EM8502 [EMMICRO]

POWER MANAGEMENT CONTROLLER WITH MULTI-CELL SOLAR HARVESTING;
EM8502
型号: EM8502
厂家: EM MICROELECTRONIC - MARIN SA    EM MICROELECTRONIC - MARIN SA
描述:

POWER MANAGEMENT CONTROLLER WITH MULTI-CELL SOLAR HARVESTING

文件: 总29页 (文件大小:1419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM MICROELECTRONIC - MARIN SA  
EM8502  
POWER MANAGEMENT CONTROLLER  
WITH MULTI-CELL SOLAR HARVESTING  
Description  
The EM8502 is an integrated power management solution for low  
power applications. It is designed to simplify the design of application  
using multiple solar cells in series that can be directly connected to  
the application and storage elements.  
Features  
. Flexible operation with different energy banks  
. Secondary cell battery  
. Capacitors (gold-cap, super-cap)  
. Fast start-up on any energy storage  
. Dual energy storage elements  
. Start-up on solar cell or on battery  
. Power management control  
. Multiple independent supply outputs  
. Sleep mode and wake-up functions  
. User programmable under-voltage and over-voltage levels  
. Configurable application voltage  
. Battery voltage  
The device is designed to speed-up system start-up time when the  
main energy storage element (aka Long Term Storage LTS) is  
completely discharged or insufficiently charged to supply the  
application, by using a secondary energy storage element (Short  
Term Storage - STS).  
When solar energy is high enough the device connects the solar cell  
to STS or LTS to maintain the supply of the application, while  
charging the rechargeable element.  
. LDO  
. Limited external components  
. Device configurations are stored in on-chip E2PROM  
. Dynamic configuration through a SPI or I2C interface  
. Extended power management status  
. Battery on protection mode  
The EM8502 is capable of working with a variety of energy elements  
as secondary storage, namely re-chargeable batteries, super-  
capacitors or conventional capacitors. In all cases the EM8502  
maintains its fast start-up capability that depends only on the  
harvester conditions and the STS capacitor value.  
. LTS/STS connection status  
. Minimum/Maximum voltage warning  
. USB connected  
A USB connection to an external power source is available on the  
EM8502 for fast charge of the long term storage element.  
The EM8502 integrates voltage supervisory functions. Minimum and  
maximum voltages are controlled on the LTS element to prevent  
damage to the energy storage element. Harvester minimum voltage  
monitoring allows disconnecting the solar cell from the storage  
elements to avoid leakages. Output voltages are kept in a safe range  
for the application.  
Applications  
. Multi-Solar cell platforms  
. Wearable systems  
. Beacons and wireless sensor networks  
. Industrial and environmental monitoring  
. Battery operated platforms  
To perform granular power management of the application, the  
EM8502 integrates four independent supply outputs and a sleep  
mode offering the capability to switch off part or all the supplies.  
The EM8502 is available in QFN24 package.  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VDD_STS  
WAKE_UP  
VDD_USB  
MOSI_SDA  
MISO  
BAT_LOW  
HRV_LOW  
VSUP  
EM8502  
N.C.  
VAUX[2]  
VAUX[1]  
SCL  
7
8
9
10  
11  
12  
Figure 1 EM8502 QFN24 pins location  
This is not the last page  
1
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
TABLE OF CONTENTS  
1. Ordering Information .................................................................................................................. 3  
2. Product description ..................................................................................................................... 3  
2.1. Operating modes................................................................................................................................3  
2.2. voltage naming conventions ...............................................................................................................4  
2.3. Block diagram ....................................................................................................................................5  
3. Handling Procedures ................................................................................................................... 6  
4. Pin description ............................................................................................................................ 6  
5. Electrical specifications ............................................................................................................... 7  
5.1. Absolute Maximum Ratings................................................................................................................7  
5.2. Operating Conditions..........................................................................................................................7  
5.3. Electrical Characteristics .....................................................................................................................7  
5.4. Timing diagrams.................................................................................................................................9  
5.4.1.  
5.4.2.  
SPI interface .............................................................................................................................................................9  
I2C Interface.............................................................................................................................................................9  
6. Product configuration ............................................................................................................... 10  
6.1. Status information ...........................................................................................................................10  
6.2. Supervising and harvester controller behaviour ................................................................................11  
6.2.1.  
6.2.2.  
6.2.3.  
Storage element.....................................................................................................................................................11  
Harvester power supervisory functions.................................................................................................................11  
Timing configuration..............................................................................................................................................12  
6.3. Power management functions ..........................................................................................................13  
6.4. Sleep mode and Wake-up functions..................................................................................................15  
6.5. Lux-meter ........................................................................................................................................16  
6.6. USB charging ....................................................................................................................................17  
6.7. Miscellaneous functions ...................................................................................................................18  
6.7.1.  
6.7.2.  
6.7.3.  
Soft reset function .................................................................................................................................................18  
Register protection ................................................................................................................................................18  
LTS protection DISABLE..........................................................................................................................................18  
7. Serial interface.......................................................................................................................... 19  
7.1. I2C interface.....................................................................................................................................19  
7.2. SPI interface.....................................................................................................................................20  
7.2.1.  
Interface selection .................................................................................................................................................21  
7.3. E2PROM...........................................................................................................................................21  
7.3.1.  
Accessing the E2PROM ..........................................................................................................................................21  
8. Register map............................................................................................................................. 24  
9. Typical Application.................................................................................................................... 27  
10. packaging Information.............................................................................................................. 28  
10.1.  
QFN24 4x4 package .......................................................................................................................28  
10.1.1. Package marking ....................................................................................................................................................28  
This is not the last page  
2
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
1.  
ORDERING INFORMATION  
Part Nb  
Package form  
Delivery form  
Quantity  
2500 p/reel  
EM8502-A005-LF24B+  
QFN24 4x4 mm  
Tape & Reel  
Table 1 Ordering Information  
For other delivery format please contact EM Microelectronics representative.  
2.  
PRODUCT DESCRIPTION  
The EM8502 is a power management IC with battery charger function. It manages different energy source elements: a multi-cell solar harvester  
element through VDD_SOL, external supply through VDD_USB, a battery or a Long Term Storage (LTS) through VDD_LTS. It generates a local  
supply on a Short Term Storage (STS), visible through VDD_STS. The EM8502 provides the supply to the application from the energy sources.  
Surplus energy is stored in a LTS element.  
Features and benefits include:  
Power management controller, extending application battery life: the EM8502 supplies the external application through the pins  
VSUP and VAUX[i]. The voltage is delivered directly from VDD_STS or through a regulator. On the VSUP pin a wake-up function allows  
to automatically re-enable the supply after a given time. For external devices using an I2C serial interface, it is possible to disconnect  
their ground through the use of the auxiliary ground pins (VAUX_GND). This solution avoids supplying the devices connected to a  
switched-off output supply through the pull-up of I2C bus. Overall power consumption is reduced by turning off peripheral ICs through  
the EM8502.  
Battery charger from solar source: EM8502 manages energy harvesting from a multiple solar cell in series by connecting to LTS  
and/or STS to maintain the application supply. With its dual storage architecture, application start-up is fast and independent of the  
battery (LTS) voltage.  
Battery charger from USB source: Fast charging is supported through a USB compatible supply input on the EM8502 (system start-  
up and battery charging to maximum voltage with configurable speed).  
Voltage and current supervisor: The EM8502 includes supervisory functions to detect harvester energy levels detecting (visible  
through the HRV_LOW pin) and to monitor low battery voltage levels (visible through the BAT_LOW pin).  
The EM8502 protects the battery against over voltage conditions and automatically stops charging when a configurable threshold  
level is reached.  
Configuration with E2PROM, no additional external components: The mode and functional configuration of the EM8502 is  
controlled by the host MCU through a SPI or an I2C interface. Voltage supervision thresholds are set by registers. Configuration  
parameters are held in on-chip non-volatile memory (E2PROM). The EM8502 default configuration parameter values can be modified  
by the user.  
2.1. OPERATING MODES  
The EM8502 operates in three main modes:  
1) Normal mode (STS and LTS Connected)  
-
-
-
VLTS is inside battery operating range.  
LTS is connected to STS.  
The system can be configured to disconnect VAUX or/and VAUX_GND pins.  
2) LTS protection mode (STS and LTS disconnected)  
-
-
-
-
EM8502 enters this mode when VLTS drops below minimum battery operation (v_bat_min_lo).  
BAT_LOW pin is set to '1'.  
LTS and STS are disconnected to protect LTS against under voltage condition.  
VSUP and VAUX are maintained by the multiple solar cells connected on VDD_SOL or by VDD_USB through a LDO.  
3) Sleep mode  
-
-
VSUP is not supplied no communication on SPI/I2C interface.  
VSUP can be re-activated by WAKE_UP pin or internal timer.  
This is not the last page  
3
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
2.2. VOLTAGE NAMING CONVENTIONS  
To describe the operation of this product, the following set of voltage naming conventions is adopted throughout this document, Table 2:  
NAME  
DESCRIPTION  
v_bat_max_hi  
Maximum battery voltage. High level of hysteresis.  
v_bat_min_hi_dis  
v_bat_min_hi_con  
v_bat_min_hi  
Minimum STS maintenance voltage acts as v_bat_min_hi when STS and LTS are disconnected  
Minimum battery maintenance voltage acts as v_bat_min_hi when STS and LTS are connected  
Minimum battery voltage. High level of hysteresis  
Equal to v_bat_min_hi_dis or v_bat_min_hi_con according to the connection state in between STS and LTS.  
The term “v_bat_min_hi” is used here whenever there is no specific usage of the connected and disconnected  
values  
v_bat_min_lo  
v_apl_max_hi  
v_apl_max_lo  
Vcs_hi  
Minimum battery voltage. Low level of hysteresis  
Maximum application voltage. High level of hysteresis  
Maximum application voltage. Low level of hysteresis  
Cold start voltage level  
v_ulp_ldo  
Regulated voltage on VSUP pin  
Table 2 Voltage Naming Conventions  
This is not the last page  
4
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
 
