EN23F0QI [ENPIRION]

15A Voltage Mode Synchronous Buck PWM; 15A电压模式同步降压PWM
EN23F0QI
型号: EN23F0QI
厂家: ENPIRION, INC.    ENPIRION, INC.
描述:

15A Voltage Mode Synchronous Buck PWM
15A电压模式同步降压PWM

文件: 总26页 (文件大小:1852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EN23F0QI  
15A Voltage Mode Synchronous Buck PWM  
DC-DC Converter with Integrated Inductor  
Description  
Features  
The EN23F0QI is a Power System on a Chip  
(PowerSoC) DC-DC converter. It integrates MOSFET  
switches, small-signal control circuits, compensation  
and an integrated inductor in an advanced  
12x13x3mm QFN module. It offers high efficiency,  
excellent line and load regulation. The EN23F0QI  
operates over a wide input voltage range and is  
specifically designed to meet the precise voltage and  
fast transient requirements of high-performance  
products. The EN23F0QI features frequency  
synchronization to an external clock, power OK  
output voltage monitor, programmable soft-start along  
with thermal and over current protection. The device’s  
advanced circuit design, ultra high switching  
frequency and proprietary integrated inductor  
technology delivers high-quality, ultra compact, non-  
isolated DC-DC conversion.  
Integrated Inductor, MOSFETs, Controller  
Total Solution Size Estimate 308mm2  
Wide Input Voltage Range: 4.5V – 14V  
2% VOUT Accuracy (Over Line/Load/Temperature)  
Master/Slave Configuration for Parallel Operation  
o Up to 4 Devices with 48A capability  
Frequency Synchronization (External Clock)  
Output Enable Pin and Power OK Signal  
Programmable Soft-Start Time  
Under Voltage Lockout Protection (UVLO)  
Programmable Over Current Protection  
Thermal Shutdown and Short Circuit Protection  
RoHS compliant, MSL level 3, 260oC reflow  
Applications  
The Enpirion solution significantly helps in system  
design and productivity by offering greatly simplified  
Space Constrained Applications  
Distributed Power Architectures  
board  
design,  
layout  
and  
manufacturing  
Output Voltage Ripple Sensitive Applications  
Beat Frequency Sensitive Applications  
requirements. In addition, overall system level  
reliability is improved given the small number of  
components required with the Enpirion solution.  
Servers, Embedded Computing Systems,  
LAN/SAN Adapter Cards, RAID Storage Systems,  
Industrial Automation, Test and Measurement,  
and Telecommunications  
All Enpirion products are RoHS compliant and lead-  
free manufacturing environment compatible.  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
CONDITIONS  
VIN = 12.0V  
AVIN = 3.3V  
Dual Supply  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 1.2V  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
OUTPUT CURRENT(A)  
Figure 1. Simplified Applications Circuit  
Figure 2. Highest Efficiency in Smallest Solution Size  
(Footprint Optimized)  
www.enpirion.com  
EN23F0QI  
Ordering Information  
Part Number  
EN23F0QI  
EN23F0QI-E  
Package Markings  
EN23F0QI  
Temp Rating (°C)  
Package Description  
92-pin (12mm x 13mm x 3mm) QFN T&R  
QFN Evaluation Board  
-40 to +85  
EN23F0QI  
Packing and Marking Information: http://www.enpirion.com/resource-center-packing-and-marking-information.htm  
Pin Assignments (Top View)  
Figure 3: Pin Out Diagram (Top View)  
NOTE A: NC pins are not to be electrically connected to each other or to any external signal, ground, or voltage.  
However, they must be soldered to the PCB. Failure to follow this guideline may result in part malfunction or damage.  
NOTE B: Shaded area highlights exposed metal below the package that is not to be mechanically or electrically  
connected to the PCB. Refer to Figure 14 for details.  
NOTE C: White ‘dot’ on top left is pin 1 indicator on top of the device package.  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 2  
EN23F0QI  
Pin Description  
I/O Legend:  
P=Power  
G=Ground  
NC=No Connect  
I=Input O=Output  
I/O=Input/Output  
PIN  
NAME I/O  
FUNCTION  
NO CONNECT – These pins may be internally connected. Do not connect them to each  
1-24,  
36, 81  
NC  
NC other or to any other electrical signal. Failure to follow this guideline may result in device  
damage.  
Regulated converter output. Connect these pins to the load and place output capacitor  
between these pins and PGND pins 40-42.  
25-35  
VOUT  
O
NO CONNECT – These pins are internally connected to the common switching node of the  
NC(SW) NC internal MOSFETs. They are not to be electrically connected to any external signal, ground,  
or voltage. Failure to follow this guideline may result in damage to the device.  
37-39,  
83-92  
Input/Output power ground. Connect these pins to the ground electrode of the input and  
40-46  
47-63  
PGND  
PVIN  
G
P
output filter capacitors. See VOUT and PVIN pin descriptions for more details.  
Input power supply. Connect to input power supply. Decouple with input capacitor to PGND  
pins 43-46.  
Internal 3.3V linear regulator output. Connect this pin to AVIN (Pin 73) for applications  
where operation from a single input voltage (PVIN) is required. If AVINO is being used,  
place a 1µF, X5R/X7R, capacitor between AVINO and AGND as close as possible to  
AVINO.  
64  
AVINO  
O
65  
66  
PG  
BTMP  
I/O Place a 0.1µF, X7R, capacitor between this pin and BTMP.  
I/O See pin 65 description.  
Internal regulated voltage used for the internal control circuitry. Place a 1µF, X7R, capacitor  
between this pin and BGND.  
See pin 67 description.  
Digital Input. This pin accepts either an input clock to phase lock the internal switching  
frequency or a S_OUT signal from another EN23F0QI. Leave this pin floating if not used.  
Digital Output. PWM signal is output on this pin. Leave this pin floating if not used.  
Power OK is an open drain transistor (pulled up to AVIN or similar voltage) used for power  
system state indication. POK is logic high when VOUT is -10% of VOUT nominal. Leave  
this pin floating if not used.  
67  
68  
69  
70  
VDDB  
BGND  
S_IN  
O
G
I
S_OUT  
O
71  
POK  
O
Input Enable. Applying a logic high to this pin enables the output and initiates a soft-start.  
Applying a logic Low disables the output. Do not leave this pin floating.  
3.3V Input power supply for the controller. Place a 0.1µF, X7R, capacitor between AVIN  
