Connected to AB18 of the SED1354  
Connected to AB19 of the SED1354  
Ground  
Ground  
5 volt supply  
5 volt supply  
Connected to RD/WR# of the SED1354  
Connected to BS# of the SED1354  
Connected to BUSCLK of the SED1354  
Connected to RD# of the SED1354  
Connected to AB20 of the SED1354  
Not connected  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
 
Page 12  
Epson Research and Development  
Vancouver Design Center  
5 Host Bus Interface Pin Mapping  
Table 5-1: Host Bus Interface Pin Mapping  
SED1354  
Pin Names  
SH-3  
MC68K Bus 1  
MC68K Bus 2  
Generic MPU  
AB[20:1]  
AB0  
A[20:1]  
A0  
A[20:1]  
LDS#  
A[20:1]  
A0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
D[15:0]  
D[31:16]  
DS#  
D[15:0]  
UDS#  
WE1#  
External Decode  
CSn#  
External Decode  
External Decode  
CLK  
External Decode  
External Decode  
CLK  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
CKIO  
BS#  
AS#  
AS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD/WR#  
RD#  
R/W#  
R/W#  
Connect to IO VDD  
Connect to IO VDD  
DTACK#  
SIZ1  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
SIZ0  
WE0#  
WAIT#  
RESET#  
DSACK1#  
RESET#  
WAIT#  
RESET#  
RESET#  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
 