EM8502  
2.3. BLOCK DIAGRAM  
n o i t a c i l p p A  
s t s _ s t l _ w s  
Figure 2-1 EM8502 Block Diagram  
This is not the last page  
5
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
3.  
HANDLING PROCEDURES  
This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other  
CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range.  
Unused inputs must always be tied to a defined logic voltage level.  
4.  
PIN DESCRIPTION  
PIN  
NAME  
I/O TYPE  
DESCRIPTION  
NO.  
DIRECTION  
SUPPLY  
1
2
3
4
5
6
7
8
9
VDD_STS  
WAKE_UP  
VDD_USB  
MOSI_SDA  
MISO  
SCL  
CS  
VAUX_GND[2]  
VAUX_GND[1]  
N.C.  
I/O  
Input  
Input  
Input  
Output  
Input  
Input  
Output  
Output  
up to 3.6V  
VSUP  
VSUP  
VSUP  
VSUP  
Connection for the Short Term energy Storage element (STS)  
Wake-up pin  
USB power supply connection  
SPI MOSI or I2C SDA connection  
SPI MISO connection  
SPI or I2C clock  
SPI chip select and SPI/I2C selection mode(when at ‘1’)  
Auxiliary 2 ground connection  
Auxiliary 1 ground connection  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VAUX_GND[0]  
VAUX[0]  
VAUX[1]  
VAUX[2]  
N.C.  
Output  
Output  
Output  
Output  
Auxiliary 0 ground connection  
Auxiliary 0 supply output connection  
Auxiliary 1 supply output connection  
Auxiliary 2 supply output connection  
VSUP  
Output  
Output  
Output  
Output  
Supply  
Supply  
Input  
Main supply output  
HRV_LOW  
BAT_LOW  
VREG  
VSS1  
VSS2  
VDD_SOL  
N.C.  
VDD_LTS  
VSUP  
VSUP  
Energy harvester cell low indicator (when at ‘1’)  
Battery low indicator (when at ‘1’)  
Regulated voltage connection  
Device ground connection  
Device ground connection  
Direct connection from the solar cell  
I/O  
Connection for the Long Term energy Storage element (LTS)  
Table 3 Pin-out description  
The digital pads are all supplied by VSUP, with the exception of the WAKE_UP pad whose trigger levels are independent of the supply voltages.  
When VSUP is disabled these pads are floating therefore the communication interface is off. All digital pads are active HIGH.  
This is not the last page  
6
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
5.  
ELECTRICAL SPECIFICATIONS  
5.1. ABSOLUTE MAXIMUM RATINGS  
VALUE  
UNIT  
PARAMETER  
MIN  
MAX  
Power supply VDD_STS, VDD_LTS, VDD_SOL  
Power supply VDD_USB  
-0.2  
-0.2  
4.2  
8.0  
V
V
Input voltage  
Input voltage (pin WAKE_UP)  
VSS-0.2  
-0.2  
VSUP+0.2  
3.8  
V
V
Storage Temperature Range (TSTG  
Electrostatic discharge to ANSI/ESDA/JEDEC JS-001-2014 for HBM  
)
-65  
-2000  
150  
2000  
°C  
V
Table 4 Absolute maximum ratings  
Stresses at or above these listed under Absolute Maximum Ratings may cause permanent damages to the device. Exposure beyond specified  
operating conditions may affect device reliability or cause malfunction.  
Warning: The device is not functional when exposed to light. When a non-packaged version is used, it is mandatory to protect the device from  
light (e.g. glob-top, non-transparent package, metal shield on the PCB …)  
5.2. OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Solar input  
VSOL  
VLTS  
VSTS  
VUSB  
CLTS  
CSTS  
CREG  
CHRV  
CSUP  
CAUX  
L1  
3.8  
3.6  
3.6  
5.5  
V
V
V
V
F
µF  
nF  
µF  
µF  
µF  
µH  
Long Term energy Storage bank voltage  
Short Term energy Storage bank voltage  
VDD_USB voltage  
3.0  
3.0  
5
Long term capacitor(1)  
0.001  
47  
470  
Short term capacitor(2)  
Regulated voltage capacitor  
Harvester capacitor (nominal value)  
VSUP capacitor  
VAUX capacitor  
Input inductance  
1
1
1
37.6  
0.1*CSTS  
0.1*CSTS  
56.4  
47  
(1) When using a super-capacitor  
(2) CSTS shall be greater than 10 times CHRV to avoid drops on STS when switching back and forth in between connection to LTS and STS  
Table 5 Operating Conditions  
5.3. ELECTRICAL CHARACTERISTICS  
Unless otherwise specified: TA=-40 to +85°C for min max specifications and TA= 25°C for typical specifications.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTIONS ON LTS  
IDD in “LTS protection mode” and “HRV low  
mode”  
ILTS_prot1  
Battery supervisory at 4Hz; VSUP and VAUX LDOs disabled  
65  
nA  
IDD in “LTS protection mode”  
IDD in “HRV low mode” STS and LTS connected  
IDD in “HRV low mode” STS and LTS connected  
ILTS_prot2  
IHRV_lo2  
IHRV_lo3  
Battery supervisory at 4Hz; VSUP and VAUX LDOs disabled  
Battery supervisory at 4Hz; VSUP and VAUX LDOs disabled  
Battery supervisory at 4Hz; ULP LDO enabled and VAUX LDO  
disabled  
15  
145  
170  
nA  
nA  
nA  
IDD in “HRV low mode” STS and LTS connected  
IDD in “HRV low mode” STS and LTS connected  
IDD in “HRV low mode” STS and LTS connected  
IDD in “HRV low mode” STS and LTS connected  
IDD in “normal mode” STS and LTS  
IHRV_lo4  
IHRV_lo5  
IHRV_lo6  
IHRV_lo6  
INORM  
Battery supervisory at 4Hz; VSUP and VAUX[0] LDO enabled  
Battery supervisory at 4Hz; VSUP and VAUX[1] LDO enabled  
Battery supervisory at 4Hz; VSUP and VAUX[2] LDO enabled  
Battery supervisory at 4Hz; VSUP and all VAUX LDO enabled  
Battery supervisory at 4Hz; VSUP and VAUX LDOs disabled  
(VDD_STS < VDD_LTS)  
285  
265  
250  
380  
45  
nA  
nA  
nA  
nA  
nA  
disconnected  
QUIESCENT CURRENT AND LEAKAGE ON STS (WHEN LTS IS NOT CONNECTED TO STS)  
IDD in “HRV low mode”  
ISTS_hrvlo  
Battery supervisory at 4Hz; VSUP and VAUX LDOs disabled  
65  
nA  
VSUP AND VAUX LDO VOLTAGE LEVEL  
ULP/VAUX LDO level 0  
ULP/VAUX LDO level 1  
ULP/VAUX LDO level 2  
ULP/VAUX LDO level 3  
ULP/VAUX LDO level 4  
ULP/VAUX LDO level 5  
ULP/VAUX LDO level 6  
ULP/VAUX LDO level 7  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
VSTS VSUP> 0.3V  
1.08  
1.39  
1.48  
1.62  
1.8  
1.98  
2.16  
2.34  
1.2  
1.55  
1.65  
1.8  
2
2.2  
2.4  
2.6  
1.32  
1.71  
1.82  
1.98  
2.2  
2.42  
2.64  
2.86  
V
V
V
V
V
V
V
V
MAXIMUM CURRENT ON THE ULP AND VAUX LDO  
Maximum current on ULP LDO  
Maximum current on VAUX[0] LDO  
Maximum current on VAUX[1] LDO  
Maximum current on VAUX[2] LDO  
SWITCH RESISTOR  
Drop from open voltage is 100 mV, LDO level at 1.8V  
Drop from open voltage is 100 mV, LDO level at 1.8V  
Drop from open voltage is 100 mV, LDO level at 1.8V  
Drop from open voltage is 100 mV, LDO level at 1.8V  
10  
20  
10  
5
mA  
mA  
mA  
mA  
VDD_LTS to VDD_STS  
VDD_STS to VSUP  
Rsw_LTS_STS  
Rsw_VSUP  
VDD_STS at 3V  
VDD_STS at 3V  
VDD_STS at 3V  
VDD_STS at 3V  
VDD_STS at 3V  
VDD_STS at 3V  
VDD_STS at 3V  
3.1  
7.4  
4.4  
5.8  
6.4  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VDD_STS to VAUX[0]  
VDD_STS to VAUX[1]  
VDD_STS to VAUX[2]  
VAUX_GND[0] to VSS  
VAUX_GND[1,2] to VSS  
SUPERVISORY LEVELS ON STS, LTS AND HRV(1)  
Maximum voltage  
Rsw_VAUX0  
Rsw_VAUX1  
Rsw_VAUX2  
Rsw_GND0  
Rsw_GND1,2  
4.74  
5.62  
3.6  
V
Level step from lvl0 to lvl15  
Level step from lvl16 to lvl30 (1.24V to 2.26V)  
Vlvl_15  
Vlvl_30  
73  
73  
mV  
mV  
67.9  
78.1  
This is not the last page  
7
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
 