and AGND.  
Analog Ground. This is the ground return for the controller. Needs to be connected to a  
quiet ground.  
72  
73  
74  
75  
ENABLE  
AVIN  
I
P
G
I
AGND  
M/S  
A logic level low configures the device as Master and a logic level high configures the  
device as a Slave. Connect to ground in standalone mode.  
External Feedback Input. The feedback loop is closed through this pin. A voltage divider at  
76  
77  
78  
VFB  
EAIN  
SS  
I/O VOUT is used to set the output voltage. The mid-point of the divider is connected to VFB. A  
phase lead capacitor from this pin to VOUT is also required to stabilize the loop.  
Optional Error Amplifier Input. Allows for customization of the control loop for performance  
optimization. Leave this pin floating if unused.  
O
Soft-Start node. The soft-start capacitor is connected between this pin and AGND. The  
I/O value of this capacitor determines the startup time. See Soft-Start Operation in the  
Functional Description section for details.  
Programmable over-current protection. Placement of a resistor on this pin will adjust the  
over-current protection threshold. See Table 2 for the recommended RCLX Value to set  
OCP at the nominal value specified in the Electrical Characteristics table. No current limit  
79  
RCLX  
I/O  
protection when this pin is left floating.  
Adding a resistor (RFS) to this pin will adjust the switching frequency of the EN23F0QI. See  
I/O Table 1 for suggested resistor values on RFS for various PVIN/VOUT combinations to  
maximize efficiency. Do not leave this pin floating.  
80  
FADJ  
82  
93  
CGND  
PGND  
G
Connect to GND plane at all times.  
Not a perimeter pin. Device thermal pad to be connected to the system GND plane for heat-  
sinking purposes.  
G
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 3  
EN23F0QI  
Absolute Maximum Ratings  
CAUTION: Absolute Maximum ratings are stress ratings only. Functional operation beyond the recommended operating  
conditions is not implied. Stress beyond the absolute maximum ratings may impair device life. Exposure to absolute  
maximum rated conditions for extended periods may affect device reliability.  
PARAMETER  
Voltages on : PVIN, VOUT  
SYMBOL  
MIN  
-0.5  
MAX  
15  
UNITS  
V
Pin Voltages – AVINO, AVIN, ENABLE, POK, S_IN, S_OUT, M/S  
Pin Voltages – VFB, SS, EAIN, RCLX, FADJ  
PVIN Slew Rate  
2.5  
-0.5  
0.3  
6.0  
2.75  
3
V
V
V/ms  
°C  
°C  
°C  
V
Storage Temperature Range  
TSTG  
-65  
150  
150  
260  
2000  
500  
Maximum Operating Junction Temperature  
Reflow Temp, 10 Sec, MSL3 JEDEC J-STD-020A  
ESD Rating (based on Human Body Model)  
ESD Rating (based on CDM)  
TJ-ABS Max  
V
Recommended Operating Conditions  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNITS  
Input Voltage Range  
PVIN  
4.5  
14.0  
V
AVIN: Controller Supply Voltage  
Output Voltage Range (Note 1)  
Output Current  
AVIN  
VOUT  
IOUT  
TA  
2.5  
5.5  
3.3  
V
V
0.75  
15  
A
Operating Ambient Temperature  
Operating Junction Temperature  
-40  
-40  
+85  
+125  
°C  
°C  
TJ  
Thermal Characteristics  
PARAMETER  
SYMBOL  
TYP  
UNITS  
Thermal Shutdown  
TSD  
160  
35  
13  
1
°C  
Thermal Shutdown Hysteresis  
TSDH  
θJA  
°C  
Thermal Resistance: Junction to Ambient (0 LFM) (Note 2)  
Thermal Resistance: Junction to Case (0 LFM)  
°C/W  
°C/W  
θJC  
Note 1: RCLX resistor value may need to be raised for VOUT > VIN – 2.5V to increase current limit threshold. Contact  
techsupport@enpirion.com for details.  
Note 2: Based on 2oz. external copper layers and proper thermal design in line with EIJ/JEDEC JESD51-7 standard for  
high thermal conductivity boards.  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 4  
EN23F0QI  
Electrical Characteristics  
NOTE: VIN=12V, Minimum and Maximum values are over operating ambient temperature range unless otherwise noted.  
Typical values are at TA = 25°C.  
PARAMETER  
Operating Input Voltage  
SYMBOL  
PVIN  
TEST CONDITIONS  
MIN TYP MAX UNITS  
4.5  
14.0  
V
Controller Input Voltage  
AVIN  
2.5  
5.5  
V
PVIN Under Voltage  
Lock-out  
Voltage above which UVLO is not  
asserted  
UVLOPVIN  
AVINUVLOR  
2
V
V
AVIN Under Voltage  
Lock-out rising  
Voltage above which UVLO is not  
asserted  
2.3  
AVIN Under Voltage  
Lock-out falling  
Voltage below which UVLO is  
asserted  
AVINOVLOF  
IAVIN  
2.1  
14  
V
mA  
V
AVIN Pin Input Current  
Internal Linear Regulator  
Output Voltage  
AVINO  
3.3  
IPVINS  
IAVINS  
PVIN=12V, AVIN=3.3, ENABLE=0V  
PVIN=12V, AVIN=3.3, ENABLE=0V  
300  
50  
μA  
μA  
Shut-Down Supply  
Current  
Feedback Node Voltage at:  
VIN = 12V, ILOAD = 0, TA = 25°C  
Feedback Pin Voltage  
Feedback Pin Voltage  
VFB  
VFB  
0.594  
0.588  
0.60  
0.60  
0.606  
0.612  
V
Feedback Node Voltage at:  
4.5V VIN 14V  
V
0A ILOAD 15A, TA = -40 to 85°C  
VFB pin input leakage current  
(Note 3)  
Feedback pin Input  
Leakage Current  
IFB  
tRISE  
-5  
5
nA  
C
SS = 47nF  
VOUT Rise Time  
1.96  
2.8  
47  
3.64  
ms  
nF  
A
(Note 3, Note 4 and Note 5)  
Soft Start Capacitor  
Range  
CSS_RANGE  
Continuous Output  
Current  
IOUT_CONT  
IOCP  
0
15  
Over Current Trip Level  
ENABLE Logic High  
ENABLE Logic Low  
ENABLE Lockout Time  
Reference Table 3  
22.5  
A
V
VENABLE_HIGH 4.5V VIN 14V;  
VENABLE_LOW 4.5V VIN 14V;  
TENLOCKOUT  
1.8  
0
AVIN  
0.6  
V
8
4
ms  
ENABLE pin Input  
Current  
IENABLE  
FSW  
180kΩ Pull Down (Note 3)  
RFADJ =3kΩ  
μA  
Switching Frequency  
1.0  
MHz  
MHz  
External SYNC Clock  
Frequency Lock Range  
FPLL_LOCK  
Range of SYNC clock frequency  
0.8  
1.8  
1.8  
1.6  
S_IN Threshold – Low  
S_IN Threshold – High  
S_OUT Threshold – Low  
VS_IN_LO  
VS_IN_HI  
S_IN Clock Logic Low Level  
S_IN Clock Logic High Level  
S_OUT Clock Logic Low Level  
0.8  
2.5  
0.8  
V
V
V
VS_OUT_LO  
S_OUT Threshold –  
High  
VS_OUT_HI  
POKLT  
S_OUT Clock Logic High Level  
2.5  
V
Percentage of Nominal Output  
Voltage for POK to be Low  
POK Lower Threshold  
90  
%
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 5  
EN23F0QI  
PARAMETER  
POK Output low Voltage  
SYMBOL  
VPOKL  
TEST CONDITIONS  
With 4mA Current Sink into POK  
PVIN range: 4.5V VIN 15V  
MIN TYP MAX UNITS  
0.4  
V
POK Output Hi Voltage  
VPOKH  
AVIN  
V
POK pin VOH leakage  
current  