Epson Research and Development  
Page 13  
Vancouver Design Center  
6 Technical Description  
6.1 ISA Bus Support  
The SDU1354B0C directly supports the 16-bit ISA bus environment. All the configuration options  
[MD15:0] are either hard-wired or selectable through the five-position DIP Switch S1. Refer to  
Table 2-1 “Configuration DIP Switch Settings,” on page 8 for details.  
Note  
1. The 8-bit ISA bus is not supported by the SDU1354B0C board design.  
2. The SED1354 is a memory-mapped device with 2M bytes of linear addressed display buffer  
memory as well as a separate 37 byte register space. On the SDU1354B0C, the SED1354  
registers have been mapped to a start-address of C00000h and the 2M byte display buffer has  
been mapped to a start-address of E00000h.  
3. When using this board in a PC environment, system memory must be limited to 12M bytes as  
more than this will conflict with the SED1354 display buffer/register addresses.  
Note  
Due to backwards compatibility with the SDU1354B0B Evaluation Board, which supports both  
an 8 and a 16-bit CPU interface, third party software must perform a write to address D00000h to  
enable a 16-bit ISA environment. This must be done prior to initializing the SED1354. Failure to  
do so will result in the SED1354 being configured as a 16-bit device (default, power-up), with  
the ISA Bus interface (supported through the PAL (U4)) configured for an 8-bit interface.  
The Epson supplied software performs this function automatically.  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 14  
Epson Research and Development  
Vancouver Design Center  
6.2 Non-ISA Bus Support  
This evaluation board is specifically designed to support the standard 16-bit ISA bus, however, the  
SED1354 directly supports many other host bus interfaces. Header strips (H1 and H2) have been  
provided and contain all the necessary IO pins to interface to these buses. See Section 4, “CPU / BUS  
Interface Connector Pinouts” on page 10; Table 2-1 “Configuration DIP Switch Settings,” on page  
8; and Table 2-3 “Jumper Settings,” on page 8 for details.  
When using the header strips to provide the bus interface observe the following:  
• All IO signals on the ISA bus card edge must be isolated from the ISA bus (do not plug the card  
into a computer). Voltage lines are provided on the header strips.  
• U3, a TIBPAL22V10 PAL, is currently used to provide the SED1354 CS# (pin 4), M/R# (pin 5)  
and other decode logic signals for ISA bus use. This functionality must now be provided exter-  
nally; remove the PAL from its socket to eliminate conflicts resulting from two different outputs  
driving the same input. Refer to Table 5-1: “Host Bus Interface Pin Mapping,” on page 12 for  
connection details.  
Note  
When using a 3.3V CPU Interface, JP2 must be used to configure the SED1354 IO VDD to 3.3V.  
In this configuration all SED1354 IO pins are configured for 3.3V output (e.g. LCD interface,  
DRAM interface, RAMDAC interface, etc.). Although the DRAM and RAMDAC devices are  
5.0V parts, they only require a TTL VIH of 2.4V, therefore they will operate correctly with the  
CMOS level output drive of the SED1354.  
6.3 DRAM Support  
The SED1354 supports 256K x 16 as well as 1M x 16 DRAM (FPM and EDO) in symmetrical and  
asymmetrical formats.  
The SDU1354B0C board supports 5.0V 1M x 16 EDO-DRAM (42-pin SOJ package) in symmet-  
rical format, providing a 2M byte display buffer.  
6.4 Decode Logic  
This board design utilizes the Generic MPU Interface of the SDU1354 (see the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx).  
All required decode logic between the ISA bus and the SED1354 is provided through a  
TIBPAL22V10 PAL (U3, socketed).  
6.5 Clock Input Support  
The input clock frequency can be up to 40.0MHz for the SED1354. A 40.0MHz oscillator (U4,  
socketed) is provided as the clock (CLKI) source.  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 15  
Vancouver Design Center  
6.6 Monochrome LCD Panel Support  
The SED1354 supports 4 and 8-bit dual and single, monochrome passive LCD panels. All necessary  
signals are provided on the 40-pin ribbon cable header J6. The interface signals are alternated with  
grounds on the cable to reduce cross-talk and noise-related problems.  
Refer to Table 3-1 “LCD Signal Connector (J6),” on page 9 for connection information.  
6.7 Color Passive LCD Panel Support  
The SED1354 directly supports 4/8/16-bit dual and single, color passive LCD panels. All the  
necessary signals are provided on the 40-pin ribbon cable header J6. The interface signals are alter-  
nated with grounds on the cable to reduce cross-talk and noise-related problems.  
The SED1354 cannot support 12 or 18-bit TFT panels when CRT is enabled. FPDAT [15:8] is used  
for RAMDAC data and is not available for LCD. Refer to the SED1354 Hardware Functional Speci-  
fication, document number X19A-A-002-xx for details.  
Refer to Table 3-1 “LCD Signal Connector (J6),” on page 9 for connection information.  
6.8 Color TFT LCD Panel Support  
The SED1354 supports 9/12/18-bit active matrix color TFT panels. All the necessary signals can  
also be found on the 40-pin LCD connector J6. The interface signals are alternated with grounds on  
the cable to reduce cross-talk and noise-related problems.  
When supporting an 18-bit TFT panel, the SED1354 can display 64K of a possible 262K colors. A  
maximum 16 of the possible 18-bits of LCD data is available from the SED1354. Refer to the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx for details.  
The SED1354 cannot support 12 or 18-bit TFT panels when CRT is enabled. FPDAT [15:8] is used  
for RAMDAC data and is not available for LCD. Refer to the SED1354 Hardware Functional Speci-  
fication, document number X19A-A-002-xx for details.  
Refer to Table 3-1 “LCD Signal Connector (J6),” on page 9 for connection information.  
6.9 External CMOS RAMDAC Support  
This evaluation board design provides CRT support with the addition of an external RAMDAC  
(BrookTree BT481A or equivalent). The presence of an external RAMDAC/CRT can be determined  
by software once the SED1354 is properly initialized after power-up.  
The BT481A RAMDAC is provided on the board to fully test all of the CRT display modes  
available. Refer to the section “Display Support” of the SED1354 Hardware Functional Specifi-  
cation, document number X19A-A-002-xx for details.  
The overlay function and sprite/hardware cursor display features are not supported.  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 16  
Epson Research and Development  
Vancouver Design Center  
6.10 Power Save Modes  
The SED1354F0A supports one hardware and one software suspend Power Save Mode.  
The hardware suspend mode is not supported by the SDU1354B0C.  
The software suspend mode is controlled by the utility 1354PWR Software Suspend Power  
Sequencing.  
6.11 Core V Power Supply  
DD  
An independent fixed 3.3V power supply for Core VDD is provided. A National LP2960AIN-3.3  
voltage regulator is used for the power supply and is capable of supplying 500mA @ 3.3V.  
6.12 IO V Power Supply  
DD  
The IO VDD voltage is selectable between 3.3V and 5.0V through jumper JP2. For the 5.0V host bus  
interface, select IO VDD at 5.0V, and for the 3.3V host bus interface, select IO VDD at 3.3V.  
Refer to Table 2-3 “Jumper Settings,” on page 8.  
6.13 Adjustable LCD Panel Negative Power Supply  
Most monochrome passive LCD panels require a negative power supply to provide between -18V  
and -23V (Iout=45mA). For ease of implementation, such a power supply has been provided as an  
integral part of this design. The signal VLCD can be adjusted by R37 to supply an output voltage  
from -14V to -23V and is enabled/disabled by the SED1354 control signal LCDPWR.  
Determine the panel’s specific power requirements and set the potentiometer accordingly before  
connecting the panel.  
6.14 Adjustable LCD Panel Positive Power Supply  
Most passive LCD passive color panels and most single monochrome 640x480 passive LCD panels  
require a positive power supply to supply between +23V and +40V (Iout=45mA). For ease of imple-  
mentation, such a power supply has been provided as an integral part of this design. The signal  
VDDH can be adjusted by R31 to provide an output voltage from +23V to +40V and is  
enabled/disabled by the SED1354 control signal LCDPWR.  
Determine the panel’s specific power requirements and set the potentiometer accordingly before  
connecting the panel.  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 17  
Vancouver Design Center  
6.15 CPU/Bus Interface Header Strips  
All of the CPU/Bus interface pins of the SED1354 are connected to the header strips H1 and H2 for  
easy interface to a CPU/Bus other than the ISA bus.  
Refer to Table 4-1 “CPU/BUS Connector (H1) Pinout,” on page 10 and Table 4-2 “CPU/BUS  
Connector (H2) Pinout,” on page 11 for specific settings.  
Note  
These headers only provide the CPU/Bus interface signals from the SED1354. When another  
host bus interface is selected through [MD3:1] configuration, appropriate external decode logic  
MUST be used to access the SED1354. See the section “Host Bus Interface Pin Mapping” of the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
6.16 Schematic Notes  
The following schematics are for reference only and may not reflect actual implementation. Please  
request updated information before starting any hardware design.  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 18  
Epson Research and Development  
Vancouver Design Center  
7 Parts List  
Item # Qty/board  
Designation  
Part Value  
Description  
C13, C14, C19,  
C28  
1
4
10uF  
10uF/25V Tantalum D-Size  
2
3
4
5
6
16  
3
C1-C12, C15-C18 0.01uF  
0.01uF, 1206 package  
C20, C21, C30  
C23-C25  
0.1uF  
0.1uF, 1206 package  
3
10uF/63V  
56uF/35V  
33uF  
Electrolytic/Radial (LXF63VB10RM5X11LL)  
LXF35VB56RM6X11LL  
3
C22, C26, C27  
C29  
1
33uF/10V Tantalum D-Size  
TO-92 PTH Zener Diode 0.1" spc.  
3 pin TO-92 package  
7
1
D7  
LM385BZ-1.2  
8
6
3
2
1
1
8
1
1
1
D1-D6  
JP1-JP3  
H1, H2  
J5  
1N4148  
Signal Diode/PTH  
9
.1 x 3 Male Header  
CON34A Male Header  
PS/2 CONNECTOR  
CON40A  
PTH; include 2 pin jumper (shunt)  
0.1" 2 x 17 Male Header  
10  
11  
12  
13  
14  
15  
16  
Assman A-HDF 15 A KG/T or equivalent  
Shrouded Header 40 pin Dual-row, center-key PTH  
Fair-rite 2743001111 PTH  
J6  
L1-L5, L7-L9  
L6  
Ferrite Bead  
1uH  
Dale Inductor IM-4-1.0uH PTH  
PNP Signal Transistor TO-92 PTH  
NPN Signal Transistor TO-92 PTH  
Q1  
2N3906  
Q2  
2N3903  
R10-R16, R18-  
R19  
17  
9
10K  
10K Ohm/1206/5%  
18  
19  
1
3
R27  
182  
1K  
182 Ohm/PTH/1%  
1K Ohm/1206/5%  
R26, R33-R34  
R17, R20-R22,  
R28-R29  
20  
6
39  
39 Ohm/1206/5%  
21  
22  
23  
3
8
3
R23-R25  
R2-R9  
150  
150 Ohm/1206/5%  
15K Ohm/1206/5%  
100K Ohm/1206/5%  
15K  
100K  
R1, R35-R36  
100K Ohm/Trim POT  
Spectrol 63S104T607 or equivalent  
24  
25  
26  
1
1
1
R37  
R30  
R31  
100K  
470K  
200K  
470K Ohm/1206/5%  
200K Ohm/Trim POT  
Spectrol 63S204T607 or equivalent  
27  
28  
29  
1
1
1
R32  
S1  
14K  
14K Ohm/1206/1%  
Switch DIP 5 position  
QFP15-128/128 pin  
SW-DIP-5  
SED1354F0A  
U1  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 19  
Vancouver Design Center  
Item # Qty/board  
Designation  
Part Value  
Description  
NEC 1Mx16 , EDO, Self-Refresh, DRAM, SOJ  
package  
30  
1
U2  
UPD4218S165LE-50  
31  
32  
33  
1
1
1
U3  
U4  
U5  
TIBPAL22V10-15BCNT  
Osc. -14  
Texas Instrument PAL 24 pin DIP package/socketed  
Fox 40.0MHz Oscillator or equiv. 14 pin DIP/socketed  
14 pin SO-14 package  
74LS125  
BrookTree RAMDAC PLCC package, 44-pin PLCC  
SMT part  
34  
1
U6  
BT481A  
35  
36  
1
1
U7  
U8  
RD-0412  
EPN001  
XENTECK - Positive Power Supply  
XENTECK - Negative Power Supply  
National 3.3V Fixed Voltage Regulator N16G 16-PIN  
DIP package  
37  
1
U9  
LP2960AIN-3.3  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 20  
Epson Research and Development  
Vancouver Design Center  
8 Schematic Diagrams  
Figure 1: SED1354B0C Schematic Diagram (1 of 6)  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 21  
Vancouver Design Center  
1
1
2
3
Figure 2: SED1354B0C Schematic Diagram (2 of 6)  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 22  
Epson Research and Development  
Vancouver Design Center  
Figure 3: SED1354B0C Schematic Diagram (3 of 6)  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 23  
Vancouver Design Center  
1
1
1
2
2
2
1
1
1
2
2
2
2
1
Figure 4: SED1354B0C Schematic Diagram (4 of 6)  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 24  
Epson Research and Development  
Vancouver Design Center  
3
2
1
Figure 5: SED1354B0C Schematic Diagram (5 of 6)  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 25  
Vancouver Design Center  
1
3
2
3
1
T U O D C _  
1 2  
T U O D C _  
T U O D C _  
1
2
D A J _ U T O V  
1
N C  
9
N C  
N C  
N C  
N C  
3
7
8
9
D
D
D
D
D
D
D
G N  
G N  
G N  
G N  
G N  
G N  
G N  
1 1  
1 0  
8
7
6
5
4
D
D
G N  
G N  
4
5
D A J _ U T O V  
6
3
1
E T O M R E  
I N D C _  
I N D C _  
I N D C _  
3
2
1 0  
1 1  
Figure 6: SED1354B0C Schematic Diagram (6 of 6)  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354  
X19A-G-004-05  
Page 26  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-004-05  
SDU1354B0C Rev.1.0 ISA Bus Evaluation Board User Manual  
Issue Date: 98/10/29  
E
SA
EPSO
SDU1354-D9000  
Evaluation Board User Manual  
Document Number: X19A-G-003-04  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 SED1354 Color Graphics LCD Controller . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Display Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
LCD Display Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
LCD Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CRT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Adjustable LCD BIAS Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
D9000 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1 Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
Connector Pinout for Channel A6 and A7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory Address (CS#, M/R#) Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Makefpga file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.2 Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.3 Support Documentation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.4 Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.5 Schematic Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.5.1  
3.5.2  
3.5.3  
PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Perspective View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 2-1: LCD Connector Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 3-1: Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3-2: Connector Pinout for Channel A7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3-3: Connectors Pinout for Channel A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3-4: DIP Switch Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
List of Figures  
Figure 3-1: SDU1354-D9000 Schematic Diagram (1 of 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 3-2: SDU1354-D9000 Schematic Diagram (2 of 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 3-3: SDU1354-D9000 Schematic Diagram (3 of 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 3-4: SDU1354-D9000 Schematic Diagram (4 of 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 3-5: Component Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 3-6: SDU1354-D9000 Perspective View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
The Hitachi D9000 Development System uses expansion boards to provide a means to interface  
peripherals to the FPGA / processor combination. This manual describes how the SDU1354-D9000  
Evaluation Board is used to provide a color LCD solution for the Windows CE environment.  
Reference  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
D9000 Development System, Hardware User Manual - Hitachi.  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Features  
• SED1354 color graphics LCD / CRT controller.  
• On-board 2M byte EDO-DRAM display buffer.  
• 4/8-bit monochrome LCD interface.  
• 4/8/16-bit color LCD interface.  
• Single-panel / single-drive displays.  
• Dual-panel / dual-drive displays.  
• 9/12-bit TFT.  
• 18/24-bit TFT support to 64K colors (16-bit data).  
• CRT support.  
• On-board adjustable LCD BIAS voltage power supply.  
• SmallTypeZ x 2 form factor (requires two side-by-side SmallTypeZ slots).  
2.1 SED1354 Color Graphics LCD Controller  
The SED1354 is a low cost, low power color/monochrome LCD/CRT controller capable of inter-  
facing to a wide range of CPUs and LCD displays.  
The SED1354 supports LCD interfaces with data widths up to 16 bits. Using Frame Rate Modulation  
(FRM), it can display 16 shades of gray on monochrome panels, up to 4096 colors on passive panels  
and 64K colors on active matrix TFTs. CRT support is handled through the use of an external  
RAMDAC allowing simultaneous display of both the CRT and LCD displays.  
In this design, the SED1354 has a 3.3V core voltage (Core VDD) and a 3.3V IO voltage (IO VDD).  
For complete details on register functionality and programming, refer to the SED1354 Hardware  
Functional Specification document number X19A-A-002-xx, and the Programming Notes and  
Examples, document number X19A-G-002-xx.  
2.1.1 Display Buffer  
The SED1354 supports a 512K byte or 2M byte, FPM-DRAM or EDO-DRAM display buffer. On  
the SDU1354-D9000 evaluation board, a 1Mx16 EDO-DRAM is used to provide adequate memory  
for all supported display resolutions, and when smaller display sizes are used, to provide multiple  
“pages” of memory. EDO-DRAM with self-refresh may also be used to provide the lowest possible  
power consumption during power save modes.  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 9  
Vancouver Design Center  
2.1.2 LCD Display Support  
The SED1354 provides a wide range of flexibility for display type and resolution. Display types  
include:  
• 4/8-bit monochrome passive.  
• 4/8/16-bit color passive.  
• Active matrix TFT.  
• other (EL, REC, etc.).  
Display resolutions range from 4x1 to 800x600, with color depths from black and white to 64K  
colors.  
The LCD connector is a 50 pin AMPLIMITE Subminiature D Connector (P/N 787171-5) and has  
the signals shown in the following table “LCD Connector Pinout”.  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 10  
Epson Research and Development  
Vancouver Design Center  
2.1.3 LCD Interface Pin Mapping  
Table 2-1: LCD Connector Pinout  
Pin #  
Color TFT  
Color Passive  
8-bit  
Mono Passive  
Comments  
SED1354  
Pin Names  
9-bit  
12-bit  
18-bit  
4-bit  
16-bit  
4-bit  
8-bit  
1
FPSHIFT  
DRDY  
FPSHIFT  
3
DRDY  
MOD/FPSHIFT2  
5
FPLINE  
FPLINE  
7
FPFRAME  
FPDAT0  
FPDAT1  
FPDAT2  
FPDAT3  
FPDAT4  
FPDAT5  
FPDAT6  
FPDAT7  
FPDAT8  
FPDAT9  
FPDAT10  
FPDAT11  
FPDAT12  
FPDAT13  
FPDAT14  
FPDAT15  
FPFRAME  
9
R2  
R1  
R0  
G2  
G1  
G0  
B2  
B1  
B0  
R3  
R2  
R1  
G3  
G2  
G1  
B3  
B2  
B1  
R0  
R5  
R4  
R3  
G5  
G4  
G3  
B5  
B4  
B3  
R2  
R1  
G2  
G1  
G0  
B2  
B1  
LD0  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
LD4  
LD5  
LD6  
LD7  
UD4  
UD5  
UD6  
UD7  
LD0  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
LD1  
LD2  
LD3  
UD0  
UD1  
UD2  
UD3  
UD0  
UD1  
UD2  
UD3  
UD0  
UD1  
UD2  
UD3  
G0  
B0  
On/Off Control for  
LCD Power  
40  
41  
42  
43  
44  
45  
46  
LCDPWR  
On/Off Control for  
Backlight  
LCDBACK#  
Touch Screen  
input  
1
XY  
Touch Screen  
input  
XL  
XR  
YU  
YL  
Touch Screen  
input  
Touch Screen  
input  
Touch Screen  
input  
47  
48  
49  
50  
VDDH  
+5V  
+30V LCDBIAS  
+3.3V  
+12V  
2,4,6,8,10,  
12,14,16,18,20,  
22,24,26,28,30,  
32,34,36,38  
GND  
Note  
1. XY is the 5th signal for those touch panels that require 5 interface signals. When using  
4-signal touch panels, remove jumper JP1 on the board to disconnect this signal.  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 11  
Vancouver Design Center  
2.1.4 CRT Support  
The SED1354 has all the necessary signals to interface to an external RAMDAC so a CRT is  
supported. The Brooktree Bt481A RAMDAC is supported on the SDU1354-D9000 evaluation  
board.  
Refer to the Programming Notes and Examples, document number X19A-G-002-xx for  
programming details.  
2.1.5 Adjustable LCD BIAS Power Supply  
Most color 640x480 passive LCD panels require a positive power supply to provide between +23V  
and +40V (Iout = 45mA). For ease of implementation, such a power supply has been provided as an  
integral part of this design. The signal VDDH can be adjusted by R16 to provide an output voltage  
from +23V to +40V and is enabled / disabled by the SED1354 control signal LCDPWR.  
LCDPWR is an output signal which follows a pre-defined power-up / power-down sequence  
designed to protect the LCD panel from damage caused by the power supply being enabled in the  
absence of control signals. Determine the panel’s specific power requirements and set the potenti-  
ometer accordingly before connecting the panel.  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 12  
Epson Research and Development  
Vancouver Design Center  
3 D9000 Specifics  
3.1 Interface Signals  
The SED1354 is intended for direct connection to most processors, so the FPGA in this environment  
simply acts as a pass-through for the required processor interface signals.  
Table 3-1: Interface Signals  
Interface  
Signals  
SED1354 Signal  
Name  
Generic CPU  
Interface  
Signal Name  
Number of  
Signals  
SH-3 Interface  
Signal Name  
Comments  
AB[20:1]  
AB0  
19  
1
A[20:1]  
A0  
A[20:1]  
A0  
Address Bus  
Address Bus  
Data Bus  
DB[15:0]  
WE1#  
M/R#  
CS#  
16  
1
D[15:0]  
D[15:0]  
WE#1  
WE1#  
1
External Decode  
External Decode  
CKIO  
External Decode  
External Decode  
BCLK  
Memory / Register Select  
SED1354 Chip Select  
Bus Clock  
1
BCLK  
BS#  
1
1
BS#  
nc  
RD/WR#  
RD#  
1
RD/WR#  
RD#  
RD1#  
1
RD0#  
WE0#  
WAIT#  
RESET#  
5.0V  
1
WE0#  
WE0#  
1
WAIT#  
WAIT#  
1
RESET#  
RESET#  
3.3V  
GND  
12.0V  
XL  
Touch Screen  
Touch Screen  
Touch Screen  
Touch Screen  
Touch Screen  
XR  
YU  
YL  
XY  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 13  
Vancouver Design Center  
3.1.1 Connector Pinout for Channel A6 and A7  
Table 3-2: Connector Pinout for Channel A7  
Channel A7  
SED1354 Signal  
SmXY  
Pin #  
FPGA Signal  
Pin #  
FPGA Signal  
SED1354 Signal  
1
2
chA7p1  
chA7p2  
chA7p3  
chA7p4  
chA7p5  
chA7p6  
chA7p7  
chA7p8  
chA7p9  
chA7p10  
ib1  
BCLK  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
GND  
GND  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
dc5v  
GND  
DC5V  
GND  
DC3V  
GND  
DC3V  
GND  
N/C  
3
dc3v  
4
GND  
5
dc3v  
6
GND  
7
dc3vs  
GND  
8
GND  
DC12V  
GND  
N/C  
9
dc12v  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
battery  
GND  
ib2  
GND  
N/C  
ib3  
dcXA  
base5vDc  
dcXB  
GND  
ib4  
N/C  
ib5  
N/C  
ib6  
GND  
N/C  
ib7  
dcXC  
GND  
ib8  
GND  
N/C  
GND  
senseH  
senseL  
GND  
N/C  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 14  
Epson Research and Development  
Vancouver Design Center  
Table 3-2: Connector Pinout for Channel A7 (Continued)  
Channel A7  
Pin #  
FPGA Signal  
SED1354 Signal  
SmZ  
Pin #  
FPGA Signal  
SED1354 Signal  
1
2
chA7p11  
chA7p12  
chA7p13  
chA7p14  
chA7p15  
chA7p16  
chA7p17  
chA7p18  
chA7p19  
chA7p20  
chA7p21  
chA7p22  
chA7p23  
chA7p24  
chA7p25  
chA7p26  
chA7p27  
chA7p28  
chA7p29  
chA7p30  
N/C  
N/C  
A20  
A18  
A17  
A16  
N/C  
A14  
A13  
A12  
A11  
A9  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
GND  
GND  
GND  
GND  
A19  
3
chA7p34  
GND  
4
GND  
GND  
GND  
A15  
5
GND  
6
GND  
7
chA7p33  
GND  
8
GND  
GND  
GND  
A10  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
chA7p32  
GND  
GND  
GND  
GND  
GND  
A4  
A8  
GND  
A7  
GND  
A6  
GND  
A5  
chA7p31  
GND  
A3  
GND  
GND  
GND  
GND  
A2  
GND  
A1  
GND  
A0  
GND  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 15  
Vancouver Design Center  
Table 3-3: Connectors Pinout for Channel A6  
Channel A6  
Pin #  
FPGA Signal  
SED1354 Signal  
SmXY  
Pin #  
FPGA Signal  
SED1354 Signal  
1
2
chA6p1  
chA6p2  
chA6p3  
chA6p4  
chA6p5  
chA6p6  
chA6p7  
chA6p8  
chA6p9  
chA6p10  
ib1  
CS#  
BS#  
WE0#  
RD/WR#  
WAIT#  
N/C  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
dc5v  
GND  
DC5V  
GND  
DC3V  
GND  
DC3V  
GND  
N/C  
3
dc3v  
4
GND  
5
dc3v  
6
GND  
7
N/C  
dc3vs  
GND  
8
N/C  
GND  
DC12V  
GND  
N/C  
9
N/C  
dc12v  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
N/C  
XL  
battery  
GND  
ib2  
XR  
GND  
N/C  
ib3  
YU  
dcXA  
base5vDc  
dcXB  
GND  
ib4  
YL  
N/C  
ib5  
N/C  
N/C  
ib6  
N/C  
GND  
N/C  
ib7  
N/C  
dcXC  
GND  
ib8  
YL  
GND  
N/C  
GND  
GND  
GND  
senseH  
senseL  
GND  
N/C  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 16  
Epson Research and Development  
Vancouver Design Center  
Table 3-3: Connectors Pinout for Channel A6 (Continued)  
Channel A6  
Pin #  
FPGA Signal  
SED1354 Signal  
SmZ  
Pin #  
FPGA Signal  
SED1354 Signal  
1
2
chA6p11  
chA6p12  
chA6p13  
chA6p14  
chA6p15  
chA6p16  
chA6p17  
chA6p18  
chA6p19  
chA6p20  
chA6p21  
chA6p22  
chA6p23  
chA6p24  
chA6p25  
chA6p26  
chA6p27  
chA6p28  
chA6p29  
chA6p30  
M/R#  
RD#  
WE1#  
RESET#  
N/C  
N/C  
N/C  
D14  
D13  
D12  
D11  
D9  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
GND  
GND  
GND  
GND  
N/C  
3
chA6p34  
GND  
4
GND  
GND  
GND  
D15  
5
GND  
6
GND  
7
chA6p33  
GND  
8
GND  
GND  
GND  
D10  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
chA6p32  
GND  
GND  
GND  
GND  
GND  
D4  
D8  
GND  
D7  
GND  
D6  
GND  
D5  
chA6p31  
GND  
D3  
GND  
GND  
GND  
GND  
D2  
GND  
D1  
GND  
D0  
GND  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 17  
Vancouver Design Center  
3.1.2 Bus Interface Timing  
Refer to the SED1354 Hardware Functional Specification, document number X19A-A-002-xx for  
complete bus timing details.  
Note  
A four-position DIP switch located on the SDU1354-D9000 allows for the following configura-  
tions.  
Table 3-4: DIP Switch Configuration  
SW4  
SW3  
SW2  
SW1  
Function  
x
0
0
0
SH-3 Bus Interface  
MC68K Bus  
1 Interface  
x
x
0
0
0
1
1
0
MC68K Bus  
2 Interface  
x
0
1
0
x
x
1
x
x
1
x
x
Generic Bus Interface  
WAIT# - active low  
WAIT# - active high  
Where 1 = closed/on and 0 = open/off  
3.1.3 Memory Address (CS#, M/R#) Decode  
The SED1354 is a memory-mapped device for both the registers and display buffer access. The  
specific memory address is solely controlled by the CS# and M/R# decode logic. The memory space  
requirements are:  
• a 2M byte linear address range for the display buffer  
• 47 bytes for the registers.  
3.1.4 Makefpga file  
Modifications to the makefpga file to accommodate the SED1354 are:  
1. Bus model: this may differ depending on processor as far as interface requirements (signal def-  
initions). Epson will provide this information for each given processor interface.  
2. Memory location: the system designer must determine the appropriate memory addresses for  
the display buffer and register requirements.  
3.2 Board Dimensions  
To obtain the required number of interface signals, the SDU1354-D9000 utilizes two SmallTypeZ  
slots (6 and 7). Board dimensions are 2.65x3.20 with both the CRT and LCD connectors accessible  
on the outside edge.  
3.3 Support Documentation Notes  
Note that some files and/or documentation may refer to the SDU1354-D9000 as the SDU1354-  
D9100.  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 18  
Epson Research and Development  
Vancouver Design Center  
3.4 Parts List  
Item #  
Qty.  
Reference  
Part  
Description  
C1,C2,C3,C4,C5,C6,C7,  
C8,C9,C11,C12,C13,C14,  
C15,C16,C21,C26,C27,  
C28,C29,C34,C35,C36,  
C37  
1
24  
0.1uF  
0.1uF, 0805 pckg  
2
3
1
1
C10  
10uF  
10uF / 20V Tantalum C-Size  
Electrolytic, Radial Lead 35V +/- 20% Nippon / United  
Chemi-Con LXV35VB56RM6X11LL or equivalent  
C17  
56uF/35V  
Electrolytic, Radial Lead 63V +/- 20% Nippon / United  
Chemi-Con KMF63VB10RM5X11LL or equivalent  
4
5
3
8
C18,C19,C20  
10uF/63V  
22uF  
C22,C23,C24,C25,C30,  
C31,C32,C33  
22uF / 20V Tantalum D-Size  
6
7
8
3
1
4
D1,D2,D3  
JP1  
BAV99  
Header 2  
SMT / SOT-23 pckg  
1x2, .025" sq. Header  
JP2,JP3,JP4,JP5  
Header 2x20  
2x20, .05"x.05" Micro Strips Samtec TFM-120-11-S-D  
PS/2  
CONNECTOR  
9
1
1
J1  
J2  
DB15, Female, Vertical, Board Mount AMP 749374-3  
Subminiature D, 50-pin, Receptacle Header, Right Angle,  
Board Mount AMP 787171-5  
10  
LCD CON  
11  
12  
5
1
L1,L2,L3,L4,L5  
L6  
INDUCTOR  
1uH  
Ferrite Bead Fair-rite 2743001111  
1uH Dale Inductor IM-4-1.0uH  
R1,R2,R3,R4,R5,R6,R7,  
R8,R17  
13  
9
15K  
15K ohm, 0805 pckg, 5%  
14  
15  
16  
17  
3
2
1
1
R9,R10,R11  
R12,R13  
R14  
150 1%  
39  
150 ohm, 0805 pckg, 1%  
39 ohm, 0805 pckg, 5%  
182 ohm, 0805 pckg, 1%  
470K ohm, 0805 pckg, 5%  
182 1%  
470K  
R15  
Trim Pot, 4mm Sq., Single Turn, SMT Bourns 3314J-1-  
204 or BI Technologies 23AR200K  
18  
19  
20  
1
3
1
R16  
R18, R19, R20  
S1  
200K  
10K  
10K ohm, 0805 pckg, 5%  
SMT Dip Switch, 4 Position CTS 219-4LPST or Grayhill  
90HBW04S  
SW DIP-4  
SED1354F0A  
21  
22  
23  
24  
1
1
1
1
U1  
U2  
U3  
U4  
QFP15-128 Epson SED1354F0A  
DRAM1MX16-SOJ 1Mx16 EDO, 60ns, SOJ pckg Micron MT4C1M16E5DJ-6  
BT481A  
RAMDAC, PLCC pckg Brooktree BT481A  
Positive Power Supply XENTECK RD-0412  
RD-0412  
Half Size Clock Oscillator, 8-Pin, 40MHz Digi-Key P/N  
CTX175-ND or equivalent  
25  
26  
1
1
U5  
OSC-8  
JP1  
Micro Shunt  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 19  
Vancouver Design Center  
3.5 Schematic Diagrams  
Figure 3-1: SDU1354-D9000 Schematic Diagram (1 of 4)  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 20  
Epson Research and Development  
Vancouver Design Center  
2
2
2
1
1
1
Figure 3-2: SDU1354-D9000 Schematic Diagram (2 of 4)  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 21  
Vancouver Design Center  
T U O D C _  
D A J _ U T O V  
N C  
1 2  
1
9
D
D
D
D
D
D
D
G N  
G N  
G N  
G N  
G N  
G N  
G N  
1 1  
1 0  
8
7
6
5
4
2
1
E T O M R E  
N I D C _  
3
2
Figure 3-3: SDU1354-D9000 Schematic Diagram (3 of 4)  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 22  
Epson Research and Development  
Vancouver Design Center  
Figure 3-4: SDU1354-D9000 Schematic Diagram (4 of 4)  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
Epson Research and Development  
Page 23  
Vancouver Design Center  
3.5.1 PCB Layout  
3.5.2 Component Placement  
Figure 3-5: Component Placement  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SDU1354-D9000  
X19A-G-003-04  
Page 24  
Epson Research and Development  
Vancouver Design Center  
3.5.3 Perspective View  
SED1354  
LCD Power Supply  
RAMDAC  
CRT Connector  
LCD Connector  
DRAM  
Figure 3-6: SDU1354-D9000 Perspective View  
SDU1354-D9000  
X19A-G-003-04  
Evaluation Board User Manual  
Issue Date: 98/10/29  
SED1354 Color Graphics LCD/CRT Controller  
Power Consumption  
Document Number: X19A-G-006-03  
Copyright © 1997, 1998 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-006-03  
Power Consumption  
Issue Date: 98/10/29  
Epson Research and Development  
Page 3  
Vancouver Design Center  
1 SED1354 Power Consumption  
SED1354 power consumption is affected by many system design variables.  
• Input clock frequency (CLKI): the CLKI frequency determines the LCD frame-rate, CPU perfor-  
mance to memory, and other functions – the higher the input clock frequency, the higher the  
frame-rate, performance and power consumption.  
• CPU interface: the SED1354 IO VDD current consumption depends on the BUSCLK frequency,  
data width, number of toggling pins, and other factors – the higher the BUSCLK, the higher the  
CPU performance and power consumption.  
• Core VDD, IO VDD voltage levels: the voltage levels of the two independent VDD groups (Core,  
IO) affect power consumption – the higher the voltage, the higher the consumption.  
• Display mode: the resolution and color depth affect power consumption – the higher the  
resolution/color depth, the higher the consumption.  
• Internal CLK divide: internal registers allow the input clock to be divided before going to the  
internal logic blocks – the higher the divide, the lower the power consumption.  
There are two power save modes in the SED1354: Software and Hardware SUSPEND. The power  
consumption of these modes is also affected by various system design variables.  
• DRAM refresh mode, CBR or self-refresh: self-refresh capable DRAM allows the SED1354 to  
disable the internal memory clock thereby saving power.  
• CPU bus state during SUSPEND: the state of the CPU bus signals during SUSPEND has a  
substantial effect on power consumption. An inactive bus (e.g. BUSCLK = low, Addr = low etc.)  
reduces overall system power consumption.  
• CLKI state during SUSPEND: disabling the CLKI during SUSPEND has substantial power  
savings.  
Power Consumption  
Issue Date: 98/10/29  
SED1354  
X19A-G-006-03  
 