 
EM8502  
PARAMETER  
Level step from lvl31 to lvl54 (2.34V to 4.2V)  
Differential non linearity  
SYMBOL  
Vlvl_54  
CONDITIONS  
MIN  
69.4  
TYP  
73  
±0.5  
MAX  
76.7  
UNIT  
mV  
LSB  
Number of levels  
50  
HARVESTER CURRENT LEVEL DETECTOR LUX METER  
Harvester current level step  
Luxmeter current detection level  
“lvl” = level used for the measurement [0..15]  
Short circuit voltage  
Ihrv_check_lvl  
Ilux_lvl  
1
µA  
µA  
2lvl  
Vhrv_scv  
70  
mV  
USB POWER  
Minimum voltage for USB charging detection  
Regulated voltage on VDD_STS  
Current source level 0 on LTS  
Current source level 1 on LTS  
Current source level 2 on LTS  
Current source level 3 on LTS  
E2PROM PARAMETERS  
E2PROM write time  
Vusb_min  
VUSB_REG  
IUSB_lvl0  
IUSB_lvl1  
IUSB_lvl2  
IUSB_lvl3  
3.5  
2.1  
0
6.9  
12.7  
20.6  
V
V
mA  
mA  
mA  
mA  
Tee_wr  
Tee_rd  
Nee_cyc  
Thd_rd  
8
0.9  
ms  
ms  
E2PROM read time  
E2PROM maximum write cycle  
E2PROM read hold time  
INTERFACE PARAMETERS  
Input WAKE_UP - low level  
Input WAKE_UP - high level  
Wake-up rising edge reaction time  
Wake-up falling edge reaction time  
Input - low level  
1000  
0.9  
10  
µs  
Vil_wk  
Vih_wk  
Tr_wk  
Tf_wk  
Vil_si  
VLTS=1.2V to 3.6V  
VLTS =1.2V to 3.6V  
Debouncer disabled  
Debouncer disabled  
VSUP=1.2V to 3.6V  
0.3  
V
V
µs  
µs  
V
4.5  
120  
0.2*  
VSUP  
Input - high level  
Vih_si  
VSUP =1.2V to 3.6V  
0.8*  
VSUP  
3
3
1
V
Output low level for I2C  
Output low level for I2C  
Output low level  
Iol_sda  
Iol_sda_1.2  
Iol  
VSUP =1.8V, Vol=0.2* VSUP  
VSUP =1.20V, Vol=0.23*Vsup  
VSUP =1.8V, Vol=0.2*Vsup  
mA  
mA  
mA  
(MISO, MOSI_SDA, BAT_LOW, HRV_LOW)  
VSUP =1.20V, Vol=0.23*Vsup  
(MISO, MOSI_SDA, BAT_LOW, HRV_LOW)  
VSUP =1.8V, Voh=0.8*Vsup  
(MISO, MOSI_SDA, BAT_LOW, HRV_LOW)  
VSUP =1.2V, Voh=0.8*Vsup  
(MISO, MOSI_SDA, BAT_LOW, HRV_LOW)  
On MOSI_SDA and SCL  
Output low level  
Output high level  
Output high level  
Iol_1.2  
Ioh  
Ioh_1.2  
Cb  
1
mA  
mA  
mA  
pF  
-1  
-1  
I2C bus load capacitor  
SPI TIMINGS  
400  
SPI clock input frequency  
SCL low pulse  
SCL high pulse  
MOSI_SDA setup time  
MOSI_SDA hold time  
MISO output delay  
MISO output delay  
CS setup time  
Fspi  
Tlow_scl  
Thigh_scl  
Tsetup_mosi  
Thold_mosi  
Tdelay_miso  
Tdelay_miso  
Tsetup_cs  
Thold_cs  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
25pF load, VSUP =1.6V min  
25pF load, VSUP =1.2V min  
30  
40  
50  
20  
CS hold time  
I2C TIMINGS(2)  
MOSI_SDA setup time  
tsudat  
thddat  
Standard & Fast Modes  
High Speed Mode  
160  
30  
80  
90  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MOSI_SDA hold time  
Standard & Fast Modes with Cb =100pF Max.  
Standard & Fast Modes with Cb =400pF Max  
High Speed Mode with Cb=100pF Max.  
High Speed Mode with Cb=400pF Max.  
High Speed Mode with Cb=100pF Max.  
VSUP =1.62V  
115  
150  
24  
160  
SCL low pulse  
SCL low pulse  
tlow  
tlow  
High Speed Mode with Cb=100pF Max. VSUP =1.2V  
210  
ns  
(1) The v_bat_min, v_bat_max, v_apl_min with their hysteresis can be set according to the supervising levels. E.g. for v_bat_max, both v_bat_max_lo and  
v_bat_max_hi will have to be set accordingly.  
(2) Refers to I2C specification 2.1 (January 2000)  
Table 6 Electrical Specifications  
This is not the last page  
8
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
 