IPOKL  
VT-LOW  
VT-HIGH  
IM/S  
POK High (Note 3)  
1
µA  
V
M/S Pin Logic Low  
M/S Pin Logic High  
M/S Pin Input Current  
Tie Pin to GND  
0.8V  
Pull up to AVIN Through an External  
Resistor REXT  
1.8V  
V
100  
VIN = 5.0V, REXT = 24.9kΩ  
μA  
Note 3: Parameter not production tested but is guaranteed by design.  
Note 4: Rise time calculation begins when AVIN > VUVLO and ENABLE = HIGH.  
Note 5: VOUT Rise Time Accuracy does not include soft-start capacitor tolerance.  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 6  
EN23F0QI  
Typical Performance Curves  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
CONDITIONS  
VIN = 12.0V  
AVIN = 3.3V  
Dual Supply  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 1.2V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 1.2V  
CONDITIONS  
VIN = 10.0V  
AVIN = 3.3V  
Dual Supply  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
OUTPUT CURRENT(A)  
OUTPUT CURRENT (A)  
Output Current De-rating  
Output Current De-rating  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
CONDITIONS  
VIN = 10V  
CONDITIONS  
VIN = 12V  
TJMAX = 125 C  
8.0  
TJMAX = 125 C  
8.0  
VOUT = 1.2V  
VOUT = 1.8V  
Series1  
θ
JA = 13 C/W  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
θ
JA = 13 C/W  
7.0  
7.0  
13x12x3mm QFN  
No Air Flow  
13x12x3mm QFN  
No Air Flow  
6.0  
6.0  
5.0  
5.0  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
Output Current De-rating  
with Air Flow (200fpm)  
Output Current De-rating  
with Air Flow (400fpm)  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
CONDITIONS  
VIN = 12V  
CONDITIONS  
VIN = 12V  
T
JMAX = 125 C  
TJMAX = 125 C  
θJA = 9 C/W  
13x12x3mm QFN  
Air Flow (400fpm)  
8.0  
8.0  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
θJA = 10.5 C/W  
13x12x3mm QFN  
Air Flow (200fpm)  
7.0  
7.0  
6.0  
6.0  
5.0  
5.0  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 7  
EN23F0QI  
Typical Performance Curves  
Output Current De-rating  
Output Current De-rating  
with Heat Sink  
with Heat Sink and Air Flow (200fpm)  
15.0  
14.0  
13.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
12.0  
CONDITIONS  
VIN = 12V  
TJMAX = 125 C  
CONDITIONS  
11.0  
10.0  
9.0  
VIN = 12V  
JMAX = 125 C  
JA = 12 C/W  
T
θ
θ
JA = 9.5 C/W  
13x12x3mm QFN  
13x12x3mm QFN  
No Air Flow  
Heat SinkWakefield  
ThermalSolutions  
P/N 651B  
8.0  
8.0  
AirFlow (200fpm)  
Heat Sink - Wakefield  
Thermal Solutions  
P/N 651-B  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
7.0  
7.0  
6.0  
6.0  
5.0  
5.0  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
Output Voltage vs. Output Current  
Output Current De-rating  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
with Heat Sink and Air Flow (400fpm)  
VIN = 8V  
VIN = 10V  
VIN = 12V  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
CONDITIONS  
VIN = 12V  
TJMAX = 125 C  
θ
JA = 8 C/W  
13x12x3mm QFN  
8.0  
Air Flow (400fpm)  
Heat Sink - Wakefield  
Thermal Solutions  
P/N 651-B  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
7.0  
CONDITIONS
VOUT_NOM=1.0V  
6.0  
5.0  
25 30 35 40 45 50 55 60 65 70 75 80 85  
AMBIENT TEMPERATURE ( C)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
OUTPUT CURRENT(A)  
Output Voltage vs. Output Current  
Output Voltage vs. Output Current  
1.205  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
1.195  
1.805  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
VIN = 8V  
VIN = 10V  
VIN = 12V  
VIN = 8V  
VIN = 10V  
VIN = 12V  
CONDITIONS  
VOUT_NOM = 1.8V  
Note: Air flow or heat sink may be required for  
highercurrents. See derating curves.  
CONDITIONS
VOUT_NOM=1.2V  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
OUTPUT CURRENT(A)  
OUTPUT CURRENT(A)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 8  
EN23F0QI  
Typical Performance Curves  
Output Voltage vs. Output Current  
Output Voltage vs. Temperature  
2.505  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
VIN = 8V  
VIN = 10V  
VIN = 12V  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
CONDITIONS  
VIN = 8V  
V
OUT_NOM =1.2V  
LOAD = 0A  
LOAD = 4A  
LOAD = 8A  
LOAD = 12A  
CONDITIONS  
VOUT_NOM = 2.5V  
Note: Air flow or heat sink may be required for  
higher currents. See derating curves.  
-40  
-15  
10  
35  
60  
85  
85  
30  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
AMBIENT TEMPERATURE ( C)  
OUTPUT CURRENT(A)  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
CONDITIONS  
VIN = 10V  
V
CONDITIONS  
VIN = 12V  
VOUT_NOM =1.2V  
OUT_NOM =1.2V  
LOAD = 0A  
LOAD = 4A  
LOAD = 8A  
LOAD = 12A  
LOAD = 0A  
LOAD = 4A  
LOAD = 8A  
LOAD = 12A  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
Output Voltage vs. Temperature  
Parallel Current Share Breakdown  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
20  
17.5  
15  
CONDITIONS  
VIN = 14V  
V
MASTER  
SLAVE  
IDEAL  
OUT_NOM =1.2V  
12.5  
10  
LOAD = 0A  
LOAD = 4A  
LOAD = 8A  
LOAD = 12A  
7.5  
5
CONDITIONS  
EN23F0QI  
IN = 12V  
V
2.5  
0
VOUT = 1.2V  
-40  
-15  
10  
35  
60  
85  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE ( C)  
TOTAL OUTPUT CURRENT (A)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 9  
EN23F0QI  
Typical Performance Characteristics  
Enable Startup/Shutdown Waveform (0A)  
Enable Startup/Shutdown Waveform (5A)  
ENABLE  
ENABLE  
VOUT  
POK  
VOUT  
POK  
CONDITIONS  
VIN = 12V, VOUT = 3.3V, Load = 0A, Css = 47nF  
CIN = 3x22µF(1206), COUT = 3x47µF(0805)+3x22µF(0805)  
LOAD  
LOAD  
CONDITIONS  
VIN = 12V, VOUT = 3.3V, Load = 5A, Css = 47nF  
CIN = 3x22µF(1206), COUT = 3x47µF(0805)+3x22µF(0805)  
Enable Startup/Shutdown Waveform (10A)  
Enable Startup/Shutdown Waveform (15A)  
ENABLE  
ENABLE  
VOUT  
POK  
VOUT  
POK  
LOAD  
LOAD  
CONDITIONS  
CONDITIONS  
VIN = 12V, VOUT = 3.3V, Load = 10A, Css = 47nF  
VIN = 12V, VOUT = 3.3V, Load = 15A, Css = 47nF  
CIN = 3x22µF(1206), COUT = 3x47µF(0805)+3x22µF(0805)  
CIN = 3x22µF(1206), COUT = 3x47µF(0805)+3x22µF(0805)  
Power Up Waveform (0A)  
Power Up Waveform (5A)  
PVIN  
PVIN  
VOUT  
POK  
VOUT  
POK  
LOAD  
LOAD  
CONDITIONS  
CONDITIONS  
VIN = 12V, VOUT = 3.3V, Load = 5A, Css = 47nF,  
CIN = 3x22µF(1206), COUT = 3x47µF(0805) + 3x22µF(0805)  
VIN = 12V, VOUT = 3.3V, Load = 0A, Css = 47nF,  