Page 4  
Epson Research and Development  
Vancouver Design Center  
1.1 Conditions  
The Table 1-1: “SED1354 Total Power Consumption” below gives an example of a particular  
environment and its effects on power consumption.  
Table 1-1: SED1354 Total Power Consumption  
Total Power Consumption  
Test Condition  
Gray Shades /  
Colors  
Core V = 3.3V IO V = 5.0V  
Power Save Mode  
DD  
DD  
Active  
ISA Bus (8MHz)  
Software  
Hardware  
Input Clock = 6MHz  
LCD Panel Connected = 320x240 Monochrome 4 Grays  
16 Grays  
Black-and-White  
38.7mW  
43.9mW  
46.8mW  
1
2
3
4
20mW1  
20mW1  
24mW1  
24mW1  
7.59uW2  
Input Clock = 6MHz  
LCD Panel Connected = 320x240 Color  
4 Colors  
16 Colors  
256 Colors  
44.4mW  
49.7mW  
51.2mW  
7.59uW2  
7.59uW2  
7.59uW2  
Input Clock = 25MHz  
LCD Panel Connected = 640x480 Monochrome  
Black-and-White  
16 Grays  
113.3mW  
124.6mW  
Input Clock = 25MHz  
LCD Panel Connected = 640x480 Color  
16 Colors  
256 Colors  
64K Colors  
145.6mW  
150.6mW  
150.0mW  
Note  
1. Conditions for Software SUSPEND:  
• CPU interface active (signals toggling)  
• CLKI active (6MHz)  
• Self-Refresh DRAM  
2. Conditions for Hardware SUSPEND:  
• CPU interface inactive (high impedance)  
• CLKI stopped  
• Self-Refresh DRAM  
2 Summary  
The system design variables in Section 1, “SED1354 Power Consumption” and in Table 1-1:  
“SED1354 Total Power Consumption” show that SED1354 power consumption depends on the  
specific implementation. Active Mode power consumption depends on the desired CPU perfor-  
mance and LCD frame-rate, whereas Power Save Mode consumption depends on the CPU Interface  
and Input Clock state.  
In a typical design environment, the SED1354 can be configured to be an extremely power-efficient  
LCD Controller with high performance and flexibility.  
SED1354  
X19A-G-006-03  
Power Consumption  
Issue Date: 98/10/29  
 
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the Philips MIPS  
PR31500/PR31700 Processor  
Document Number: X19A-G-005-07  
Copyright © 1998, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the PR31500/PR31700 . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . 9  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 10  
4
5
Direct Connection to the Philips PR31500/PR31700 . . . . . . . . . . . . . . . . . 11  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2 Memory Mapping and Aliasing . . . . . . . . . . . . . . . . . . . . . . . 12  
4.3 SED1354 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
System Design Using the IT8368E PC Card Buffer . . . . . . . . . . . . . . . . . . 14  
5.1 Hardware Description—Using One IT8368E . . . . . . . . . . . . . . . . . . 14  
5.2 Hardware Description—Using Two IT8368E’s . . . . . . . . . . . . . . . . . 17  
5.3 IT8368E Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.4 Memory Mapping and Aliasing . . . . . . . . . . . . . . . . . . . . . . . 19  
5.5 SED1354 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6
7
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 23  
8.2 Philips MIPS PR31500/PR31700 Processor . . . . . . . . . . . . . . . . . . . 23  
8.3 ITE IT8368E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4-1: SED1354 Configuration for Direct Connection . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: SED1354 Host Bus Selection for Direct Connection . . . . . . . . . . . . . . . . . . . 13  
Table 5-1: PR31500/PR31700 to Unbuffered PC Card Slots System Address Mapping . . . . . . . 19  
Table 5-2: PR31500/PR31700 to PC Card Slots Address Remapping using the IT8368E . . . . . . 19  
Table 5-3: SED1354 Configuration using the IT8368E . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5-4: SED1354 Host Bus Selection using the IT8368E . . . . . . . . . . . . . . . . . . . . . 20  
List of Figures  
Figure 4-1: Typical Implementation of SED1354 to PR31500/PR31700 Direct Connection . . . . .11  
Figure 5-1: SED1354 to PR31500/PR31700 Connection using One IT8368E . . . . . . . . . . . . .15  
Figure 5-2: SED1354 to PR31500/PR31700 Connection using Two IT8368E. . . . . . . . . . . . .17  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the Philips  
MIPS PR31500/PR31700 processor.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the PR31500/PR31700  
The Philips PR31500/PR31700 processor supports up to two PC Card (PCMCIA) slots. It  
is through this host bus interface that the SED1354 connects to the PR31500/PR31700  
processor.  
The SED1354 can be successfully interfaced using one of three configurations:  
• Direct connection to PR31500/PR31700 (see Section 4, “Direct Connection to the  
Philips PR31500/PR31700” on page 11).  
• System design using one ITE8368E PC Card/GPIO buffer chip (see Section 5.1, “Hard-  
ware Description—Using One IT8368E” on page 14).  
• System design using two ITE8368E PC Card/GPIO buffer chips (see Section 5.2,  
“Hardware Description—Using Two IT8368E’s” on page 17).  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 9  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the Philips PR31500/PR31700 processor. The Generic MPU host bus interface  
is the least processor-specific interface mode supported by the SED1354 and was chosen  
to implement this interface due to the simplicity of its timing.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
 
Page 10  
Epson Research and Development  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354. These signals must  
be generated by external hardware based on the control outputs from the host CPU.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354. These signals must be generated by external hardware based on the control  
outputs from the host CPU.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 11  
Vancouver Design Center  
4 Direct Connection to the Philips PR31500/PR31700  
4.1 Hardware Description  
The SED1354 is easily interfaced to the Philips PR31500/PR31700 processor. In the direct  
connection implementation, the SED1354 occupies PC Card slot #1 of the  
PR31500/PR31700. Although the address bus of the PR31500/PR31700 is multiplexed, it  
can be demultiplexed using an advanced CMOS latch (e.g., 74ACT373). The direct  
connection implementation makes use of the Generic MPU host bus interface capability of  
the SED1354.  
The following diagram demonstrates a typical implementation of the PR31500/PR31700 to  
SED1354 interface.  
SED1354  
+3.3V  
PR31500/PR31700  
IO V , CORE V  
DD  
DD  
RD0#  
RD1#  
/RD  
/WE  
WE0#  
WE1#  
/CARD1CSL  
/CARD1CSH  
CS#  
A23  
Latch  
M/R#  
ALE  
System RESET  
RESET#  
A[20:13]  
AB[20:13]  
AB[12:0]  
A[12:0]  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
VDD  
15K pull-up  
/CARD1WAIT  
WAIT#  
BUSCLK  
See text  
Oscillator  
ENDIAN  
Clock divider  
DCLKOUT  
...or...  
CLKI  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of SED1354 to PR31500/PR31700 Direct Connection  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 12  
Epson Research and Development  
Vancouver Design Center  
The host interface control signals of the SED1354 are asynchronous with respect to the  
SED1354 bus clock. This gives the system designer full flexibility in choosing the appro-  
priate source (or sources) for CLKI and BUSCLK. Deciding whether both clocks should be  
the same and whether to use DCLKOUT (divided) as the clock source, should be based on  
the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
4.2 Memory Mapping and Aliasing  
The SED1354 requires an addressing space of 2M bytes for the display buffer and 64 bytes  
for the registers. This is divided into two address ranges by connecting A23 (demultiplexed  
from the PR31500/PR31700) to the M/R# input of the SED1354. Using A23 makes this  
implementation software compatible with the two implementations that use the ITE  
IT8368E (see Section 5, “System Design Using the IT8368E PC Card Buffer” on page 14).  
All other addresses are ignored.  
The SED1354 address ranges, as seen by the PR31500/PR31700 on the PC Card slot 1  
memory space, are as follows:  
• 6400 0000h: SED1354 registers aliased 131,072 times at 64 byte intervals over 8M  
bytes.  
• 6480 0000h: SED1354 display buffer aliased 4 times at 2M byte intervals over 8M  
bytes.  
• 6500 0000h: SED1354 registers and display buffer, aliased another 3 times over 48M  
bytes.  
Since the PR31500/PR31700 control signal /CARDREG is ignored, the SED1354 takes up  
the entire PC Card slot 1 configuration space. The address range is software compatible  
with both ITE IT8368E implementations.  
• 0900 0000h: SED1354 registers aliased 131,072 times at 64 byte intervals over 8M  
bytes.  
• 0980 0000h: SED1354 display buffer aliased 4 times at 2M byte intervals over 8M  
bytes.  
Note  
If aliasing is undesirable, additional decoding circuitry must be added.  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4.3 SED1354 Configuration  
The SED1354 latches MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Specification, document number X19A-A-002-xx.  
The partial table below shows those configuration settings relevant to the direct connection  
implementation.  
Table 4-1: SED1354 Configuration for Direct Connection  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
WAIT# signal is active high  
WAIT# signal is active low  
= required configuration for direct connection with PR31500/PR31700  
Table 4-2: SED1354 Host Bus Selection for Direct Connection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MCF5307, ISA bus interface)  
Reserved  
= required configuration for direct connection with PR31500/PR31700  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 14  
Epson Research and Development  
Vancouver Design Center  
5 System Design Using the IT8368E PC Card Buffer  
If the system designer uses an ITE IT8368E PC Card and multiple-function IO buffer, the  
SED1354 can be interfaced with the PR31500/PR31700 without using a PC Card slot.  
Instead, the SED1354 is mapped to a rarely-used 16M byte portion of the PC Card slot  
buffered by the IT8368E. This makes the SED1354 virtually transparent to PC Card  
devices that use the same slot.  
5.1 Hardware Description—Using One IT8368E  
The ITE IT8368E has been specifically designed to support EPSON LCD/CRT controllers.  
The IT8368E provides eleven Multi-Function IO pins (MFIO). Configuration registers can  
be used to allow these MFIO pins to provide the control signals required to implement the  
SED1354 CPU interface.  
The Philips PR31500/PR31700 processor only provides addresses A[12:0], therefore  
devices that occupy more address space must use an external device to latch A[25:13]. The  
IT8368E’s MFIO pins can be configured to provide this latched address. However, when  
using the SED1354, five MFIO pins are utilized for SED1354 control signals and cannot  
provide latched addresses. In this case, an external latch must be used to provide the high-  
order address bits. For a solution that does not require a latch, refer to Section 5.2,  
‘Hardware Description—Using Two IT8368E’s”.  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 15  
Vancouver Design Center  
SED1354  
PR31500/PR31700  
+3.3V  
IO V , CORE V  
DD  
DD  
A[12:0]  
ENDIAN  
AB[12:0]  
AB[20:13]  
Latch  
ALE  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
System RESET  
RESET#  
VDD  
pull-up  
/CARDxWAIT  
DCLKOUT  
IT8368E  
WAIT#  
M/R#  
A23  
See text  
CLKI  
...or...  
Clock divider  
BUSCLK  
Oscillator  
LHA23/MFIO10  
LHA22/MFIO9  
WE1#  
WE0#  
RD1#  
LHA21/MFIO8  
LHA20/MFIO7  
LHA19/MFIO6  
RD0#  
CS#  
Chip Select  
Logic  
Notes: The Chip Select Logic shown above is necessary to guarantee timing parameter t1 of the Generic MPU Interface  
Asynchronous Timing (for details refer to the SED1354 Hardware Functional Specification, document number  
X19A-A-002-xx).  
When connecting the SED1354 RESET# pin, the system designer should be aware of all conditions that may reset  
the SED1354 (e.g. CPU reset can be asserted during wake-up from power-down modes, or during debug states).  
Figure 5-1: SED1354 to PR31500/PR31700 Connection using One IT8368E  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 16  
Epson Research and Development  
Vancouver Design Center  
The Generic MPU host interface control signals of the SED1354 are asynchronous with  
respect to the SED1354 bus clock. This gives the system designer full flexibility in  
choosing the appropriate source (or sources) for CLKI and BUSCLK. Deciding whether  
both clocks should be the same and whether to use DCLKOUT (divided) as the clock  
source, should be based on the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 17  
Vancouver Design Center  
5.2 Hardware Description—Using Two IT8368E’s  
The following implementation uses a second IT8368E, not in VGA mode, in place of an  
address latch. The pins LHA23 and LHA[20:13] provide the latch function instead.  
SED1354  
PR31500/PR31700  
A[12:0]  
ENDIAN  
AB[12:0]  
AB[20:13]  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
System RESET  
RESET#  
VDD  
pull-up  
/CARDxWAIT  
DCLKOUT  
WAIT#  
M/R#  
LHA23  
Clock divider  
...or...  
IT8368E  
BUSCLK  
CLKI  
Oscillator  
See text  
LHA[20:13],  
LHA23  
+3.3V  
IO V , CORE V  
DD  
DD  
IT8368E  
WE1#  
WE0#  
LHA23/MFIO10  
LHA22/MFIO9  
RD1#  
LHA21/MFIO8  
LHA20/MFIO7  
LHA19/MFIO6  
RD0#  
CS#  
Chip Select  
Logic  
Notes: The Chip Select Logic shown above is necessary to guarantee the timing parameter t1  
of the Generic MPU Host Bus Interface Asynchronous Timing (for details refer to the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx).  
When connecting the SED1354 RESET# pin, the system designer should be aware of all conditions that may reset  
the SED1354 (e.g. CPU reset can be asserted during wake-up from power-down modes, or during debug states).  
Figure 5-2: SED1354 to PR31500/PR31700 Connection using Two IT8368E  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 18  
Epson Research and Development  
Vancouver Design Center  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
The Generic MPU host interface control signals of the SED1354 are asynchronous with  
respect to the SED1354 bus clock. This gives the system designer full flexibility in  
choosing the appropriate source (or sources) for CLKI and BUSCLK. Deciding whether  
both clocks should be the same and whether to use DCLKOUT (divided) as the clock  
source, should be based on the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
5.3 IT8368E Configuration  
The IT8368E provides eleven multi-function IO pins (MFIO). The IT8368E (or the first in  
a two-IT8368E implementation) must have both “Fix Attribute/IO” and “VGA” modes on.  
When both these modes are enabled, the MFIO pins provide control signals needed by the  
SED1354 host bus interface, and a 16M byte portion of the system PC Card attribute and  
IO space is allocated to address the SED1354. When accessing the SED1354 the associated  
card-side signals are disabled in order to avoid any conflicts.  
Note  
When a second IT8368E is used, it should not be set in VGA mode.  
For mapping details, refer to Section 5.4, ‘Memory Mapping and Aliasing”  
For further information on configuring the IT8368E, refer to the IT8368E PC Card/GPIO  
Buffer Chip Specification.  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 19  
Vancouver Design Center  
5.4 Memory Mapping and Aliasing  
When the PR31500/PR31700 accesses the PC Card slots without the ITE IT8368E, its  
system memory is mapped as in Table 5-1:, “PR31500/PR31700 to Unbuffered PC Card  
Slots System Address Mapping”.  
Note  
Bits CARD1IOEN and CARD2IOEN need to be set in the PR31500/PR31700 Memory  
Configuration Register 3.  
Table 5-1: PR31500/PR31700 to Unbuffered PC Card Slots System Address Mapping  
Function  
(CARDnIOEN=0)  
Function  
(CARDnIOEN=1)  
TX3912 Address  
Size  
0800 0000h  
0C00 0000h  
6400 0000h  
6400 0000h  
64M byte  
64M byte  
64M byte  
64M byte  
Card 1 Attribute  
Card 2 Attribute  
Card 1 IO  
Card 2 IO  
Card 1 Memory  
Card 2 Memory  
When the PR31500/PR31700 accesses the PC Card slots buffered through the ITE  
IT8368E, bits CARD1IOEN and CARD2IOEN are ignored and the attribute/IO space of  
the PR31500/PR31700 is divided into Attribute, IO and SED1354 access. Table 5-2:,  
“PR31500/PR31700 to PC Card Slots Address Remapping using the IT8368E” provides all  
the details of the Attribute/IO address re-allocation by the IT8368E.  
Table 5-2: PR31500/PR31700 to PC Card Slots Address Remapping using the IT8368E  
IT8368E Uses PC Card Slot #  
Philips Address  
Size  
Function  
Card 1 IO  
0800 0000h  
16M byte  
SED1354 registers,  
0900 0000h  
0980 0000h  
8M byte  
8M byte  
aliased 131,072 times at 64 byte intervals  
SED1354 display buffer,  
1
aliased 4 times at 2Mb intervals  
Card 1 Attribute  
0A00 0000h  
6400 0000h  
0C00 0000h  
32M byte  
64M byte  
16M byte  
Card 1 Memory  
Card 2 IO  
SED1354 registers,  
0D00 0000h  
0D80 0000h  
8M byte  
8M byte  
aliased 131,072 times at 64 byte intervals  
SED1354 display buffer,  
2
aliased 4 times at 2Mb intervals  
Card 2 Attribute  
0E00 0000h  
6800 0000h  
32M byte  
64M byte  
Card 2 Memory  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
 