EM8502  
5.4. TIMING DIAGRAMS  
5.4.1. SPI INTERFACE  
CS  
Thold_cs  
Tsetup_cs  
SCL  
Tlow_scl  
Thigh_scl  
MOSI_SDA  
MISO  
Tsetup_mosi  
Thold_mosi  
Tdelay_miso  
Figure 5-1 4-wire SPI Timing Diagram  
5.4.2. I2C INTERFACE  
MOSI_SDA  
tbuf  
tf  
tlow  
SCL  
thigh  
thdsta  
tr  
thddat  
tsudat  
MOSI_SDA  
tsusta  
tsusto  
Figure 5-2 I2C Timing Diagram  
This is not the last page  
9
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
6.  
PRODUCT CONFIGURATION  
The EM8502 is an autonomous power management system able to manage power domains, power sources and storage elements.  
At start-up the device enters a boot sequence. It controls the state of both energy storage elements, and sets the default configuration parameters  
of the device by retrieving the corresponding values from the on-chip E2PROM.  
Upon completion of the boot sequence the system enters the supervising and harvester controller state (“normal mode”). It is now possible to  
modify configuration parameters through the serial interface to change the behavior of the device. When updating the device configuration through  
the serial interface it is recommended to write the complete set of EM8502 configuration parameters in a single transaction (see §7).  
EM8502 is able to operate autonomously by using default configuration values from the on-chip E2PROM.  
6.1. STATUS INFORMATION  
EM8502 provides status feed-back as follows.  
To allow fast system response the pins HRV_LOW and BAT_LOW directly indicate the status of the harvester cell and the battery to  
the host MCU.  
Additional status information is provided through register reg_status. During an SPI transaction the reg_status value sent as the first  
byte (along with the indication from the MCU of the address to be accessed). In case of an I2C transaction the reg_status register has  
to be polled explicitly.  
Register Name: reg_status  
Bit name  
Address: 0x22  
Description  
Bits  
Type Reset  
'1' EEPROM being written. Wait for new configuration  
'0' EEPROM ready to be written. New configuration can be written  
7
eeprom_data_busy  
RO  
RO  
RO  
0
0
0
'1' lux-meter or HRV current supervisory is running  
‘0’ no current measurement on the harvester on-going.  
6
5
hrv_lux_busy  
hrv_low  
'1' HRV energy level too low for harvesting  
'0' HRV has enough energy to be harvested  
'1' LTS voltage lower than v_bat_min_hi in normal mode, lower than  
v_bat_min_lo in primary cell mode  
‘0’ LTS voltage higher than v_bat_min_hi in normal mode, higher than  
v_bat_min_lo in primary cell mode  
4
bat_low  
RO  
0
'1' Solar cell connected to LTS  
‘0’ Solar cell connected to STS  
3
2
1
0
sw_solar_lts_nsts  
sw_lts_sts  
RO  
RO  
RO  
RO  
0
0
0
0
'1' LTS and STS are connected  
‘0’ STS is disconnected from LTS  
'1' USB power has been detected  
‘0’ No USB power found  
usb_on  
'1' LTS protection mode activated (VLTS < v_bat_min_lo)  
‘0’ LTS protection mode inactive (VLTS > v_bat_min_lo)  
lts_protect  
Table 7 Status Register (0x22)  
EM8502 offers great flexibility in being configured for different system applications and use cases. The following chapters provide detailed  
descriptions of all configuration parameters and registers available to the user.  
This is not the last page  
10  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
6.2. SUPERVISING AND HARVESTER CONTROLLER BEHAVIOUR  
6.2.1. STORAGE ELEMENT  
Storage element voltage and state are available through the reg_vld_status register.  
Reguster name: reg_vld_status  
Address: 0x23  
Description  
Bits  
Bit name  
lts_bat_min_hi  
Type Reset  
'1' VLTS > v_bat_min_hi  
'0' VLTS <= v_bat_min_hi  
7
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
0
'1' VLTS > v_bat_min_lo  
'0' VLTS <= v_bat_min_lo  
6
5
4
3
2
1
0
lts_bat_min_lo  
sts_bat_max_hi  
sts_bat_max_lo  
sts_apl_max_hi  
sts_apl_max_lo  
sts_bat_min_hi  
sts_bat_min_lo  
'1' VSTS > v_bat_max_hi  
'0' VSTS <= v_bat_max_hi  
'1' VSTS > v_bat_max_lo  
'0' VSTS <= v_bat_max_lo  
'1' VSTS > v_apl_max_hi  
'0' VSTS <= v_apl_max_hi  
'1' VSTS > v_apl_max_lo  
'0' VSTS <= v_apl_max_lo  
'1' VSTS > v_bat_min_hi  
'0' VSTS <= v_bat_min_hi  
'1' VSTS > v_bat_min_lo  
'0' VSTS <= v_bat_min_lo  
Table 8 Voltage Status Register (0x23)  
Operation of the two energy banks (LTS and STS) is performed through three key voltage threshold levels.  
Minimum battery level voltage  
Maximum battery level voltage  
Maximum application level voltage  
v_bat_min (reg_v_bat_min_hi_con or reg_v_bat_min_hi_dis and reg_v_bat_min_lo)  
v_bat_max (reg_v_bat_max_hi and reg_v_bat_max_lo)  
v_apl_max (reg_ v_apl_max_hi and reg_v_apl_max_lo)  
The three levels include a hysteresis to avoid instability of the controller. The hysteresis values have to be carefully chosen according to the  
application and have to fulfill the following conditions:  
v_bat_min_hi_dis > v_bat_min_hi_con > v_bat_min_lo  
v_apl_max_hi > v_apl_max_lo  
v_bat_max_hi > v_bat_max_lo  
If v_apl_max v_bat_max the application maximum level is considered to be the maximum battery level.  
Supervising of the minimum battery level is performed through two registers for its highest control level (v_bat_min_hi). When the two battery  
banks are not connected v_bat_min_hi_dis is used to inform the system when it has to charge STS again (see phase 4 to 5 in Error! Reference  
ource not found. on page Error! Bookmark not defined.). When LTS and STS are connected together v_bat_min_hi_con is used as  
supervising level.  
The minimum value allowed for the v_bat_min_hi_dis register is 0x15 corresponding to typically 1.47 V. For any value lower than this minimum  
the system may shut-down without notification through the BAT_LOW pin.  
All voltage levels with prefix “v_” are configured by register according to the following equation:  
v_<voltage name> = Vlvl * (reg_<voltage name>+1)  
Supervisory status of the battery is also visible through the pin BAT_LOW. When the VLTS is below v_bat_min_hi for two consecutive  
measurements, BAT_LOW is asserted (set to VSUP level). When two measurements show that VLTS is above v_bat_min_hi, BAT_LOW is de-  
asserted (set to VSS). The only exception is during the boot phase where the BAT_LOW signal is asserted after the first measurement of VLTS  
.
The EM8502 protects the battery when its voltage is too low. This corresponding threshold level can be set through the v_bat_min_lo register.  
When VLTS is falling below this value the EM8502 operates only on the harvester.  
6.2.2. HARVESTER POWER SUPERVISORY FUNCTIONS  
The EM8502 monitors harvester power to prevent reverse current from the energy storage (LTS). The detection is done regularly  
through a current sensor. The device is sensing the current at the voltage Vhrv_scv delivered by the solar cell. The current threshold of  
detection is set through the reg_hrv_check_lvl.hrv_check_lvl register to disconnect the solar cell from the energy banks. To return to  
the running state, the EM8502 detection is done with a different principle. The current measurement is done by connecting a resistance  
on VDD_SOL and sense voltage on this pin using v_hrv_min voltage level.  
This is not the last page  
11  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Resistances and currents are defined in reg_hrv_check_lvl.hrv_check_lvl:  
reg_hrv_check_lvl.hrv_check_lvl 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F  
Current (µA)  
1
2
3
4
5
6
7
8
9
7
10  
11  
12  
13  
5
14  
15  
16  
Resistance (kΩ)  
35 23.3 17.5 14 11.7 10 8.75 7.8  
6.36 5.38 5.4  
4.7  
4.4  
4.4  
Table 9 HRV Current Detection Levels  
Configuration example:  
reg_hrv_check_lvl =0x00; reg_v_hrv_cfg = 0x00  
The system indicates HRV_LOW =’1’ from 1µA at Vhrv_scv (70mV) and remains off until Vlvl is reached with 35 kΩ load on VDD_SOL  
(2 µA at Vlvl). A hysteresis of 1 µA is applied.  
Register name: reg_v_hrv_cfg  
Address: 0x04  
Default value mapped in E2PROM  
Description  
Bits  
7
Bit name  
Type  
Reserved  
6
RW To be written always to ‘0’  
Minimum HRV open voltage required to generate energy.  
Vhrv_min = Vlvl * (reg_v_hrv_min(5:0)+1)  
5:0  
v_hrv_min  
RW  
if VHRV < Vhrv_min and reg_v_hrv_cfg.hrv_check_vld = '1' then reg_status.hrv_low = '1'  
Table 10 Minimum HRV voltage (0x04)  
Register name: reg_hrv_check_lvl  
Address: 0x05  
Default value mapped in E2PROM  
Description  
Bits  
Bit name  
Type  
7:4  
Reserved  
Minimum HRV short-cut current level to generate energy.  
Ihrv_check = (hrv_check_lvl+1) * 1µA  
3:0  
hrv_check_lvl  
RW  
if IHRV < Ihrv_check and reg_v_hrv_cfg.hrv_check_vld = '0' then reg_status.hrv_low = '1'  
Table 11 Minimum HRV short-cut current (0x05)  
6.2.3. TIMING CONFIGURATION  
In addition to voltage level supervision, the user can select independent values for the frequency of supervision on LTS, STS and the harvester.  
The frequency influences the overall EM8502 power consumption and therefore its efficiency.  
The STS and LTS measurement periods are set through the registers reg_t_sts_period and reg_t_lts_period. The monitoring of the harvester  
however requires disconnecting the solar cell and the storages in order to measure the short-cut current. The duration of the disconnect time is  
configured through the reg_t_hrv_meas register, whereas the measurement period is configured through the reg_t_hrv_period register.  
Register value  
t_hrv_meas  
t_hrv_period  
t_sts_period  
t_lts_period  
t_hrv_low_period  
t_lts_hrv_low_period  
0x00  
0x01  
16 ms  
32 ms  
256 ms  
512 ms  
1 ms  
2 ms  
1 ms  
4 ms  
256 ms  
512 ms  
2 ms  
8 ms  
32 ms  
128 ms  
512 ms  
2 s  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
64 ms  
128 ms  
256 ms  
512 ms  
1 s  
1 s  
2 s  
8 ms  
16 ms  
32 ms  
64 ms  
128 ms  
256 ms  
16 ms  
64 ms  
256 ms  
1 s  
1 s  
2 s  
4 s  
4 s  
8 s  
8 s  
16 s  
32 s  
4 s  
16 s  
32 s  
8 s  
2 s  
16 s  
32 s  
Table 12 Timing Configuration  
When entering in “HRV low mode” the monitoring on LTS and the harvester remains active, however the monitoring frequency can be adapted to  
this situation where the system cannot take energy anymore from the harvester source. The measurement period is then set in parameter  
t_hrv_low_period. In this mode STS is not fed by the harvester anymore. If STS and LTS are not connected internally, STS will collapse. No  
monitoring is performed on STS.  
This is not the last page  
12  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
6.3. POWER MANAGEMENT FUNCTIONS  
The EM8502 controls four independent power supply outputs.  
The VSUP power supply output is connected to STS when STS level is within the application voltage range ([v_bat_min:v_apl_max]) or to an  
LDO (when above v_apl_max) to regulate the output to a given value.  
The three auxiliary supply outputs VAUX [0:2], are user configurable between STS and the internal LDO. It is possible to force the use of the LDO  
even though the STS voltage level is compatible with the application supply requirements.  
During the boot phase which corresponds to the set-up of the device all the power supply outputs are floating. Once the set-up of the registers  
is completed the supply output values are determined by configuration registers reg_ldo_cfg.vsup_tied_low and reg_vaux_cfg.vaux[x]_cfg.  
The main application power supply (VSUP) is intended to be connected to the application controller. When connected to the LDO its maximum  
power is limited as LDO is optimized for low consumption. The VSUP supply output is controlled by the reg_ldo_cfg register.  
The value of the LDO is configurable through reg_ldo_cfg.v_ulp_ldo. The LDO enable can be forced with reg_ldo_cfg.frc_ulp_ldo. In “sleep state”,  
VSUP can be grounded (reg_ldo_cfg.vsup_tied_low = ‘1’) or floating (reg_ldo_cfg.vsup_tied_low = ‘1’) (see §6.4).  
The individual configurability of the three auxiliary supply outputs allows the creation of different power domains for the external application. The  
auxiliary outputs are split into the supply and ground pins where all six outputs can be switched on/off independently.  
The behavior of the VAUX pins is controlled through the reg_vaux_cfg register. reg_vaux_cfg.v_aux_ldo controls the level of the single LDO  
connected to the three auxiliary supplies.  
When switched on (reg_pwr_mgt.vaux[i]_en = ‘1’) the auxiliary supply output is controlled by reg_vaux_cfg.vaux[i]_cfg.  
Four possible settings are available to the user:  
1) Force the connection to STS  
2) Force the connection to the LDO  
3) Use the automatic configuration permitting the auxiliary output to float when STS drops below v_bat_min  
4) Use the automatic configuration grounding the auxiliary output when STS drops below v_bat_min  
The automatic configuration of the auxiliary supplies is ensures that the auxiliary output voltage is kept within the application voltage range by  
auto-connecting the supply output to the LDO when STS voltage is exceeding the v_apl_max value.  
When the power supply output is switched off (reg_pwr_mgt.vaux[i]_en = ‘0’), its configuration is also controlled by the reg_pwr_mgt.vaux[i]_cfg  
register. The output is grounded if reg_pwr_mgt.vaux[i]_cfg is set to 3 (b11), otherwise it is kept floating.  
When the LDO is used on VSUP or VAUX pins, changing the LDO settings does not generate over or under shoots on the output power supply  
terminals.  
EM8502 offers the possibility to control the ground pin as part of the application, by connecting it to the ground of the EM8502 or letting it float. It  
is of particular interest when involving applications that are using I2C communication through the pulls of the I2C lines. The configuration of the  
VAUX_GND pins is controlled through the reg_pwr_mgt.vaux_gnd[i] en register.  
Register name: reg_ldo_cfg  
Bit name  
Address: 0x0E  
Default value mapped in E2PROM  
Description  
Bits  
Type  
RW When set to '1', connects VSUP pin to ground when VSUP is disabled, otherwise VSUP  
remains floating.  
7
vsup_tied_low  
RW VAUX LDO regulated voltage selection  
"000" (0)  
"001" (1)  
"010" (2)  
"011" (3)  
"100" (4)  
"101" (5)  
"110" (6)  
"111" (7)  
1.2 V  
1.55 V  
1.65 V  
1.8 V  
2.0 V  
2.2 V  
2.4 V  
2.6 V  
6:4  
v_vaux_ldo  
frc_ulp_ldo  
v_ulp_ldo  
3
RW Force ULP LDO on as soon as VSTS > v_bat_min_hi  
RW ULP LDO regulated voltage selection  
"000" (0)  
"001" (1)  
"010" (2)  
"011" (3)  
"100" (4)  
"101" (5)  
"110" (6)  
"111" (7)  
1.2 V  
1.55 V  
1.65 V  
1.8 V  
2.0 V  
2.2 V  
2.4 V  
2.6 V  
2:0  
Table 13 VSUP output supply and LDOs configuration register (0x0E)  
This is not the last page  
13  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
 