CIN = 3x22µF(1206), COUT = 3x47µF(0805) + 3x22µF(0805)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 10  
EN23F0QI  
Typical Performance Characteristics  
Output Ripple at 20MHz Bandwidth  
Power Up Waveform (15A)  
VOUT = 1V  
LOAD = 0A  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
PVIN  
VOUT  
POK  
VOUT = 3.3V  
(AC Coupled)  
20mV / DIV  
LOAD  
CONDITIONS  
CONDITIONS  
VIN = 12V, VOUT = 3.3V, Load = 15A, Css = 47nF,  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
CIN = 3x22µF(1206), COUT = 3x47µF(0805) + 3x22µF(0805)  
Output Ripple at 20MHz Bandwidth  
Output Ripple at 500MHz Bandwidth  
VOUT = 1V  
LOAD = 0A  
(AC Coupled)  
VOUT = 1V  
LOAD = 10A  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
VOUT = 3.3V  
(AC Coupled)  
VOUT = 3.3V  
(AC Coupled)  
20mV / DIV  
20mV / DIV  
CONDITIONS  
CONDITIONS  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
Output Ripple at 500MHz Bandwidth  
VOUT = 1V  
LOAD = 2A  
(AC Coupled)  
Output Ripple at 500MHz Bandwidth  
VOUT = 1V  
LOAD = 6A  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
VOUT = 3.3V  
(AC Coupled)  
VOUT = 3.3V  
(AC Coupled)  
20mV / DIV  
20mV / DIV  
CONDITIONS  
CONDITIONS  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 11  
EN23F0QI  
Typical Performance Characteristics  
Output Ripple at 500MHz Bandwidth  
Load Transient from 0 to 5A (VOUT =1V)  
VOUT = 1V  
LOAD = 10A  
(AC Coupled)  
VOUT  
(AC Coupled)  
VOUT = 1.8V  
(AC Coupled)  
VOUT = 3.3V  
(AC Coupled)  
20mV / DIV  
CONDITIONS  
VIN = 12V, VOUT = 1.0V  
CIN = 3 x 22µF (1206)  
LOAD  
CONDITIONS  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
VIN = 12V, CIN = 3x22µF (1206), COUT = 3x47µF + 100µF (1206)  
Load Transient from 0 to 10A (VOUT =1V)  
Load Transient from 0 to 15A (VOUT =1V)  
VOUT  
VOUT  
(AC Coupled)  
(AC Coupled)  
CONDITIONS  
VIN = 12V, VOUT = 1.0V  
CIN = 3 x 22µF (1206)  
CONDITIONS  
VIN = 12V, VOUT = 1.0V  
CIN = 3 x 22µF (1206)  
LOAD  
LOAD  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
Load Transient from 0 to 5A (VOUT =3.3V)  
Load Transient from 0 to 10A (VOUT =3.3V)  
VOUT  
VOUT  
(AC Coupled)  
(AC Coupled)  
CONDITIONS  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
CONDITIONS  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
LOAD  
LOAD  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 12  
EN23F0QI  
Typical Performance Characteristics  
Load Transient from 0 to 5A (VOUT =3.3V)  
Load Transient from 0 to 15A (VOUT =3.3V)  
VOUT  
VOUT  
(AC Coupled)  
(AC Coupled)  
CONDITIONS  
CONDITIONS  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
LOAD  
LOAD  
COUT = 3 x 47µF (0805) + 3 x 22µF (0805)  
Using Best Performance Configuration  
COUT = 3 x 47µF (1206) + 100µF (1206)  
Using Best Performance Configuration  
Load Transient from 0 to 10A (VOUT =3.3V)  
Load Transient from 0 to 15A (VOUT =3.3V)  
VOUT  
VOUT  
(AC Coupled)  
(AC Coupled)  
CONDITIONS  
CONDITIONS  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
VIN = 12V, VOUT = 3.3V  
CIN = 3 x 22µF (1206)  
LOAD  
LOAD  
COUT = 3 x 47µF (1206) + 100µF (1206)  
Using Best Performance Configuration  
COUT = 3 x 47µF (1206) + 100µF (1206)  
Using Best Performance Configuration  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 13  
EN23F0QI  
Functional Block Diagram  
S_OUT S_IN  
Digital I/O  
M/S  
BTMP  
PG  
PVIN  
Linear  
Regulator  
UVLO  
To PLL  
AVINO  
Thermal Limit  
Current Limit  
Gate Drive  
NC(SW)  
VOUT  
BGND  
(-)  
PWM  
Comp  
PGND  
VDDB  
(+)  
Compensation  
Network  
PLL/Sawtooth  
FADJ  
EAIN  
VFB  
Generator  
Compensation  
Network  
(-)  
Error  
Amp  
(+)  
Power  
Good  
Logic  
POK  
ENABLE  
300k  
180k  
Soft Start  
SS  
Voltage Reference Generator  
Band Gap  
Reference  
AVIN  
AGND  
Figure 4: Functional Block Diagram  
Functional Description  
wide loop bandwidth within a small foot print.  
Synchronous Buck Converter  
Protection Features:  
The EN23F0QI is a highly integrated synchronous,  
buck converter with integrated controller, power  
MOSFET switches and integrated inductor. The  
nominal input voltage (PVIN) range is 4.5V to 14V  
and can support up to 15A of continuous output  
current. The output voltage is programmed using  
an external resistor divider network. The control  
loop utilizes a Type IV Voltage-Mode compensation  
network and maximizes on a low-noise PWM  
topology. Much of the compensation circuitry is  
internal to the device. However, a phase lead  
capacitor is required along with the output voltage  
feedback resistor divider to complete the Type IV  
compensation network.. The high switching  
frequency of the EN23F0QI enables the use of  
small size input and output capacitors, as well as a  
The power supply has the following protection  
features:  
Programmable Over-Current Protection  
Thermal Shutdown with Hysteresis  
Under-Voltage Lockout Protection  
Additional Features:  
Switching Frequency Synchronization  
Programmable Soft-Start  
Power OK Output Monitoring  
Power Up Sequence  
The EN23F0QI is designed to be powered by either  
a single input supply (PVIN) or two separate  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 14  
EN23F0QI  
supplies: one for PVIN and the other for AVIN.  
Single Input Supply Application (PVIN):  
schematic for a dual input supply application.  
For dual input supply applications, the sequencing  
of the two input supplies, PVIN and AVIN, is very  
important. During power up, neither ENABLE nor  
PVIN should be asserted before AVIN. There are  
two common acceptable turn-on/off sequences for  
the device. ENABLE can be tied to AVIN and come  
up with it, and PVIN can be ramped up and down  
as needed. Alternatively, PVIN can be brought high  
after AVIN is asserted, and the device can be  
turned on and off by toggling the ENABLE pin.  
PVIN may be applied before AVIN if ENABLE is  
toggled after both PVIN and AVIN is applied.  
Enable Operation  
The ENABLE pin provides a means to enable  
normal operation or to shut down the device. A  
logic high will enable the converter into normal  
operation. When the ENABLE pin is asserted (high)  
the device will undergo a normal soft-start, allowing  
the output voltage to rise monotonically into  
regulation. A logic low will disable the converter and  