 
Page 20  
Epson Research and Development  
Vancouver Design Center  
5.5 SED1354 Configuration  
The SED1354 latches MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Specification, document number X19A-A-002-xx.  
The partial table below only shows those configuration settings relevant to the IT8368E  
implementation.  
Table 5-3: SED1354 Configuration using the IT8368E  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
WAIT# signal is active high  
WAIT# signal is active low  
= required configuration for connection using ITE IT8368E  
Table 5-4: SED1354 Host Bus Selection using the IT8368E  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MCF5307, ISA bus interface)  
Reserved  
= required configuration for connection using ITE IT8368E  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 21  
Vancouver Design Center  
6 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 22  
Epson Research and Development  
Vancouver Design Center  
7 References  
7.1 Documents  
• Philips Electronics, PR31500/PR31700 Preliminary Specifications.  
• Epson Research and Development, Inc., SED1354 Color Graphics LCD/CRT  
Controller Hardware Functional Specification, Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
7.2 Document Sources  
• Philips Electronics Website: http://www-us2.semiconductors.philips.com.  
• Epson Electronics America Website: http://www.eea.epson.com.  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 23  
Vancouver Design Center  
8 Technical Support  
8.1 EPSON LCD/CRT Controllers (SED1354)  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
North America  
Japan  
Epson Electronics America, Inc.  
150 River Oaks Parkway  
San Jose, CA 95134, USA  
Tel: (408) 922-0200  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Seiko Epson Corporation  
Electronic Devices Marketing Division  
421-8, Hino, Hino-shi  
Tokyo 191-8501, Japan  
Tel: 042-587-5812  
10F, No. 287  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Fax: 042-587-5564  
Singapore  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Hong Kong  
Europe  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Fax: 089-14005-110  
Fax: 2827-4346  
Fax: 334-2716  
8.2 Philips MIPS PR31500/PR31700 Processor  
Philips Semiconductors  
Handheld Computing Group  
4811 E. Arques Avenue  
M/S 42, P.O. Box 3409  
Sunnyvale, CA 94088-3409  
Tel: (408) 991-2313  
http://www.philips.com  
8.3 ITE IT8368E  
Integrated Technology Express, Inc.  
Sales & Marketing Division  
2710 Walsh Avenue  
Santa Clara, CA 95051, USA  
Tel: (408) 980-8168  
Fax: (408) 980-9232  
http://www.iteusa.com  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-005-07  
Page 24  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-005-07  
Interfacing to the Philips MIPS PR31500/PR31700 Processor  
Issue Date: 99/03/10  
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the NEC VR4102™  
Microprocessor  
Document Number: X19A-G-007-06  
Copyright © 1997, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the NEC VR4102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 The NEC VR4102 System Bus . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.2 LCD Memory Access Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . 10  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 11  
VR4102 to SED1354 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 NEC VR4102™ Configuration . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 17  
7.2 NEC Electronics Inc. (VR4102). . . . . . . . . . . . . . . . . . . . . . . . 17  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4-1: Summary of Power-On/Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: Host Bus Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: NEC/SED1354 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
List of Figures  
Figure 2-1: NEC VR4102 Read/Write Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4-1: Typical Implementation of VR4102 to SED1354 Interface . . . . . . . . . . . . . . . .12  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the NEC  
TM  
VR4102 Microprocessor (uPD30102). The NEC VR4102 Microprocessor is specifically  
designed to support an external LCD controller and the pairing of these two devices results  
in an embedded system offering impressive display capability with very low power  
consumption.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the NEC VR4102  
2.1 The NEC VR4102 System Bus  
The VR-Series family of microprocessors features a high-speed synchronous system bus  
typical of modern microprocessors. Designed with external LCD controller support and  
Windows CE-based embedded consumer applications in mind, the VR4102 offers a highly  
integrated solution for portable systems. This section provides an overview of the operation  
of the CPU bus in order to establish interface requirements.  
2.1.1 Overview  
The NEC VR4102 is designed around the RISC architecture developed by MIPS. This  
microprocessor is based on the 66MHz VR4100 CPU core which supports 64-bit  
processing. The CPU communicates with the Bus Control Unit (BCU) using its internal  
SysAD bus. The BCU in turn communicates with external devices using its ADD and DAT  
buses which can be dynamically sized to 16 or 32-bit operation.  
The NEC VR4102 has direct support for an external LCD controller. Specific control  
signals are assigned for an external LCD controller providing an easy interface to the CPU.  
A 16M byte block of memory is assigned for the LCD controller and its own chip select  
and ready signals available. Word or byte accesses are controlled by the system high byte  
signal (SHB#).  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 9  
Vancouver Design Center  
2.1.2 LCD Memory Access Cycles  
Once an address in the LCD block of memory is placed on the external address bus  
(ADD[25:0]), the LCD chip select (LCDCS#) is driven low. The read or write enable  
signals (RD# or WR#) are driven low for the appropriate cycle and LCDRDY is driven low  
to insert wait states into the cycle. The high byte enable (SHB#) is driven low for 16-bit  
transfers and high for 8-bit transfers.  
The following figure illustrates typical NEC VR4102 memory read and write cycles to the  
LCD controller interface.  
TCLK  
ADD[25:0]  
VALID  
SHB#  
LCDCS#  
WR#,RD#  
D[15:0]  
(write)  
VALID  
Hi-Z  
D[15:0]  
(read)  
Hi-Z  
VALID  
LCDRDY  
Figure 2-1: NEC VR4102 Read/Write Cycles  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 10  
Epson Research and Development  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the VR4102 microprocessor. The Generic MPU host bus interface is the least  
processor-specific interface mode supported by the SED1354 and was chosen to implement  
this interface due to the simplicity of its timing.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 11  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354. These signals must  
be generated by external hardware based on the control outputs from the host CPU.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354. These signals must be generated by external hardware based on the control  
outputs from the host CPU.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 12  
Epson Research and Development  
Vancouver Design Center  
4 VR4102 to SED1354 Interface  
4.1 Hardware Description  
TM  
The NEC VR4102 microprocessor is specifically designed to support an external LCD  
controller by providing the internal address decoding and control signals necessary. By  
using this interface only minimal external “glue” logic is necessary.  
The diagram below shows a typical implementation of the VR4102 to SED1354 interface.  
Read/Write  
Decode Logic  
NEC VR4102  
SED1354  
A0  
WE0#  
WR#  
SHB#  
WE1#  
RD0#  
A0  
RD#  
RD1#  
CS#  
LCDCS#  
LCDRDY  
Pull-up  
WAIT#  
M/R#  
A21  
System RESET  
RESET#  
AB[20:0]  
ADD[25:0]  
DAT[15:0]  
DB[15:0]  
BUSCLK  
BUSCLK  
Notes: The propagation delay of the Read/write Decode Logic shown above must be less than 10 nsec.  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of VR4102 to SED1354 Interface  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4.2 SED1354 Hardware Configuration  
The SED1354 uses MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
The tables below show only those configuration settings important to the PC Card host bus  
interface.  
.
Table 4-1: Summary of Power-On/Reset Options  
value on this pin at rising edge of RESET# is used to configure: (1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
For host bus interface selection see Table 4-2, “Host Bus Interface Selection”  
Little Endian  
Big Endian  
WAIT# is active high (1 = insert wait state) WAIT# is active low (0 = insert wait state)  
= configuration for NEC VR4102 interface.  
Table 4-2: Host Bus Interface Selection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
0
0
1
0
1
1
x
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MPC821, ISA bus interface)  
Reserved  
= configuration for NEC VR4102 interface.  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
 
Page 14  
Epson Research and Development  
Vancouver Design Center  
4.3 NEC V 4102Configuration  
R
The NEC VR4102™ provides the internal address decoding necessary to map to an external  
LCD controller. Physical address 0A00 0000h to 0AFF FFFFh (16M bytes) is reserved for  
an external LCD controller.  
The SED1354 supports up to 2M bytes of display buffer. The NEC VR4102™ address line  
A21 is used to select between the SED1354 display buffer and internal register set.  
The VR4102™ uses a read, write and system high-byte enable to interface to an external  
LCD controller. The SED1354 uses low and high byte read and write strobes and therefore  
minimal “glue” logic is necessary.  
Table 4-2: NEC/SED1354 Truth Table  
NEC Signals  
Cycle  
SED1354 Signals  
SHB#  
1
RD#  
0
WR#  
1
A0  
0
RD0# = low  
RD1# = high  
RD0# = high  
RD1# - low  
RD0# = low  
RD1# - low  
WR0# = low  
WR1# = high  
WR0# = high  
WR1# = low  
WR0# = low  
WR1# = low  
8-bit even address  
Read  
8-bit odd address  
Read  
1
0
1
1
0
0
0
1
1
1
1
1
0
0
0
1
x
0
1
x
16-bit Read  
8-bit even address  
Write  
8-bit odd address  
Write  
16-bit Write  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 15  
Vancouver Design Center  
5 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 16  
Epson Research and Development  
Vancouver Design Center  
6 References  
6.1 Documents  
• NEC Electronics Inc., VR4102 Preliminary User’s Manual, Document Number  
U12739EJ2V0UM00.  
• Epson Research and Development, Inc., SED1354 Hardware Functional Specification,  
Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
6.2 Document Sources  
• NEC Electronics Website: http://www.necel.com.  
• Epson Electronics America Website: http://www.eea.epson.com.  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 17  
Vancouver Design Center  
7 Technical Support  
7.1 EPSON LCD/CRT Controllers (SED1354)  
Japan  
Seiko Epson Corporation  
North America  
Epson Electronics America, Inc.  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Electronic Devices Marketing Division  
150 River Oaks Parkway  
421-8, Hino, Hino-shi  
San Jose, CA 95134, USA  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: (408) 922-0200  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Tel: 042-587-5812  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
7.2 NEC Electronics Inc. (VR4102).  
NEC Electronics Inc.  
(U.S.A.)Santa Clara  
California  
Tel: (800) 366-9782  
Fax: (800) 729-9288  
http://www.nec.com  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-007-06  
Page 18  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-007-06  
Interfacing to the NEC VR4102™ Microprocessor  
Issue Date: 99/03/10  
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the Motorola MCF5307  
"Coldfire" Microprocessor  
Document Number: X19A-G-011-06  
Copyright © 1998, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the MCF5307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 The MCF5307 System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.2 Normal (Non-Burst) Bus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.3 Burst Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2 Chip-Select Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
SED1354 Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . 11  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 12  
MCF5307 To SED1354 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1 Hardware Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 14  
4.3 Memory/Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.4 MCF5307 Chip Select Configuration . . . . . . . . . . . . . . . . . . . . . 15  
5
6
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 18  
7.2 Motorola MCF5307 Processor . . . . . . . . . . . . . . . . . . . . . . . . 18  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . 11  
Table 4-1: SED1354 Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4-2: SED1354 Host Bus Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
List of Figures  
Figure 2-1: MCF5307 Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 2-2: MCF5307 Memory Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4-1: Typical Implementation of MCF5307 to SED1354 Interface . . . . . . . . . . . . . . .13  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the Motorola  
MCF5307 “Coldfire” microprocessor. The pairing of these two devices results in an  
embedded system offering impressive display capability with very low power  
consumption.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the MCF5307  
2.1 The MCF5307 System Bus  
The MCF5200/5300 family of processors feature a high-speed synchronous system bus  
typical of modern microprocessors. This section provides an overview of the operation of  
the MCF5307 bus in order to establish interface requirements.  
2.1.1 Overview  
The MCF5307 microprocessor family uses a synchronous address and data bus, very  
similar in architecture to the MC68040 and MPC8xx. All outputs and inputs are timed with  
respect to a square-wave reference clock called BCLK0 (Master Clock). This clock runs at  
a software-selectable divisor rate from the machine cycle speed of the CPU core, typically  
20 to 33 MHz. Both the address and the data bus are 32 bits in width. All IO accesses are  
memory-mapped; there is no separate IO space in the MCF5307 architecture.  
The bus can support two types of cycle, normal and burst. Burst memory cycles are used to  
fill on-chip cache memories, and for certain on-chip DMA operations. Normal cycles are  
used for all other data transfers.  
2.1.2 Normal (Non-Burst) Bus Transactions  
The bus master initiates a data transfer by placing the memory address on address lines A31  
through A0 and driving TS (Transfer Start) low for one clock cycle. Several control signals  
are also provided with the memory address:  
SIZ[1:0] (Transfer Size) -- indicates whether the bus cycle is 8, 16, or 32 bits in width.  
R/W -- set high for read cycles and low for write cycles.  
TT[1:0] (Transfer Type Signals) -- provides more detail on the type of transfer being  
attempted.  
TIP (Transfer In Progress) -- asserts whenever a bus cycle is active.  
When the peripheral device being accessed has completed the bus transfer, it asserts TA  
(Transfer Acknowledge) for one clock cycle, completing the bus transaction. Once TA has  
been asserted, the MCF5307 will not start another bus cycle until TA has been de-asserted.  
The minimum length of a bus transaction is two bus clocks.  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 9  
Vancouver Design Center  
The following figure illustrates a typical memory read cycle on the MCF5307 system bus.  
BCLK0  
TS  
TA  
TIP  
A[31:0]  
R/W  
SIZ[1:0], TT[1:0]  
D[31:0]  
Transfer Start  
Sampled when TA low  
Wait States  
Transfer  
Next Transfer  
Starts  
Complete  
Figure 2-1: MCF5307 Memory Read Cycle  
The following figure illustrates a typical memory read cycle on the MCF5307 system bus.  
BCLK0  
TS  
TA  
TIP  
A[31:0]  
R/W  
SIZ[1:0], TT[1:0]  
D[31:0]  
Transfer Start  
Valid  
Wait States  
Transfer  
Next Transfer  
Starts  
Complete  
Figure 2-2: MCF5307 Memory Write Cycle  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 10  
Epson Research and Development  
Vancouver Design Center  
2.1.3 Burst Cycles  
Burst cycles are very similar to normal cycles, except they occur as a series of four back-  
to-back, 32-bit memory reads or writes, with the TIP (Transfer In Progress) output asserted  
continuously through the burst. Burst memory cycles are mainly intended to facilitate cache  
line fill from program or data memory. They are typically not used for transfers to/from IO  
peripheral devices such as the SED1354. The MCF5307 chip selects provide a mechanism  
to disable burst accesses for peripheral devices which are not able to support them.  
2.2 Chip-Select Module  
In addition to generating eight independent chip-select outputs, the MCF5307 Chip Select  
Module can generate active-low Output Enable (OE) and Write Enable (WE) signals  
compatible with most memory and x86-style peripherals. The MCF5307 bus controller also  
provides a Read/Write (R/W) signal which is compatible with most 68K peripherals.  
Chip selects 0 and 1 can be programmed independently to respond to any base address and  
block size. Chip select 0 can be active immediately after reset, and is typically used to  
control a boot ROM. Chip select 1 is typically used to control a large static or dynamic  
RAM block.  
Chip selects 2 through 7 have fixed block sizes of 2M bytes each. Each has a unique, fixed  
offset from a common, programmable starting address. These chip selects are well-suited  
to typical IO addressing requirements.  
Each chip select may be individually programmed for:  
Port size (8/16/32-bit).  
Number of wait states (0-15) or external acknowledge.  
Address space type.  
Burst or non-burst cycle support.  
Write protect.  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 11  
Vancouver Design Center  
3 SED1354 Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the MCF5307 microprocessor. The Generic MPU host bus interface is the least  
processor-specific interface mode supported by the SED1354. The Generic MPU host bus  
interface was chosen to implement this interface due to the simplicity of its timing and  
compatibility with the control signals available from the MCF5307s General-Purpose  
Chip Select Module.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic 1, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 12  
Epson Research and Development  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
BUSCLK is a clock input which synchronizes transfers between the host CPU and the  
SED1354. It is separate from the pixel clock (CLKI) and is typically driven by the host  
CPU system clock.  
The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
Chip Select (CS#) is driven by decoding the high-order address lines to select the proper  
IO or memory address space.  
M/R# is driven high for memory accesses, or low for SED1354 register accesses. On  
CPUs which implement memory-mapped IO, this pin is typically tied to an address line;  
on CPUs with separate IO spaces, this pin is typically driven by control logic from the  
CPU.  
WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354.  
RD# and RD1# are read enables for the low-order and high-order bytes, respectively, to  
be driven low when the host CPU is reading data from the SED1354.  
WAIT# is a signal which is output from the SED1354 to the host CPU which indicates  
when data is ready (read cycle) or accepted (write cycle) on the host bus. Since host  
CPU accesses to the SED1354 may occur asynchronously to the display update, it is  
possible that contention may occur in access to the 1354 internal registers and/or refresh  
memory. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete. This signal is active low and needs to be inverted using  
MD5 since the MCF5307 wait state signal is active high.  
The Bus Status (BS#) signal is unused in general purpose bus mode, and should be tied  
high (connected to IO V ).  
DD  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4 MCF5307 To SED1354 Interface  
4.1 Hardware Connections  
The interface between the SED1354 and the MCF5307 requires minimal glue logic. Since  
the SED1354 has a single chip select input for both display RAM and registers, a single  
external gate is required to produce a negative-OR function of the two MCF5307 chip  
selects. A single resistor is used to speed up the rise time of the WAIT# (TA) signal when  
terminating the bus cycle.  
BS# (bus start) is not used in this implementation and should be tied low (connected GND).  
The following diagram shows a typical implementation of the MCF5307 to SED1354  
interface.  
MCF5307  
SED1354  
A21  
A[20:0]  
M/R#  
AB[20:0]  
DB[15:0]  
CS#  
D[31:16]  
74AC08 (or equiv.)  
CS4  
CS5  
Vcc  
470  
TA  
WAIT#  
WE1#  
WE0#  
WE1  
WE0  
OE  
RD1#  
RD0#  
BCLK0  
BUSCLK  
RESET#  
System RESET  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of MCF5307 to SED1354 Interface  
Note  
For pin mapping see Table 3-1:, Generic MPU Host Bus Interface Pin Mapping.  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 14  
Epson Research and Development  
Vancouver Design Center  
4.2 SED1354 Hardware Configuration  
The SED1354 uses MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
Table 4-1: SED1354 Configuration Settings  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
Wait# signal is active high  
Wait# signal is active low  
Configure SUSPEND# pin as Hardware  
Suspend Enable  
MD9  
Configure SUSPEND# pin as GPO output  
= required settings for MCF5307 interface  
Table 4-2: SED1354 Host Bus Selection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MCF5307, ISA bus interface)  
Reserved  
= required settings for MCF5307 interface.  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 15  
Vancouver Design Center  
4.3 Memory/Register Mapping  
The SED1354 is a memory mapped device requiring a 2M byte address space for the  
display buffer and a few more locations for the internal registers. Chip selects 0 and 1 have  
programmable block sizes from 64K bytes through 2G bytes, however these chip selects  
would normally be needed to control system RAM and ROM. Two of the IO chip selects  
(CS2 through CS7) are required to address the entire address space of the SED1354, since  
these chip selects have a fixed 2M byte block size.  
4.4 MCF5307 Chip Select Configuration  
In the example interface, chip selects 4 and 5 are used to control the SED1354. CS4 selects  
a 2M byte address space for the SED1354 control registers, while CS5 selects the 2M byte  
display buffer. The CSBAR register should be set to the upper 8 bits of the desired base  
address.  
The following options should be selected in the chip select mask registers (CSMR4/5):  
WP = 0 disable write protect  
AM = 0 - enable alternate bus master access to the SED1354  
C/I = 1 - disable CPU space access to the SED1354  
SC = 1 - disable Supervisor Code space access to the SED1354  
SD = 0 - enable Supervisor Data space access to the SED1354  
UC = 1 - disable User Code space access to the SED1354  
UD = 0 - enable User Data space access to the SED1354  
V = 1 - global enable (Valid) for the chip select  
The following options should be selected in the chip select control registers (CSCR4/5):  
WS0-3 = 0 - no internal wait state setting  
AA = 0 - no automatic acknowledgment  
PS (1:0) = 1:0 memory port size is 16 bits  
BEM = 0 Byte enable/write enable active on writes only  
BSTR = 0 disable burst reads  
BSTW = 0 disable burst writes  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 16  
Epson Research and Development  
Vancouver Design Center  
5 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
Epson Research and Development  
Page 17  
Vancouver Design Center  
6 References  
6.1 Documents  
Motorola Inc., MCF5307 ColdFire® Integrated Microprocessor User’s Manual,  
Motorola Publication no. MCF5307UM/AD.  
Epson Research and Development, Inc., SED1354 Hardware Functional Specification,  
Document Number X19A-A-002-xx.  
Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
6.2 Document Sources  
Motorola Inc.: Motorola Literature Distribution Center, (800) 441-2447.  
Motorola Website: http://www.mot.com.  
Epson Electronics America Website: www.eea.epson.com.  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354  
X19A-G-011-06  
Page 18  
Epson Research and Development  
Vancouver Design Center  
7 Technical Support  
7.1 EPSON LCD/CRT Controllers (SED1354)  
Japan  
Seiko Epson Corporation  
Electronic Devices Marketing Division  
421-8, Hino, Hino-shi  
North America  
Epson Electronics America, Inc.  
150 River Oaks Parkway  
San Jose, CA 95134, USA  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: (408) 922-0200  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Tel: 042-587-5812  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
7.2 Motorola MCF5307 Processor  
Motorola Design Line, (800) 521-6274.  
Local Motorola sales office or authorized distributor.  
SED1354  
X19A-G-011-06  
Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor  
Issue Date: 99/12/23  
SED1354 Color Graphics LCD / CRT Controller  
Interfacing to the Motorola MC68328  
"Dragonball" Microprocessor  
Document Number: X19A-G-013-01  
Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the MC68328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 The 68328 System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 Chip-Select Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . 9  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 10  
MC68328 To SED1354 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 MC68328 Chip Select Configuration . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 17  
7.2 Motorola MC68328 Processor . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4-1: Summary of Power-On/Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: SED1354 Host Bus Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-3: Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
List of Figures  
Figure 4-1: Block Diagram of MC68328 to SED1354 Interface - MC68000 Bus 1 Interface Mode .11  
Figure 4-2: Block Diagram of MC68328 to SED1354 Interface - Generic Interface Mode . . . . . .12  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware required to implement an interface between  
the SED1354 Color Graphics LCD/CRT Controller and the Motorola MC68328  
‘Dragonball’ Microprocessor. By implementing a dedicated display refresh memory, the  
SED1354 can reduce system power consumption, improve image quality, and increase  
system performance as compared to the Dragonball’s on-chip LCD controller.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the MC68328  
2.1 The 68328 System Bus  
The 68328 is an integrated controller for handheld products, based upon the MC68EC000  
microprocessor core. It implements a 16-bit data bus and a 32-bit address bus. The bus  
interface consists of all the standard MC68000 bus interface signals, plus some new signals  
intended to simplify the task of interfacing to typical memory and peripheral devices.  
The 68000 bus control signals are well documented in Motorola’s user manuals, and will  
not be described here (see reference 1 for details). A brief summary of the new signals  
appears below:  
• Output Enable (OE) is asserted when a read cycle is in process; it is intended to connect  
to the output enable control of a typical static RAM, EPROM, or Flash EPROM device.  
• Upper Write Enable and Lower Write Enable (UWE/LWE) are asserted during memory  
write cycles for the upper and lower bytes of the 16-bit data bus; they may be directly  
connected to the write enable inputs of a typical memory device.  
The SED1354 implements the MC68000 bus interface using its MC68000 Bus 1 mode, so  
this mode may be used to connect the 68328 directly to the SED1354 with no glue logic.  
However, several of the 68000 bus control signals are multiplexed with I/O and interrupt  
signals on the 68328, and in many applications it may be desirable to make these pins  
available for these alternate functions. This requirement may be accommodated through  
use of the Generic Bus interface mode on the SED1354.  
2.2 Chip-Select Module  
The 68328 can generate up to 16 chip select outputs, organized into four groups "A"  
through "D".  
Each chip select group has a common base address register and address mask register, to  
set the base address and block size of the entire group. In addition, each chip select within  
a group has its own address compare and address mask register, to activate the chip select  
for a subset of the group’s address block. Finally, each chip select may be individually  
programmed to control an 8 or 16-bit device, and each may be individually programmed to  
generate from 0 through 6 wait states internally, or allow the memory or peripheral device  
to terminate the cycle externally through use of the standard MC68000 DTACK signal.  
Groups A and B can have a minimum block size of 64K bytes, so these are typically used  
to control memory devices. Chip select A0 is active immediately after reset, so it is  
typically used to control a boot EPROM device. Groups C and D have a minimum block  
size of 4K bytes, so they are well-suited to controlling peripheral devices. Chip select D3  
is associated with the 68328 on-chip PCMCIA control logic.  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 9  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
This section is summary of the bus interface modes available on the SED1354, and offers  
some detail on the Generic MPU host bus interface used to implement the interface to the  
MC68328.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 10  
Epson Research and Development  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354. These signals must  
be generated by external hardware based on the control outputs from the host CPU.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354. These signals must be generated by external hardware based on the control  
outputs from the host CPU.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 11  
Vancouver Design Center  
4 MC68328 To SED1354 Interface  
4.1 Hardware Description  
As mentioned earlier in this application note, the MC68328 multiplexes dual functions on  
some of its bus control pins, specifically UDS, LDS, and DTACK. If all of these pins are  
available for use as bus control pins, then the SED1354 interface is a straightforward imple-  
mentation of the MC68000 Bus 1 interface mode as described in the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx. Following are the electrical  
connections required for this interface.  
MC68328  
A21  
SED1354  
M/R#  
A[20:1]  
AB[20:1]  
D[15:0]  
CSB3  
SD[15:0]  
CS#  
Vcc  
470  
DTACK  
WAIT#  
BS#  
AS  
UDS  
WE1#  
AB0  
LDS  
R/W  
RD1#  
RD0#  
Vcc  
BUSCLK  
RESET#  
CLK0  
System RESET  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Block Diagram of MC68328 to SED1354 Interface - MC68000 Bus 1 Interface Mode  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 12  
Epson Research and Development  
Vancouver Design Center  
If UDS and/or LDS are required for their alternate I/O functions, then the 68328 to  
SED1354 interface may be realized using the SED1354 Generic bus interface mode. The  
electrical connections required for this interface are shown below. Note that in either case,  
the DTACK signal must be made available for the SED1354, since it inserts a variable  
number of wait states depending upon CPU/LCD synchronization and the LCD panel  
display mode being used. A single resistor is used to speed up the rise time of the WAIT#  
(TA) signal when terminating the bus cycle.  
SED1354  
M/R#  
MC68328  
A21  
A[20:1]  
AB[20:1]  
SD[15:0]  
CS#  
D[15:0]  
CSB3  
Vcc  
470  
WAIT#  
DTACK  
WE1#  
WE0#  
RD1#  
RD0#  
UWE  
LWE  
OE  
BUSCLK  
RESET#  
CLK0  
System RESET  
Note:  
When connecting the SED1354/55 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354/55 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-2: Block Diagram of MC68328 to SED1354 Interface - Generic Interface Mode  
The SED1354 requires a 2M byte address space for the display buffer, plus a few more  
locations to access its internal registers. To accommodate this relatively large block size, it  
is preferable to use one of the chip selects from groups A or B, but this is not required.  
Virtually any chip select other than CSA0 or CSD3 would be suitable for the SED1354  
interface.  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4.2 SED1354 Hardware Configuration  
The SED1354 latches MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. Table 4-2 shows the settings used for the  
SED1354 in these interfaces. MD1, MD2, and MD3 should be set to select either MC68000  
Bus 1 mode or Generic bus mode as desired. The other settings are identical for either bus  
mode.  
Table 4-1: Summary of Power-On/Reset Options  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
MD6  
MD7  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
Wait# signal is active high  
Wait# signal is active low  
See “Memory Configuration” table below  
See “Memory Configuration” table below  
Configure DACRD#, BLANK#, DACP0,  
DACWR#, DACRS0, DACRS1, HRTC,  
VRTC as GPIO4-11  
Configure DACRD#, BLANK#, DACP0,  
DACWR#, DACRS0, DACRS1, HRTC, VRTC  
as DAC / CRT outputs  
MD8  
Configure SUSPEND# pin as Hardware  
Suspend Enable  
MD9  
Configure SUSPEND# pin as GPO output  
MD10  
MD11  
MD12  
MD13  
MD14  
MD15  
Active low (On) LCDPWR / GPO polarity  
Active high (On) LCDPWR / GPO polarity  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
= required settings for MC68328 support.  
Table 4-2: SED1354 Host Bus Selection  
MD3  
MD2  
MD1  
Option  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
1
2
3
4
5
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MC68328, ISA bus interface)  
Reserved  
= required settings for MC68328 support.  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 14  
Epson Research and Development  
Vancouver Design Center  
Table 4-3: Memory Configuration  
MD7  
MD6  
Option  
Memory Selection  
Symmetrical 256K x 16 DRAM  
Symmetrical 1M x 16 DRAM  
Asymmetrical 256K x 16 DRAM  
Asymmetrical 1M x 16 DRAM  
0
0
1
1
0
1
0
1
1
2
3
4
4.3 MC68328 Chip Select Configuration  
In the example interface, chip select CSB3 is used to control the SED1354. A 4M byte  
address space is used. The SED1354 control registers are mapped into the bottom half of  
this address block, while the display buffer is mapped into the top half. The chip select  
should have its RO (Read Only) bit set to 0, and the WAIT field (Wait states) should be set  
to 111 to allow the SED1354 to terminate bus cycles externally.  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 15  
Vancouver Design Center  
5 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 16  
Epson Research and Development  
Vancouver Design Center  
6 References  
6.1 Documents  
• Motorola Inc., MC68328 DragonBall® Integrated Microprocessor User’s Manual;  
Motorola Publication no. MC68328UM/AD.  
• Epson Research and Development, Inc., SED1354 Hardware Functional Specification,  
Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
6.2 Document Sources  
• Motorola Inc.: Motorola Literature Distribution Center, (800) 441-2447.  
• Epson Electronics America Website: http://www.eea.epson.com.  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
Epson Research and Development  
Page 17  
Vancouver Design Center  
7 Technical Support  
7.1 EPSON LCD/CRT Controllers (SED1354)  
Japan  
Seiko Epson Corporation  
North America  
Epson Electronics America, Inc.  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Electronic Devices Marketing Division  
150 River Oaks Parkway  
421-8, Hino, Hino-shi  
San Jose, CA 95134, USA  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: (408) 922-0200  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Tel: 042-587-5812  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
7.2 Motorola MC68328 Processor  
• Motorola Design Line, (800) 521-6274.  
• Local Motorola sales office or authorized distributor.  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354  
X19A-G-013-01  
Page 18  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-013-01  
Interfacing to the Motorola MC68328 "Dragonball" Microprocessor  
Issue Date: 99/04/19  
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the Motorola MPC821  
Microprocessor  
Document Number: X19A-G-010-04  
Copyright © 1998, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the MPC821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 The MPC8xx System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 MPC821 Bus Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2.1 Normal (Non-Burst) Bus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.3 Memory Controller Module . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3.1 General-Purpose Chip Select Module (GPCM) . . . . . . . . . . . . . . . . . . . . 11  
2.3.2 User-Programmable Machine (UPM) . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
4
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . 13  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 14  
MPC821 to SED1354 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.2 Hardware Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.3 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 18  
4.4 Register/Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.5 MPC821 Chip Select Configuration . . . . . . . . . . . . . . . . . . . . . . 19  
4.6 Test Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.6.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5
6
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 24  
7.2 Motorola MPC821 Processor . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-1: List of Connections from MPC821ADS to SED1354 . . . . . . . . . . . . . . . . . . . 16  
Table 4-2: Summary of Power-On/Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4-2: Host Bus Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
List of Figures  
Figure 2-1: Power PC Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 2-2: Power PC Memory Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Figure 4-1: Typical Implementation of MPC821 to SED1354 Interface . . . . . . . . . . . . . . . .15  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the Motorola  
MPC821 processor.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the MPC821  
2.1 The MPC8xx System Bus  
The MPC8xx family of processors feature a high-speed synchronous system bus typical of  
modern RISC microprocessors. This section provides an overview of the operation of the  
CPU bus in order to establish interface requirements.  
2.2 MPC821 Bus Overview  
The MPC8xx microprocessor family uses a synchronous address and data bus. All IO is  
synchronous to a square-wave reference clock called MCLK (Master Clock). This clock  
runs at the machine cycle speed of the CPU core (typically 25 to 50 MHz). Most outputs  
from the processor change state on the rising edge of this clock. Similarly, most inputs to  
the processor are sampled on the rising edge.  
Note  
The external bus can run at one-half the CPU core speed using the clock control register.  
This is typically used when the CPU core is operated above 50 MHz.  
The MPC821 can generate up to eight independent chip select outputs, each of which may  
be controlled by one of two types of timing generators: the General Purpose Chip Select  
Module (GPCM) or the User-Programmable Machine (UPM). Examples are given using  
the GPCM.  
It should be noted that all Power PC microprocessors, including the MPC8xx family, use  
bit notation opposite from the convention used by most other microprocessor systems. Bit  
numbering for the MPC8xx always starts with zero as the most significant bit, and incre-  
ments in value to the least-significant bit. For example, the most significant bits of the  
address bus and data bus are A0 and D0, while the least significant bits are A31 and D31.  
The MPC8xx uses both a 32-bit address and data bus. A parity bit is supported for each of  
the four byte lanes on the data bus. Parity checking is done when data is read from external  
memory or peripherals, and generated by the MPC8xx bus controller on write cycles. All  
IO accesses are memory-mapped meaning there is no separate IO space in the Power PC  
architecture.  
Support is provided for both on-chip (DMA controllers) and off-chip (other processors and  
peripheral controllers) bus masters. For further information on this topic, refer to Section  
6, “References” on page 23.  
The bus can support both normal and burst cycles. Burst memory cycles are used to fill  
on-chip cache memory, and for certain on-chip DMA operations. Normal cycles are used  
for all other data transfers.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 9  
Vancouver Design Center  
2.2.1 Normal (Non-Burst) Bus Transactions  
A data transfer is initiated by the bus master by placing the memory address on address  
lines A0 through A31 and driving TS (Transfer Start) low for one clock cycle. Several  
control signals are also provided with the memory address:  
• TSIZ[0:1] (Transfer Size) -- indicates whether the bus cycle is 8, 16, or 32-bit.  
• RD/WR -- set high for read cycles and low for write cycles.  
• AT[0:3] (Address Type Signals) -- provides more detail on the type of transfer being  
attempted.  
When the peripheral device being accessed has completed the bus transfer, it asserts TA  
(Transfer Acknowledge) for one clock cycle to complete the bus transaction. Once TA has  
been asserted, the MPC821 will not start another bus cycle until TA has been de-asserted.  
The minimum length of a bus transaction is two bus clocks.  
The following figure illustrates a typical memory read cycle on the Power PC system bus.  
SYSCLK  
TS  
TA  
A[0:31]  
RD/WR  
TSIZ[0:1], AT[0:3]  
D[0:31]  
Transfer Start  
Sampled when TA low  
Wait States  
Transfer  
Next Transfer  
Starts  
Complete  
Figure 2-1: Power PC Memory Read Cycle  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 10  
Epson Research and Development  
Vancouver Design Center  
The following figure illustrates a typical memory write cycle on the Power PC system bus.  
SYSCLK  
TS  
TA  
A[0:31]  
RD/WR  
TSIZ[0:1], AT[0:3]  
D[0:31]  
Transfer Start  
Valid  
Wait States  
Transfer  
Next Transfer  
Starts  
Complete  
Figure 2-2: Power PC Memory Write Cycle  
If an error occurs, TEA (Transfer Error Acknowledge) is asserted and the bus cycle is  
aborted. For example, a peripheral device may assert TEA if a parity error is detected, or  
the MPC821 bus controller may assert TEA if no peripheral device responds at the  
addressed memory location within a bus time-out period.  
For 32-bit transfers, all data lines (D[0:31]) are used and the two low-order address lines  
A30 and A31 are ignored. For 16-bit transfers, data lines D0 through D15 are used and  
address line A30 is ignored. For 8-bit transfers, data lines D0 through D7 are used and all  
address lines (A[0:31]) are used.  
Note  
This assumes that the Power PC core is operating in big endian mode (typically the case  
for embedded systems).  
2.1.3  
Burst Cycles  
Burst memory cycles are used to fill on-chip cache memory and to carry out certain on-chip  
DMA operations. They are very similar to normal bus cycles with the following exceptions:  
• Always 32-bit.  
• Always attempt to transfer four 32-bit words sequentially.  
• Always address longword-aligned memory (i.e. A30 and A31 are always 0:0).  
• Do not increment address bits A28 and A29 between successive transfers; the addressed  
device must increment these address bits internally.  
If a peripheral is not capable of supporting burst cycles, it can assert Burst Inhibit (BI)  
simultaneously with TA, and the processor will revert to normal bus cycles for the  
remaining data transfers.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 11  
Vancouver Design Center  
Burst cycles are mainly intended to facilitate cache line fills from program or data memory.  
They are normally not used for transfers to/from IO peripheral devices such as the  
SED1354, therefore the interfaces described in this document do not attempt to support  
burst cycles. However, the example interfaces include circuitry to detect the assertion of  
BDIP and respond with BI if caching is accidently enabled for the SED1354 address space.  
2.3 Memory Controller Module  
2.3.1 General-Purpose Chip Select Module (GPCM)  
The General-Purpose Chip Select Module (GPCM) is used to control memory and  
peripheral devices which do not require special timing or address multiplexing. In addition  
to the chip select output, it can generate active-low Output Enable (OE) and Write Enable  
(WE) signals compatible with most memory and x86-style peripherals. The MPC821 bus  
controller also provides a Read/Write (RD/WR) signal which is compatible with most 68K  
peripherals.  
The GPCM is controlled by the values programmed into the Base Register (BR) and Option  
Register (OR) of the respective chip select. The Option Register sets the base address, the  
block size of the chip select, and controls the following timing parameters:  
• The ACS bit field allows the chip select assertion to be delayed with respect to the  
address bus valid, by 0, ¼, or ½ clock cycle.  
• The CSNT bit causes chip select and WE to be negated ½ clock cycle earlier than  
normal.  
• The TRLX (relaxed timing) bit will insert an additional one clock delay between asser-  
tion of the address bus and chip select. This accommodates memory and peripherals  
with long setup times.  
• The EHTR (Extended hold time) bit will insert an additional 1-clock delay on the first  
access to a chip select.  
• Up to 15 wait states may be inserted, or the peripheral can terminate the bus cycle itself  
by asserting TA (Transfer Acknowledge).  
• Any chip select may be programmed to assert BI (Burst Inhibit) automatically when its  
memory space is addressed by the processor core.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 12  
Epson Research and Development  
Vancouver Design Center  
2.3.2 User-Programmable Machine (UPM)  
The UPM is typically used to control memory types, such as Dynamic RAMs, which have  
complex control or address multiplexing requirements. The UPM is a general purpose  
RAM-based pattern generator which can control address multiplexing, wait state gener-  
ation, and five general-purpose output lines on the MPC821. Up to 64 pattern locations are  
available, each 32 bits wide. Separate patterns may be programmed for normal accesses,  
burst accesses, refresh (timer) events, and exception conditions. This flexibility allows  
almost any type of memory or peripheral device to be accommodated by the MPC821.  
In this application note, the GPCM is used instead of the UPM, since the GPCM has enough  
flexibility to accommodate the SED1354 and it is desirable to leave the UPM free to handle  
other interfacing duties, such as EDO DRAM.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 13  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the MPC821 processor. The Generic MPU host bus interface is the least  
processor-specific interface mode supported by the SED1354. Although the Power PC bus  
is similar in many respects to the M68K bus, the Generic MPU host bus interface was  
chosen for this interface due to the simplicity of its timing and compatibility with the  
control signals available from the MPC821 General-Purpose Chip Select Module.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 14  
Epson Research and Development  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete. This signal is active low and must be inverted using  
MD5 since the MPC821 wait state signal is active high.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 15  
Vancouver Design Center  
4 MPC821 to SED1354 Interface  
4.1 Hardware Description  
The interface between the SED1354 and the MPC821 requires no glue logic. All lines are  
directly connected. A single resistor is used to speed up the rise time of the WAIT# (TA)  
signal when terminating the bus cycle.  
BS# (bus start) is not used in this implementation and should be tied low (connected to  
GND).  
The following diagram shows a typical implementation of the MPC821 to SED1354  
interface.  
MPC821  
A10  
SED1354  
M/R#  
A[11:31]  
D[0:15]  
AB[20:0]  
DB[15:0]  
CS4  
CS#  
Vcc  
470  
TA  
WAIT#  
WE1#  
WE0  
WE1  
OE  
WE0#  
RD1#  
RD0#  
SYSCLK  
BUSCLK  
RESET#  
System RESET  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of MPC821 to SED1354 Interface  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping” .  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 16  
Epson Research and Development  
Vancouver Design Center  
4.2 Hardware Connections  
The following table details the connections between the pins and signals of the MPC821  
and the SED1354.  
Table 4-1: List of Connections from MPC821ADS to SED1354  
MPC821 Signal Name  
MPC821ADS Connector and Pin Name  
P6-A1, P6-B1  
P6-C23  
SED1354 Signal Name  
Vcc  
Vcc  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
D0  
M/R#  
AB20  
AB19  
AB18  
AB17  
AB16  
AB15  
AB14  
AB13  
AB12  
AB11  
AB10  
AB9  
P6-A22  
P6-B22  
P6-C21  
P6-C20  
P6-D20  
P6-B24  
P6-C24  
P6-D23  
P6-D22  
P6-D19  
P6-A19  
P6-D28  
P6-A28  
AB8  
P6-C27  
AB7  
P6-A26  
AB6  
P6-C26  
AB5  
P6-A25  
AB4  
P6-D26  
AB3  
P6-B25  
AB2  
P6-B19  
AB1  
P6-D17  
AB0  
P12-A9  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
D1  
P12-C9  
D2  
P12-D9  
D3  
P12-A8  
D4  
P12-B8  
D5  
P12-D8  
D6  
P12-B7  
D7  
P12-C7  
DB8  
D8  
P12-A15  
P12-C15  
P12-D15  
P12-A14  
DB7  
D9  
DB6  
D10  
D11  
DB5  
DB4  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 17  
Vancouver Design Center  
Table 4-1: List of Connections from MPC821ADS to SED1354 (Continued)  
MPC821 Signal Name  
MPC821ADS Connector and Pin Name  
SED1354 Signal Name  
D12  
D13  
P12-B14  
P12-D14  
P12-B13  
P12-C13  
P9-D15  
P9-C2  
DB3  
DB2  
D14  
DB1  
D15  
DB0  
SRESET  
SYSCLK  
CS4  
RESET#  
BUSCLK  
CS#  
P6-D13  
P6-B6  
TA  
WAIT#  
WE1#  
WE0  
WE1  
OE  
P6-B15  
P6-A14  
P6-B16  
WE0#  
RD1#, RD0#  
P12-A1, P12-B1, P12-A2, P12-B2,  
P12-A3, P12-B3, P12-A4, P12-B4,  
P12-A5, P12-B5, P12-A6, P12-B6,  
P12-A7  
Gnd  
Vss  
Note  
Note that the bit numbering of the Power PC bus signals is reversed from convention,  
e.g.: the most significant address bit is A0, the next is A1, A2, etc.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 18  
Epson Research and Development  
Vancouver Design Center  
4.3 SED1354 Hardware Configuration  
The SED1354 uses MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
The tables below show only those configuration settings important to the MPC821 interface.  
.
Table 4-2: Summary of Power-On/Reset Options  
value on this pin at rising edge of RESET# is used to configure: (1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
For host bus interface selection see Table 4-2, “Host Bus Interface Selection”  
Little Endian  
Big Endian  
Wait# signal is active high  
Wait# signal is active low  
Configure SUSPEND# pin as Hardware  
Suspend Enable  
MD9  
Reserved  
= configuration for MPC821 interface.  
Table 4-2: Host Bus Interface Selection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
0
0
1
0
1
1
x
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MPC821, ISA bus interface)  
Reserved  
= configuration for MPC821 interface.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
 
Epson Research and Development  
Page 19  
Vancouver Design Center  
4.4 Register/Memory Mapping  
The SED1354 is a memory mapped device. The DRAM on the MPC821 ADS board  
extends from address 0h through 3F FFFFh, so the SED1354 must be addressed starting at  
40 0000h. A total of 4M bytes of address space is used, where the lower 2M bytes  
(from 40 0000h through 5F FFFFh) is reserved for the SED1354 on-chip registers and the  
upper 2M bytes (from 60 0000h through 7F FFFFh) is used for the SED1354 display buffer.  
4.5 MPC821 Chip Select Configuration  
Chip select 4 is used to control the SED1354. The following options are selected in the base  
address register (BR4):  
• BA[0:16] = 0000 0000 0100 0000 0 – set starting address of SED1354 to 40 0000h.  
• AT[0:2] = 0 – ignore address type bits.  
• PS[0:1] = 1:0 – memory port size is 16-bit.  
• PARE = 0 – disable parity checking.  
• WP = 0 – disable write protect.  
• MS[0:1] = 0:0 – select General Purpose Chip Select module to control this chip select.  
• V = 1 – set valid bit to enable chip select.  
The following options were selected in the option register (OR4):  
• AM[0:16] = 1111 1111 1100 0000 0 – mask all but upper 10 address bits; SED1354  
consumes 4M byte of address space.  
• ATM[0:2] = 0 – ignore address type bits.  
• CSNT = 0 – normal CS/WE negation.  
• ACS[0:1] = 1:1 – delay CS assertion by ½ clock cycle from address lines.  
• BI = 1 – assert Burst Inhibit.  
• SCY[0:3]= 0 – wait state selection; this field is ignored since external transfer  
acknowledge is used; see SETA below.  
• SETA = 1 – the SED1354 generates an external transfer acknowledge using the WAIT#  
line.  
• TRLX = 0 – normal timing.  
• EHTR = 0 – normal timing.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 20  
Epson Research and Development  
Vancouver Design Center  
4.6 Test Software  
The test software used to exercise this interface is very simple. It carries out the following  
functions:  
1. Configures chip select 4 on the MPC821 to map the SED1354 to an unused 4M byte  
block of address space.  
2. Loads the appropriate values into the option register for CS4.  
3. Enables the SED1354 host bus interface by writing the value 0 to REG[1Bh].  
At that point the software runs in a tight loop which reads the SED1354 Revision Code  
Register REG[00h]. This allows monitoring of the bus timing on a logic analyzer.  
This source code for the following test routine was entered into the memory of the  
MPC821ADS using the line-by-line assembler in MPC8BUG (the debugger provided with  
the ADS board). It was run on the ADS and a logic analyzer was used to verify operation  
of the interface hardware.  
4.6.1 Source Code  
BR4  
OR4  
MemStart  
DisableReg  
RevCodeReg  
equ  
equ  
equ  
equ  
equ  
$120  
$124  
$40  
$1b  
0
; CS4 base register  
; CS4 option register  
; upper word of SED1354 start address  
; address of SED1354 Disable Register  
; address of Revision Code Register  
Start  
mfspr  
andis.  
andis.  
oris  
ori  
stw  
andis.  
oris  
ori  
r1,IMMR  
r1,r1,$ffff  
r2,r0,0  
r2,r2,MemStart  
r2,r2,$0801  
r2,BR4(r1)  
r2,r0,0  
r2,r2,$ffc0  
r2,r2,$0708  
; get base address of internal registers  
; clear lower 16 bits to 0  
; clear r2  
; write base address  
; port size 16 bits; select GPCM; enable  
; write value to base register  
; clear r2  
; address mask – use upper 10 bits  
; normal CS negation; delay CS ½ clock;  
; inhibit burst  
stw  
r2,OR4(r1)  
r1,r0,0  
r1,r1,MemStart  
r1,DisableReg(r1) ; write 0 to disable register  
r0,RevCodeReg(r1) ; read revision code into r1  
; write to option register  
; clear r1  
; point r1 to start of SED1354 mem space  
andis.  
oris  
stb  
Loop  
end  
lbz  
b
Loop  
; branch forever  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 21  
Vancouver Design Center  
Note  
MPC8BUG does not support comments or symbolic equates; these have been added for  
clarity.  
Note  
It is important to note that when the MPC821 comes out of reset, its on-chip caches and  
MMU are disabled. If the data cache is enabled, the MMU must be setup so the  
SED1354 memory block is tagged as non-cacheable. This ensures that accesses to the  
SED1354 will occur in proper order, and the MPC821 will not attempt to cache any data  
read from or written to the SED1354 or its display buffer.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 22  
Epson Research and Development  
Vancouver Design Center  
5 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 23  
Vancouver Design Center  
6 References  
6.1 Documents  
• Motorola Inc., Power PC MPC821 Portable Systems Microprocessor User’s Manual,  
Motorola Publication no. MPC821UM/AD.  
• Epson Research and Development, Inc., SED1354 Color Graphics LCD/CRT  
Controller Hardware Functional Specification, Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
6.2 Document Sources  
• Motorola Inc.: Motorola Literature Distribution Center, (800) 441-2447.  
• Motorola Website: http://www.mot.com.  
• Epson Electronics America Website: http://www.eea.epson.com.  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354  
X19A-G-010-04  
Page 24  
Epson Research and Development  
Vancouver Design Center  
7 Technical Support  
7.1 EPSON LCD/CRT Controllers (SED1354)  
Japan  
Seiko Epson Corporation  
North America  
Epson Electronics America, Inc.  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Electronic Devices Marketing Division  
150 River Oaks Parkway  
421-8, Hino, Hino-shi  
San Jose, CA 95134, USA  
Tel: (408) 922-0200  
Fax: (408) 922-0238  
http://www.eea.epson.com  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: 042-587-5812  
Fax: 042-587-5564  
http://www.epson.co.jp  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
7.2 Motorola MPC821 Processor  
• Motorola Design Line, (800) 521-6274.  
• Local Motorola sales office or authorized distributor.  
SED1354  
X19A-G-010-04  
Interfacing to the Motorola MPC821 Microprocessor  
Issue Date: 99/03/10  
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the PC Card Bus  
Document Number: X19A-G-009-04  
Copyright © 1998, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your ownuse in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the PC Card Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 The PC Card System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.1 PC Card Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.2 Memory Access Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . 10  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 11  
PC Card to SED1354 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 PAL Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.4 Register/Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 17  
7.2 PC Card Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4-1: Summary of Power-On/Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: Host Bus Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
List of Figures  
Figure 2-1: PC Card Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 2-2: PC Card Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4-1: Typical Implementation of PC Card to SED1354 Interface . . . . . . . . . . . . . . . .12  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the PC Card  
(PCMCIA) bus.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the PC Card Bus  
2.1 The PC Card System Bus  
PC Card technology has gained wide acceptance in the mobile computing field as well as  
in other markets due to its portability and ruggedness. This section is an overview of the  
operation of the 16-bit PC Card interface conforming to the PCMCIA 2.0/JEIDA 4.1  
Standard (or later).  
2.1.1 PC Card Overview  
The 16-bit PC Card provides a 26-bit address bus and additional control lines which allow  
access to three 64M byte address ranges. These ranges are used for common memory space,  
IO space, and attribute memory space. Common memory may be accessed by a host system  
for memory read and write operations. Attribute memory is used for defining card specific  
information such as configuration registers, card capabilities, and card use. IO space  
maintains software and hardware compatibility with hosts such as the Intel x86  
architecture, which address peripherals independently from memory space.  
Bit notation follows the convention used by most micro-processors, the high bit is the most  
significant. Therefore, signals A25 and D15 are the most significant bits for the address and  
data bus respectively.  
Support is provided for on-chip DMA controllers. To find further information on these  
topics, refer to Section 6,“References” on page 16.  
PC Card bus signals are asynchronous to the host CPU bus signals. Bus cycles are started  
with the assertion of either the CE1# and/or the CE2# card enable signals. The cycle ends  
once these signals are de-asserted. Bus cycles can be lengthened using the WAIT# signal.  
Note  
The PCMCIA 2.0/JEIDA 4.1 (and later) PC Card Standard support the two signals  
WAIT# and RESET which are not supported in earlier versions of the standard. The  
WAIT# signal allows for asynchronous data transfers for memory, attribute, and IO  
access cycles. The RESET signal allows resetting of the card configuration by the reset  
line of the host CPU.  
2.1.2 Memory Access Cycles  
A data transfer is initiated when the memory address is placed on the PC Card bus and one,  
or both, of the card enable signals (CE1# and CE2#) are driven low. REG# must be kept  
inactive. If only CE1# is driven low, 8-bit data transfers are enabled and A0 specifies  
whether the even or odd data byte appears on data bus lines D[7:0]. If both CE1# and CE2#  
are driven low, a 16-bit word transfer takes place. If only CE2# is driven low, an odd byte  
transfer occurs on data lines D[15:8].  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 9  
Vancouver Design Center  
During a read cycle, OE# (output enable) is driven low. A write cycle is specified by  
driving OE# high and driving the write enable signal (WE#) low. The cycle can be  
lengthened by driving WAIT# low for the time needed to complete the cycle.  
The figure below illustrates a typical memory read cycle on the PC Card bus.  
A[25:0]  
REG#  
ADDRESS VALID  
CE1#  
CE2#  
OE#  
WAIT#  
D[15:0]  
Hi-Z  
Hi-Z  
DATA VALID  
Transfer Start  
Transfer Complete  
Figure 2-1: PC Card Read Cycle  
The figure below illustrates a typical memory write cycle on the PC Card bus.  
A[25:0]  
REG#  
ADDRESS VALID  
CE1#  
CE2#  
OE#  
WE#  
WAIT#  
Hi-Z  
Hi-Z  
D[15:0]  
DATA VALID  
Transfer Start  
Transfer Complete  
Figure 2-2: PC Card Write Cycle  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 10  
Epson Research and Development  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the PC Card bus. The Generic MPU host bus interface is the least processor-  
specific interface mode supported by the SED1354 and was chosen to implement this  
interface due to the simplicity of its timing.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not  
working, so it is important to remember to clear this bit before proceeding with debug-  
ging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
 
Epson Research and Development  
Page 11  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The Generic MPU host bus interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354. These signals must  
be generated by external hardware based on the control outputs from the host CPU.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354. These signals must be generated by external hardware based on the control  
outputs from the host CPU.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 12  
Epson Research and Development  
Vancouver Design Center  
4 PC Card to SED1354 Interface  
4.1 Hardware Description  
The SED1354 is interfaced to the PC Card bus with a minimal amount of glue logic. A PAL  
is used to decode the read and write signals of the PC Card bus which generate RD#,  
RD/WR#, WE0#, WE1#, and CS# for the SED1354. The PAL also inverts the reset signal  
of the PC card since it is active high and the SED1354 uses an active low reset. PAL  
equations for this implementation are listed in Section 4.3,“PAL Equations” on page 14.  
In this implementation, the address inputs (AB[20:0]) and data bus (DB[15:0] connect  
directly to the CPU address (A[20:0]) and data bus (D[15:0]). M/R# is treated as an address  
line so that it can be controlled using system address A21. BS# (bus start) is not used and  
should be tied low (connected to GND).  
The PC Card interface does not provide a bus clock, so one must be supplied for the  
SED1354. Since the bus clock frequency is not critical, nor does it have to be synchronous  
to the bus signals, it may be the same as CLKI.  
The following diagram shows a typical implementation of the PC Card to SED1354  
interface.  
PC Card  
SED1354  
PAL16L8-10  
RD#  
OE#  
WE#  
RD/WR#  
WE0#  
WE1#  
CE1#  
CE2#  
CS#  
REG#  
RESET  
RESET#  
A21  
M/R#  
AB[20:0]  
DB[15:0]  
A[21:0]  
D[15:0]  
15K pull-up  
WAIT#  
WAIT#  
BUSCLK  
CLKI  
Oscillator  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of PC Card to SED1354 Interface  
Note  
For pin mapping see Table 3-1: “Generic MPU Host Bus Interface Pin Mapping”.  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4.2 SED1354 Hardware Configuration  
The SED1354 uses MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Functional Specification, document number X19A-A-002-xx.  
The tables below show only those configuration settings important to the PC Card interface.  
Table 4-1: Summary of Power-On/Reset Options  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
For host bus interface selection see Table 4-2: “Host Bus Interface Selection”  
Little Endian  
Big Endian  
WAIT# is active low (0 = insert wait state)  
WAIT# is active high (1 = insert wait state)  
= configuration for PC Card interface  
Table 4-2: Host Bus Interface Selection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
MC68K Bus 1 (e.g. MC68000)  
MC68K Bus 2 (e.g. MC68030)  
Generic MPU  
Reserved  
= configuration for PC Card interface  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
 
Page 14  
Epson Research and Development  
Vancouver Design Center  
4.3 PAL Equations  
The PAL equations used for the implementation presented in this document are as follows.  
Note that PALASM syntax uses positive logic. Active low pins are inverted in the pin  
declaration section.  
CHIP PCCAPP PAL16L8  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
1
2
3
4
5
6
/oe  
/we  
/ce1  
/ce2  
COMBINATORIAL  
COMBINATORIAL  
COMBINATORIAL  
COMBINATORIAL  
; bus read enable  
; bus write enable  
; bus low byte enable  
; bus high byte enable  
; bus CIS cycle enable  
; bus reset (active high)  
/pcreg COMBINATORIAL  
breset COMBINATORIAL  
PIN 12  
PIN 13  
PIN 14  
PIN 15  
PIN 16  
PIN 17  
/we0  
/we1  
/cs  
/rd0  
/rd1  
COMBINATORIAL  
COMBINATORIAL  
COMBINATORIAL  
COMBINATORIAL  
COMBINATORIAL  
; SED1354 low byte write  
; SED1354 high byte write  
; SED1354 chip select  
; SED1354 low byte read  
; SED1354 high byte read  
; SED1354 reset  
/reset COMBINATORIAL  
PIN 10  
PIN 20  
gnd  
vcc  
; supply  
; supply  
EQUATIONS  
rd0 = oe * ce1 * /pcreg  
rd1 = oe * ce2 * /pcreg  
we0 = we * ce1 * /pcreg  
we1 = we * ce2 * /pcreg  
cs = rd0 + rd1 + we0 + we1  
reset = breset  
; /pcreg means disable in attribute mode  
; /pcreg means disable in attribute mode  
; /pcreg means disable in attribute mode  
; /pcreg means disable in attribute mode  
; inversion appears in pin declaration section  
4.4 Register/Memory Mapping  
The SED1354 is a memory mapped device. The internal registers are mapped in the lower  
PC Card memory address space starting at zero. The display buffer requires 2M bytes and  
is mapped in the third and fourth megabytes of the PC Card memory address space (ranging  
from 200000h to 3fffffh).  
The PC Card socket provides 64M bytes of address space. Without further resolution on  
the decoding logic (M/R# connected to A21), the entire register set is aliased for every 64  
byte boundary within the specified address range above. Since address bits A[25:22] are  
ignored, the SED1355 registers and display buffer are aliased 16 times.  
Note  
If aliasing is not desirable, the upper addresses must be fully decoded.  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 15  
Vancouver Design Center  
5 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 16  
Epson Research and Development  
Vancouver Design Center  
6 References  
6.1 Documents  
• PCMCIA/JEIDA, PC Card Standard -- March 1997  
• Epson Research and Development, Inc., SED1354 Hardware Functional Specification,  
Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
6.2 Document Sources  
• PC Card Website: http://www.pc-card.com.  
• Epson Electronics America Website: http://www.eea.epson.com.  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
Epson Research and Development  
Page 17  
Vancouver Design Center  
7 Technical Support  
7.1 EPSON LCD/CRT Controllers (SED1354)  
Japan  
Seiko Epson Corporation  
North America  
Epson Electronics America, Inc.  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
Electronic Devices Marketing Division  
150 River Oaks Parkway  
421-8, Hino, Hino-shi  
San Jose, CA 95134, USA  
10F, No. 287  
Tokyo 191-8501, Japan  
Tel: (408) 922-0200  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Tel: 042-587-5812  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Fax: 042-587-5564  
http://www.epson.co.jp  
Singapore  
Europe  
Hong Kong  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Fax: 334-2716  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Fax: 089-14005-110  
Fax: 2827-4346  
7.2 PC Card Standard  
PCMCIA  
(Personal Computer Memory Card International Association)  
2635 North First Street, Suite 209  
San Jose, CA 95134  
Tel: (408) 433-2273  
Fax: (408) 433-9558  
http://www.pc-card.com  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354  
X19A-G-009-04  
Page 18  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-009-04  
Interfacing to the PC Card Bus  
Issue Date: 99/03/10  
SED1354 Color Graphics LCD/CRT Controller  
Interfacing to the Toshiba MIPS  
TX3912 Processor  
Document Number: X19A-G-012-03  
Copyright © 1998, 1999 Epson Research and Development, Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.  
Page 2  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interfacing to the TX3912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SED1354 Host Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . 9  
3.2 Generic MPU Host Bus Interface Signals . . . . . . . . . . . . . . . . . . . . 10  
4
5
Direct Connection to the Toshiba TX3912 . . . . . . . . . . . . . . . . . . . . . . 11  
4.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2 Memory Mapping and Aliasing . . . . . . . . . . . . . . . . . . . . . . . 12  
4.3 SED1354 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 13  
System Design Using the IT8368E PC Card Buffer . . . . . . . . . . . . . . . . . . 14  
5.1 Hardware Description—Using One IT8368E . . . . . . . . . . . . . . . . . . 14  
5.2 Hardware Description—Using Two IT8368E’s . . . . . . . . . . . . . . . . . 16  
5.3 IT8368E Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.4 Memory Mapping and Aliasing . . . . . . . . . . . . . . . . . . . . . . . 19  
5.5 SED1354 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6
7
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.2 Document Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1 EPSON LCD/CRT Controllers (SED1354) . . . . . . . . . . . . . . . . . . . 23  
8.2 Toshiba MIPS TX3912 Processor . . . . . . . . . . . . . . . . . . . . . . . 23  
8.3 ITE IT8368E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 4  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 5  
Vancouver Design Center  
List of Tables  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4-1: SED1354 Configuration for Direct Connection . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4-2: SED1354 Host Bus Selection for Direct Connection . . . . . . . . . . . . . . . . . . . 13  
Table 5-1: TX3912 to Unbuffered PC Card Slots System Address Mapping . . . . . . . . . . . . . 19  
Table 5-2: TX3912 to PC Card Slots Address Remapping using the IT8368E . . . . . . . . . . . . 19  
Table 5-3: SED1354 Configuration using the IT8368E . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5-4: SED1354 Host Bus Selection using the IT8368E . . . . . . . . . . . . . . . . . . . . . 20  
List of Figures  
Figure 4-1: Typical Implementation of TX3912 to SED1354 Direct Connection . . . . . . . . . . .11  
Figure 5-1: SED1354 to TX3912 Connection using One IT8368E. . . . . . . . . . . . . . . . . . .15  
Figure 5-2: SED1354 to TX3912 Connection using Two IT8368E . . . . . . . . . . . . . . . . . .17  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 6  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
This application note describes the hardware and software environment required to provide  
an interface between the SED1354 Color Graphics LCD/CRT Controller and the Toshiba  
TX3912 processor.  
The designs described in this document are presented only as examples of how such  
interfaces might be implemented. This application note will be updated as appropriate.  
Please check the Epson Electronics America Website at http://www.eea.epson.com for the  
latest revision of this document before beginning any development.  
We appreciate your comments on our documentation. Please contact us via email at  
techpubs@erd.epson.com.  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Interfacing to the TX3912  
The Toshiba MIPS TX3912 processor supports up to two PC Card (PCMCIA) slots. It is  
through this host bus interface that the SED1354 connects to the TX3912 processor.  
The SED1354 can be successfully interfaced using one of three configurations:  
• Direct connection to TX3912 (see Section 4, “Direct Connection to the Toshiba  
TX3912” on page 11).  
• System design using one ITE8368E PC Card/GPIO buffer chip (see Section 5.1, “Hard-  
ware Description—Using One IT8368E” on page 14).  
• System design using two ITE8368E PC Card/GPIO buffer chips (see Section 5.2,  
“Hardware Description—Using Two IT8368E’s” on page 16).  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 9  
Vancouver Design Center  
3 SED1354 Host Bus Interface  
The SED1354 implements a 16-bit Generic MPU host bus interface which is used to  
interface to the Toshiba TX3912 processor. The Generic MPU host bus interface is the least  
processor-specific interface mode supported by the SED1354 and was chosen to implement  
this interface due to the simplicity of its timing.  
The Generic MPU host bus interface is selected by the SED1354 on the rising edge of  
RESET#. After releasing reset the bus interface signals assume their selected configuration.  
Note  
After reset, the Host Interface Disable bit in the Miscellaneous Disable Register  
(REG[1Bh]) will be set to logic ‘1’, meaning that the SED1354 will not respond to any  
host accesses until a write to REG[1Bh] clears this bit to 0. When debugging a new  
hardware design, this can sometimes give the appearance that the interface is not work-  
ing, so it is important to remember to clear this bit before proceeding with debugging.  
3.1 Generic MPU Host Bus Interface Pin Mapping  
The following table shows the functions of each host bus interface signal.  
Table 3-1: Generic MPU Host Bus Interface Pin Mapping  
SED1354  
Generic MPU  
Pin Names  
AB[20:1]  
AB0  
A[20:1]  
A0  
DB[15:0]  
WE1#  
M/R#  
D[15:0]  
WE1#  
External Decode  
External Decode  
BCLK  
CS#  
BUSCLK  
BS#  
Connect to IO VDD  
RD1#  
RD/WR#  
RD#  
RD0#  
WE0#  
WAIT#  
RESET#  
WE0#  
WAIT#  
RESET#  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
 
Page 10  
Epson Research and Development  
Vancouver Design Center  
3.2 Generic MPU Host Bus Interface Signals  
The interface requires the following signals:  
• BUSCLK is a clock input which is required by the SED1354 host bus interface. It is  
separate from the input clock (CLKI) and is typically driven by the host CPU system  
clock.  
• The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the CPU  
address and data bus, respectively. The hardware engineer must ensure that MD4 selects  
the proper endian mode upon reset.  
• M/R# (memory/register) may be considered an address line, allowing system address  
A21 to be connected to the M/R# line.  
• Chip Select (CS#) must be driven low whenever the SED1354 is accessed by the host  
CPU.  
• WE0# and WE1# are write enables for the low-order and high-order bytes, respectively,  
to be driven low when the host CPU is writing data to the SED1354. These signals must  
be generated by external hardware based on the control outputs from the host CPU.  
• RD# (RD0#) and RD/WR# (RD1#) are read enables for the low-order and high-order  
bytes, respectively, to be driven low when the host CPU is reading data from the  
SED1354. These signals must be generated by external hardware based on the control  
outputs from the host CPU.  
• WAIT# is a signal output from the SED1354 that indicates the host CPU must wait until  
data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU  
accesses to the SED1354 may occur asynchronously to the display update, it is possible  
that contention may occur in accessing the SED1354 internal registers and/or display  
buffer. The WAIT# line resolves these contentions by forcing the host to wait until the  
resource arbitration is complete.  
• The Bus Start (BS#) signal is not used for the Generic MPU host bus interface and  
should be tied low (connected to GND).  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 11  
Vancouver Design Center  
4 Direct Connection to the Toshiba TX3912  
4.1 Hardware Description  
The SED1354 is easily interfaced to the Toshiba TX3912 processor. In the direct  
connection implementation, the SED1354 occupies PC Card slot #1 of the TX3912.  
Although the address bus of the TX3912 is multiplexed, it can be demultiplexed using an  
advanced CMOS latch (e.g., 74ACT373). The direct connection implementation makes use  
of the Generic MPU host bus interface capability of the SED1354.  
The following diagram demonstrates a typical implementation of the TX3912 to SED1354  
interface.  
SED1354  
+3.3V  
TX3912  
IO V , CORE V  
DD  
DD  
RD0#  
RD1#  
RD*  
WE*  
WE0#  
WE1#  
CARD1CSL*  
CARD1CSH*  
CS#  
A23  
Latch  
M/R#  
ALE  
System RESET  
RESET#  
A[20:13]  
AB[20:13]  
AB[12:0]  
A[12:0]  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
VDD  
15K pull-up  
CARD1WAIT*  
ENDIAN  
WAIT#  
BUSCLK  
See text  
Oscillator  
Clock divider  
DCLKOUT  
...or...  
CLKI  
Note:  
When connecting the SED1354 RESET# pin, the system designer should be aware of all  
conditions that may reset the SED1354 (e.g. CPU reset can be asserted during wake-up  
from power-down modes, or during debug states).  
Figure 4-1: Typical Implementation of TX3912 to SED1354 Direct Connection  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 12  
Epson Research and Development  
Vancouver Design Center  
The host interface control signals of the SED1354 are asynchronous with respect to the  
SED1354 bus clock. This gives the system designer full flexibility in choosing the  
appropriate source (or sources) for CLKI and BUSCLK. Deciding whether both clocks  
should be the same and whether to use DCLKOUT (divided) as the clock source, should be  
based on the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
4.2 Memory Mapping and Aliasing  
The SED1354 requires an addressing space of 2M bytes for the display buffer and 64 bytes  
for the registers. This is divided into two address ranges by connecting A23 (demultiplexed  
from the TX3912) to the M/R# input of the SED1354. Using A23 makes this implemen-  
tation software compatible with the two implementations that use the ITE IT8368E (see  
Section 5, “System Design Using the IT8368E PC Card Buffer” on page 14). All other  
addresses are ignored.  
The SED1354 address ranges, as seen by the TX3912 on the PC Card slot 1 memory space,  
are as follows:  
• 6400 0000h: SED1354 registers aliased 131,072 times at 64 byte intervals over 8M  
bytes.  
• 6480 0000h: SED1354 display buffer aliased 4 times at 2M byte intervals over 8M  
bytes.  
• 6500 0000h: SED1354 registers and display buffer, aliased another 3 times over 48M  
bytes.  
Since the TX3912 control signal CARDREG* is ignored, the SED1354 takes up the entire  
PC Card slot 1 configuration space. The address range is software compatible with both ITE  
IT8368E implementations.  
• 0900 0000h: SED1354 registers aliased 131,072 times at 64 byte intervals over 8M  
bytes.  
• 0980 0000h: SED1354 display buffer aliased 4 times at 2M byte intervals over 8M  
bytes.  
Note  
If aliasing is undesirable, additional decoding circuitry must be added.  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 13  
Vancouver Design Center  
4.3 SED1354 Hardware Configuration  
The SED1354 latches MD15 through MD0 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Specification, document number X19A-A-002-xx.  
The partial table below shows those configuration settings relevant to the direct connection  
implementation.  
Table 4-1: SED1354 Configuration for Direct Connection  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
WAIT# signal is active high  
WAIT# signal is active low  
= required configuration for direct connection with TX3912  
Table 4-2: SED1354 Host Bus Selection for Direct Connection  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MCF5307, ISA bus interface)  
Reserved  
= required configuration for direct connection with TX3912  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 14  
Epson Research and Development  
Vancouver Design Center  
5 System Design Using the IT8368E PC Card Buffer  
If the system designer uses an ITE IT8368E PC Card and multiple-function IO buffer, the  
SED1354 can be interfaced with the TX3912 without using a PC Card slot. Instead, the  
SED1354 is mapped to a rarely-used 16M byte portion of the PC Card slot buffered by the  
IT8368E. This makes the SED1354 virtually transparent to PC Card devices that use the  
same slot.  
5.1 Hardware Description—Using One IT8368E  
The ITE IT8368E has been specifically designed to support EPSON CRT/LCD controllers.  
The IT8368E provides eleven Multi-Function IO pins (MFIO). Configuration registers can  
be used to allow these MFIO pins to provide the control signals required to implement the  
SED1354 CPU interface.  
The Toshiba TX3912 processor only provides addresses A[12:0], therefore devices that  
occupy more address space must use an external device to latch A[25:13]. The IT8368E’s  
MFIO pins can be configured to provide this latched address. However, when using the  
SED1354, five MFIO pins are utilized for SED1354 control signals and cannot provide  
latched addresses. In this case, an external latch must be used to provide the high-order  
address bits. For a solution that does not require a latch, refer to Section 5.2, ‘Hardware  
Description—Using Two IT8368E’s”.  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 15  
Vancouver Design Center  
SED1354  
TX3912  
+3.3V  
IO V , CORE V  
DD  
DD  
A[12:0]  
ENDIAN  
AB[12:0]  
Latch  
AB[20:13]  
ALE  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
System RESET  
RESET#  
VDD  
pull-up  
CARDxWAIT*  
DCLKOUT  
IT8368E  
WAIT#  
M/R#  
A23  
See text  
CLKI  
...or...  
Clock divider  
BUSCLK  
Oscillator  
LHA23/MFIO10  
LHA22/MFIO9  
WE1#  
WE0#  
RD1#  
LHA21/MFIO8  
LHA20/MFIO7  
LHA19/MFIO6  
RD0#  
CS#  
Chip Select  
Logic  
Notes: The Chip Select Logic shown above is necessary to guarantee timing parameter t1  
of the Generic MPU Interface Asynchronous Timing (for details refer to the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx).  
When connecting the SED1354 RESET# pin, the system designer should be aware of all conditions  
that amy reset the SED1354 (e.g. CPU reset can be asserted during wake-up from power-down modes,  
or during debug states).  
Figure 5-1: SED1354 to TX3912 Connection using One IT8368E  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 16  
Epson Research and Development  
Vancouver Design Center  
The Generic MPU host interface control signals of the SED1354 are asynchronous with  
respect to the SED1354 bus clock. This gives the system designer full flexibility in  
choosing the appropriate source (or sources) for CLKI and BUSCLK. Deciding whether  
both clocks should be the same and whether to use DCLKOUT (divided) as the clock  
source, should be based on the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
5.2 Hardware Description—Using Two IT8368E’s  
The following implementation uses a second IT8368E, not in VGA mode, in place of an  
address latch. The pins LHA23 and LHA[20:13] provide the latch function instead.  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 17  
Vancouver Design Center  
SED1354  
TX3912  
A[12:0]  
ENDIAN  
AB[12:0]  
AB[20:13]  
D[31:24]  
D[23:16]  
DB[7:0]  
DB[15:8]  
System RESET  
RESET#  
VDD  
pull-up  
CARDxWAIT*  
DCLKOUT  
WAIT#  
M/R#  
LHA23  
Clock divider  
...or...  
IT8368E  
BUSCLK  
CLKI  
Oscillator  
See text  
LHA[20:13],  
LHA23  
+3.3V  
IO V , CORE V  
DD  
DD  
IT8368E  
WE1#  
WE0#  
LHA23/MFIO10  
LHA22/MFIO9  
RD1#  
LHA21/MFIO8  
LHA20/MFIO7  
LHA19/MFIO6  
RD0#  
CS#  
Chip Select  
Logic  
Notes: The Chip Select Logic shown above is necessary to guarantee the timing parameter t1  
of the Generic MPU Host Bus Interface Asynchronous Timing (for details refer to the SED1354 Hardware  
Functional Specification, document number X19A-A-002-xx).  
When connecting the SED1354 RESET# pin, the system designer should be aware of all conditions  
that amy reset the SED1354 (e.g. CPU reset can be asserted during wake-up from power-down modes,  
or during debug states).  
Figure 5-2: SED1354 to TX3912 Connection using Two IT8368E  
Note  
For pin mapping see Table 3-1:, “Generic MPU Host Bus Interface Pin Mapping”.  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 18  
Epson Research and Development  
Vancouver Design Center  
The Generic MPU host interface control signals of the SED1354 are asynchronous with  
respect to the SED1354 bus clock. This gives the system designer full flexibility in  
choosing the appropriate source (or sources) for CLKI and BUSCLK. Deciding whether  
both clocks should be the same and whether to use DCLKOUT (divided) as the clock  
source, should be based on the desired:  
• pixel and frame rates.  
• power budget.  
• part count.  
• maximum SED1354 clock frequencies.  
The SED1354 also has internal clock dividers providing additional flexibility.  
5.3 IT8368E Configuration  
The IT8368E provides eleven multi-function IO pins (MFIO). The IT8368E (or the first in  
a two-IT8368E implementation) must have both “Fix Attribute/IO” and “VGA” modes on.  
When both these modes are enabled, the MFIO pins provide control signals needed by the  
SED1354 host bus interface, and a 16M byte portion of the system PC Card attribute and  
IO space is allocated to address the SED1354. When accessing the SED1354 the associated  
card-side signals are disabled in order to avoid any conflicts.  
Note  
When a second IT8368E is used, it should not be set in VGA mode.  
For mapping details, refer to Section 5.4, ‘Memory Mapping and Aliasing” For further  
information on configuring the IT8368E, refer to the IT8368E PC Card/GPIO Buffer Chip  
Specification.  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 19  
Vancouver Design Center  
5.4 Memory Mapping and Aliasing  
When the TX3912 accesses the PC Card slots without the ITE IT8368E, its system memory  
is mapped as in Table , “”.  
Note  
Bits CARD1IOEN and CARD2IOEN need to be set in the TX3912 Memory  
Configuration Register 3.  
Table 5-1: TX3912 to Unbuffered PC Card Slots System Address Mapping  
Function  
(CARDnIOEN=0)  
Function  
(CARDnIOEN=1)  
TX3912 Address  
Size  
0800 0000h  
0C00 0000h  
6400 0000h  
6400 0000h  
64Mb  
64Mb  
64Mb  
64Mb  
Card 1 Attribute  
Card 2 Attribute  
Card 1 IO  
Card 2 IO  
Card 1 Memory  
Card 2 Memory  
When the TX3912 accesses the PC Card slots buffered through the ITE IT8368E, bits  
CARD1IOEN and CARD2IOEN are ignored and the attribute/IO space of the TX3912 is  
divided into Attribute, IO and SED1354 access. Table 5-2:, “TX3912 to PC Card Slots  
Address Remapping using the IT8368E” provides all the details of the Attribute/IO address  
re-allocation by the IT8368E.  
Table 5-2: TX3912 to PC Card Slots Address Remapping using the IT8368E  
IT8368E Uses PC Card Slot #  
TX3912 Address  
Size  
Function  
Card 1 IO  
0800 0000h  
16M byte  
SED1354 registers,  
0900 0000h  
0980 0000h  
8M byte  
8M byte  
aliased 131,072 times at 64 byte intervals  
SED1354 display buffer,  
1
aliased 4 times at 2Mb intervals  
Card 1 Attribute  
0A00 0000h  
6400 0000h  
0C00 0000h  
32M byte  
64M byte  
16M byte  
Card 1 Memory  
Card 2 IO  
SED1354 registers,  
0D00 0000h  
0D80 0000h  
8M byte  
8M byte  
aliased 131,072 times at 64 byte intervals  
SED1354 display buffer,  
2
aliased 4 times at 2Mb intervals  
Card 2 Attribute  
0E00 0000h  
6800 0000h  
32M byte  
64M byte  
Card 2 Memory  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
 
 
Page 20  
Epson Research and Development  
Vancouver Design Center  
5.5 SED1354 Configuration  
The SED1354 latches MD0 through MD15 to allow selection of the bus mode and other  
configuration data on the rising edge of RESET#. For details on configuration, refer to the  
SED1354 Hardware Specification, document number X19A-A-002-xx.  
The partial table below only shows those configuration settings relevant to the IT8368E  
implementation.  
Table 5-3: SED1354 Configuration using the IT8368E  
value on this pin at rising edge of RESET# is used to configure:(1/0)  
SED1354  
Pin Name  
1
0
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
8-bit host bus interface  
16-bit host bus interface  
See “Host Bus Selection” table below  
See “Host Bus Selection” table below  
Little Endian  
Big Endian  
WAIT# signal is active high  
WAIT# signal is active low  
= required configuration for connection using ITE IT8368E  
Table 5-4: SED1354 Host Bus Selection using the IT8368E  
MD3  
MD2  
MD1  
Host Bus Interface  
SH-3 bus interface  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
MC68K bus 1 interface (e.g. MC68000)  
MC68K bus 2 interface (e.g. MC68030)  
Generic bus interface (e.g. MCF5307, ISA bus interface)  
Reserved  
= required configuration for connection using ITE IT8368E  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 21  
Vancouver Design Center  
6 Software  
Test utilities and Windows® CE v2.0 display drivers are available for the SED1354. Full  
source code is available for both the test utilities and the drivers.  
The test utilities are configurable for different panel types using a program called  
1354CFG, or by directly modifying the source. The Windows CE v2.0 display drivers can  
be customized by the OEM for different panel types, resolutions and color depths only by  
modifying the source.  
The SED1354 test utilities and Windows CE v2.0 display drivers are available from your  
sales support contact or on the internet at http://www.eea.epson.com.  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 22  
Epson Research and Development  
Vancouver Design Center  
7 References  
7.1 Documents  
• Toshiba America Electrical Components, Inc., TX3905/12 Specification.  
• Epson Research and Development, Inc., SED1354 Color Graphics LCD/CRT  
Controller Hardware Functional Specification, Document Number X19A-A-002-xx.  
• Epson Research and Development, Inc., SDU1354B0C Rev. 1.0 ISA Bus Evaluation  
Board User Manual, Document Number X19A-G-004-xx.  
• Epson Research and Development, Inc., SED1354 Programming Notes and Examples,  
Document Number X19A-G-002-xx.  
7.2 Document Sources  
• Toshiba America Electrical Components Website: http://www.toshiba.com/taec.  
• Epson Electronics America Website: http://www.eea.epson.com.  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
Epson Research and Development  
Page 23  
Vancouver Design Center  
8 Technical Support  
8.1 EPSON LCD/CRT Controllers (SED1354)  
Taiwan, R.O.C.  
Epson Taiwan Technology  
& Trading Ltd.  
North America  
Japan  
Epson Electronics America, Inc.  
150 River Oaks Parkway  
San Jose, CA 95134, USA  
Tel: (408) 922-0200  
Fax: (408) 922-0238  
http://www.eea.epson.com  
Seiko Epson Corporation  
Electronic Devices Marketing Division  
421-8, Hino, Hino-shi  
Tokyo 191-8501, Japan  
Tel: 042-587-5812  
10F, No. 287  
Nanking East Road  
Sec. 3, Taipei, Taiwan, R.O.C.  
Tel: 02-2717-7360  
Fax: 02-2712-9164  
Fax: 042-587-5564  
Singapore  
Epson Singapore Pte., Ltd.  
No. 1  
Temasek Avenue #36-00  
Millenia Tower  
Singapore, 039192  
Tel: 337-7911  
Hong Kong  
Europe  
Epson Hong Kong Ltd.  
20/F., Harbour Centre  
25 Harbour Road  
Wanchai, Hong Kong  
Tel: 2585-4600  
Epson Europe Electronics GmbH  
Riesstrasse 15  
80992 Munich, Germany  
Tel: 089-14005-0  
Fax: 089-14005-110  
Fax: 2827-4346  
Fax: 334-2716  
8.2 Toshiba MIPS TX3912 Processor  
http://www.toshiba.com/taec/nonflash/indexproducts.html  
8.3 ITE IT8368E  
Integrated Technology Express, Inc.  
Sales & Marketing Division  
2710 Walsh Avenue  
Santa Clara, CA 95051, USA  
Tel: (408) 980-8168  
Fax: (408) 980-9232  
http://www.iteusa.com  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  
SED1354  
X19A-G-012-03  
Page 24  
Epson Research and Development  
Vancouver Design Center  
THIS PAGE LEFT BLANK  
SED1354  
X19A-G-012-03  
Interfacing to the Toshiba MIPS TX3912 Processor  
Issue Date: 99/03/10  

相关型号:

SED1354F0A

LCD Controller ICs
EPSON

SED1354F1A

LCD Controller ICs
EPSON

SED1354F2A

LCD Controller ICs
EPSON

SED1355

SED1355 Embedded RAMDAC LCD/CRT Controller
EPSON

SED1355-D9000

SED1355 Embedded RAMDAC LCD/CRT Controller
EPSON

SED1355B0C

SED1355 Embedded RAMDAC LCD/CRT Controller
EPSON

SED1355F0A

SED1355 Embedded RAMDAC LCD/CRT Controller
EPSON

SED1356F0A

LCD Controller ICs
EPSON

SED1373F0A

DOT MAT LCD DSPL CTLR, PQFP80, QFP14-80
SEIKO

SED1374

SED1374 Embedded Memory Color LCD Controller
EPSON

SED1374F0A

LCD Controller ICs
EPSON

SED1375F0A

LCD Controller ICs
EPSON