EM8502  
Register name: reg_pwr_cfg  
Bit name  
Address: 0x0F  
Default value mapped in E2PROM  
Description  
Bits  
Type  
'1' Disable USB LDO after boot sequence even if usb_crt_src_sel is > 0x0  
‘0’ Keep the default behavior on USB LDO  
7
usb_ldo_frc_dis  
RW  
'1' open the VAUX_GND[2] (pin is floating) in "HRV low" mode.  
'0' Keep the same behavior as in normal mode  
6
dis_vaux_gnd2_hrv_low  
RW  
5
4
dis_vaux_gnd1_hrv_low  
dis_vaux_gnd0_hrv_low  
RW "HRV low" mode VAUX_GND[1] behavior. same as for pin VAUX_GND[2]  
RW "HRV low" mode VAUX_GND[0] behavior. same as for pin VAUX_GND[2]  
'1' Disable vaux[2] in "HRV low" mode. It is configured by reg_vaux_cfg.vaux2_cfg  
'0' Keeps its normal mode configuration.  
3
dis_vaux2_hrv_low  
RW  
2
1
dis_vaux1_hrv_low  
dis_vaux0_hrv_low  
RW "HRV low" mode VAUX[1] behavior. same as for pin VAUX[2]  
RW "HRV low" mode VAUX[0] behavior. same as for pin VAUX[2]  
'1' Disable VSUP in "HRV low" mode. Its behavior is defined by  
reg_ldo_cfg.vsup_tied_low  
'0' Keeps its normal mode configuration  
0
dis_vsup_hrv_low  
RW  
Table 14 "HRV low" mode power switch configuration register (0x0F)  
Register name: reg_vaux_cfg  
Address: 0x10  
Default value mapped in E2PROM  
Description  
Bits  
Bit name  
Type  
7:6  
Reserved  
vaux2_cfg  
RW Configuration of VAUX[2] pin  
"00" (0) Constantly connected to STS  
"01" (1) Constantly connected to the LDO  
"10" (2) Automatic configuration floating when below VSTS < v_bat_min  
"11" (3) Automatic configuration grounded when below VSTS < v_bat_min  
5:4  
If VAUX[2] is disconnected VAUX[2] is connected to ground if the value is "11", otherwise  
it is floating  
3:2  
1:0  
vaux1_cfg  
vaux0_cfg  
RW Configuration of VAUX[1] pin same as for VAUX[2] pin  
RW Configuration of VAUX[0] pin same as for VAUX[2] pin  
Table 15 Auxiliary supply configuration register (0x10)  
Register name: reg_vaux_gnd_cfg  
Address: 0x11  
Default value mapped in E2PROM  
Description  
Bits  
7:3  
2
Bit name  
Type  
Reserved  
vaux_gnd2_cfg  
RW  
'1' Auto disconnect when VSTS not within [v_bat_min.. v_apl_max]  
'0' Fully manual connection  
1
0
vaux_gnd1_cfg  
vaux_gnd0_cfg  
RW Configuration of VAUX_GND[1] pin same as for VAUX_GND [2] pin  
RW Configuration of VAUX_GND[0] pin same as for VAUX_GND[2] pin  
Table 16 Auxiliary ground pins configuration register (0x11)  
This is not the last page  
14  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Register name: reg_pwr_mgt  
Address: 0x19  
Value at start-up mapped in E2PROM  
Bits  
7
Bit name  
Type  
Description  
To be written always to ‘0’  
6
vaux_gnd2_en  
RW Enable the VAUX_GND[2] connection (see reg_vaux_gnd_cfg.vaux_gnd2_cfg) when VSTS  
v_bat_min_hi  
>
>
>
5
4
vaux_gnd1_en  
vaux_gnd0_en  
RW Enable the VAUX_GND[1] connection (see reg_vaux_gnd_cfg.vaux_gnd0_cfg) when VSTS  
v_bat_min_hi  
RW Enable the VAUX_GND[0] connection (see reg_vaux_gnd_cfg.vaux_gnd0_cfg) when VSTS  
v_bat_min_hi  
3
2
1
0
vaux2_en  
vaux1_en  
vaux0_en  
sleep_vsup  
RW Enable the VAUX[2] connection (see reg_vauxcfg.vaux2_cfg) when VSTS > v_bat_min_hi  
RW Enable the VAUX[1] connection (see reg_vauxcfg.vaux1_cfg) when VSTS > v_bat_min_hi  
RW Enable the VAUX[0] connection (see reg_vauxcfg.vaux0_cfg) when VSTS > v_bat_min_hi  
RW Enable the VSUP "sleep state" disconnects VSUP for t_sleep_vsup interval  
Table 17 Power switch enable register (0x19)  
6.4. SLEEP MODE AND WAKE-UP FUNCTIONS  
In addition to the direct control of the power supply outputs the EM8502 supports stopping supplying the application (switching off VSUP) for a  
given time interval to allow very low consumption modes. When enabled, the auxiliary supplies are kept in the same state as before entering in  
the “sleep state”. The “sleep state” is not a functional mode of the power management unit, as the device is still working according to the  
configuration parameters set and is only acting on the state of the VSUP supply output.  
The “sleep state” can also be interrupted (VSUP is connected again on STS or on the LDO according to the settings of the VSUP power switch  
see Table 13) by setting the WAKE_UP pin to a level above Vih_wk  
.
During “sleep state” the serial interface is disabled.  
To avoid false wake-up detection, a debouncing logic is connected to the WAKE_UP pin. The debouncer function is enabled by default (factory  
default value on E2PROM), and can be disabled by setting the reg_ext_cfg. wake_up_deb_en to ‘0’. The wake-up is sensitive to the edge  
configured in reg_ext_cfg.wake_up_edge_cfg. It is not permitted to set reg_ext_cfg.wake_up_edge_cfg = “00”.  
Register name: reg_ext_cfg  
Bit name  
Address: 0x13  
Default value mapped in E2PROM  
Description  
Bits  
Type  
RW MOSI_SDA pad slope control  
7
sda_slopectrl  
‘0’ for standard and fast I2C mode, and high speed mode if VSUP < 1.8V  
‘1’ for high speed mode if VSUP > 1.8V  
6
wake_up_deb_en  
RW When at '1' the wake-up debouncer is enabled  
5:4  
wake_up_edge_cfg  
RW “00” (0x0): Forbidden  
“01” (0x1): wake-up on falling edge  
“10” (0x2): wake-up on rising edge  
“11” (0x3): wake-up on both edge  
3
2
usb_frc_hrv_low_hiz  
usb_frc_bat_low_hiz  
usb_crt_src_sel  
RW  
RW  
RW  
See Table 24 USB Configuration Register (0x13)  
See Table 24 USB Configuration Register (0x13)  
See Table 24 USB Configuration Register (0x13)  
1:0  
Table 18 Wake-up terminal configuration register (0x13)  
The “sleep state” duration is controlled through a 24-bit counter (reg_t_sleep_vsup[23:0]). VSUP supply can be interrupted for up to 4 hours,  
with a granularity of 1 ms.  
t_sleep_vsup = reg_t_sleep_vsup[23:0]/1000 seconds  
When VSUP is in “sleep state” it is possible to ground VSUP to create a known voltage level on the main controller supply, by setting  
reg_ldo_cfg.vsup_tied_low to ‘1’ (see above in page 13).  
The VSUP “sleep state” is enabled by setting reg_pwr_mgt.sleep_vsup to ‘1’ (see Table 17 bit 0).  
This is not the last page  
15  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
 