the device will power down in a controlled manner.  
The ENABLE signal has to be low for at least the  
ENABLE Lockout Time (8ms) in order for the  
device to be re-enabled.  
Figure 5. Single Supply Applications Circuit  
The EN23F0QI has an internal linear regulator that  
converts PVIN to 3.3V. The output of the linear  
regulator is provided on the AVINO pin once the  
device is enabled. AVINO should be connected to  
AVIN on the EN23F0QI. In this application, the  
following external components are required: Place  
a 1µF, X5R/X7R, capacitor between AVINO and  
AGND as close as possible to AVINO. Place a  
0.1µF, X5R/X7R, capacitor between AVIN and  
AGND as close as possible to AVIN. In addition,  
place a resistor (RVB) between VDDB and AVIN, as  
shown in Figure 5. Enpirion recommends  
RVB=4.75k. In this application, ENABLE cannot be  
asserted before PVIN. If no external enable signal  
is used, tying ENABLE to AVIN meets this  
requirement.  
Pre-Bias Precaution  
The EN23F0QI is not designed to be turned on into  
a pre-biased output voltage. Be sure the output  
capacitors are not charged or the output of the  
EN23F0QI is not pre-biased when the EN23F0QI  
is first enabled.  
Frequency Synchronization  
Dual Input Supply Application (PVIN and AVIN):  
The switching frequency of the EN23F0QI can be  
phase-locked to an external clock source to move  
unwanted beat frequencies out of band. The  
internal switching clock of the EN23F0QI can be  
phase locked to a clock signal applied to the S_IN  
pin. An activity detector recognizes the presence of  
an external clock signal and automatically phase-  
locks the internal oscillator to this external clock.  
Phase-lock will occur as long as the input clock  
frequency is in the range of 0.8MHz to 1.6MHz.  
When no clock is present, the device reverts to the  
free running frequency of the internal oscillator.  
Adding a resistor (RFS) to the FADJ pin will adjust  
the switching frequency. If a 3Kresistor is placed  
on FADJ the nominal switching frequency of the  
EN23F0QI is 1MHz. Figure 7 shows the typical RFS  
resistor value versus switching frequency.  
Figure 6: Dual Input Supply Application Circuit  
In this application, place a 0.1µF, X7R, capacitor  
between AVIN and AGND as close as possible to  
AVIN. Refer to Figure 6 for a recommended  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 15  
EN23F0QI  
value.  
Rfs vs. SW Frequency  
1.800  
1.600  
1.400  
1.200  
1.000  
0.800  
0.600  
POK Operation  
The POK signal is an open drain signal (requires a  
pull up resistor to AVIN or similar voltage) from the  
converter indicating the output voltage is within the  
specified range. Typically, a 100kor lower  
resistance is used as the pull-up resistor. The POK  
signal will be logic high (AVIN) when the output  
voltage is above 90% of the programmed voltage  
level. If the output voltage is below this point, the  
POK signal will be a logic low. The POK signal can  
be used to sequence down-stream converters by  
tying to their enable pins.  
CONDITIONS  
VIN = 6V to 12V  
VOUT =0.8V to 3.3V  
0
2
4
6
8
10 12 14 16 18 20 22  
RFS RESISTOR VALUE (k)  
Over-Current Protection (OCP)  
Figure 7. RFS versus Switching Frequency  
The current limit function is achieved by sensing  
the current flowing through a sense PFET. When  
the sensed current exceeds the current limit, both  
power FETs are turned off for the rest of the  
switching cycle. If the over-current condition is  
removed, the over-current protection circuit will re-  
enable PWM operation. If the over-current condition  
persists, the circuit will continue to protect the load.  
The OCP trip point is nominally set as specified in  
the Electrical Characteristics table. In the event the  
OCP circuit trips consistently in normal operation,  
the device enters a hiccup mode. While in hiccup  
mode, the device is disabled for a short while and  
restarted with a normal soft-start. The hiccup time  
is approximately 32ms. This cycle can continue  
indefinitely as long as the over current condition  
persists.  
The efficiency performance of the EN23F0QI for  
various VOUTs can be optimized by adjusting the  
switching frequency. Table 1 shows recommended  
RFS values for various VOUTs in order to optimize  
performance of the EN23F0QI.  
PVIN  
VOUT  
1.0V  
1.2V  
1.8V  
2.5V  
3.3V  
RFS  
3k  
3.3k  
4.87k  
10k  
15k  
12V  
Table 1: Recommended RFS Values  
Spread Spectrum Mode  
The OCP trip point can be programmed to trip at a  
lower level via the RCLX pin. The value of the  
resistor connected between RCLX and ground will  
determine the OCP trip point. Generally, the higher  
the RCLX value, the higher the current limit  
threshold. Note that if RCLX pin is left open the  
output current will be unlimited and the device will  
not have current limit protection. Reference Table 2  
for a list of recommended resistor values on RCLX  
that will set the OCP trip point at the typical value of  
The external clock frequency may be swept  
between 0.8MHz and 1.6MHz at repetition  
rates of up to 10 kHz in order to reduce EMI  
frequency components.  
Soft-Start Operation  
Soft start is a means to ramp the output voltage  
gradually upon start-up. The output voltage rise  
time is controlled by the choice of soft-start  
capacitor, which is placed between the SS pin (pin  
78) and the AGND pin (pin 74).  
22.5A,  
also  
specified  
in  
the  
Electrical  
Characteristics table.  
Rise Time (ms): TR Css [nF] x 0.06  
VOUT Range  
RCLX Value  
36.5k  
0.6V < VOUT 0.9V  
0.9V < VOUT 1.2V  
1.2V < VOUT 2.0V  
2.0V < VOUT 5.0V  
During start-up of the converter, the reference  
voltage to the error amplifier is linearly increased to  
its final level by an internal current source of  
approximately 10µA. Typical soft-start rise time is  
~2.8ms with SS capacitor value of 47nF. The rise  
time is measured from when VIN > VUVLOR and  
ENABLE pin voltage crosses its logic high  
threshold to when VOUT reaches its programmed  
38.4k  
40.2k  
45.3k  
Table 2: Recommended RCLX Values vs. VOUT  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 16  
EN23F0QI  
fed to the Slave device at its S_IN input. The Slave  
device acts like an extension of the power FETs in  
the Master. The inductor in the Slave prevents  
crow-bar currents from Master to Slave due to  
timing delays. Parallel operation in dual supply  
mode is shown in Figure 9. Single supply mode  
operation may also be implemented similarly. Note  
that only critical components are shown. The red  
text and red lines indicate the important parallel  
operation connections and care should be taken in  
layout to ensure low impedance between those  
paths. The parallel current matching is illustrated in  
Figure 8.  
Thermal Overload Protection  
Thermal shutdown circuit will disable device  
operation when the junction temperature exceeds  
approximately 150ºC. After a thermal shutdown  
event, when the junction temperature drops by  
approx 20ºC, the converter will re-start with a  
normal soft-start.  
Input Under-Voltage Lock-Out (UVLO)  
Internal circuits ensure that the converter will not  
start switching until the input voltage is above the  
specified minimum voltage. Hysteresis, input de-  
glitch and output leading edge blanking ensures  
high noise immunity and prevents false UVLO  
triggers.  
Parallel Current Share Breakdown  
20  
Master / Slave (Parallel) Operation:  
17.5  
MASTER  
Up to four EN23F0QI devices may be connected in  
a Master/Slave configuration to handle larger load  
currents. The maximum output current for each  
parallel device will need to be de-rated by 20  
percent so that no devices will over current due to  
current mis-match. The Master device’s switching  
clock may be phase-locked to an external clock  
source via the S_IN pin or left open and use its  
default switching frequency. The device is placed in  
Master mode by pulling the M/S pin low or in Slave  
mode by pulling M/S pin high. Note that the M/S pin  
is also pulled low for standalone mode. In Master  
mode, the internal PWM signal is output on the  
S_OUT pin. This PWM signal from the Master is  
15  
SLAVE  
IDEAL  
12.5  
10  
7.5  
5
CONDITIONS  
EN23F0QI  
VIN = 12V  
2.5  
0
V
OUT = 1.2V  
0
5
10  
15  
20  
25  
30  
TOTAL OUTPUT CURRENT(A)  
Figure 8. Parallel Current Matching  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 17  
EN23F0QI  
Figure 9. Parallel Operation Illustration  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 18  
EN23F0QI  
Application Information  
Output Voltage Programming and Loop  
Compensation  
Recommended Input Capacitors  
Description  
MFG  
P/N  
22µF, 16V, X5R,  
10%, 1206  
The EN23F0QI uses a Type IV Voltage Mode  
compensation network. Type IV Voltage Mode  
control is a proprietary Enpirion control scheme that  
maximizes control loop bandwidth to deliver  
excellent load transient responses and maintain  
output regulation with pin point accuracy. For ease  
of use, most of this network has been customized  
and is integrated within the device package. The  
EN23F0QI output voltage is programmed using a  
simple resistor divider network (RA and RB). The  
feedback voltage at VFB is nominally 0.6V. RA is  
predetermined based on Table 5 and RB can be  
calculated based on Figure 10. The values  
recommended for COUT, CA, RCA and REA make up  
the external compensation of the EN23F0QI. It will  
vary with each PVIN and VOUT combination to  
optimize on performance. The EN23F0QI solution  
can be optimized for either smallest size or highest  
performance. Please see Table 5 for a list of  
recommended RA, CA, RCA, REA and COUT values for  
each solution.  
Murata  
GRM31CR61C226ME15  
22µF, 16V, X5R,  
20%, 1206  
Taiyo  
Yuden  
EMK316ABJ226ML-T  
GRM32ER61E226KE15L  
TMK325BJ226MM-T  
22µF, 25V, X5R,  
10%, 1210  
Murata  
22µF, 25V, X5R,  
20%, 1210  
Taiyo  
Yuden  
Table 3: Recommended Input Capacitors  
Output Capacitor Selection  
As seen from Table 5, the EN23F0QI has been  
optimized for use with three 47µF/1206 plus one  
100µF/1206 for best performance. For smallest  
solution size, various combinations of output  
capacitance may be used. See Table 5 for details.  
Low ESR ceramic capacitors are required with X5R  
or X7R rated dielectric formulation. Y5V or  
equivalent dielectric formulations must not be  
used as these lose too much capacitance with  
frequency, temperature and bias voltage. Table  
4 contains a list of recommended output capacitors.  
Output ripple voltage is determined by the  
aggregate output capacitor impedance. Capacitor  
impedance, denoted as Z, is comprised of  
capacitive reactance, effective series resistance,  
ESR, and effective series inductance, ESL  
reactance.  
Placing output capacitors in parallel reduces the  
impedance and will hence result in lower ripple  
voltage.  
1
1
1
1
=
+
+ ... +  
Figure 10: VOUT Resistor Divider & Compensation  
ZTotal  
Z1 Z2  
Zn  
Components. See Table 5 for details.  
Recommended Output Capacitors  
Input Capacitor Selection  
Description  
47µF, 6.3V, X5R,  
20%, 1206  
47µF, 10V, X5R,  
20%, 1206  
22µF, 10V, X5R,  
20%, 0805  
22µF, 10V, X5R,  
20%, 0805  
MFG  
P/N  
The EN23F0QI requires three 22µF/1206 input  
capacitor. Low-cost, low-ESR ceramic capacitors  
should be used as input capacitors for this  
converter. The dielectric must be X5R or X7R  
rated. Y5V or equivalent dielectric formulations  
must not be used as these lose too much  
capacitance with frequency, temperature and  
bias voltage. In some applications, lower value  
capacitors are needed in parallel with the larger,  
capacitors in order to provide high frequency  
decoupling. Table 3 contains a list of recommended  
input capacitors.  
Murata  
GRM31CR60J476ME19L  
Taiyo  
Yuden  
LMK316BJ476ML-T  
ECJ-2FB1A226M  
Panasonic  
Taiyo  
Yuden  
LMK212BJ226MG-T  
GRM31CR60J107ME39L  
JMK316BJ107ML-T  
Murata  
100µF, 6.3V, X5R,  
20%, 1206  
Taiyo  
Yuden  
Table 4: Recommended Output Capacitors  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 19  
EN23F0QI  
Best Performance  
Smallest Solution Size  
CIN = 3 x 22µF/1206  
CIN = 3 x 22µF/1206  
VOUT 1.8V, COUT = 22µF/0805 + 2x47µF/0805  
COUT = 3x47µF (1206) + 100µF(1206)  
3.3V > VOUT> 1.8V, COUT = 3x47µF/1206  
RA = 200 kΩ  
RA = 100 kΩ  
PVIN VOUT CA  
RCA REA Ripple Deviation  
PVIN VOUT CA  
RCA  
REA  
Ripple Deviation  
(V)  
(V)  
(pF) (k) (k)  
(mV)  
25.6  
24  
(mV)  
(V)  
(V)  
(pF) (k) (k)  
(mV)  
15  
18  
22  
25  
32  
46  
15  
18  
21  
24  
30  
43  
15  
17  
20  
22  
29  
41  
14  
16  
19  
20  
27  
36  
13  
15  
17  
19  
24  
32  
12  
13  
16  
17  
20  
21  
(mV)  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
15  
12  
12  
10  
18  
12  
18  
15  
15  
12  
22  
15  
18  
18  
18  
15  
27  
22  
22  
22  
18  
18  
39  
27  
27  
27  
22  
22  
47  
39  
33  
33  
27  
27  
68  
47  
19  
22  
22  
24  
14  
14  
16  
19  
19  
22  
12  
12  
14  
14  
16  
19  
10  
10  
10  
13  
15  
15  
6
0
0
23  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
12  
12  
36  
36  
36  
36  
27  
27  
27  
27  
27  
27  
27  
27  
20  
20  
20  
20  
20  
20  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
78  
35  
93  
0
26.4  
28.4  
31.6  
37.3  
21.6  
22.7  
25.2  
25.8  
30  
42  
12  
104  
130  
162  
200  
84  
14V  
14V  
0
45  
12  
56  
56  
0
78  
15  
114  
31  
10  
22  
0
38  
22  
97  
0
39  
18  
118  
130  
172  
213  
85  
12V  
10V  
8V  
12V  
10V  
8V  
0
41  
18  
56  
56  
0
84  
22  
30.8  
18.8  
20.4  
22  
116  
37  
15  
56  
0
41  
47  
100  
120  
140  
177  
230  
83  
0
42  
39  
0
23.6  
26.5  
28.9  
17.2  
18.7  
20.1  
20.9  
23.6  
22.8  
13.8  
15.2  
16.4  
19.6  
20.4  
21.1  
12.4  
13.4  
14.3  
15.4  
15.5  
12.9  
46  
33  
56  
56  
0
90  
33  
122  
17.2  
18.7  
20.1  
20.9  
23.6  
22.8  
13.8  
15.2  
16.4  
19.6  
20.4  
21.1  
12.4  
13.4  
14.3  
15.4  
15.5  
12.9  
22  
200  
200  
150  
82  
0
90  
0
107  
138  
178  
239  
99  
0
56  
56  
0
68  
6
39  
10  
10  
13  
13  
4
200  
200  
200  
150  
100  
56  
0
105  
118  
138  
183  
250  
123  
132  
145  
156  
216  
253  
0
6.6V  
5V  
6.6V  
5V  
0
56  
56  
0
4
10  
10  
13  
13  
1
200  
200  
200  
200  
100  
100  
0
0
0
56  
56  
1
Table 5: RA, CA, RCA and REA Values for Various PVIN/VOUT Combinations: Best Performance vs. Smallest Solution  
Size. Use the equations in Figure 10 to calculate RB.  
Note 6: Output ripple is measured at no load and nominal deviation is for a 15A load transient step.  
Note 7: For compensation values of output voltage in between the specified output voltages, choose compensation values  
of the lower output voltage setting.  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 20  
EN23F0QI  
Thermal Considerations  
Thermal considerations are important power supply  
design facts that cannot be avoided in the real  
world. Whenever there are power losses in a  
system, the heat that is generated by the power  
dissipation needs to be accounted for. The Enpirion  
PowerSoC helps alleviate some of those concerns.  
For VIN = 12V, VOUT = 1.2V at 15A, η ≈ 80%  
η = POUT / PIN = 80% = 0.8  
PIN = POUT / η  
PIN 18W / 0.8 22.5W  
The power dissipation (PD) is the power loss in the  
system and can be calculated by subtracting the  
output power from the input power.  
The Enpirion EN23F0QI DC-DC converter is  
packaged in an 8x11x3mm 68-pin QFN package.  
The QFN package is constructed with copper lead  
frames that have exposed thermal pads. The  
exposed thermal pad on the package should be  
soldered directly on to a copper ground pad on the  
printed circuit board (PCB) to act as a heat sink.  
The recommended maximum junction temperature  
for continuous operation is 125°C. Continuous  
operation above 125°C may reduce long-term  
reliability. The device has a thermal overload  
protection circuit designed to turn off the device at  
an approximate junction temperature value of  
150°C.  
PD = PIN – POUT  
22.5W – 18W 4.5W  
With the power dissipation known, the temperature  
rise in the device may be estimated based on the  
theta JA value (θJA). The θJA parameter estimates  
how much the temperature will rise in the device for  
every watt of power dissipation. The EN23F0QI has  
a θJA value of 13 ºC/W without airflow.  
Determine the change in temperature (ΔT) based  
on PD and θJA.  
ΔT = PD x θJA  
The EN23F0QI is guaranteed to support the full 4A  
output current up to 85°C ambient temperature.  
The following example and calculations illustrate  
the thermal performance of the EN23F0QI.  
ΔT 4.5W x 13°C/W = 58.5°C 59°C  
The junction temperature (TJ) of the device is  
approximately the ambient temperature (TA) plus  
the change in temperature. We assume the initial  
ambient temperature to be 25°C.  
Example:  
VIN = 12V  
TJ = TA + ΔT  
VOUT = 1.2V  
TJ 25°C + 59°C 84°C  
IOUT = 15A  
The maximum operating junction temperature  
(TJMAX) of the device is 125°C, so the device can  
operate at a higher ambient temperature. The  
maximum ambient temperature (TAMAX) allowed can  
be calculated.  
First calculate the output power.  
POUT = 1.2V x 15A = 18W  
Next, determine the input power based on the  
efficiency (η) shown in Figure 11.  
T
AMAX = TJMAX – PD x θJA  
125°C – 59°C 66°C  
Efficiency vs. Output Current  
100  
90  
The maximum ambient temperature the device can  
reach is 66°C given the input and output conditions.  
Note that the efficiency will be slightly lower at  
higher temperatures and this calculation is an  
estimate.  
80  
70  
60  
50  
40  
CONDITIONS  
VIN = 12.0V  
AVIN = 3.3V  
Dual Supply  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 1.2V  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
OUTPUT CURRENT(A)  
Figure 11: Efficiency vs. Output Current  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 21  
EN23F0QI  
Engineering Schematic  
Figure 12: Critical Components Engineering Schematic  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 22  
EN23F0QI  
Layout Recommendation  
on the inside wall, making the finished hole size  
around 0.20-0.26mm. Do not use thermal reliefs or  
spokes to connect the vias to the ground plane.  
This connection provides the path for heat  
dissipation from the converter.  
Recommendation 5: Multiple small vias (the same  
size as the thermal vias discussed in  
recommendation 4) should be used to connect  
ground terminal of the input capacitor and output  
capacitors to the system ground plane. It is  
preferred to put these vias along the edge of the  
GND copper closest to the +V copper. These vias  
connect the input/output filter capacitors to the  
GND plane, and help reduce parasitic inductances  
in the input and output current loops. If vias cannot  
be placed under the capacitors, then place them on  
both sides of the slit in the top layer PGND copper.  
Recommendation 6: AVIN is the power supply for  
the small-signal control circuits. It should be  
connected to the input voltage at a quiet point. In  
Figure 13 this connection is made at the input  
capacitor.  
Recommendation 7: The layer 1 metal under the  
device must not be more than shown in Figure 13.  
Refer to the section regarding Exposed Metal on  
Bottom of Package. As with any switch-mode  
DC/DC converter, try not to run sensitive signal or  
control lines underneath the converter package on  
other layers.  
Recommendation 8: The VOUT sense point should  
be just after the last output filter capacitor. Keep the  
sense trace short in order to avoid noise coupling  
into the node. Contact Enpirion Technical Support  
for any remote sensing applications.  
Recommendation 9: Keep RA, CA, RB, and RCA  
close to the VFB pin (Refer to Figure 13). The VFB  
pin is a high-impedance, sensitive node. Keep the  
trace to this pin as short as possible. Whenever  
possible, connect RB directly to the AGND pins 52  
and 53 instead of going through the GND plane.  
Figure 13: Top Layer of Engineering Board (Top View).  
Recommendation 1: Input and output filter  
capacitors should be placed on the same side of  
the PCB, and as close to the EN23F0QI package  
as possible. They should be connected to the  
device with very short and wide traces. Do not use  
thermal reliefs or spokes when connecting the  
capacitor pads to the respective nodes. The +V and  
GND traces between the capacitors and the  
EN23F0QI should be as close to each other as  
possible so that the gap between the two nodes is  
minimized, even under the capacitors.  
Recommendation 2: The PGND connections for  
the input and output capacitors on layer 1 need to  
have a slit between them in order to provide some  
separation between input and output current loops.  
Recommendation 3: The system ground plane  
should be the first layer immediately below the  
surface layer. This ground plane should be  
continuous and un-interrupted below the converter  
and the input/output capacitors.  
Recommendation 10: Follow all the layout  
recommendations as close as possible to optimize  
performance. Enpirion provides schematic and  
layout reviews for all customer designs. Contact  
Enpirion Applications Engineering for detailed  
support (techsupport@enpirion.com).  
Recommendation 4: The thermal pad underneath  
the component must be connected to the system  
ground plane through as many vias as possible.  
The drill diameter of the vias should be 0.33mm,  
and the vias must have at least 1 oz. copper plating  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 23  
EN23F0QI  
Design Considerations for Lead-Frame Based Modules  
Exposed Metal on Bottom of Package  
Lead-frames offer many advantages in thermal performance, in reduced electrical lead resistance, and in  
overall foot print. However, they do require some special considerations.  
In the assembly process lead frame construction requires that, for mechanical support, some of the lead-frame  
cantilevers be exposed at the point where wire-bond or internal passives are attached. This results in several  
small pads being exposed on the bottom of the package, as shown in Figure 14.  
Only the thermal pad and the perimeter pads are to be mechanically or electrically connected to the PC board.  
The PCB top layer under the EN23F0QI should be clear of any metal (copper pours, traces, or vias) except for  
the thermal pad. The “shaded-out” area in Figure 14 represents the area that should be clear of any metal on  
the top layer of the PCB. Any layer 1 metal under the shaded-out area runs the risk of undesirable shorted  
connections even if it is covered by soldermask.  
The solder stencil aperture should be smaller than the PCB ground pad. This will prevent excess solder from  
causing bridging between adjacent pins or other exposed metal under the package. Please consult the  
Enpirion Manufacturing Application Note for more details and recommendations.  
Figure 14: Lead-Frame exposed metal (Bottom View)  
Shaded area highlights exposed metal that is not to be mechanically or electrically connected to the PCB.  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 24  
EN23F0QI  
Recommended PCB Footprint  
Figure 15: EN23F0QI PCB Footprint (Top View)  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 25  
EN23F0QI  
Package and Mechanical  
Figure 16: EN23F0QI Package Dimensions (Bottom View)  
Packing and Marking Information: http://www.enpirion.com/resource-center-packing-and-marking-information.htm  
Contact Information  
Enpirion, Inc.  
Perryville III Corporate Park  
53 Frontage Road - Suite 210  
Hampton, NJ 08827 USA  
Phone: 1.908.894.6000  
Fax: 1.908.894.6090  
Enpirion reserves the right to make changes in circuit design and/or specifications at any time without notice. Information furnished by Enpirion is  
believed to be accurate and reliable. Enpirion assumes no responsibility for its use or for infringement of patents or other third party rights, which may  
result from its use. Enpirion products are not authorized for use in nuclear control systems, as critical components in life support systems or equipment  
used in hazardous environment without the express written authority from Enpirion  
©Enpirion 2012 all rights reserved, E&OE  
Enpirion Confidential  
www.enpirion.com, Page 26  

相关型号:

EN23F0QI-E

15A Voltage Mode Synchronous Buck PWM
ENPIRION

EN24/48-50D

ENS Series PWM Solar Charge Controller with LCD
GREEGOO

EN24/48-60D

ENS Series PWM Solar Charge Controller with LCD
GREEGOO

EN24/48-80D

ENS Series PWM Solar Charge Controller with LCD
GREEGOO

EN241D-05A

Z-TRAP ENE(Nominal varistor voltage 200 to 470V
FUJI

EN241D-07A

Z-TRAP ENE(Nominal varistor voltage 200 to 470V
FUJI

EN241D-14A

Z-TRAP ENE(Nominal varistor voltage 200 to 470V
FUJI

EN241D-20A

Z-TRAP ENE(Nominal varistor voltage 200 to 470V
FUJI

EN2511B

High-Voltage Switching Applications
SANYO

EN2537A

PIN Diode for FM/AM Electronic Tuning AGC Drive Use
SANYO

EN2543A

AM Tuner, RF Amplifier Applications
SANYO

EN2575E

Bidirectional Motor Driver
SANYO