EM8502  
Register name: reg_t_sleep_vsup_lo  
Bits Bit name Type  
7:0 t_sleep_vsup_lo RW Sleep counter duration least significant byte  
Address: 0x14  
Default value mapped in E2PROM  
Description  
Table 19 VSUP "sleep state" counter time-out Least significant byte (0x14)  
Register name: reg_t_sleep_vsup_mid  
Bits Bit name Type  
7:0 t_sleep_vsup_mid  
Address: 0x15  
Default value mapped in E2PROM  
Description  
RW Sleep counter duration byte 2  
Table 20 VSUP "sleep state" counter time-out middle significant byte (0x15)  
Register name: reg_t_sleep_vsup_hi  
Bits Bit name Type  
7:0 t_sleep_vsup_hi RW Sleep counter duration most significant byte  
Address: 0x16  
Default value mapped in E2PROM  
Description  
Table 21 VSUP "sleep state" counter time-out Most significant byte (0x16)  
6.5. LUX-METER  
The device contains a specific element to determine ranges of current supplied by the solar cell.  
The lux-meter is able to run in three modes:  
Fully automatic mode  
Automatic range selection  
Fully manual mode  
In fully automatic mode (selected by writing ‘1’ in reg_lux_meter_cfg.lux_meter_auto_meas) the device determines the value range for the current  
flowing in from the solar cell. The result is available in the reg_lux_meter_result.lux_meter_result register field. The  
reg_lux_meter_result.lux_meter_busy bit indicates that the measurement is still ongoing and that the result is not available yet.  
In automatic range selection mode (selected by writing ‘1’ in reg_lux_meter_cfg.lux_meter_auto_rng) the EM8502 automatically determines the  
optimal range, and measures the voltage at VDD_SOL for maximum precision. The reg_lux_meter_result.lux_meter_busy bit indicates that the  
range search is complete. In this mode lux-meter continues to operate until user disabled by writing ‘0’ into the  
reg_lux_meter_cfg.lux_meter_auto_rng.  
The full manual mode allows the user to select the range. The mode is selected by writing on the bit reg_lux_meter_cfg.lux_meter_manu – ‘1’ to  
activate the mode, and ‘0’ to deactivate it. The selection of the range is done through the reg_lux_meter_cfg.lux_meter_rng field.  
In case a lux-meter action is requested with LTS and STS disconnected, VLTS < v_bat_min_lo the action is disregarded and the result in  
automatic mode is invalid.  
This is not the last page  
16  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Register name: reg_lux_meter_cfg  
Bit name Type Reset  
Address: 0x1C  
Description  
Bits  
7
0
0
Reserved  
Start the automatic lux-meter measurement. The lux-meter is disabled  
automatically when the measure is finished  
6
lux_auto_meas  
OS  
5
4
lux_auto_rng  
lux_manu  
RW  
RW  
0
0
Enable the lux-meter, and search for the best range. It remains enabled  
Enable the lux-meter in manual mode (range forced by reg_lux_meter_cfg.lux_lvl)  
Target current level to be detected  
"0000" (0x0)  
"0001" (0x1)  
"0010" (0x2)  
"0011" (0x3)  
"0100" (0x4)  
"0101" (0x5)  
"0110" (0x6)  
"0111" (0x7)  
"1000" (0x8)  
"1001" (0x9)  
"1010" (0xA)  
"1011" (0xB)  
"1100" (0xC)  
"1101" (0xD)  
"1110" (0xE)  
"1111" (0xF)  
1 µA  
2 µA  
4 µA  
8 µA  
15 µA  
30 µA  
60 µA  
120 µA  
0.25 mA  
0.5 mA  
1 mA  
1.8 mA  
3.2 mA  
6 mA  
3:0  
lux_lvl  
RW  
0x0  
11 mA  
17 mA  
Table 22 Lux Meter Configuration Register (0x1C)  
Register name: reg_lux_meter_result  
Bit name Type Reset  
Address: 0x1D  
Description  
Bits  
7:5  
4
'000' Reserved  
lux_meter_busy  
RO  
0
Indicates that the lux-meter is still searching for best range  
Lux-meter range status (result in automatic measurement mode)  
"0000" (0x0)  
"0001" (0x1)  
"0010" (0x2)  
"0011" (0x3)  
"0100" (0x4)  
"0101" (0x5)  
"0110" (0x6)  
"0111" (0x7)  
"1000" (0x8)  
"1001" (0x9)  
"1010" (0xA)  
"1011" (0xB)  
"1100" (0xC)  
"1101" (0xD)  
"1110" (0xE)  
"1111" (0xF)  
below 2 µA  
from 2 µA to 4 µA  
from 4 µA to 8 µA  
from 8 µA to 15 µA  
from 15 µA to 30 µA  
from 30 µA to 60 µA  
from 60 µA to 120 µA  
from 120 µA to 0.25 mA  
from 0.25 mA to 0.5 mA  
from 0.5 mA to 1 mA  
from 1 mA to 1.8 mA  
from 1.8 mA to 3.2 mA  
from 3.2 mA to 6 mA  
from 6 mA to 11 mA  
from 11 mA to 17 mA  
above 17 mA  
3:0  
lux_meter_result  
RO  
0x0  
Table 23 Lux-meter Result Register (0x1D)  
6.6. USB CHARGING  
The EM8502 is equipped with a USB power line input to supply the device and to charge has the energy bank elements.  
When a voltage above Vusb_min is detected, a regulator between VDD_USB and VDD_STS is enabled. The regulated voltage is VUSB_REG. In addition  
to the regulator, a current source is activated between VDD_USB and VDD_LTS. This function is controlled by the reg_ext_cfg register. Four user  
selected level of charge current delivered to LTS are available (reg_ext_cfg.usb_crt_src_sel).  
When VDD_USB is connected, pins HRV_LOW and BAT_LOW can be brought into HiZ state.  
This is not the last page  
17  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Register name: reg_ext_cfg  
Bit name  
Address: 0x13  
Default value mapped in E2PROM  
Description  
Bits  
7
Type  
RW  
RW  
RW  
RW  
sda_slopectrl  
6
wake_up_deb_en  
wake_up_edge_cfg  
usb_frc_hrv_low_hiz  
5:4  
3
‘1’ force HRV_LOW in Hi-Z state if usb_on = '1'  
‘0’ HRV_LOW pin standard configuration  
2
usb_frc_bat_low_hiz  
usb_crt_src_sel  
RW  
‘1’ force BAT_LOW in Hi-Z state if usb_on = '1'  
‘0’ BAT_LOW pin standard configuration  
1:0  
RW USB power current source selection  
"00" (0x0)  
"01" (0x1)  
"10" (0x2)  
"11" (0x3)  
0 mA  
5 mA  
10 mA  
20 mA  
(do not charge)  
Table 24 USB Configuration Register (0x13)  
Warning: When VDD_LTS is to be disconnected from its load, the USB current injected into LTS must be set to 0 mA, otherwise the device  
could be damaged.  
6.7. MISCELLANEOUS FUNCTIONS  
This chapter describes additional control functions related to the regulation loop.  
6.7.1. SOFT RESET FUNCTION  
The soft reset function restarts the EM8502 from its boot sequence. The behavior of the EM8502 is the same as in a normal boot sequence. A  
soft reset is generated by setting the register reg_soft_res_word to 0xAB. This register is enabled only if reg_protect_key is set to 0xE2. If the  
value of the reg_protect_key is different from 0xE2, the register reg_soft_res_word is set to 0x00.  
The reg_protect_key register is reset by the soft reset. Creating a new soft sequence requires preloading the reg_protect_key again.  
Register name: reg_soft_res_word  
Bit name Type Reset  
soft_res_word  
Address: 0x1A  
Description  
Bits  
7:0  
RW  
0x00 Force reset when set at 0xAB  
Table 25 Soft reset register (0x1A)  
Register name: reg_protect_key  
Bit name Type Reset  
Address: 0x1B  
Description  
Bits  
Allow writing on reg_soft_res_word register when set at 0xE2  
0x00 Allow writing on protected registers when set at 0x4B  
Allow writing on E2PROM when set at 0xA5  
7:0  
protect_key  
RW  
Table 26 Protected registers key (0x1B)  
6.7.2. REGISTER PROTECTION  
The EM8502 functionality is determined by the content of the configuration registers (like the supervising levels or periods). The registers are  
always accessible in read mode. Some registers are write protected against unwanted write operations.  
The registers ranging is address space from 0x00 to 0x18 are write protected. Writing into these registers is enabled after setting reg_protect_key  
to 0x4B.  
Note: The reg_protect_key is reset at the end of the communication transaction (see §7 on page 19). It is necessary to set it on the same  
communication transaction – on SPI keeping CS to ‘1’ or on I2C before putting an I2C stop.  
Write access to the on-chip E2PROM is controlled by the same mechanism. Prior to a write operation into the E2PROM reg_protect_key must be  
set to 0xA5.  
6.7.3. LTS PROTECTION DISABLE  
By default the EM8502’s monitors voltage levels, namely lower voltage limit, to prevent damage to the LTS energy storage element.  
This protection can be disabled by setting register reg_lts_cfg.no_bat_protect leaving the system connected to LTS even when the voltage level  
drops below v_bat_min. Disabling protection might be suitable for systems using super-caps or solid-state battery storage elements.  
This is not the last page  
18  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
When LTS protection is active the EM8502 tries to start-up from LTS only once, if after booting it still detects that VLTS < v_bat_min it enables the  
protection and never try to restart from LTS. The system will then re-start as from a standard cold-start.  
Register name: reg_lts_cfg  
Address: 0x06  
Default value mapped in E2PROM  
Description  
Bits  
7:3  
2
Bit name  
Type  
Reserved  
Shall be written to ‘0’  
1
Shall be written to ‘0’  
0
no_bat_protect  
RW  
'1' disables the battery protection feature. (reg.status.lts_protect = ‘0’)  
‘0’ enables the battery protection feature.  
Table 27 Wake-up terminal configuration register (0x13)  
7.  
SERIAL INTERFACE  
The EM8502 offers SPI and I2C serial interfaces selected by the CS pin (see §7.2.1).  
The configuration/function of the EM8502 is updated only after the end of a communication transaction. An SPI transaction is defined by all the  
bytes sent and received when the pad CS is kept to ‘1’. An I2C transaction is defined by all the data sent or received between a start and a stop  
or repeated start I2C patterns.  
Data synchronization between the communication interface and the internal part of the device is done at the end of a supervising loop. New  
information is active two milliseconds after the end of the transaction. All write transactions sent before the end of this synchronization interval are  
ignored. It is recommended to perform the device configuration in one transaction. Read transactions are allowed at any time.  
7.1. I2C INTERFACE  
The I2C slave interface is compatible with Philips I2C Specification version 2.1 (see specific timings on electrical specifications chapter). All modes  
(standard, fast, high speed) are supported. MOSI_SDA and SCL pins are not strictly open-drain (they represent diodes to VSUP).  
The 7-bit device address is defined in the E2PROM (at address 0x58). This address is copied at boot into the reg_spi_i2c_cfg.ic2_addr register  
field.  
The I2C bus uses the 2 wires SCL (Serial Clock) and MOSI_SDA. CS has to be connected to VSS. MOSI_SDA is bi-directional with open drain to  
VSS: it must be externally connected to VSUP via a pull up resistor.  
The I2C interface supports single and multiple read and write transactions.  
In the following figures, “S” indicates the I2C transaction start, “P” indicates the I2C transaction stop.  
The multi-read and multi write transactions are described in the following figures.  
ACKS  
ACKS  
ACKS  
MOSI_SDA  
SCL  
Address/data couple to be  
written  
i2c address  
Register address (n)  
Register value to be written @ n  
P
S
Write  
Figure 7-1: I2C write (multiple transactions)  
To access registers in read mode, first address should first be send in write mode. Then a stop and a start conditions must be generated and  
data bytes are transferred with automatic address increment:  
This is not the last page  
19  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
ACKS  
ACKS  
MOSI_SDA  
SCL  
i2c address  
Register address (n)  
Write  
ACKS  
ACKM  
NOACKM  
MOSI_SDA  
SCL  
i2c address  
P
Register read @ n+1, n+2, ...  
Register read @ n  
Figure 7-2: I2C read (multiple transactions)  
S
Read  
In the case of a read transaction, it is possible to avoid stopping and starting again a new transaction by following the register address with a  
repeated start.  
7.2. SPI INTERFACE  
The SPI interface is a standard Serial to Peripheral Interface. It is compatible with two of the four standard transmission modes. The automatic  
selection between the two modes ([CPOL=’0’ and CPHA=’0’] and [CPOL=’1’ and CPHA=’1’]) is determined by the value of SCL after the CS rising  
edge.  
The SPI interface can be used in 4-wire or 3-wire. The 3-wire is selected by setting the register reg_spi_i2c_cfg.spi_3w_en to '1’. The pin MOSI  
is used as a data pin in 3-wire mode.  
The SPI interface is a byte-oriented transmission interface. The first byte sent is contains the address of the register and access type of the  
transmission on the first transmitted bit (reads register – ‘1’ – or writes register – ‘0’). The following bytes contain register values. On read access  
the address read is incremented for each additional byte until the address 0x7F. When reaching this address, the devices internal address counter  
wraps to 0x00 and starts to read again from this address.  
In case of a write transaction the protocol is based on an interleaved scheme of address and data. The first byte contains a 7-bit address and the  
write command (First sent bit of the first byte equal to ‘0’). The second byte contains data to be written to this address.  
It is important to note that it is possible to send a set of write commands, followed by a multi read transaction within the same SPI transaction.  
Once in read mode, write accesses are not possible anymore in the same SPI transaction.  
The following example shows a write of some registers followed by a check of the data.  
0x00  
0x05  
0x01  
0x03  
0x06  
0x02  
0x80  
0x00  
0x00  
0x00  
0x00  
Set hrv_period to 1/8 Hz  
Set hrv_meas to 128ms  
Set the system in primary cell mode  
Read registers 0x00 to 0x03  
CS  
SCL  
MOSI_SDA  
MISO  
R_Wn  
ST7  
AD6  
ST6  
AD5  
ST5  
AD4  
ST4  
AD3  
ST3  
AD2  
ST2  
AD1  
ST1  
AD0  
ST0  
DI7  
DI6  
DI5  
DI4  
DI3  
DO3  
DI2  
DO2  
DI1  
DI0  
DO7  
DO6  
DO5  
DO4  
DO1  
DO0  
Figure 7-3 SPI transaction scheme CPOL=1, CPHA=1  
CS  
SCL  
MOSI_SDA  
MISO  
R_Wn  
ST7  
AD6  
ST6  
AD5  
ST5  
AD4  
ST4  
AD3  
ST3  
AD2  
ST2  
AD1  
ST1  
AD0  
ST0  
DI7  
DI6  
DI5  
DI4  
DI3  
DO3  
DI2  
DO2  
DI1  
DO1  
DI0  
DO0  
DO7  
DO6  
DO5  
DO4  
Figure 7-4 SPI transaction scheme CPOL=0, CPHA=0  
This is not the last page  
20  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
CS  
SCL  
address  
status  
address  
data to be written  
data to be written  
MOSI_SDA  
MISO  
data to be written in 'x',  
output at '0'  
address "x", access type (write)  
and status byte  
Next address/data couple  
other address/data couple  
MOSI_SDA  
MISO  
address "n"  
status  
data @ n  
data @ n+1  
data @ n+2  
data @ x  
address "x", access type (read)  
and status byte  
Figure 7-5 Multi register access transaction  
Along with the address information the SPI interface sends the status register (reg_status address 0x22) as the first response byte. In the case  
of the 3-wire mode the protocol is identical to the I2C interface, and doesn’t allow having the status byte when sending the address to the device.  
Interface signals are the following:  
CS  
SCL  
MOSI_SDA  
MISO  
chip select, active high  
clock  
data input; data input/output in 3-wire mode  
data output; Hi-Z level in 3-wire mode  
7.2.1. INTERFACE SELECTION  
The interface selection process is done through the use of the CS pin.  
At reset (at the end of the boot sequence) the default interface selection is I2C. The SPI selection is done by asserting the CS pin. After CS  
assertion the SPI interface is selected until the device is shut-down (VSTS below Vcs_lo).  
If the CS pin is continuously asserted (through a hard connection to VSUP) the SPI interface is permanently selected. I2C is not available in this  
case.  
Register name: reg_spi_i2c_cfg  
Address: 0x18  
Default value mapped in E2PROM  
Description  
Bits  
7
Bit name  
spi_3w_en  
Type  
RW Set the SPI in its 3 wire mode (shared MOSI/MISO)  
RW i2c address  
6:0  
i2c_addr  
Table 28 SPI/I2C configuration register (0x18)  
7.3. E2PROM  
7.3.1. ACCESSING THE E2PROM  
The on-chip E2PROM contains the default working parameters of the device. The E2PROM address space is mapped into the EM8502 register  
map from address 0x40 (E2PROM address 0) to 0x7F ((E2PROM address 63). Some addresses are reserved (0x76 to 0x7F) and are accessible  
in read-only mode by the user; some contains the defaults values as described on §8. All other addresses can be freely used.  
The user can write on the E2PROM at any time. Note that no protection is built in to prevent incomplete write transaction caused by a lack of  
energy (STS too low). The user must ensure that the EM8502 is able to properly finish a write transaction.  
Read and write accesses are performed through the serial interface. In difference to standard registers (addresses 0x00 to 0x3F), an E2PROM  
access requires a dead time. A read access needs a dead time between read address and the data. A write access requires a dead time after  
having sent the write data.  
CS  
SCL  
MOSI_SDA  
MISO  
Tee_rd  
Figure 7-6 SPI transaction for reading the E2PROM (CPOL=1)  
This is not the last page  
21  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
CS  
SCL  
MOSI_SDA  
MISO  
Tee_rd  
Figure 7-7 SPI transaction for reading the E2PROM (CPOL=0)  
CS  
SCL  
MOSI_SDA  
MISO  
address "n"  
status  
address "m"  
data @ n  
status  
data @ m  
Tee_rd  
Tee_rd  
Thd_rd  
Table 29 SPI multiple E2PROM read transactions  
CS  
SCL  
0x1B  
0xA5  
E2PROM address  
data  
0x1B  
0xA5  
E2PROM address  
data  
MOSI_SDA  
MISO  
status  
status  
Tee_wr  
Tee_wr  
Figure 7-8 Two consecutive single E2PROM write SPI transactions  
CS  
SCL  
MOSI_SDA  
MISO  
0x1B  
0xA5  
E2PROM address  
data  
E2PROM address  
data  
status  
Tee_wr  
Tee_wr  
Figure 7-9 SPI multi-byte transaction for writing the E2PROM  
When the I2C serial interface is used only single action per transaction is allowed when accessing the E2PROM. As for an SPI transaction a  
dead time are necessary. Prior to a write transaction into the E2PROM it is necessary to set the reg_protection_key register to 0xA5.  
For a write transaction, no other I2C transaction into the E2PROM address area is allowed for Twr_ee after the end of the write transaction. A  
transaction inside this time window is ignored by the device.  
In the following diagram responses from EM8502 are shown in red, data from the I2C master in black.  
The following abbreviations are used:  
W
R
S
P
A
N
Write transaction request  
Read transaction request  
Start an I2C transaction  
Stop an I2C transaction  
I2C Acknowledge  
I2C Non Acknowledge  
S
I2C address  
W
0x1B  
0xA5  
reg address  
reg data  
P
S
I2C address  
W
0x1B  
0xA5  
reg address  
A
reg data  
P
A
A
A
A
A
A
A
MOSI_SDA  
SCL  
Tee_wr  
Tee_wr  
Figure 7-10 I2C transaction for writing on the E2PROM  
For a read transaction a dead-time (Trd_ee) has to be inserted in between the address setting transaction and the read action itself.  
This is not the last page  
22  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
S
I2C address  
W
A
Register address  
A
P
S
I2C address  
R
A
Read data  
N P  
MOSI_SDA  
SCL  
Tee_rd  
Figure 7-11 I2C transaction for reading the E2PROM  
This is not the last page  
23  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
8.  
REGISTER MAP  
Table 30 Register summary with default value defined in E2PROM  
This is not the last page  
24  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Table 31 Register summary No E2PROM default values  
This is not the last page  
25  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
Table 32 E2PROM default values memory mapping  
This is not the last page  
26  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
9.  
TYPICAL APPLICATION  
VSOL  
VDD_SOL  
EM8502  
VDD_STS  
CHRV  
CSTS  
VSS2  
VDD_USB  
Cold-start Booster  
WAKE_UP  
VDD_LTS  
VREG  
VSUP  
CREG  
CLTS  
MPPT  
Boost  
Controller  
controller  
MOSI_SDA  
MISO  
Battery  
(typically secondary cell)  
VAUX[2]  
SCL  
CSUP  
HOST  
MCU  
CS  
VAUX[1]  
VAUX[0]  
BAT_LOW  
HRV_LOW  
Peripheral  
(sensor, RF  
transmitter, )  
Charge control and  
supervisory  
VAUX_GND[2]  
VAUX_GND[1]  
VAUX_GND[0]  
CAUX0  
Other  
peripherals  
VSS1  
I2C interface  
SPI interface  
Figure 9-1 Example of Application with a Solar Cell Harvester  
Symbol  
Component  
Value  
Harvester capacitor  
STS capacitor  
Regulator capacitor  
Main supply output capacitor  
Auxiliary (2) supply output capacitor  
CHRV  
CSTS  
CREG  
CSUP  
CAUX2  
4.7µF  
200µF  
470 nF  
1 µF  
1 µF  
Table 33 Component list for solar cell application  
This is not the last page  
27  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
10. PACKAGING INFORMATION  
10.1. QFN24 4X4 PACKAGE  
QFN24 4x4mm  
D
MIN  
NOM  
MAX  
e
L
0.5  
0.45  
0.18  
2.5  
0.5  
0.55  
0.3  
b
0.25  
2.6  
D2  
E2  
A
2.7  
E
2.5  
2.6  
2.7  
0.85  
0.02  
0.20  
0.20min  
4.0  
0.9  
A1  
A3  
K
0.05  
TOP VIEW  
D
A
E
4.0  
A3  
A1  
SIDE VIEW  
L1  
0.15max  
ALL DIMENSIONS ARE IN MILLIMETERS  
D2  
K
D2/2  
SEE DETAIL "A"  
L
E2/2  
5 * e  
E2  
K
TERMINAL/SIDE  
2
1
L
L1  
b
e
PIN #1 ID  
e
SEE DETAIL "A"  
e/2  
DETAIL "A"  
TERMINAL TIP  
5 * e  
BOTTOM VIEW  
Figure 10-1 QFN24 Mechanical Information  
10.1.1. PACKAGE MARKING  
This section reports the package marking for EM8502. Additional marking letters and numbers are used for lot traceability.  
8
0
5
5
0
2
0
A
This is not the last page  
28  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  
EM8502  
EM Microelectronic-Marin SA (“EM”) makes no warranties for the use of EM products, other than those expressly contained in EM's applicable  
General Terms of Sale, located at http://www.emmicroelectronic.com. EM assumes no responsibility for any errors which may have crept into  
this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any  
commitment to update the information contained herein.  
No licenses to patents or other intellectual property rights of EM are granted in connection with the sale of EM products, neither expressly nor  
implicitly.  
In respect of the intended use of EM products by customer, customer is solely responsible for observing existing patents and other intellectual  
property rights of third parties and for obtaining, as the case may be, the necessary licenses.  
Important note: The use of EM products as components in medical devices and/or medical applications, including but not limited to,  
safety and life supporting systems, where malfunction of such EM products might result in damage to and/or injury or death of  
persons is expressly prohibited, as EM products are neither destined nor qualified for use as components in such medical devices  
and/or medical applications. The prohibited use of EM products in such medical devices and/or medical applications is exclusively at  
the risk of the customer.  
29  
www.emmicroelectronic.com  
Copyright 2017, EM Microelectronic-Marin SA  
8502-DS, Version 1.1, 8-Mar-17  
420005-A01, 2.0  

相关型号:

EM8502-A005-LF24B+

POWER MANAGEMENT CONTROLLER WITH MULTI-CELL SOLAR HARVESTING
EMMICRO

EM8609A

Transition Mode PFC Controller for LED Lighting
ETC

EM8631

Green mode PWM Flyback Controller
EXCELLIANCE

EM8631J

Green mode PWM Flyback Controller
EXCELLIANCE

EM8631S

Green mode PWM Flyback Controller
EXCELLIANCE

EM8632

Green mode PWM Flyback Controller
EXCELLIANCE

EM8632J

Green mode PWM Flyback Controller
EXCELLIANCE

EM8632S

Green mode PWM Flyback Controller
EXCELLIANCE

EM8671

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671A

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671AG

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671AG7

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE