EM78F734NSO18 [ELAN]

8-Bit Microcontroller;
EM78F734NSO18
型号: EM78F734NSO18
厂家: ELAN MICROELECTRONICS CORP    ELAN MICROELECTRONICS CORP
描述:

8-Bit Microcontroller

微控制器
文件: 总100页 (文件大小:3949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM78F734N  
8-Bit  
Microcontroller  
Product  
Specification  
DOC. VERSION 1.4  
ELAN MICROELECTRONICS CORP.  
September 2019  
Trademark Acknowledgments:  
IBM is a registered trademark and PS/2 is a trademark of IBM.  
Windows is a trademark of Microsoft Corporation.  
ELAN and ELAN logo  
are trademarks of ELAN Microelectronics Corporation.  
Copyright © 2019 by ELAN Microelectronics Corporation  
All Rights Reserved  
Printed in Taiwan  
The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no  
responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics  
makes no commitment to update, or to keep current the information and material contained in this specification.  
Such information and material may change to conform to each confirmed order.  
In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or  
other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall  
not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such  
information or material.  
The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and  
may be used or copied only in accordance with the terms of such agreement.  
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of  
ELAN Microelectronics product in such applications is not supported and is prohibited.  
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY  
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.  
ELAN MICROELECTRONICS CORPORATION  
Headquarters:  
Hong Kong:  
USA:  
No. 12, Innovation Road 1  
Hsinchu Science Park  
Hsinchu, TAIWAN 308  
Tel: +886 3 563-9977  
Fax: +886 3 563-9966  
webmaster@emc.com.tw  
http://www.emc.com.tw  
Elan (HK) Microelectronics  
Corporation, Ltd.  
Flat A, 19F., World Tech Centre  
95 How Ming Street, Kwun Tong  
Kowloon, HONG KONG  
Tel: +852 2723-3376  
Elan Information  
Technology Group (U.S.A.)  
PO Box 601  
Cupertino, CA 95015  
U.S.A.  
Tel: +1 408 366-8225  
Fax: +1 408 366-8225  
Fax: +852 2723-7780  
Shenzhen:  
Shanghai:  
Elan Microelectronics  
Shenzhen, Ltd.  
Elan Microelectronics  
Shanghai, Ltd.  
8A Floor, Microprofit Building  
Gaoxin South Road 6  
6F, Ke Yuan Building  
No. 5 Bibo Road  
Shenzhen Hi-tech Industrial Park  
South Area, Shenzhen  
CHINA 518057  
Tel: +86 755 2601-0565  
Fax: +86 755 2601-0500  
elan-sz@elanic.com.cn  
Zhangjiang Hi-Tech Park  
Shanghai, CHINA 201203  
Tel: +86 21 5080-3866  
Fax: +86 21 5080-0273  
elan-sh@elanic.com.cn  
Contents  
Contents  
1 General Description··············································································1  
2 Features ······························································································1  
3 Pin Assignment····················································································3  
4 Pin Description·····················································································5  
5 Block Diagram······················································································7  
6 Functional Description··········································································8  
6.1 Operational Registers .......................................................................................8  
6.1.1 R0 (Indirect Addressing Register) .......................................................................8  
6.1.2 R1 (Timer Clock/Counter) ...................................................................................8  
6.1.3 R2 (Program Counter) and Stack........................................................................8  
6.1.4 R3 (Status Register)..........................................................................................11  
6.1.5 R4 (RAM Select Register).................................................................................11  
6.1.6 Bank 0 R5 ~ R8 (Port 5 ~ Port 8)......................................................................11  
6.1.7 Bank 0 R9 TBPTL (Low byte of Table Pointer Register) ...................................11  
6.1.8 Bank 0 RA (Wake- up Control Register) ...........................................................12  
6.1.9 Bank 0 RB (EEPROM Control Register)...........................................................12  
6.1.10 Bank 0 RC (EEPROM Address)........................................................................13  
6.1.11 Bank 0 RD (EEPROM Data) .............................................................................13  
6.1.12 Bank 0 RE (CPU Operating Control Register) ..................................................13  
6.1.13 Bank 0 RF (Interrupt Status Register)...............................................................14  
6.1.14 R10 ~ R3F.........................................................................................................15  
6.1.15 Bank 1 R5 TC1CR (Timer 1 Control) ................................................................15  
6.1.16 Bank 1 R6 TC1DA (Timer 1 Data Buffer A).......................................................18  
6.1.17 Bank 1 R7 TC1DB (Timer 1 Data Buffer B).......................................................18  
6.1.18 Bank 1 R8 OSCR (Oscillator Control)...............................................................18  
6.1.19 Bank 1 R9 TC2DA (Timer 2 Data Buffer A).......................................................19  
6.1.20 Bank 1 RA TC2DB (Timer 2 Data Buffer B) ......................................................19  
6.1.21 Bank 1 RB ~RE .................................................................................................19  
6.1.22 Bank 1 RF (Interrupt Status Register)...............................................................19  
6.1.23 Bank 2 R5 AISR (ADC Input Select Register)...................................................20  
6.1.24 Bank 2 R6 ADCON (A/D Control Register) .......................................................21  
6.1.25 Bank 2 R7 ADOC (A/D Offset Calibration Register) .........................................22  
6.1.26 Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)..................................................22  
6.1.27 Bank 2 R9 ADDL (AD Low 4-Bit Data Buffer) ...................................................22  
6.1.28 Bank 2 RA ~ RE ................................................................................................23  
6.1.29 Bank 2 RF (Pull-high Control Register 1)..........................................................23  
6.1.30 Bank 3 R5..........................................................................................................23  
6.1.31 Bank 3 R6 TBPTH (High Byte of Table Pointer Register) .................................23  
Product Specification (V1.4) 09.05.2019  
iii  
Contents  
6.1.32 Bank 3 R7~RC ..................................................................................................23  
6.1.33 Bank 3 RD TC3CR (Timer 3 Control)................................................................23  
6.1.34 Bank 3 RE TC3D (Timer 3 Data Buffer)............................................................26  
6.1.35 Bank 3 RF (Pull-down Control Register 1)........................................................26  
6.2 Special Function Registers .............................................................................27  
6.2.1 A (Accumulator).................................................................................................27  
6.2.2 CONT (Control Register)...................................................................................27  
6.2.3 IOC5 ~ IOC8 (I/O Port Control Register) ..........................................................28  
6.2.4 IOC9 ..................................................................................................................28  
6.2.5 IOCA (WDT Control Register) ...........................................................................28  
6.2.6 IOCB (Pull-down Control Register 2) ................................................................29  
6.2.7 IOCC (Open-drain Control Register).................................................................29  
6.2.8 IOCD (Pull-high Control Register 2)..................................................................29  
6.2.9 IOCE (Interrupt Mask Register 2)......................................................................30  
6.2.10 IOCF (Interrupt Mask Register 1)......................................................................30  
6.3 TCC/WDT and Prescaler ................................................................................32  
6.4 I/O Ports .........................................................................................................33  
6.5 Reset and Wake-up ........................................................................................36  
6.5.1 Reset .................................................................................................................36  
6.5.2 Summary of Wake-up and Interrupt Modes Operation .....................................38  
6.5.3 Summary of Register Initial Values ...................................................................39  
6.5.4 Status of RST, T, and P of the Status Register .................................................44  
6.6 Interrupt ..........................................................................................................45  
6.7 Data EEPROM................................................................................................47  
6.7.1 Data EEPROM Control Register.......................................................................47  
6.7.1.1 RB (EEPROM Control Register) .........................................................................47  
6.7.1.2 RC (128 Bytes EEPROM Address) .....................................................................48  
6.7.1.3 RD (256 Bytes EEPROM Data)...........................................................................48  
6.7.2 Programming Step / Example Demonstration...................................................48  
6.7.2.1 Programming Step ..............................................................................................48  
6.7.2.2 Example Demonstration Programs .....................................................................49  
6.8 Analog-to-Digital Converter (ADC)..................................................................49  
6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)................................50  
6.8.2 Bank 2 R5 AISR (ADC Input Select Register)...................................................50  
6.8.3 Bank 2 R6 ADCON (A/D Control Register) .......................................................51  
6.8.4 Bank 2 R7 ADOC (A/D Offset Calibration Register) .........................................52  
6.8.5 ADC Data Buffer (ADDH, ADDL/R8, R9) ..........................................................52  
6.8.6 A/D Sampling Time............................................................................................52  
6.8.7 A/D Conversion Time ........................................................................................53  
6.8.8 A/D Operation during Sleep Mode ....................................................................53  
6.8.9 Programming Steps/Considerations .................................................................54  
6.8.9.1 Programming Steps ............................................................................................54  
6.8.9.2 Sample Demonstration Programs .......................................................................54  
6.9 Timer/Counter 1..............................................................................................56  
6.10 Timer/Counter 3..............................................................................................58  
iv   
Product Specification (V1.4) 09.05.2019  
Contents  
6.11 Oscillator.........................................................................................................60  
6.11.1 Oscillator Modes................................................................................................60  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal) ..............................................61  
6.11.3 Internal RC Oscillator Mode ..............................................................................63  
6.12 Code Option Register .....................................................................................64  
6.12.1 Code Option Register (Word 0).........................................................................64  
6.12.2 Code Option Register (Word 1).........................................................................66  
6.12.3 Code Option Register (Word 2).........................................................................67  
6.13 Power-on Considerations................................................................................68  
6.14 External Power-on Reset Circuit.....................................................................68  
6.15 Residue-Voltage Protection.............................................................................69  
6.16 Instruction Set.................................................................................................70  
7 Timing Diagrams ················································································ 73  
8 Absolute Maximum Ratings ································································· 74  
9 DC Electrical Characteristics ······························································· 75  
9.1 Data EEPROM Electrical Characteristics........................................................77  
9.2 Program Flash Memory Electrical Characteristics...........................................77  
9.3 A/D Converter Characteristics.........................................................................78  
10 AC Electrical Characteristics ······························································· 79  
APPANDIX  
A Ordering and Manufacturing Information··············································· 80  
B Package Type····················································································· 81  
C Package Information··········································································· 82  
C.1 EM78F734ND16 300mil..................................................................................82  
C.2 EM78F734NSO16 300mil...............................................................................83  
C.3 EM78F734NSO16A 150mil.............................................................................84  
C.4 EM78F734NSS16 150mil ...............................................................................85  
C.5 EM78F734ND18 300mil..................................................................................86  
C.6 EM78F734NSO18 300mil...............................................................................87  
C.7 EM78F734ND20 300mil..................................................................................88  
C.8 EM78F734NSO20 300mil...............................................................................89  
C.9 EM78F734NSS20 209mil ...............................................................................90  
C.10 EM78F734NSS20A 150mil .............................................................................91  
C.11 EM78F734NQN20 4*4*0.8mm........................................................................92  
D Quality Assurance and Reliability························································· 93  
D.1 Address Trap Detect.......................................................................................93  
Product Specification (V1.4) 09.05.2019  
v  
Contents  
Specification Revision History  
Doc. Version  
Revision Description  
Date  
1.0  
Initial version  
2014/05/13  
1. Added Channel ADC6 to ADC  
2. Added package SSOP20  
1.1  
3. Modified TC1CR, TC2DA and TC2DB description.  
4. Modified SSOP16 package type.  
5.Added SOP16 150mil package type.  
2015/08/10  
1. Add User Application Notice  
2. Added Word 0 Bit 12 HLP description.  
1.2  
2016/03/31  
3. Added Appendix A “Ordering and Manufacturing  
Information”  
1.3  
1.4  
1. Added QFN20 package type.  
2017/07/18  
2019/09/05  
1. Added SSOP20 150mil package type.  
User Application Note  
(Before using this chip, take a look at the following description note, it includes important messages.)  
1.  
2.  
3.  
The internal TCC will stop running when in sleep mode. However, during AD conversion, when  
TCC is set to “SLEP” instruction, if the ADWE bit of the RE register is enabled, the TCC will  
keep on running.  
During ADC conversion, do not perform output instruction to maintain precision for all of the  
pins. In order to obtain accurate values, it is necessary to avoid any data transition on I/O pins  
during AD conversion  
The noise rejection function is turned off in the Fs and sleep mode  
vi   
Product Specification (V1.4) 09.05.2019  
EM78F734N  
8-Bit Microcontroller  
1 General Description  
The EM78F734N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS technology  
and high noise immunity. It has an on-chip 4K13-bit Electrical Flash Memory and 1288-bit In-system programmable  
EEPROM. It provides three protection bits to prevent intrusion of user’s Flash memory code.  
With its enhanced Flash-ROM feature, the EM78F734N provides a convenient way of developing and verifying user’s  
programs. Moreover, this Flash-ROM device offers the advantages of easy and effective program updates, using  
development and programming tools. Users can avail of the ELAN Writer to easily program their development codes.  
2 Features  
CPU Configuration  
Eight available interrupts:  
4K13 bits Flash memory  
Internal interrupt: 4  
External interrupt: 4  
1448 bits on-chip registers (SRAM)  
128 bytes In-system programmable EEPROM  
8-level stacks for subroutine nesting  
Eight channels Analog-to-Digital Converter with  
12-bit resolution  
Peripheral Configuration  
I/O Port Configuration  
8-bit real Timer Clock/Counter (TCC) with  
selective signal sources, trigger edges, and  
overflow interrupt  
Three bidirectional I/O ports  
Wake-up port : P6  
12 Programmable pull-down I/O pins  
8 programmable pull-high I/O pins  
4 programmable open-drain I/O pins  
External interrupt : P60  
Power down (Sleep) mode  
Four programmable Level Voltage Reset (LVR)  
(LVR) : 3.3V, 3.0V, 2.6V, and 2.0V (POR)  
Three security registers to prevent intrusion of  
Flash memory codes  
Operating Voltage Range:  
2.2V~5.5V @ – 40°C ~85°C (Industrial)  
2.2V~5.5V @ 0°C ~70°C (Commercial)  
One configuration register to accommodate  
user’s requirements  
Operating frequency range (base on two clocks):  
IRC Drift Rate (Vdd @ 3.3V)  
Drift Rate  
Two clocks per instruction cycle  
High EFT immunity  
Internal RC  
Frequency  
Two sub-frequencies; 128kHz and 16kHz,  
the 16kHz is provided by dividing the 128kHz  
Temperature  
(-10°C+40°C)  
Process  
Total  
Single instruction cycle commands  
Four Crystal Range in Oscillator Mode  
455kHz  
1 MHz  
4 MHz  
8 MHz  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±2%  
±2%  
±2%  
±2%  
Crystal Range  
20 MHz ~ 12 MHz  
12 MHz~6 MHz  
6 MHz ~ 1 MHz  
1 MHz ~ 100kHz  
Oscillator Mode  
HXT2  
HXT1  
XT  
IRC Drift Rate (Temperature: -10°C+40°C)  
Drift Rate  
Internal RC  
Frequency  
LXT1  
Voltage  
(3.0~3.6V)  
Process  
Total  
Programmable free running Watchdog Timer  
Package Type:  
455kHz  
1 MHz  
4 MHz  
8 MHz  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
±2%  
±2%  
±2%  
±2%  
16-pin DIP 300mil  
16-pin SOP 300mil  
16-pin SOP 150mil  
:
:
:
EM78F734ND16  
EM78F734NSO16  
EM78F734NSO16A  
EM78F734NSS16  
EM78F734ND18  
EM78F734NSO18  
EM78F734ND20  
EM78F734NSO20  
EM78F734NSS20  
EM78F734NSS20A  
EM78F734NQN20  
16-pin SSOP 150mil :  
One 16-bit Timer/Counter  
TC1 : Timer/Counter/Capture  
One 8-bit Timer/Counter  
18-pin DIP 300mil  
18-pin SOP 300mil  
20-pin DIP 300 mil  
20-pin SOP 300mil  
:
:
:
:
TC3 : Timer/Counter/PDO (Programmable  
Divider Output) / PWM (Pulse Width  
Modulation)  
20-pin SSOP 209mil :  
20-pin SSOP 150mil :  
20-pin QFN  
:
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
1  
EM78F734N  
8-Bit Microcontroller  
Note: These are Green Products which do not contain  
hazardous substances.  
2   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
3 Pin Assignment  
P52  
P51  
1
2
3
4
5
6
7
8
9
18  
17  
P52  
P51  
1
2
3
4
5
6
7
8
16  
15  
P53  
P50/VREF  
P55/OSCO  
P53  
P50/VREF  
P55/OSCO  
E
E
M
M
P77/TCC/AD5  
7
16  
15  
14  
13  
12  
11  
10  
P77/TCC/AD5  
14  
13  
12  
11  
10  
9
8
7
8
F
F
7
P83//RESET(RESET)  
VSS(VSS)  
P54/OSCI/RCOUT  
VDD(VDD)  
P70(DATA)  
P71(CLK)  
P72  
7
3
P83//RESET(RESET)  
VSS(VSS)  
P54/OSCI/RCOUT  
VDD(VDD)  
P70(DATA)  
P71(CLK)  
3
4
4
N
N
-
-
1
1
6
8
P
P60/AD0//INT  
P61/AD1  
P
i
i
n
P60/AD0//INT  
P61/AD1  
n
P62/AD2  
P62/AD2  
P72  
P73/AD4  
P63/AD3  
Figure 3-1 EM78F734ND16/SO16/SO16A/SS16  
Figure 3-2 EM78F734ND18/SO18  
1
2
3
4
5
6
7
8
9
20  
19  
P57/TC3/AD7  
P51  
P60/AD0//INT  
P61/AD1  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS(VSS)  
P83//RESET(RESET)  
P77/TCC/AD5  
P53  
P74/TC1/AD6  
P52  
P62/AD2  
3
18  
17  
16  
15  
14  
13  
12  
11  
P53  
P50/VREF  
P55/OSCO  
E
M
7
P63/AD3  
4
P77/TCC/AD5  
8
F
7
P73/AD4  
5
P52  
3
P83//RESET(RESET)  
VSS(VSS)  
P54/OSCI/RCOUT  
VDD(VDD)  
P70(DATA)  
P71(CLK)  
P72  
4
N
P72  
6
P74/TC1/AD6  
P57/TC3/AD7  
P50/VREF  
P55/OSCO  
VDD(VDD)  
-
2
0
P
P71(CLK)  
P70(DATA)  
P51  
7
i
n
P60/AD0//INT  
P61/AD1  
8
9
P62/AD2  
P54/OSCI/RCOUT  
10  
10  
P73/AD4  
P63/AD3  
Figure 3-4 EM78F734NSS20A  
Figure 3-3 EM78F734ND20/SO20/SS20  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
3  
EM78F734N  
8-Bit Microcontroller  
20 19 18 17 16  
P74/TC1  
P52  
1
2
3
4
5
15  
14  
VDD(VDD)  
P70(DATA)  
P71(CLK)  
P72  
P53  
EM78F734N-20Pin 13  
P77/TCC/AD5  
P83//RESET(RESET)  
12  
11  
P73/AD4  
6
7
8
9
10  
Figure 3-5 EM78F734NQ20  
4   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
4 Pin Description  
Table 1 EM78F734N Pin Description  
Legend:  
CMOS:  
ST: Schmitt Trigger input  
CMOS output  
AN: analog pin  
XTAL: Oscillation pin for crystal / resonator  
Input Output  
Name  
Function  
Description  
Type  
Type  
P50  
ST  
AN  
CMOS  
Bidirectional I/O pin with programmable pull-down  
ADC external voltage reference  
P50/VREF  
VREF  
P51  
P51  
P52  
P53  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bidirectional I/O pin with programmable pull-down  
Bidirectional I/O pin with programmable pull-down  
Bidirectional I/O pin with programmable pull-down  
Bidirectional I/O pin  
P52  
ST  
P53  
ST  
P54  
ST  
XTAL  
OSCI  
External clock crystal resonator oscillator input pin  
P54/OSCI/RCOUT  
P55/OSCO  
Clock output of internal RC oscillator  
RCOUT  
CMOS  
Clock output of external RC oscillator (open-drain)  
P55  
ST  
CMOS  
XTAL  
Bidirectional I/O pin  
OSCO  
P57  
Clock output from crystal oscillator  
Bidirectional I/O pin  
ST  
CMOS  
Timer 3 input (Counter/Capture/Window)  
TC3  
ST  
P57/TC3/AD7  
Timer 3 output (PDO/PWM/Buzzer)  
PDO  
AD7  
CMOS  
Programmable divider output  
ADC Input 7  
AN  
Bidirectional I/O pin with programmable pull-down,  
pull-high, open-drain, and pin change wake-up  
P60  
ST  
CMOS  
P60/AD0//INT  
P61/AD1  
AD0  
/INT  
AN  
ST  
ADC Input 0  
External interrupt pin  
Bidirectional I/O pin with programmable pull-down,  
pull-high, open-drain, and pin change wake-up  
P61  
AD1  
ST  
AN  
CMOS  
ADC Input 1  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
5  
EM78F734N  
8-Bit Microcontroller  
(Continuation)  
Input Output  
Name  
Function  
Description  
Type  
Type  
Bidirectional I/O pin with programmable pull-down,  
pull-high, open-drain, and pin change wake-up  
P62  
AD2  
P63  
ST  
AN  
ST  
CMOS  
P62/AD2  
P63/AD3  
ADC Input 2  
Bidirectional I/O pin with programmable pull-down,  
pull-high, open-drain, and pin change wake-up  
CMOS  
AD3  
P70  
AN  
ST  
ADC Input 3  
CMOS  
CMOS  
CMOS  
Bidirectional I/O pin, pull-high  
DATA pin for Writer programming  
Bidirectional I/O pin, pull-high  
CLOCK pin for Writer programming  
Bidirectional I/O pin, pull-high  
Bidirectional I/O pin, pull-high  
ADC Input 4  
P70  
(DATA)  
(DATA)  
P71  
ST  
ST  
P71  
(CLK)  
(CLK)  
P72  
ST  
P72  
ST  
CMOS  
CMOS  
P73  
ST  
P73/AD4  
AD4  
AN  
P74  
ST  
CMOS  
Bidirectional I/O pin  
P74/TC1/AD6  
P77/TCC/AD5  
TC1  
ST  
Timer 1 input (Counter/Capture)  
ADC Input 6  
AD6  
AN  
P77  
ST  
CMOS  
Bidirectional I/O pin  
TCC  
ST  
Real Time Clock/Counter clock input  
ADC Input 5  
AD5  
AN  
P83  
ST  
CMOS  
Bidirectional I/O pin  
P83//RESET  
(/RESET)  
/RESET  
(/RESET)  
VDD  
VDD  
VSS  
ST  
Internal pull-high reset pin  
/RESET pin for Writer programming  
Power  
ST  
Power  
Power  
Power  
Power  
VDD  
(VDD)  
VDD for Writer programming  
Ground  
VSS  
(VSS)  
VSS  
VSS for Writer programming  
6   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
5 Block Diagram  
Sub  
IRC  
WDT  
ROM  
PC  
IRC  
Reset  
TCC  
TC1  
TCC  
TC1  
TC3  
8 level  
stack  
Oscillator generator  
P8  
Instruction  
register  
TC3  
P83  
LVR  
P7  
Crystal  
ADC  
0~7  
Instruction  
decoder  
P77  
P74  
P73  
P72  
P71  
P70  
ADC  
EEPROM  
Interrupt  
control reg.  
MUX  
RAM  
ALU  
P6  
R4  
P63  
P62  
P61  
P60  
Interrupt  
circuit  
P5  
P57  
P55  
P54  
P53  
P52  
P51  
P50  
ACC  
Status reg.  
Ext INT  
Figure 5-1 EM78F734N Functional Block Diagram  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
7  
EM78F734N  
8-Bit Microcontroller  
6 Functional Description  
6.1 Operational Registers  
6.1.1 R0 (Indirect Addressing Register)  
R0 is not a physically implemented register. It is used as an indirect addressing  
pointer. Any instruction using R0 as a pointer actually accesses data pointed by the  
RAM Select Register (R4).  
6.1.2 R1 (Timer Clock/Counter)  
R1 is incremented by an external signal edge, which is defined by TE bit (CONT-4)  
through the TCC pin, or by the instruction cycle clock. It is writable and readable as  
any other registers. It is defined by resetting PSTE (CONT-3).  
The prescaler is assigned to TCC, if the PSTE bit (CONT-3) is reset. The contents of  
the prescaler counter are cleared only when the TCC register is written with a value.  
6.1.3 R2 (Program Counter) and Stack  
Depending on the device type, R2 and hardware stack are 10-bit wide. The structure  
is depicted in Figure 6-1.  
The configuration structure generates 4K13 bits on-chip Flash ROM addresses to  
the relative programming instruction codes. One program page is 1024 words long.  
R2 is set as all 0s when under a reset condition.  
JMPinstruction allows direct loading of the lower 10 program counter bits. Thus,  
JMPallows PC to go to any location within a page (1K).  
CALLinstruction loads the lower 10 bits of the PC, and then PC+1 is pushed into  
the stack. Thus, the subroutine entry address can be located anywhere within a  
page.  
LJMP” instruction allows direct loading of the program counter bits (A0~A11). Thus,  
LJMP” allows the PC to go to any location within 4K (212).  
LCALL” instruction loads the program counter bits (A0~A11), and PC+1 are pushed  
onto the stack. Thus, the subroutine entry address can be located anywhere within  
4K (212).  
RET(RETL k, RETI) instruction loads the program counter with the contents of  
the top-level stack.  
ADD R2, Aallows a relative address to be added to the current PC, and the ninth  
and above bits of the PC will increase progressively.  
8   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
MOV R2, Aallows loading an address from the Aregister to the lower 8 bits of the  
PC, and the ninth and tenth bits of the PC remain unchanged.  
Any instruction except “ADD R2,A” that is written to R2 (e.g. “MOV R2, A, BC R2, 6)  
will cause the ninth bit and the tenth bit (A8~A9) of the PC to remain unchanged.  
All instructions are single instruction cycle (fclk/2) except for the instructions that  
would change the contents of R2 and LCALL, LJMP, TBRDinstruction. The  
LCALL, LJMPand TBRDinstructions need two instruction cycles.  
A11 A10 A9 A8 A7  
~
A0  
PC  
0000h  
0003h  
0006h  
0009h  
Reset vector  
CALL  
LCALL  
RET  
RETL  
RETI  
00 : PAGE0 0000~03FF  
External INT pin interrupt vector  
Port 6 pin status change interrupt vector  
TCC overfolw  
Store ACC, R3, R4  
01 : PAGE1 0400~07FF  
10 : PAGE2 0800~0BFF  
11 : PAGE3 0C00~0FFF  
Stack Level 1  
0018h  
0027h  
0030h  
Stack Level 2  
Stack Level 3  
Stack Level 4  
Stack Level 5  
Stack Level 6  
Stack Level 7  
Stack Level 8  
TC1 interrupt vector  
TC3 interrupt vector  
AD interrupt vector  
On-Chip Program memory  
0FFFh  
Figure 6-1 Program Counter Organization  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
9  
EM78F734N  
8-Bit Microcontroller  
Register  
Bank 0  
Register  
Bank 1  
Register  
Bank 2  
Register  
Bank 3  
Control  
Register  
Address  
R1 (TCC Buffer )  
R2 (PC)  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
R3 (STATUS)  
R4(7,6)  
(0,1)  
(1,0)  
(1,1)  
R4 (RSR,bank select)  
R5 (Port 5 /IO data)  
R6 (Port 6 I/O data)  
R7 (Port 7 I/O data)  
R8 (Port 8 I/O data)  
R5 (ADC Input Select  
Register)  
R5 (Timer 1 Control)  
R6 (Timer 1 data Buffer A)  
R7 (Timer 1 data Buffer B)  
R8 (Oscillator Control )  
R5 (Reserve)  
IOC5 (Port 5 I/O control)  
IOC6 (Port 6 I/O control)  
IOC7 (Port 7 I/O control)  
IOC8(Port 8 I/O control)  
IOC9 (Reserved)  
R6 (ADC Control  
Register)  
R6 (TBHP: Table Point  
Register)  
R7 (ADC Offset  
Calibration Register )  
R7 (Reserve)  
R8 (AD high 8-bits  
data buffer)  
R8 (Reserve)  
R9 (Reserve)  
R9 (TBLP: Table Point  
Register)  
R9 (AD low 4-bits  
data buffer)  
R9 (Timer 2 Data Buffer A)  
RA (Wake control  
Register)  
RA (Reserve)  
RA (Reserve)  
IOCA (WDT control)  
RA (Timer 2 Data Buffer B)  
RB (Reserve)  
RB (EEPROM control  
Register)  
RB (Reserve)  
IOCB (Pull Down Control 2)  
RB (Reserve)  
RC (Reserve)  
RD (Reserve)  
RC (EEPROM address  
Register)  
IOCC (Open Drain  
Control 1)  
RC (Reserve)  
RD (Reserve)  
RE (Reserve)  
RC (Reserve)  
RD (EEPROM data  
Register)  
IOCD (Pull High Control 2)  
IOCE (Interrupt Mask 2)  
IOCF (Interrupt Mask 1)  
RD (Timer 3 Control)  
RE (Timer 3 data buffer)  
RE (Mode Select  
Register)  
RE (Reserve)  
RF (Interrupt Status  
Flag 1)  
RF (Interrupt Status  
Flag 2)  
RF (Pull High Control 1)  
RF (Pull Down Control 1)  
10  
:
1F  
16-Byte Common Register  
20  
:
3F  
Bank 0  
32x8  
Bank 1  
32x8  
Bank 2  
32x8  
Bank 3  
32x8  
Figure 6-2 Data Memory Configuration  
10   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.1.4 R3 (Status Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T
P
Z
DC  
C
Bits 7 ~ 5: Not used, set to “0” at all time  
Bit 4 (T): Time-out bit  
Set to 1with the SLEPand WDTCcommands, or during power up and  
reset to 0by WDT time-out.  
Bit 3 (P): Power down bit  
Set to 1during power on or by a WDTCcommand and reset to 0by a  
SLEPcommand.  
Bit 2 (Z): Zero flag  
Set to 1if the result of an arithmetic or logic operation is zero.  
Bit 1 (DC): Auxiliary carry flag  
Bit 0 (C): Carry flag  
6.1.5 R4 (RAM Select Register)  
Bits 7 ~ 6: Used to select Bank 0 ~ Bank 3  
Bits 5 ~ 0: Used to select registers (Address: 00~3F) in indirect addressing mode.  
See the data memory configuration in Figure 6-2.  
6.1.6 Bank 0 R5 ~ R8 (Port 5 ~ Port 8)  
R5 ~ R7 are I/O registers.  
6.1.7 Bank 0 R9 TBPTL (Low byte of Table Pointer Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RBit 7  
RBit 6  
RBit 5  
RBit 4  
RBit 3  
RBit 2  
RBit 1  
RBit 0  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
11  
EM78F734N  
8-Bit Microcontroller  
6.1.8 Bank 0 RA (Wake- up Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
ICWE  
ADWE  
EXWE  
-
-
Bit 7: Not used, set to “0” at all time  
Bit 6 (ICWE): Port 6 input status change wake-up enable bit  
0 : Disable Port 6 input status change wake-up  
1 : Enable Port 6 input status change wake-up  
Bit 5 (ADWE): ADC wake-up enable bit  
0 : Disable ADC wake-up  
1 : Enable ADC wake-up  
When ADC completed status is used to enter the interrupt vector or to wake  
up the EM78F734N from sleep, with A/D conversion running, the ADWE bit  
must be set to “Enable.  
Bit 4 (EXWE): External wake-up enable bit  
0 : Disable External /INT pin wake-up  
1 : Enable External /INT pin wake-up  
Bits 3 ~ 0: Not used, set to “0” at all time  
6.1.9 Bank 0 RB (EEPROM Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RD  
WR  
EEWE  
EEDF  
EEPC  
-
-
-
Bit 7 (RD): Read control register  
0 : Does not execute EEPROM read  
1 : Read EEPROM content, (RD can be set by software, RD is cleared by  
hardware after Read instruction is completed)  
Bit 6 (WR): Write control register  
0 : Write cycle to the EEPROM is completed.  
1 : Initiate a write cycle, (WR can be set by software, WR is cleared by  
hardware after Write cycle is completed)  
Bit 5 (EEWE): EEPROM Write Enable bit.  
0 : Prohibit write to the EEPROM  
1 : Allows EEPROM write cycles  
Bit 4 (EEDF): EEPROM Detective Flag  
12   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
0 : Write cycle is completed  
1 : Write cycle is unfinished  
Bit 3 (EEPC): EEPROM power-down control bit  
0 : Switch off the EEPROM  
1 : EEPROM is operating  
Bits 2 ~ 0: Not used, set to “0” at all time  
6.1.10 Bank 0 RC (EEPROM Address)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
EE_A6  
EE_A5  
EE_A4  
EE_A3  
EE_A2  
EE_A1  
EE_A0  
Bits 6 ~ 0: EEPROM address  
6.1.11 Bank 0 RD (EEPROM Data)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EE_D7  
EE_D6  
EE_D5  
EE_D4  
EE_D3  
EE_D2  
EE_D1  
EE_D0  
Bits 7 ~ 0: EEPROM data  
6.1.12 Bank 0 RE (CPU Operating Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
TIMERSC  
CPUS  
IDLE-  
-
Bit 7:  
Not used, set to “0” at all time  
Bit 6 (TIMERSC): TCC, TC1, TC3 clock source select  
0 : Fs. Fs: sub frequency for WDT internal RC time base  
1 : Fm. Fm: main-oscillator clock  
CPU Oscillator Source Select  
Bit 5 (CPUS):  
0 = Sub-oscillator (fs)  
1 = Main oscillator (fosc)  
When CPUS=0, the CPU oscillator selects a sub-oscillator and the  
main oscillator is stopped.  
Bit 4 (IDLE):  
Idle Mode Enable Bit. This bit determines the Idle mode status  
under SLEP instruction.  
0 : IDLE=”0”+SLEP instruction Sleep mode  
1 : IDLE=”1”+SLEP instruction Idle mode  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
13  
EM78F734N  
8-Bit Microcontroller  
CPU Operation Mode  
RESET  
Normal mode  
Fm : oscillation  
Fs : oscillation  
CPU : using Fm  
wakeup  
wakeup  
IDLE = 0  
+ SLEP  
IDLE = 1  
+ SLEP  
CPUS = 1  
CPUS = 0  
IDLE = 1  
+ SLEP  
(*)  
wakeup  
Sleep mode  
Fm : stop  
Fs : stop  
Green mode  
Fm : stop  
Fs : oscillation  
Idle mode  
Fm : stop  
Fs : oscillation  
CPU : stop  
CPU : using Fs  
CPU : stop  
wakeup  
IDLE = 0  
+ SLEP  
(*) only as WDT IRC is Fs.  
If watchdog function is enabled before into sleep mode, Fs does not stop.  
Therefore, some circuits like timer/counter (Its clock source is Fs) must be disable  
before into sleep mode especially as corresponding interrupt is enabled.  
Figure 6-3 CPU Operation Mode  
Bits 3 ~ 0: Not used, set to “0” at all time  
6.1.13 Bank 0 RF (Interrupt Status Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADIF  
-
-
-
EXIF  
ICIF  
TCIF  
Note: 1 means with interrupt request  
0 means no interrupt occurs  
Bit 7:  
Not used, set to “0” at all time  
Bit 6 (ADIF):  
Interrupt flag for analog to digital conversion. Set when AD  
conversion is completed, reset by software.  
Bits 5 ~ 3:  
Not used, set to “0” at all time  
Bit 2 (EXIF):  
External interrupt flag. Set by a falling edge on /INT pin, reset by  
software.  
Bit 1 (IC IF):  
Bit 0 (TCIF):  
Port 6 input status change interrupt flag. Set when Port 6 input  
changes,reset by software.  
TCC overflow interrupt flag. Set when TCC overflows, reset by  
software.  
Bank 0 RF can be cleared by instruction but cannot be set.  
IOCF is the interrupt mask register.  
NOTE  
The result of reading Bank 0 RF is the "Logic AND" of Bank 0 RF and IOCF.  
14   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.1.14 R10 ~ R3F  
These are all 8-bit general-purpose registers.  
6.1.15 Bank 1 R5 TC1CR (Timer 1 Control)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC1CAP  
TC1S  
TC1M  
TC1ES TC1MOD TCK1CK2 TC1CK1 TC1CK0  
Bit 7 (TC1CAP): Software capture control  
0 : Software capture disable  
1 : Software capture enable  
Bit 6 (TC1S): Timer/Counter 1 start control  
0 : Stop and clear the counter  
1 : Start Timer/Counter 1  
Bit 5 (TC1M): Timer/Counter 1 mode select  
0 : Timer/Counter 1 mode  
1 : Capture mode  
Bit 4 (TC1ES): TC1 signal edge  
0 : increment if the transition from low to high (rising edge) takes place  
on the TC1 pin.  
1 : increment if the transition from high to low (falling edge) takes place  
on TC1 pin.  
Bit 3 (TC1MOD): Timer Operation Mode Selection Bit  
0: Two 8-bit timers  
1: Timer 1 and 2 are cascaded as one 16-bit timer. The corresponding  
control register of 16-bit timer is from timer 1. TC1DA and TC2DA  
are low byte. TC1DB and TC2DB are high byte.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
15  
EM78F734N  
8-Bit Microcontroller  
Bit 2 ~ Bit 0 (TC1CK2 ~ TC1CK0): Timer/Counter 1 clock source select  
Max. time  
8 MHz  
Max. time  
16kHz  
Clock  
Source  
Resolution  
8 MHz  
Resolution  
16kHz  
TC1CK2 TC1CK1 TC1CK0  
Normal  
FC=8M  
FC=8M  
FC=16K  
FC=16K  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
FC/223  
FC/213  
FC/28  
FC/23  
FC/22  
FC/2  
1.05s  
1.024ms  
32μs  
19.1hr  
67.11s  
145hr  
512ms  
16ms  
9544hr  
33554.432s  
1048.576s  
32768ms  
16384ms  
8192ms  
2.097s  
1μs  
65.536ms  
32.768ms  
16.384ms  
8.192ms  
0.5ms  
0.5s  
0.25ms  
125s  
0.25s  
125ns  
FC  
0.0625ms  
4096ms  
External  
clock  
1
1
1
-
-
-
-
(TC1 pin)  
Bits 1 ~ 0: Not used, set to “0” at all time.  
rising inhibit  
edge  
detector  
capture  
control  
falling  
TC1  
interrupt  
TC1ES  
M
TC1M  
TC1 pin  
MUX  
fc/212  
overflow  
fc/210  
fc/27  
8 or16 bit up counter  
TC1S  
TC1CAP  
TC1CK  
Comparator  
2
capture  
capture  
TC1CR  
TC1DB  
TC2DB  
TC1DA  
TC2DA  
TC1MOD  
Figure 6-4 Timer/Counter 1 Configuration  
In Timer mode, counting up is performed using the internal clock. When the  
contents of the up-counter matched with the TC1DA, interrupt is generated and the  
counter is cleared. Counting up resumes after the counter is cleared. The current  
contents of the up-counter are loaded into TC1DB by setting TC1CAP to 1and the  
TC1CAP is automatically cleared to 0after capture. The timer mode will operate  
with 16bits by setting TC1MOD to 1”  
16   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
In Counter mode, counting up is performed using the external clock input pin (TC1  
pin) and either rising or falling edge can be selected by TC1ES, but both edges  
cannot be used. When the contents of the up-counter matched with the TC1DA,  
interrupt is generated and the counter is cleared. Counting up resumes after the  
counter is cleared. The current contents of the up-counter are loaded into the TC1DB  
by setting TC1CAP to 1and the TC1CAP is automatically cleared to 0after  
capture. The counter mode will operate with 16 bits by setting TC1MOD to 1.  
In Capture mode, the pulse width, period and duty of the TC1 input pin are  
measured in this mode, which can be used to decode the remote control signal. The  
counter is set as free running by the internal clock. On a rising (falling) edge of TC1  
pin input, the contents of the counter is loaded into TC1DA, then the counter is  
cleared and interrupt is generated. On a falling (rising) edge of the TC1 pin input, the  
contents of the counter are loaded into TC1DB. The counter is still counting, on the  
next rising edge of the TC1 pin input, the contents of the counter are loaded into  
TC1DA, the counter is cleared and interrupt is generated again. If an overflow occurs  
before an edge is detected, the FFH is loaded into TC1DA and the overflow interrupt  
is generated. During interrupt processing, it can be determined whether there is an  
overflow by checking if the TC1DA value is FFH. After an interrupt (capture to  
TC1DA or overflow detection) is generated, capture and overflow detection are halted  
until TC1DA is read out. The capture mode will operate with 16 bits by setting  
TC1MOD to 1.  
Clock source  
Up-counter  
K 0  
m m+1  
K-2  
K-1  
1
m-1  
n-1 n 0  
1
2
3
FE FF0  
1
2
3
TC1 pin input  
TC1DA  
K
n
FF (overflow)  
overflow  
m
FE  
TC1DB  
capture  
capture  
TC1 interrupt  
Reading TC1DA  
Figure 6-5 (a) Timing Chart of 8 bits Capture Mode  
Clock source  
Up-counter  
K
0
m m+1  
m-1  
K-2  
K-1  
1
n-1 n 0  
1
2
3
FFFE FFFF 0  
1
2
3
TC1 pin input  
TC2DA,TC1DA  
TC2DB,TC1DB  
K
n
FFFF (overflow)  
FFFE  
m
capture  
overflow  
capture  
TC1 interrupt  
Reading TC1DA  
Figure 6-5 (b) Timing Chart of 16 bits Capture Mode  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
17  
EM78F734N  
8-Bit Microcontroller  
6.1.16 Bank 1 R6 TC1DA (Timer 1 Data Buffer A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC1DA7 TC1DA6 TC1DA5 TC1DA4 TC1DA3 TC1DA2 TC1DA1 TC1DA0  
Bit 7 ~ Bit 0 (TC1DA7 ~ TC1DA0): Data buffer of 8-bit Timer/Counter 1.  
6.1.17 Bank 1 R7 TC1DB (Timer 1 Data Buffer B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC1DB7 TC1DB6 TC1DB5 TC1DB4 TC1DB3 TC1DB2 TC1DB1 TC1DB0  
Bit 7 ~ Bit 0 (TC1DB7 ~ TC1DB0): Data buffer of 8-bit Timer/Counter 1.  
6.1.18 Bank 1 R8 OSCR (Oscillator Control)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCM1  
RCM0  
Bit 7 and Bit 6 (RCM1, RCM0): IRC mode select bits  
Bank1 R8<7,6>  
RCM1 RCM0  
Writer Trim IRC  
Frequency  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4 MHz  
1 MHz  
8 MHz  
455kHz  
4 MHz  
1 MHz  
8 MHz  
455kHz  
4 MHz  
1 MHz  
8 MHz  
455kHz  
4 MHz  
1 MHz  
8 MHz  
455kHz  
4 MHz  
1 MHz  
8 MHz  
455kHz  
NOTE  
Bank 1 R8<7, 6 > of the initialized values are kept the same as Word 1<3, 2>.  
After A Frequency switches to B Frequency, EM78F734N needs to hold some  
stable time on B frequency  
Ex: Writer trim IRC 4 MHz Bank 1 R8<7,6> set to “10” holds 3 µs   
EM78F734N works on 8 MHz ± 10%  
18   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Code Option Word 1 COBS=0:  
The R8<7, 6 > of the initialized values will remain the same as Word 1<3,  
2>.  
The R8<7, 6 > cannot change frequency.  
Code Option Word 1 COBS=1:  
The R8<7, 6 > of the initialized values will remain the same Word as 1<3,  
2>.  
The R8<7, 6> can change when user wants to work on other IRC  
frequency.  
6.1.19 Bank 1 R9 TC2DA (Timer 2 Data Buffer A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC2DA7 TC2DA6 TC2DA5 TC2DA4 TC2DA3 TC2DA2 TC2DA1 TC2DA0  
Bits 7~0 (TC2DA7~ TC2DA0): Data buffer of 8-bit Timer/Counter 2 cascade with  
Timer/Counter 1 at TC1MOD set to “1”  
6.1.20 Bank 1 RA TC2DB (Timer 2 Data Buffer B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC2DB7 TC2DB6 TC2DB5 TC2DB4 TC2DB3 TC2DB2 TC2DB1 TC2DB0  
Bit 7 ~ Bit 0 (TC2DB7 ~ TC2DB0): Data buffer of 8-bit Timer/Counter 2 cascade with  
Timer/Counter 1 at TC1MOD set to “1” ..  
6.1.21 Bank 1 RB ~RE  
These are reserved registers.  
6.1.22 Bank 1 RF (Interrupt Status Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
TCIF3  
TCIF1  
-
-
-
Note: 1 means with interrupt request  
0 means no interrupt occurs  
Bits 7~6: Not used, set to “0” at all time  
Bit 5 (TCIF3): 8-bit Timer/Counter 3 interrupt flag. The Interrupt flag is cleared by  
software.  
Bit 4: Not used, set to “0” at all time  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
19  
EM78F734N  
8-Bit Microcontroller  
Bit 3 (TCIF1): 8-bit Timer/Counter 1 interrupt flag. The Interrupt flag is cleared by  
software.  
Bits 2~0: Not used, set to “0” at all time  
Bank 1 RF can be cleared by instruction but cannot be set.  
IOCE is the interrupt mask register.  
NOTE  
The result of reading Bank 1 RF is the "Logic AND" of Bank 1 RF and IOCE.  
6.1.23 Bank 2 R5 AISR (ADC Input Select Register)  
The AISR register for ADC pins act as analog input or digital I/O.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Bit 7 (ADE7): AD converter enable bit of P57 pin.  
0 : Disable ADC7, P57 functions as I/O pin.  
1 : Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P74 pin.  
0 : Disable ADC6, P74 functions as I/O pin.  
1 : Enable ADC6 to function as analog input pin  
Bit 5 (ADE5): AD converter enable bit of P77 pin  
0 : Disable ADC5, P77 functions as I/O pin  
1 : Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P73 pin  
0 : Disable ADC4, P73 functions as I/O pin  
1 : Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P63 pin.  
0 : Disable ADC3, P63 functions as I/O pin  
1 : Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P62 pin.  
0 : Disable ADC2, P62 functions as I/O pin  
1 : Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P61 pin  
0 : Disable ADC1, P61 functions as I/O pin  
1 : Enable ADC1 to function as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P60 pin  
0 : Disable ADC0, P60 functions as I/O pin  
20   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
1 : Enable ADC0 to function as analog input pin  
The following table shows the priority of P60/AD1//INT.  
P60/AD0//INT Pin Priority  
High  
/INT  
Medium  
AD0  
Low  
P60  
6.1.24 Bank 2 R6 ADCON (A/D Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
Bit 7 (VREFS): The input source of the Vref of the ADC.  
0 : Vref of the ADC is connected to the Internal reference which is  
selected by Bank 2 R9<5,4>(default value), and the P50/VREF pin  
carries out the function of P50  
1 : Vref of the ADC is connected to P50/VREF  
Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The oscillator clock rate of ADC  
CKR1/CKR0  
Operation Mode  
FOSC/4  
Max. Operation Frequency  
00  
01  
10  
11  
4 MHz  
1 MHz  
8 MHz  
1 MHz  
FOSC  
FOSC/16  
FOSC/2  
RCM[1:0]*  
Frequency (MHz)  
Sample and Hold Timing  
00  
01  
10  
11  
4
1
8 x TAD  
4 x TAD  
12 x TAD  
2 x TAD  
8
455k  
*When using XT, LXT1, HXT1, HXT2 mode can also modify RCM[1:0] at Code Option Word 1  
to set the Sample and Hold time.  
Bit 4 (ADRUN): ADC starts to run  
0 : Reset upon completion of AD conversion. This bit cannot be reset  
by software.  
1 : A/D conversion is started. This bit can be set by software.  
Bit 3 (ADPD): ADC Power-down mode  
0 : Switch off the resistor reference to save power even while the  
CPU is operating.  
1 : ADC is operating  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
21  
EM78F734N  
8-Bit Microcontroller  
Bits 2~0 (ADIS2~ADIS0): AD Input Select Bits  
AD Input Pin  
AD0  
ADIS2  
ADIS1  
ADIS0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
6.1.25 Bank 2 R7 ADOC (A/D Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PDE  
Reserved Reserved  
Bits 7~3: Not used, set to “0” at all time  
Bit 2 (PDE): 1/2 VDD Power Detect Enable bit  
0 : Disable Power Detect (Default)  
1 : Enable Power Detect  
PDE  
ADIS2  
ADIS1  
ADIS0  
AD Input Select  
1/2VDD  
1
0
ADx  
Bits 1~0: Reserved, must be set to “0” at all time  
6.1.26 Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADD11  
ADD10  
ADD9  
ADD8  
ADD7  
ADD6  
ADD5  
ADD4  
When the A/D conversion is completed, the result which is high 8-bit is loaded into the  
ADDH. The ADRUN bit is cleared, and the ADIF is set. R8 is read only.  
6.1.27 Bank 2 R9 ADDL (AD Low 4-Bit Data Buffer)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
IRVS1  
IRVS0  
ADD3  
ADD2  
ADD1  
ADD0  
Bits 7 ~ 6: Not used, set to “0” at all time  
Bits 5 ~ 4 (IRVS1~IRVS0): Internal Reference Voltage Selection.  
IRVS[1:0]  
Reference Voltage  
00  
01  
10  
11  
AVDD  
4 V  
3 V  
2.5 V  
Bits 3 ~ 0 (ADD3~ADD0): AD low 4-bit data buffer.  
22   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.1.28 Bank 2 RA ~ RE  
These are reserved registers.  
6.1.29 Bank 2 RF (Pull-high Control Register 1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
/PH73  
/PH72  
/PH71  
/PH70  
Bits 7 ~ 4:  
Not used, set to “0” at all time.  
Bit 3 (/PH73): Control bit used to enable pull-high of the P73 pin  
0 : Enable internal pull-high  
1 : Disable internal pull-high  
Bit 2 (/PH72): Control bit used to enable pull-high of the P72 pin.  
Bit 1 (/PH71): Control bit used to enable pull-high of the P71 pin.  
Bit 0 (/PH70): Control bit used to enable pull-high of the P70 pin.  
The RF Register is both readable and writable.  
6.1.30 Bank 3 R5  
Reserved Register  
6.1.31 Bank 3 R6 TBPTH (High Byte of Table Pointer Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MLB  
0
0
0
RBit 11  
RBit 10  
RBit 9  
RBit 8  
Bit 7 (MLB): Take MSB or LSB at machine code.  
Bits 6 ~ 4:  
Bits 3 ~ 0:  
Not used. Set to “0” at all time.  
Table Pointer Address Bits 11~8.  
6.1.32 Bank 3 R7~RC  
Reserved Registers  
6.1.33 Bank 3 RD TC3CR (Timer 3 Control)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC3FF1  
TC3FF0  
TC3S  
TC3CK2 TC3CK1 TC3CK0  
TC3M1  
TC3M0  
Bit 7 ~ Bit 6 (TC3FF1 ~ TC3FF0): Timer/Counter 3 flip-flop control  
TC3FF1  
TC3FF0  
Operating Mode  
Clear  
0
0
1
1
0
1
0
1
Toggle  
Set  
Reserved  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
23  
EM78F734N  
8-Bit Microcontroller  
Bit 5 (TC3S): Timer/Counter 3 start control  
0 : Stop and clear the counter  
1 : Start Timer/Counter 3  
Bit 4 ~ Bit 2 (TC3CK2 ~ TC3CK0): Timer/Counter 3 Clock Source select  
Clock Source  
Resolution Max. Time  
TC3CK2  
TC3CK1  
TC3CK0  
Normal  
Fc/211  
Fc/27  
Fc/25  
Fc/23  
Fc/22  
Fc/21  
Fc=8M  
250 µs  
16 µs  
4 µs  
Fc=8M  
64 ms  
4 ms  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 ms  
1 µs  
255 µs  
127.5 µs  
63.8 µs  
31.9 µs  
-
500 ns  
250 ns  
125 ns  
-
Fc  
External clock (TC3 pin)  
Bit 1 ~ Bit 0 (TC3M1 ~ TC3M0): Timer/Counter 3 operating mode select  
TC3M1  
TC3M0  
Operating Mode  
Timer/Counter  
0
0
1
1
0
1
0
1
Reserved  
Programmable Divider output  
Pulse Width Modulation output  
Figure 6-6 Timer / Counter 3 Configuration  
In Timer mode, counting up is performed using internal clock (rising edge trigger).  
When the contents of the up-counter match the TCR3, then interrupt is generated and  
the counter is cleared. Counting up resumes after the counter is cleared.  
24   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
In Counter mode, counting up is performed using external clock input pin (TC3 pin).  
When the contents of the up-counter match the TCR3, then interrupt is generated and  
the counter is cleared. Counting up resumes after the counter is cleared.  
In Programmable Divider Output (PDO) mode, counting up is performed using the  
internal clock. The contents of TCR3 are compared with the contents of the up-  
counter. The F/F output is toggled and the counter is cleared each time a match is  
found. The F/F output is inverted and output to /PDO pin. This mode can generate  
50% duty pulse output. The F/F can be initialized by the program and it is initialized  
to 0during reset. A TC3 interrupt is generated each time the /PDO output is  
toggled.  
Source clock  
Up-counter  
2
n
0
1
n-1  
n
0
1
3
n-1  
n
0
1
n-1  
0
1
2
TCR3  
n
F/F  
/PDO Pin  
TC3 Interrupt  
Figure 6-7 PDO Mode Timing Chart  
In Pulse Width Modulation (PWM) Output mode, counting up is performed using  
internal clock. The contents of TCR3 are compared with the contents of the up-  
counter and TCR3 should be greater than 1(including 1) . The F/F is toggled when a  
match is found. The counter continues counting, the F/F is toggled again when the  
counter overflows, after which the counter is cleared. The F/F output is inverted and  
output to /PWM pin. A TC3 interrupt is generated each time an overflow occurs.  
TCR3 is configured as a 2-stage shift register and, during output, will not switch until  
one output cycle is completed even if TCR3 is overwritten. Therefore, the output can  
be changed continuously. Also, the first time, TRC3 is shifted by setting TC3S to 1”  
after data is loaded to TCR3.  
Source Clock  
n+2  
m
Up-counter  
TCR3  
n
m-1  
n
n+1 n+2  
n-1  
n+1  
0
1
FE FF  
0
n-1  
FE FF  
0
1
n/n  
n/m  
m/m  
Shift  
overflow  
match  
overflow  
match  
overwrite  
F/F  
/PWM  
1 period  
TC3 Interrupt  
Figure 6-8 PWM Mode Timing Chart  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
25  
EM78F734N  
8-Bit Microcontroller  
6.1.34 Bank 3 RE TC3D (Timer 3 Data Buffer)  
Bit 7  
TC3D7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TC3D6  
TC3D5  
TC3D4  
TC3D3  
TC3D2  
TC3D1  
TC3D0  
Bit 7 ~ Bit 0 (TC3D7 ~ TC3D0): Data Buffer of 8-bit Timer/Counter 3  
6.1.35 Bank 3 RF (Pull-down Control Register 1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
/PD73  
/PD72  
/PD71  
/PD70  
Bit 7~ Bit 4: Not used, set to “0” at all time  
Bit 3 (/PD73): Control bit used to enable the P73 pull-down pin  
0 : Enable internal pull-down  
1 : Disable internal pull-down  
Bit 2 (/PD72): Control bit used to enable the P72 pull-down pin  
Bit 1 (/PD71): Control bit used to enable the P71 pull-down pin  
Bit 0 (/PD70): Control bit used to enable the P70 pull-down pin  
The RF Register is both readable and writable.  
26   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.2 Special Function Registers  
6.2.1 A (Accumulator)  
Internal data transfer operation, or instruction operand holding usually involves the  
temporary storage function of the Accumulator, which is not an addressable register.  
6.2.2 CONT (Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTE  
/INT  
TS  
TE  
PSTE  
PST2  
PST1  
PST0  
Bit 7 (INTE): INT signal edge  
0 : interrupt occurs at the rising edge of the INT pin  
1 : interrupt occurs at the falling edge of the INT pin  
Bit 6 (/INT): Interrupt Enable flag  
0 : masked by DISI or hardware interrupt  
1 : enabled by ENI/RETI instructions  
Bit 5 (TS): TCC signal source  
0 : internal instruction cycle clock  
1 : transition on the TCC pin  
Bit 4 (TE): TCC signal edge  
0 : increment if a transition from low to high takes place on the TCC pin  
1 : increment if a transition from high to low takes place on the TCC pin  
Bit 3 (PSTE): Prescaler enable bit for TCC  
0 : prescaler disable bit, TCC rate is 1:1  
1 : prescaler enable bit, TCC rate is set at Bit 2~Bit 0  
Bit 2 ~ Bit 0 (PST 2 ~ PST0): TCC prescaler bits  
PST2  
PST1  
PST0  
TCC Rate  
1:2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
The CONT register is both readable and writable.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
27  
EM78F734N  
8-Bit Microcontroller  
6.2.3 IOC5 ~ IOC8 (I/O Port Control Register)  
A value 1sets the relative I/O pin into high impedance, while 0defines the relative  
I/O pin as output.  
IOC5, IOC6 IOC7 and IOC8 registers are both readable and writable.  
6.2.4 IOC9  
Reserved registers  
6.2.5 IOCA (WDT Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTE  
EIS  
-
-
PSWE  
PSW2  
PSW1  
PSW0  
Bit 7 (WDTE): Control bit used to enable the Watchdog timer  
0 : Disable WDT  
1 : Enable WDT  
WDTE is both readable and writable.  
Bit 6 (EIS): Control bit used to define the function of P60 (INT) pin  
0 : P60, bidirectional I/O pin  
1 : INT, external interrupt pin. In this case, the I/O control bit of P60  
(Bit 0 of IOC6) must be set to 1.  
When EIS is 0, the path of /INT is masked. When EIS is 1, the  
status of the /INT pin can also be read by way of reading Port 6 (R6).  
EIS is both readable and writable.  
Bits 5~4:  
Not used, set to “0” at all time  
Bit 3 (PSWE): Prescaler enable bit for WDT  
0 : prescaler disable bit, WDT rate is 1:1  
1 : prescaler enable bit, WDT rate is set at Bit 0~Bit 2  
Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits  
PSW2  
PSW1  
PSW0  
WDT Rate  
1:2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
28   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.2.6 IOCB (Pull-down Control Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PD7  
/PD6  
/PD5  
/PD4  
/PD3  
/PD2  
/PD1  
/PD0  
Bit 7 (/PD7): Control bit used to enable pull-down of the of P63 pin  
0 : Enable internal pull-down  
1 : Disable internal pull-down  
Bit 6 (/PD6): Control bit used to enable pull-down of the P62 pin  
Bit 5 (/PD5): Control bit used to enable pull-down of the P61 pin  
Bit 4 (/PD4): Control bit used to enable pull-down of the P60 pin  
Bit 3 (/PD3): Control bit used to enable pull-down of the P53 pin  
Bit 2 (/PD2): Control bit used to enable pull-down of the P52 pin  
Bit 1 (/PD1): Control bit used to enable pull-down of the P51 pin  
Bit 0 (/PD0): Control bit used to enable pull-down of the P50 pin  
The IOCB Register is both readable and writable.  
6.2.7 IOCC (Open-drain Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OD3  
OD2  
OD1  
OD0  
Bits 7 ~ 4: Not used, set to “0” at all time  
Bit 3 (OD3): Control bit used to enable the open-drain output of P63 pin  
0 : Disable open-drain output  
1 : Enable open-drain output  
Bit 2 (OD2): Control bit used to enable the open-drain output of P62 pin  
Bit 1 (OD1): Control bit used to enable the open-drain output of P61 pin  
Bit 0 (OD0): Control bit used to enable the open-drain output of P60 pin  
The IOCC Register is both readable and writable.  
6.2.8 IOCD (Pull-high Control Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH3  
/PH2  
/PH1  
/PH0  
Bits 7~4:  
Not used, set to “0” at all time  
Bit 3 (/PH3): Control bit used to enable pull-high of the P63 pin.  
0 : Enable internal pull-high  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
29  
EM78F734N  
8-Bit Microcontroller  
1 : Disable internal pull-high  
Bit 2 (/PH2): Control bit used to enable pull-high of the P62 pin.  
Bit 1 (/PH1): Control bit used to enable pull-high of the P61 pin.  
Bit 0 (/PH0): Control bit used to enable pull-high of the P60 pin.  
The IOCD Register is both readable and writable.  
6.2.9 IOCE (Interrupt Mask Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TCIE3  
TCIE1  
Bits 7~6: Not used, set to 0at all time  
Bit 5 (TCIE3): Interrupt enable bit  
0 : Disable TCIF3 interrupt  
1 : Enable TCIF3 interrupt  
Bit 4:  
Bit 3 (TCIE1):Interrupt enable bit  
0: Disable TCIF1 interrupt  
Not used, set to “0” at all time  
1: Enable TCIF1 interrupt  
Bits 2~0:  
Not used, set to “0” at all time  
6.2.10 IOCF (Interrupt Mask Register 1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADIE  
EXIE  
ICIE  
TCIE  
Bit 7:  
Not used, set to “0” at all time  
Bit 6 (ADIE): ADIF interrupt enable bit  
0 : Disable ADIF interrupt  
1 : Enable ADIF interrupt  
When the ADC Complete is used to enter an interrupt vector or enter  
the next instruction, the ADIE bit must be set to “Enable“.  
Bits 5 ~ 3: Not used, set to “0” at all time  
Bit 2 (EXIE): EXIF interrupt enable bit  
0 : Disable EXIF interrupt  
1 : Enable EXIF interrupt  
Perform the following steps from the EXINT, First set EXIE, and then set the EIS.  
EXINT internal comparison value default is 0. Then set the rising edge and the INT  
30   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
pin to high, since doing EXINT setting will cause immediate trigger signal and  
generate an interrupt.  
Bit 1 (ICIE): ICIF interrupt enable bit  
0 : Disable ICIF interrupt  
1 : Enable ICIF interrupt  
Bit 0 (TCIE): TCIF interrupt enable bit  
0 : Disable TCIF interrupt  
1 : Enable TCIF interrupt  
Individual interrupt is enabled by setting its associated control bit in the IOCF to 1.  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.  
The IOCF register is both readable and writable.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
31  
EM78F734N  
8-Bit Microcontroller  
6.3 TCC/WDT and Prescaler  
There are two 8-bit counters available as prescalers for the TCC and WDT respectively.  
The PST0~PST2 bits of the CONT register are used to determine the ratio of the  
prescaler of TCC. Likewise, the PSW0~PSW2 bits of the IOCA register are used to  
determine the WDT prescaler. The prescaler counter will be cleared by the  
instructions each time they are written into TCC. The WDT and prescaler will be  
cleared by the “WDTC” and “SLEP” instructions. Figure 6-9 depicts the circuit  
diagram of TCC/WDT.  
R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be the internal clock  
or the external signal input (edge selectable from the TCC pin). If TCC signal source  
is from the internal clock, TCC will be incremented by 1 at Fc clock (without  
prescaler). As illustrated in Figure 6-9, selection of Fc depends on the bank 0 RE.6  
<TIMERSC>. If TCC signal source is from external clock input, TCC will be  
incremented by 1 at every falling edge or rising edge of the TCC pin. TCC pin input  
time length (kept in High or low level) must be greater than 1CLK. The TCC will stop  
running when sleep mode occurs.  
The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on  
running even after the oscillator driver has been turned off (i.e. in sleep mode).  
During normal operation or sleep mode, a WDT time-out (if enabled) will cause the  
device to reset. The WDT can be enabled or disabled at any time during normal  
mode by software programming. Refer to WDTE bit of IOCA register. With no  
prescaler, the WDT time-out period is approximately 16.5 ms1 (one oscillator start-up  
timer period).  
0
8 Bit Counter  
Data Bus  
Fc (Fm/Fs)  
MUX  
1
TCC Pin  
8 to 1 MUX  
Prescaler  
TCC(R1)  
TE (CONT)  
TCC overflow  
interrupt  
TS (CONT)  
PSTE, PST2~PST0  
(CONT)  
8 Bit Counter  
WDT  
8 to 1 MUX  
Prescaler  
WDTE (IOCA)  
WDT time out  
PSWE, PSW2~PSW0  
(IOCA)  
Figure 6-9 TCC and WDT Block Diagram  
1 VDD=5V, WDT time-out period = 16.5ms ± 5% VDD=3V  
WDT time-out period = 16.5ms ± 5%.  
32   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.4 I/O Ports  
The I/O registers, Ports 5, 6, 7 and 8, are bidirectional tri-state I/O ports. Port 6 / 7 can  
be pulled high internally by software. In addition, Port 6 can also have open-drain  
output by software. Input status change interrupt (or wake-up) function on Port 6 P50 ~  
P53 and P60 ~ P63 and Port 7 pins can be pulled down by software. Each I/O pin can  
be defined inor outpin by the I/O control register (IOC5 ~ IOC8).  
The I/O registers and I/O control registers are both readable and writable. The I/O  
interface circuits for Port 5, Port 6, Port 7 and Port 8 are shown in the following  
Figures 6-10, 6-11 (a), 6-11 (b), and Figure 6-12.  
PCRD  
P
Q
D
R
PCWR  
CLK  
_
Q
C
L
P
R
IOD  
PORT  
Q
D
PDWR  
CLK  
_
Q
C
L
PDRD  
0
1
M
U
X
Note: Pull-down is not shown in the figure.  
Figure 6-10 I/O Port and I/O Control Register Circuit for Ports 5, 6, 7  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
33  
EM78F734N  
8-Bit Microcontroller  
PCRD  
P
Q
D
R
_
Q
PCWR  
PDWR  
CLK  
C
L
INT  
IOD  
P
R
Q
PORT  
D
_
Q
CLK  
C
L
0
1
P
D
R
Q
M
U
X
_
Q
CLK  
C
L
T10  
PDRD  
P
R
D
Q
CLK  
_
Q
C
L
INT  
Note: Pull-high (down) and Open-drain are not shown in the figure.  
Figure 6-11 (a) I/O Port and I/O Control Register Circuit for P60 (INT)  
PCRD  
P
R
Q
D
_
Q
CLK  
C
L
PCWR  
PDWR  
P60~P63  
PORT  
IOD  
P
R
Q
D
_
Q
CLK  
C
L
0
1
M
U
X
TIN  
PDRD  
P
R
D
Q
CLK  
_
Q
C
L
Note: Pull-high (down) and Open-drain are not shown in the figure.  
Figure 6-11 (b) I/O Port and I/O Control Register Circuit for P61~P63, P83  
34   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
IOCE.1  
P
Q
D
R
CLK  
Interrupt  
_
Q
C
L
RE.1  
ENI Instruction  
P
R
T10  
T11  
D
Q
P
CLK  
Q
D
R
_
Q
C
CLK  
L
_
Q
C
L
T17  
DISI Instruction  
Interrupt  
(Wake-up from SLEEP)  
/SLEP  
Next Instruction  
(Wake-up from SLEEP)  
Figure 6-12 Block Diagram of I/O Port 6 with Input Change Interrupt/Wake-up  
Table 6-1 Usage of Port 6 Input Change Wake-up/Interrupt Function  
Usage of Port 6 Input Status Changed Wake-up/Interrupt  
(I) Wake-up Input Status Change  
(a) Before Sleep  
(II) Interrupt Input Status Change  
1. Read I/O Port 6 (MOV R6,R6)  
2. Execute NI”  
2
1. Disable WDT (use this very carefully)  
2. Read I/O Port 6 (MOV R6,R6)  
3. Enable interrupt (Set IOCF=1)  
4. If Port 6 change (Interrupt)   
3 a. Enable interrupt (Set IOCF=1), after  
wake-up  
Interrupt Vector (006H)  
if ENIswitch to interrupt vector  
(006H),  
if DISIexcute next instruction  
3 b. Disable interrupt (Set IOCF=1).  
Always execute next instruction  
4. Enable wake-up bit (Set RA=6)  
5. Execute SLEPinstruction  
(b) After Wake-up  
1. If NIInterrupt Vector (006H)  
2. If DSINext instruction  
2 Software disables WDT (watchdog timer) but hardware must be enabled before applying  
Port 6 Change Wake-up function (Code Option Register Word 0 Bit 6 (ENWDTB) is set to  
“1”).  
3 Vdd = 5V, set up time period = 16.5ms ± 5%  
Vdd = 3V, set up time period = 16.5ms ± 5%  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
35  
EM78F734N  
8-Bit Microcontroller  
6.5 Reset and Wake-up  
6.5.1 Reset  
A reset is initiated by one of the following events:  
(1) Power-on reset  
(2) /RESET pin input low”  
(3) WDT time-out (if enabled)  
3
The device is kept in a reset condition for a period of approximately 18ms (one  
oscillator start-up timer period) after the reset is detected. Once a reset occurs, the  
following functions are performed.  
The oscillator is running, or will be started.  
The Program Counter (R2) is set to all “0”.  
All I/O port pins are configured as input mode (high-impedance state).  
The Watchdog timer and prescaler are cleared.  
When power is switched on, the upper three bits of R3 are cleared.  
The bits of the RB, RC, RD, RD, RE registers are set to their previous status.  
The bits of the CONT register are set to all “0” except for Bit 6 (INT flag).  
The bits of the Pull-high, Pull-down.  
Bank 0 RF, IOCF registers are cleared.  
Sleep (power down) mode is asserted by executing the “SLEP” instruction. While  
entering sleep mode, WDT (if enabled) is cleared but keeps on running. After a  
wake-up, in RC mode the wake-up time is 16 clocks.  
The controller can be awakened by:  
(1) External reset input on /RESET pin  
(2) WDT time-out (if enabled)  
(3) Port 6 input status changes (if enabled)  
(4) External (P60 / INT) pin changes (if EXWE is enabled)  
(5) A/D conversion completed (if ADWE is enabled)  
3 Vdd = 5V, set up time period = 16.5ms ± 5%  
Vdd = 3V, set up time period = 16.5ms ± 5%  
36   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
The first two events (1 & 2) will cause the EM78F734N to reset. The T and P flags of  
R3 can be used to determine the source of the reset (wake-up). Events 3, 4, and 5  
are considered the continuation of program execution and the global interrupt NIor  
DSI(being executed) determines whether or not the controller branches to the  
interrupt vector following wake-up. If ENI is executed before SLEP, the instruction  
will begin to execute from Address 0x3, 0x6 0xF, 0x15 or 0X30, after wake-up. If  
DISI is executed before SLEP, the execution will restart from the instruction right next  
to SLEP after wake-up. All throughout the sleep mode, wake-up time is150 µs, no  
matter what oscillation mode (except low Crystal mode). In low Crystal 2 mode,  
wake-up time is 500ms.  
One or more of the above Events 3 to 6 can be enabled before entering into sleep  
mode but is awakened only by one of the events.  
[a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the  
EM78F734N can be awakened only by Event 1 or 2. Refer to Section 6.6  
Interrupt for further details.  
[b] If Port 6 Input Status Change is used to wake up the EM78F734N and the ICWE  
bit  
of the RA register is enabled before SLEP, WDT must be disabled. Hence, the  
EM78F734N can be awakened only by Event 3. The following instructions must be  
executed before SLEP:  
MOV  
A, @001110xxb ;Select WDT prescaler and disable WDT  
IOW  
IOCA  
WDTC  
;Clear WDT and prescaler  
MOV  
R6, R6  
;Read Port 6  
ENI (or DISI)  
;Enable (or disable) global interrupt  
MOV  
MOV  
MOV  
IOW  
SLEP  
A, @010xxxxxb ;Enable Port 6 input change Wake-up bit  
RA,A  
A, @00000x1xb ;Enable Port 6 input change interrupt  
IOCF  
;Sleep  
[c] If External (P60/INT) pin changes is used to wake-up the EM78F734N and  
EXWE  
bit of the RA register is enabled before SLEP, WDT must be disabled by  
software. Hence, the EM78F734N can be awakened only by Event 4.  
[d] If AD conversion completed is used to wake-up EM78F734N and ADWE bit of the  
RA  
register is enabled before SLEP, the WDT must be disabled by software. Hence,  
the EM78F734N can be waken-up only by Event 5.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
37  
EM78F734N  
8-Bit Microcontroller  
6.5.2 Summary of Wake-up and Interrupt Modes Operation  
All categories under Wake-up and Interrupt modes are summarized below.  
The controller can be awakened from Sleep mode and Idle mode. The Wake-up  
signals are listed as follows.  
Wake-up Signal  
Sleep Mode  
Idle Mode  
Green Mode  
Normal Mode  
If enable EXWE  
bit  
If enable EXWE  
bit Wake-up  
Interrupt (if  
interrupt is  
enabled)  
Interrupt (if  
interrupt is  
enabled)  
Wake-up  
+ interrupt (if  
interrupt is  
enabled)  
External interrupt  
+ interrupt (if  
interrupt is enablee)  
or next instruction  
or next instruction  
+ next instruction  
+ next instruction  
If enable ICWE bit  
Wake-up  
If enable ICWE bit  
Wake-up  
Interrupt (if interrupt  
is enabled)  
Interrupt (if interrupt  
is enabled)  
+ interrupt (if  
interrupt is  
enabled)  
Port 6 pin change  
+ interrupt (if  
interrupt is enabled)  
or next instruction  
or next instruction  
+ next instruction  
+ next instruction  
Wake-up  
Interrupt (if interrupt  
is enabled)  
Interrupt (if interrupt  
is enabled)  
+ interrupt (if  
interrupt is  
enabled)  
TCC overflow  
interrupt  
x
or next instruction  
or next instruction  
+ next instruction  
If enable ADWE  
bit  
If enable ADWE  
bit Wake-up  
Wake-up  
Interrupt (if interrupt  
is enabled)  
+ interrupt (if  
interrupt is  
enabled)  
Interrupt (if interrupt  
is enabled)  
AD conversion  
complete  
interrupt  
+ interrupt (if  
interrupt is  
enabled)  
or next instruction  
Fs and Fm don’t  
stop  
or next instruction  
+ next instruction  
+ next instruction  
Fs and Fm don’t  
Fs and Fm don’t  
stop  
stop  
Wake-up  
Interrupt (if interrupt  
is enabled)  
Interrupt (if interrupt  
is enabled)  
+ interrupt (if  
interrupt is  
enabled)  
TC2 interrupt  
x
x
or next instruction  
or next instruction  
+ next instruction  
Wake-up  
Interrupt (if  
interrupt is  
enabled)  
Interrupt (if  
interrupt is  
enabled)  
+ interrupt (if  
interrupt is  
enabled)  
TC3 interrupt  
or next instruction  
or next instruction  
+ next instruction  
RESET  
WDT Time out  
RESET  
RESET  
RESET  
RESET  
Low Voltage  
Reset  
RESET  
RESET  
RESET  
After wake up:  
1. If interrupt is enabled → interrupt+ next instruction  
2. If interrupt is disabled → next instruction  
38   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.5.3 Summary of Register Initial Values  
Legend: x: Not used  
U: Unknown or don’t care  
P: Previous value before reset  
t: Check tables under Section 6.5.4  
Addr Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
C53  
1
Bit 2  
Bit 1  
Bit 0  
C57  
-
0
C55  
1
C54  
1
C52  
1
C51  
1
C50  
1
Power-on  
1
0x05 IOC5  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
1
0
1
1
1
1
1
1
P
0
P
-
P
P
P
P
P
-
-
-
C63  
1
C62  
1
C61  
1
C60  
1
Power-on  
0
0
0
0
0x06 IOC6  
0x07 IOC7  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
1
1
1
1
0
0
0
0
P
P
P
P
C77  
-
-
C74  
1
C73  
1
C72  
1
C71  
1
C70  
1
Power-on  
1
0
0
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
1
0
0
1
1
1
1
1
P
0
0
P
P
P
P
P
-
-
-
-
C83  
1
-
-
-
Power-on  
0
0
0
0
0
0
0
0
0x08  
IOC8  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
1
0
0
0
0
0
0
0
P
0
0
0
INTE  
0
/INT  
0
TS  
0
TE  
0
PSTE PST2 PST1 PST0  
Power-on  
0
0
0
0
0
0
0
0
N/A CONT  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
P
P
IAR6  
U
P
P
P
IAR5  
U
P
P
P
P
P
P
P
IAR7  
U
IAR4  
U
P
IAR3  
U
IAR2  
U
IAR1  
U
IAR0  
U
Power-on  
0x00 R0 (IAR)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
P
P
P
P
P
P
P
P
P
P
TCC7 TCC6 TCC5 TCC4 TCC3 TCC2 TCC1 TCC0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R1  
0x01  
(TCC)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
A7  
0
P
A6  
0
P
A5  
0
P
A4  
0
P
A3  
0
P
A2  
0
P
P
A0  
0
A1  
0
Power-on  
0x02 R2 (PC)  
0x03 R3 (SR)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
0
0
P
-
P
-
P
-
P
T
1
P
P
1
P
Z
P
P
C
U
P
P
DC  
U
P
Power-on  
0
0
0
U
P
P
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
t
t
0
0
0
t
t
P
RSR7 RSR6 RSR5 RSR4 RSR3 RSR2 RSR1 RSR0  
Power-on  
U
P
P
U
P
P
U
P
P
U
P
P
U
P
P
U
P
P
U
P
P
U
P
P
R4  
0x04  
(RSR)  
/RESET and WDT  
Wake-up from Pin Change  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
39  
EM78F734N  
8-Bit Microcontroller  
Addr Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
P53  
1
Bit 2  
P52  
1
Bit 1  
P51  
1
Bit 0  
P50  
1
P57  
1
-
P55  
1
1
P
-
P54  
1
Power-on  
0
0
0
-
P5  
(Bank 0)  
0x05  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
1
1
1
1
1
1
P
-
P
-
P
P
P
P
P63  
1
P62  
1
P61  
1
P60  
1
Power-on  
0
0
0
0
-
0
0
0
-
0
P6  
(Bank 0)  
0x06  
0x07  
0x08  
0X09  
0x0A  
0X0B  
0X0C  
0X0D  
0X0E  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
1
1
1
1
0
0
P
P
P
P
P77  
1
P74  
1
P73  
1
P72  
1
P71  
1
P70  
1
Power-on  
0
0
0
-
0
0
0
-
P7  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
1
1
1
1
1
1
P
-
P
-
P
P
P
P
P83  
1
-
-
-
Power-on  
0
0
0
0
0
0
0
0
0
0
0
P8  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
1
0
0
0
0
0
P
0
0
0
RBit7 RBit6 RBit5 RBit4 RBit3 RBit2 RBit1 RBit0  
Power-on  
0
0
0
0
P
0
0
P
0
0
P
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
R9  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
-
ICWE ADWE EXWE  
Power-on  
0
0
0
P
0
0
P
0
0
P
0
0
0
0
0
0
-
0
0
0
-
0
0
0
-
RA  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
RD  
0
WR EEWE EEDF EEPC  
RB  
(ECR)  
(Bank 0)  
Power-on  
0
P
P
0
P
P
0
P
P
0
P
P
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
P
-
EE_A6 EE_A5 EE_A4 EE_A3 EE_A2 EE_A1 EE_A0  
Power-on  
0
0
P
P
0
P
P
0
P
P
0
P
P
0
P
P
0
P
P
0
P
P
RC  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
EE_D7 EE_D6 EE_D5 EE_D4 EE_D3 EE_D2 EE_D1 EE_D0  
Power-on  
0
P
P
-
0
P
P
0
P
P
0
P
P
0
P
P
-
0
P
P
-
0
P
P
-
0
P
P
-
RD  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
TIMERSC CPUS IDLE  
Power-on  
0
0
0
1
1
P
1
1
P
1
1
P
0
0
0
0
0
0
0
0
0
0
0
0
RE  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
40   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Addr Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
ADIF  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
EXIF  
0
Bit 1  
ICIF  
0
Bit 0  
TCIF  
0
-
-
-
-
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
RF (ISR)  
0x0F  
(Bank 0)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
P
P
P
P
TC1AP TC1S TC1M TC1ES TC1MOD TCK1CK2 TC1CK1 TC1CK0  
Power-on  
0
0
0
0
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
R5  
0x5  
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
P
P
TC1DA  
1
Bit Name  
TC1DA7 TC1DA6 TC1DA5 TC1DA4 TC1DA3 TC1DA2  
TC1DA0  
R6  
0x6  
Power-on  
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
TC1DB  
1
Bit Name  
TC1DB7 TC1DB6 TC1DB5 TC1DB4 TC1DB3 TC1DB2  
TC1DB0  
R7  
0X7  
Power-on  
0
0
P
0
0
P
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
RCM1 RCM0  
Option Option  
Power-on  
0
0
0
0
0
0
RCM1  
RCM0  
R8  
0x8  
(Bank 1)  
Option Option  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
RCM1  
P
RCM0  
P
TC2DA  
1
TC2DA7 TC2DA6 TC2DA5 TC2DA4 TC2DA3 TC2DA2  
TC2DA0  
R9  
0x9  
Power-on  
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
TC2DB  
1
Bit Name  
TC2DB7 TC2DB6 TC2DB5 TC2DB4 TC2DB3 TC2DB2  
TC2DB0  
RA  
0XA  
Power-on  
0
0
P
-
0
0
P
-
0
0
0
P
-
0
0
0
P
-
0
0
P
-
0
0
P
-
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
P
P
TCIF3  
TCIF1  
Power-on  
0
0
0
0
0
0
0
0
P
0
0
0
0
0
P
0
0
0
0
0
0
0
0
0
RF  
0XF  
(Bank 1)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
ADE7 ADE6 ADE5 ADE4 ADE3 ADE2 ADE1 ADE0  
Power-on  
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
R5  
0x05  
(Bank 2)  
/RESET and WDT  
Wake-up from Pin Change  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
41  
EM78F734N  
8-Bit Microcontroller  
Addr Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0  
Power-on  
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
0
0
0
0
P
-
0
0
P
-
R6  
(Bank 2)  
0x06  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
PDE  
0
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R7  
(Bank 2)  
0x7  
0x8  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
P
ADD11 ADD10 ADD9 ADD8 ADD7 ADD6 ADD5 ADD4  
Power-on  
0
0
0
0
P
-
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
R8  
(Bank 2)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
P
-
IRVS1 IRVS0 ADD3 ADD2 ADD1 ADD0  
Power-on  
0
0
0
0
-
0
0
0
P
-
0
0
P
0
0
P
0
0
P
0
0
P
R9  
(Bank 2)  
0x9  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
P
-
-
/PH73 /PH72 /PH71 /PH70  
Power-On  
0
0
0
0
-
0
0
0
0
-
1
1
P
1
1
P
1
1
P
1
1
P
RF  
(Bank 2)  
0x0F  
0X06  
0XD  
0XE  
0XF  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
MLB  
0
-
RBit 11 RBit 10 RBit 9 RBit 8  
Power-On  
0
0
0
0
0
0
0
0
0
P
0
0
P
0
0
P
0
0
P
R6  
(Bank 3)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
P
0
TC3FF1 TC3FF0  
TC3CK2 TC3CK1 TC3CK0  
TC3M1 TC3M0  
TC3S  
Power-on  
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
0
0
P
RD  
(Bank 3)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
TC3D7 TC3D6 TC3D5 TC3D4 TC3D3 TC3D2 TC3D1 TC3D0  
Power-on  
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
0
0
P
0
0
P
0
0
P
RE  
(Bank 3)  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
/PD73 /PD72 /PD71 /PD70  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
P
1
1
P
1
1
P
1
1
P
RF  
(Bank 3)  
/RESET and WDT  
Wake-up from Pin Change  
42   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
(Continuation)  
Addr Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTE  
EIS  
-
-
0
PSWE PSW2 PSW1 PSW0  
Power-on  
0
0
0
0
0
0
0
0
0
0x0A IOCA  
0x0B IOCB  
0x0C IOCC  
0x0D IOCD  
0x0E IOCE  
0x0F IOCF  
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
P
/PD7  
1
P
0
0
P
P
P
P
/PD6  
/PD5  
/PD4  
1
/PD3  
/PD2  
/PD1  
1
/PD0  
Power-on  
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
1
1
1
1
1
P
-
P
-
P
P
-
P
P
P
P
-
OD3  
OD2  
0
OD1  
0
OD0  
0
Power-on  
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
-
-
-
-
/PH3  
/PH2  
1
/PH1  
1
/PH0  
1
Power-on  
0
0
0
0
1
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
1
1
1
1
0
0
0
0
P
P
P
P
-
-
TCIE3  
-
TCIE1  
-
-
-
Power-on  
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
0
0
P
-
0
P
-
0
0
0
-
ADIE  
0
-
EXIE  
0
ICIE  
0
TCIE  
0
Power-on  
0
0
0
0
/RESET and WDT  
Wake-up from Pin Change  
Bit Name  
0
0
0
0
0
0
0
0
0
P
R6  
U
P
P
0
0
0
P
P
P
R7  
U
P
P
R5  
U
P
P
R4  
U
P
P
R3  
U
P
P
R2  
U
R1  
U
R0  
U
Power-on  
R10~  
R2F  
0x10~  
0x2F  
/RESET and WDT  
Wake-up from Pin Change  
P
P
P
P
P
P
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
43  
EM78F734N  
8-Bit Microcontroller  
6.5.4 Status of RST, T, and P of the Status Register  
A reset condition is initiated by the following events:  
1. Power-on condition  
2. High-low-high pulse on /RESET pin  
3. Watchdog timer time-out  
The values of T and P, listed in the first table below are used to check how the  
processor wakes up. The second table shows the events that may affect the status  
of T and P.  
Values of RST, T and P after Reset  
Reset Type  
Power on  
T
1
P
1
/RESET during Operating mode  
/RESET wake-up during Sleep mode  
WDT during Operating mode  
WDT wake-up during Sleep mode  
Wake-up on pin change during Sleep mode  
*P  
1
*P  
0
0
*P  
0
0
1
0
*P: Previous status before reset  
Status of T and P Being Affected by Events  
Event  
T
1
1
0
1
1
P
1
Power on  
WDTC instruction  
1
WDT time-out  
*P  
0
SLEP instruction  
Wake-up on pin change during Sleep mode  
0
*P: Previous value before reset  
44   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
VDD  
D
Q
CLK  
Oscillator  
CLK  
CLR  
Power-On Reset  
Low Voltage Reset  
Setup time  
WDTE  
WDT  
WDT Timeout  
Reset  
/RESET  
Figure 6-13 Controller Reset Block Diagram  
6.6 Interrupt  
The EM78F734N has eight interrupts (four external, four internal) as listed below:  
Interrupt Source  
Enable Condition Int. Flag Int. Vector  
Priority  
Internal /  
Reset  
INT  
-
-
0000  
High 0  
External  
External  
External  
Internal  
Internal  
Internal  
ENI + EXIE=1  
EXIF  
ICIF  
0003  
0006  
0009  
0018  
0027  
0030  
1
2
3
4
5
6
Port 6 pin change ENI +ICIE=1  
TCC  
TC1  
TC3  
AD  
ENI + TCIE=1  
ENI + TCIE1=1  
ENI + TCIE3=1  
ENI + ADIE=1  
TCIF  
TCIF1  
TCIF3  
ADIF  
Internal  
RF is interrupt status register that records the interrupt requests in the relative flags/  
bits. IOCF is interrupt mask register. The global interrupt is enabled by the ENI  
instruction and is disabled by the DISI instruction. When one of the enabled  
interrupts occur, the next instruction will be fetched from their individual address. The  
interrupt flag bit must be cleared by instructions before leaving the interrupt service  
routine and before interrupts are enabled to avoid recursive interrupts.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
45  
EM78F734N  
8-Bit Microcontroller  
The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the  
status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt  
routine and enables the global interrupt (the execution of ENI).  
The external interrupt is equipped with an on-chip digital noise rejection circuit (input  
pulse less than 8 system clock time is eliminated as noise). When an interrupt  
(Falling edge) is generated by the External interrupt (when enabled), the next  
instruction will be fetched from Address 003H.  
Before the interrupt subroutine is executed, the contents of ACC and the R3 and R4  
register will be saved by hardware. If another interrupt occurred, the ACC, R3 and  
R4 will be replaced by the new interrupt. After the interrupt service routine is finished,  
ACC, R3 and R4 will be pushed back.  
VCC  
IRQn  
D
CLK  
Q
_
Q
PR  
/IRQn  
INT  
RFRD  
IRQm  
CL  
RF  
ENI/DISI  
IOD  
PR  
Q
D
_
Q
CLK  
CL  
IOCFWR  
IOCF  
/RESET  
IOCFRD  
RFWR  
Figure 6-14 Interrupt Input Circuit  
Interrupt  
Sources  
Interrupt  
occurs  
ACC  
Stack ACC  
ENI/DISI  
Stack R3  
Stack R4  
R3  
R4  
RETI  
Figure 6-15 Interrupt Back-up Diagram  
46   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.7 Data EEPROM  
The Data EEPROM is readable and writable during normal operation over the whole  
Vdd range. The operation for Data EEPROM is based on a single byte. A write  
operation makes an erase-then-write cycle to take place on the allocated byte.  
The Data EEPROM memory provides high erase and write cycles. A byte write  
automatically erases the location and writes the new value.  
6.7.1 Data EEPROM Control Register  
6.7.1.1 RB (EEPROM Control Register)  
The EECR (EEPROM Control Register) is the control register for configuring and  
initiating the control register status.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RD  
WR  
EEWE  
EEDF  
EEPC  
-
-
-
Bit 7 (RD):  
Bit 6 (WR):  
Read control register  
0 : Does not execute EEPROM read  
1 : Read EEPROM content, (RD can be set by software, RD is  
cleared by hardware after Read instruction is completed)  
Write control register  
0 : Write cycle to the EEPROM is completed.  
1 : Initiate a write cycle, (WR can be set by software, WR is cleared  
by hardware after Write cycle is completed)  
Bit 5 (EEWE): EEPROM Write Enable bit  
0 : Write to the EEPROM is prohibited.  
1 : Allows EEPROM write cycles  
Bit 4 (EEDF): EEPROM Detect Flag  
0 : Write cycle is completed  
1 : Write cycle is unfinished  
Bit 3 (EEPC): EEPROM power-down control bit  
0 : Switch off the EEPROM  
1 : EEPROM is operating  
Bits 2 ~ 0:  
Not used, set to “0” at all time  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
47  
EM78F734N  
8-Bit Microcontroller  
6.7.1.2 RC (128 Bytes EEPROM Address)  
When accessing the EEPROM data memory, the RC (128 bytes EEPROM address  
register) holds the address to be accessed. In accordance with the operation, the RD  
(128 bytes EEPROM Data register) holds the data to be written, or the data read, at  
the address in RC.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
EE_A6  
EE_A5  
EE_A4  
EE_A3  
EE_A2  
EE_A1  
EE_A0  
Bit 7:  
Bits 6 ~ 0:  
Not used, set to “0” at all time.  
128 bytes EEPROM address  
6.7.1.3 RD (256 Bytes EEPROM Data)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EE_D7  
EE_D6  
EE_D5  
EE_D4  
EE_D3  
EE_D2  
EE_D1  
EE_D0  
Bits 7 ~ 0:  
128 bytes EEPROM data  
6.7.2 Programming Step / Example Demonstration  
6.7.2.1 Programming Step  
Follow these steps to write to or read data from the EEPROM:  
Step 1 Set the RB.EEPC bit to 1to enable the EEPROM power.  
Step 2 Write the address to RC (128 bytes EEPROM address).  
1. (a) Set the RB.EEWE bit to 1, if the write function is employed.  
(b) Write the 8-bit data value to be programmed in the RD (256 bytes  
EEPROM datI(c) Set the RB.WR bit to 1, then execute the write  
function.  
2. Set the RB.READ bit to 1, after which, execute the read function.  
Step 3 Wait for the RB.EEDF or RB.WR to be cleared  
Step 4 For the next conversion, go to Step 2 as required.  
Step 5 If you want to save power, make sure the EEPROM data is not used by  
clearing the RB.EEPC.  
48   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.7.2.2 Example Demonstration Programs  
; Define the control register and write data to EEPROM  
RC == 0x0C  
RB == 0x0B  
RD == 0x0D  
Read == 0x07  
WR == 0x06  
EEWE == 0x05  
EEDF == 0x04  
EEPC == 0x03  
BS RB, EEPC  
MOV A,@0x0A  
MOV RC,A  
BS RB, EEWE  
MOV A,@0x55  
MOV RD,A  
; Set the EEPROM power on  
; Assign the address from EEPROM  
; Enable the EEPROM write function  
; Set the data for EEPROM  
BS RB,WR  
; Write value to EEPROM  
JBC RB,EEDF  
; Check whether the EEPROM bit is completed or  
not  
JMP $-1  
6.8 Analog-to-Digital Converter (ADC)  
The analog-to-digital circuitry consists of a 9-bit analog multiplexer, three control  
registers (AISR/R5 (Bank 2), ADCON/R6 (Bank 2), ADOC/R7 (Bank 2), two data  
registers (ADDH, ADDL/R8, R9) and an ADC with 12-bit resolution. The analog  
reference voltage (Vref) and analog ground are connected via separate input pins.  
The functional block diagram of the ADC is shown below.  
The ADC module utilizes successive approximation to convert the unknown analog signal  
into a digital value. The result is fed to the ADDH and ADDL. Input channels are  
selected by the analog input multiplexer via the ADCON register Bits ADIS2, ADIS1 and  
ADIS0.  
1/2VDD  
ADC7  
ADC6  
ADC5  
ADC4  
ADC3  
Vref  
Power-Down  
ADC  
ADC2  
ADC1  
ADC0  
Start to Convert  
(successive approximation)  
Fsc  
o
4 - 1  
MUX  
7 ~ 0  
2
1
0
6
11 10  
9
8
7
6
5
4
3
2
1
0
4
3
6
5
ADDL  
ADDH  
ADCON  
RF  
DATA BUS  
ADCON  
AISR  
ADCON  
Figure 6-16 Functional Block Diagram of Analog-to-Digital Conversion  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
49  
EM78F734N  
8-Bit Microcontroller  
6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)  
6.8.2 Bank 2 R5 AISR (ADC Input Select Register)  
The AISR register defines the ADC pins as analog input or as digital I/O.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Bit 7 (ADE7): AD converter enable bit of P57 pin.  
0 : Disable ADC7, P57 functions as I/O pin.  
1 : Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P74 pin.  
0 : Disable ADC6, P74 functions as I/O pin.  
1 : Enable ADC6 to function as analog input pin  
Bit 5 (ADE5): AD converter enable bit of P77 pin  
0 : Disable ADC5, P77 functions as I/O pin  
1 : Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P73 pin  
0 : Disable ADC4, P73 functions as I/O pin  
1 : Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P63 pin.  
0 : Disable ADC3, P63 functions as I/O pin  
1 : Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P62 pin.  
0 : Disable ADC2, P62 functions as I/O pin  
1 : Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P61 pin  
0 : Disable ADC1, P61 functions as I/O pin  
1 : Enable ADC1 to function as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P60 pin  
0 : Disable ADC0, P60 functions as I/O pin  
1 : Enable ADC0 to function as analog input pin  
The following table shows the priority of P60/AD0//INT.  
P60/AD0//INT Pin Priority  
Hight  
/INT  
Medium  
AD0  
Low  
P60  
50   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.8.3 Bank 2 R6 ADCON (A/D Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
Bit 7 (VREFS): Input source of the Vref of the ADC.  
0 : Vref of the ADC is connected to the internal reference which is  
selected by Bank 2 R9<5,4> (default value), and the P50/VREF  
pin carries out the function of P50  
1 : Vref of the ADC is connected to P50/VREF  
Bit 6 ~ Bit 5 (CKR1 ~ CKR0): Prescaler of oscillator clock rate of ADC  
CKR1/CKR0  
Operation Mode  
FOSC/4  
Max. Operation Frequency  
00  
01  
10  
11  
4 MHz  
1 MHz  
8 MHz  
1 MHz  
FOSC  
FOSC/16  
FOSC/2  
Bit 4 (ADRUN): ADC starts to run  
0 : Reset upon completion of AD conversion. This bit cannot be reset  
by software.  
1 : A/D conversion is started. This bit can be set by software.  
Bit 3 (ADPD): ADC Power-down mode  
0 : Switch off the resistor reference to save power even while the  
CPU is operating  
1 : ADC is operating  
Bits 2~0 (ADIS2~ADIS0): AD Input Select Bits  
ADIS2  
ADIS1  
ADIS0  
AD Input Pin  
AD0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
51  
EM78F734N  
8-Bit Microcontroller  
6.8.4 Bank 2 R7 ADOC (A/D Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
PDE  
Reserved Reserved  
Bits 7~3: Not used, set to “0” at all time.  
Bit 2 (PDE): 1/2 VDD Power Detect Enable bit.  
0: Disable Power Detect (Default)  
1: Enable Power Detect.  
PDE  
ADIS2  
ADIS1  
ADIS0  
AD Input Select  
1
0
x
x
x
1/2VDD  
ADx  
Bits 1~0: Reserved, must be set to “0” at all time.  
6.8.5 ADC Data Buffer (ADDH, ADDL/R8, R9)  
When the A/D conversion is completed, the result is loaded to the ADDH, ADDL. The  
ADRUN bit is cleared, and the ADIF is set.  
6.8.6 A/D Sampling Time  
The accuracy, linearity, and speed of the successive approximation A/D converter are  
dependent on the properties of the ADC. The source impedance and the internal  
sampling impedance directly affect the time required to charge the sample holding  
capacitor. The application program controls the length of the sample time to meet the  
specified accuracy. Generally speaking, the program should wait for 2µs for each K  
of the analog source impedance and at least 2µs for the low- impedance source. The  
maximum recommended impedance for analog source is 10Kat Vdd=5V. After the  
analog input channel is selected, this acquisition time must be done before the  
conversion can be started.  
Frequency (MHz)  
RCM[1:0]*  
Sample and Hold Timing  
00  
01  
10  
11  
4
1
8 x TAD  
4 x TAD  
12 x TAD  
2 x TAD  
8
455k  
*When using XT, LXT1, HXT1, HXT2 mode can also modify RCM[1:0] At Code Option Word 1  
to set the Sample and Hold time.  
52   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.8.7 A/D Conversion Time  
CKR0 and CKR1 select the conversion time (Tct), in terms of instruction cycles. This  
allows the MCU to run at the maximum frequency without sacrificing the accuracy of  
A/D conversion. For the EM78F734N, the conversion time per bit is 1µs. The table  
below shows the relationship between Tct and the maximum operating frequencies.  
Tct vs. Maximum Operation Frequency  
CKR0: Operation Max. Operating Max. Conversion  
Max. Conversion Rate (12bit)  
CKR1  
00  
Mode  
Fosc/4  
Fosc  
Frequency  
4 MHz  
Rate Per Bit  
1 MHz (1 µs)  
1 MHz (1µs)  
(12+8)*1µs=20s (50kHz)  
(12+4)*1µs=16s(62.5kHz)  
(12+12)*2µs=48s (20.8kHz)  
(12+4)*2µs=32s (31.25kHz)  
01  
1 MHz  
10  
Fosc/16  
Fosc/2  
8 MHz  
0.5 MHz (2 µs)  
0.5 MHz (2 µs)  
11  
1 MHz  
NOTE  
The pin that is not used as analog input can be used as regular input or output pin.  
During conversion, do not perform output instruction to maintain precision for all of  
the pins.  
6.8.8 A/D Operation during Sleep Mode  
In order to obtain a more accurate ADC value and reduced power consumption, the  
A/D conversion remains operational during sleep mode. As the SLEP instruction is  
executed, all the MCU operations will stop except for the Oscillator, TCC, TC1, TC3,  
and A/D conversion.  
The AD Conversion is considered completed when:  
1
2
ADRUN Bit of R6 Register is cleared to 0.  
Wake-up from A/D Conversion remains in operation during Sleep Mode.  
The result is fed to the ADDATA, ADOC when the conversion is completed. If the  
ADWE is enabled, the device will wake up. Otherwise, the A/D conversion will be  
shut off, no matter what the status of the ADPD bit is.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
53  
EM78F734N  
8-Bit Microcontroller  
6.8.9 Programming Steps/Considerations  
6.8.9.1 Programming Steps  
Follow the following steps to obtain data from the ADC:  
1. Write to the 8 bits (ADE7~ ADE0) on the R5 (AISR) register to define the  
characteristics of R6: Digital I/O, analog channels, and voltage reference pin.  
2. Write to the R6/ADCON register to configure the AD module:  
a. Select A/D input channel ( ADIS1 ~ ADIS0 ).  
b. Define the A/D conversion clock rate ( CKR1 ~ CKR0 ).  
c. Select the input source of the VREFS of the ADC.  
d. Set the ADPD bit to “1” to begin sampling.  
3. Set the ADWE bit, if the wake-up function is employed.  
4. Set the ADIE bit, if the interrupt function is employed.  
5. Put “ENI” instruction, if the interrupt function is employed.  
6. Set the ADRUN bit to “1”.  
7. Wait for wake-up or when ADRUN bit is cleared to “0”.  
8. Read ADDATA, ADOC the conversion data register.  
9. Clear the interrupt flag bit (ADIF) when A/D interrupt function occurs.  
10. For the next conversion, repeat from Step 1 or Step 2 as required. At least 2 Tct  
is required before the next acquisition starts.  
NOTE  
To obtain an accurate value, it is necessary to avoid any data transition on the I/O  
pins during AD conversion.  
6.8.9.2 Sample Demonstration Programs  
; To define the General Registers  
R_0 == 0  
PSW == 3  
PORT5 == 5  
PORT6 == 6  
RE== 0XE  
RF== 0XF  
; Indirect addressing register  
; Status register  
; Wake-up control resister  
; Interrupt status register  
; To define the Control Register  
IOC50 == 0X5  
IOC60 == 0X6  
C_INT== 0XF  
; Control Register of Port 5  
; Control Register of Port 6  
; Interrupt Control Register  
; ADC Control Registers  
ADDATA == 0x8  
; The contents are the results of  
ADC  
54   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
AISR == 0x08  
ADCON == 0x6  
; ADC output select register  
; 7  
VREFS CKR1 CKR0 ADRUN ADPD  
ADIS1 ADIS0  
6
5
4
3
2
1
0
; To define bits  
; In ADCON  
ADRUN == 0x4  
ADPD == 0x3  
; ADC is executed as the bit is set  
; Power Mode of ADC  
; Program Starts  
ORG 0  
JMP INITIAL  
ORG 0x30  
; Initial address  
; Interrupt vector  
(User program)  
CLR RF  
; To clear the ADIF bit  
BS ADCON , ADRUN  
; To start to execute the next AD  
; conversion if necessary  
RETI  
INITIAL:  
MOV A  
, @0B00000001  
; To define P60 as an analog input  
MOV AISR  
MOV A  
, A  
, @0B00001000  
; To select P60 as an analog input  
; channel, and AD power on  
MOV ADCON , A  
En_ADC:  
; To define P60 as an input pin and  
; set clock rate at fosc/16  
MOV A  
, @0BXXXXXXX1  
; To define P60 as an input pin, and  
; the others are dependent  
; on applications  
IOW PORT6  
MOV A  
, @0BXXXX1XXX  
; Enable the ADWE wake-up function  
; of ADC, “X” by application  
MOV RE  
MOV A  
, A  
, @0BXXXX1XXX  
; Enable the ADIE interrupt function  
; of ADC, “X” by application  
IOW C_INT  
ENI  
BS ADCON  
; Enable the interrupt function  
; Start to run the ADC  
, ADRUN  
; If the interrupt function is ; employed, the following three  
lines  
; may be ignored  
POLLING:  
JBC ADCON , ADRUN  
; To check the ADRUN bit ;  
continuously  
JMP  
POLLING  
; ADRUN bit will be reset as the AD  
; conversion is completed  
;
(User program)  
;
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
55  
EM78F734N  
8-Bit Microcontroller  
6.9 Timer/Counter 1  
rising inhibit  
edge  
detector  
capture  
control  
falling  
TC1  
interrupt  
TC1ES  
M
TC1M  
TC1 pin  
MUX  
fc/212  
overflow  
fc/210  
fc/27  
8 or16 bit up counter  
TC1S  
TC1CAP  
TC1CK  
Comparator  
2
capture  
capture  
TC1CR  
TC1DB  
TC2DB  
TC1DA  
TC2DA  
TC1MOD  
Figure 6-17 Timer / Counter 1 Configuration  
In Timer mode, counting up is performed using an internal clock. When the contents  
of the up-counter matched the TC1DA, then interrupt is generated and the counter is  
cleared. Counting up resumes after the counter is cleared. The current contents of  
the up-counter are loaded into TC1DB by setting TC1CAP to “1” and the TC1CAP is  
automatically cleared to “0” after capture. The timer mode will operate with 16bits by  
setting TC1MOD to “1”  
In Counter mode, counting up is performed using an external clock input pin (TC1)  
and either rising or falling edge can be selected by TC1ES but both edges cannot be  
used. When the contents of the up-counter matched the TC1DA, then interrupt is  
generated and the counter is cleared. Counting up resumes after the counter is  
cleared. The current contents of the up-counter are loaded into TC1DB by setting  
TC1CAP to “1” and the TC1CAP is automatically cleared to “0” after capture. The  
counter mode will operate with 16bits by setting TC1MOD to “1”.  
In Capture mode, the pulse width, period and duty of the TC1 input pin are  
measured in this mode, which can be used to decode the remote control signal. The  
counter is free running by the internal clock. On the rising (falling) edge of TC1 pin  
input, the contents of counter is loaded into TC1DA, then the counter is cleared and  
interrupt is generated. On a falling (rising) edge of TC1 pin input, the contents of the  
counter are loaded into TC1DB. The counter is still counting, on the next rising edge  
of TC1 pin input, the contents of the counter are loaded into TC1DA, the counter is  
cleared and interrupt is generated again. If an overflow before the edge is detected,  
the FFH is loaded into TC1DA and the overflow interrupt is generated. During  
interrupt processing, it can be determined whether or not there is an overflow by  
checking whether or not the TC1DA value is FFH.  
56   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
After an interrupt (capture to TC1DA or overflow detection) is generated, capture and  
overflow detection are halted until TC1DA is read out. The capture mode will operate  
with 16bits by setting TC1MOD to 1.  
Clock source  
Up-counter  
K
0
m m+1  
K-2  
K-1  
1
m-1  
n-1 n 0  
1
2
3
FE FF0  
1
2
3
TC1 pin input  
TC1DA  
K
n
FF (overflow)  
overflow  
m
FE  
TC1DB  
capture  
capture  
TC1 interrupt  
Reading TC1DA  
Figure 6-18 (a) Timing Chart of 8 bits Capture Mode  
Clock source  
Up-counter  
K
0
m m+1  
m-1  
K-2  
K-1  
1
n-1 n 0  
1
2
3
FFFE FFFF 0  
1
2
3
TC1 pin input  
TC2DA,TC1DA  
TC2DB,TC1DB  
K
n
FFFF (overflow)  
FFFE  
m
capture  
overflow  
capture  
TC1 interrupt  
Reading TC1DA  
Figure 6-18 (b) Timing Chart of 16 bits Capture Mode  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
57  
EM78F734N  
8-Bit Microcontroller  
6.10 Timer/Counter 3  
Figure 6-19 Timer/Counter 3 Mode Configuration  
Timer Mode  
In Timer mode, counting up is performed using the internal clock (rising edge trigger).  
When the contents of the up-counter matched with TCR3, interrupt is generated and  
the counter is cleared. Counting up resumes after the counter is cleared.  
Counter Mode  
In Counter mode, counting up is performed using the external clock input pin (TC3  
pin). When the contents of the up-counter matched with TCR3, interrupt is then  
generated and the counter is cleared. Counting up resumes after the counter is  
cleared.  
Programmable Divider Output (PDO) Mode  
In Programmable Divider Output (PDO) mode, counting up is performed using the  
internal clock. The contents of TCR3 are compared with the contents of the up-  
counter. The F/F output is toggled and the counter is cleared each time a match is  
found. The F/F output is inverted and output to /PDO pin. This mode can generate  
50% duty pulse output. The F/F can be initialized by program and it is initialized  
to “0” during reset. A TC3 interrupt is generated each time the /PDO output is  
toggled.  
58   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Clock Source  
Up-counter  
2
n
0
1
n-1  
n
0
1
3
n-1  
n
0
1
n-1  
0
1
2
n
TCR3  
F/F  
/PDO Pin  
TC3 Interrupt  
Figure 6-20 PDO Mode Timing Diagram  
Pulse Width Modulation (PWM) Output Mode  
In Pulse Width Modulation (PWM) Output mode, counting up is performed using the  
internal clock. The contents of TCR3 are compared with the contents of the up-  
counter. The F/F is toggled when a match is found. While the counter is counting,  
the F/F is toggled again when the counter overflows, then the counter is cleared. The  
F/F output is inverted and output to the /PWM pin. A TC3 interrupt is generated each  
time an overflow occurs. TCR3 is configured as a 2-stage shift register and  
during output, will not switch until one output cycle is completed even if TCR3  
is overwritten. Hence, the output can be changed continuously. Also, on the first  
time, TRC3 is shifted by setting TC3S to “1” after data is loaded to TCR3.  
Source Clock  
n+2  
Up-counter  
TCR3  
n-1  
n
n+1 n+2  
n+1  
m
m-1  
0
1
n-1  
FE  
FF  
0
n
FE  
FF  
0
1
n/n  
n/m  
m/m  
overflow  
match  
match  
overflow  
Shift  
overwrite  
F/F  
/PW M  
1 period  
TC3 Interrupt  
Figure 6-21 PWM Mode Timing Diagram  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
59  
EM78F734N  
8-Bit Microcontroller  
6.11 Oscillator  
6.11.1 Oscillator Modes  
The device can be operated in four different oscillator modes, such as Internal RC  
oscillator mode (IRC), High Crystal oscillator mode (HXT), and Low Crystal oscillator  
mode (LXT). You can select one of such modes by programming OSC2, OCS1, and  
OSC0 in the Code Option register. The following table depicts how these four modes  
are defined.  
Oscillator Modes defined by OSC2 ~ OSC0  
Mode  
XT (Crystal oscillator mode)1  
HXT1 (High Crystal 1 oscillator mode)2  
LXT1 (Low Crystal 1 oscillator mode)3  
Reserve  
OSC2  
OSC1  
OSC0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRC mode, OSCO (P54) act as I/O pin  
IRC mode, OSCO (P54) act as RCOUT pin  
HXT2 (High Crystal 2 oscillator mode)4  
Reserve  
1
2
3
The Frequency range of HXT1 mode is 12 MHz ~ 6 MHz.  
The Frequency range of XT mode is 6 MHz ~ 1 MHz.  
The Frequency range of LXT1 mode is 1 MHz ~ 100kHz.  
4
The Frequency range of HXT2 mode is 20 MHz ~ 12 MHz.  
In LXT, XT, HXT modes, OSCI and OSCO are implemented. They cannot be used  
as normal I/O pins.  
60   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
In IRC mode, P55 is used as normal I/O pin. The maximum operating frequency of  
the crystal/resonator on the different VDD is shown below:  
Summary of Maximum Operating Speeds  
Conditions  
VDD  
2.2  
Max Fxt. (MHz)  
4.0  
8.0  
Two cycles with two clocks  
4.0  
5.0  
20.0  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)  
The EM78F734N can be driven by an external clock signal through the OSCI pin as  
illustrated below.  
OSCI  
Ext. Clock  
OSCO  
Figure 6-22 External Clock Input Circuit  
In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or  
ceramic resonator to generate oscillation as depicted in the following figure. The  
same thing applies to HXT mode or LXT mode.  
C1  
OSCI  
Crystal  
OSCO  
C2  
RS  
Figure 6-23 Crystal/Resonator Circuit  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
61  
EM78F734N  
8-Bit Microcontroller  
The following table provides the recommended values of C1 and C2. Since each  
resonator has its own attributes, you should refer to its specification for appropriate  
values of C1 and C2. A serial resistor RS, may be necessary for AT strip cut crystal  
or low frequency mode.  
Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator  
Oscillator Type  
Frequency Mode  
Frequency  
100kHz  
200kHz  
455kHz  
1 MHz  
C1(pF)  
60pF  
60pF  
40pF  
30pF  
30pF  
30pF  
20pF  
60pF  
60pF  
40pF  
30pF  
C2(pF)  
60pF  
60pF  
40pF  
30pF  
30pF  
30pF  
20pF  
60pF  
60pF  
40pF  
30pF  
LXT1  
(100K~1 MHz)  
Ceramic Resonators  
1.0 MHz  
2.0 MHz  
4.0 MHz  
100kHz  
200kHz  
455kHz  
1 MHz  
XT  
(1M~6 MHz)  
LXT1  
(100K~1 MHz)  
1.0 MHz  
30pF  
30pF  
XT  
2.0 MHz  
4.0 MHz  
6.0 MHz  
6.0 MHz  
8.0 MHz  
12.0 MHz  
12.0 MHz  
16.0 MHz  
30pF  
20pF  
30pF  
30pF  
20pF  
30pF  
30pF  
20pF  
30pF  
20pF  
30pF  
30pF  
20pF  
30pF  
30pF  
20pF  
Crystal Oscillator  
(1~6 MHz)  
HXT1  
(6~12 MHz)  
HXT2  
(12~20 MHz)  
62   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.11.3 Internal RC Oscillator Mode  
EM78F734N offers a versatile internal RC mode with default frequency value of 4  
MHz. Internal RC oscillator mode has other frequencies (455kHz, 1 MHz and 8 MHz)  
that can be set by Code Option (Word 1), RCM1 and RCM0 when COBS =0, or set  
by Bank 1 R8 Bits 7, 6 when COBS=1 . All these four main frequencies can be  
calibrated by programming the Code Option (Word 1) bits, C6~C0. The table  
describes a typical instance of the calibration.  
Internal RC Drift Rate (Ta=25 C, VDD=5 V ± 5%, VSS=0V)  
Drift Rate  
Internal RC  
Temperature  
(-40C~85C)  
Voltage  
(2.2V~5.5V)  
Process  
Total  
455KHz  
1 MHz  
4 MHz  
8 MHz  
± 2%  
± 2%  
± 2%  
± 2%  
± 3.5%  
± 3.5%  
± 3.5%  
± 3.5%  
± 1%  
± 1%  
± 1%  
± 1%  
± 6.5%  
± 6.5%  
± 6.5%  
± 6.5%  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
63  
EM78F734N  
8-Bit Microcontroller  
6.12 Code Option Register  
The EM78F734N has a Code Option Word that is not part of the normal program  
memory. The option bits cannot be accessed during normal program execution.  
Code Option Register and Customer ID Register arrangement distribution:  
Word 0  
Word 1  
Word 2  
Bit 12~Bit 0  
Bit 12~Bit 0  
Bit 12~Bit 0  
6.12.1 Code Option Register (Word 0)  
Word 0  
Bit  
Bit 12 Bit 11 Bit 10  
Bit 9  
RESETEN  
Enable  
Disable  
0
Bit 8 Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Mnemonic HLP NRHL NRE  
-
-
-
-
ENWDT OSC2 OSC1 OSC0 PR2  
PR1  
High  
Low  
0
PR0  
High  
Low  
0
1
0
Low  
8/fc Disable  
Enable  
Disable  
0
High  
Low  
1
High  
Low  
0
High  
Low  
0
High  
Low  
0
High 32/fc Enable  
-
-
default  
0
0
0
0
0
Bit 12 (HLP): Power consumption selection. (High power consumption mode can  
increase the anti-noise functionality. If the operating frequency is 1 MHz or less, and it  
is necessary to enhance the anti-noise feature, user can select High power  
consumption mode. But High power consumption mode will increase the power  
consumption. Please refer to the ninth DC Electrical Characteristics power status  
section.)  
0: High power consumption, applies to working frequency above  
1MHz (default)  
1: Low power consumption, applies to working frequency at 1MHz or  
below 1MHz  
Bit 11 (NRHL): Noise rejection high/low pulse define bit. INT pin is falling edge  
trigger.  
1 : Pulses equal to 8/fc [s] is regarded as signal  
0 : Pulses equal to 32/fc [s] is regarded as signal (default)  
Bit 10 (NRE): Noise rejection enable. INT pin is falling edge trigger.  
1: Disable noise rejection  
0: Enable noise rejection (default)  
Bit 9 (RESETEN): Reset Pin Enable Bit  
1 : Enable, P83//RESET RESET pin.  
0 : Disable, P83//RESET P83 (default)  
Bits 8 ~ 7: Not used, always set to “0”  
Bit 6 (ENWDT): Watchdog timer enable bit  
1 : Enable  
0 : Disable  
64   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Bits 5 ~ 3 (OSC2 ~ OSC0): Oscillator Mode Selection bits  
Mode  
OSC2  
OSC1  
OSC0  
XT (Crystal oscillator mode)1  
HXT1 (High Crystal 1 oscillator mode)2  
LXT1 (Low Crystal 1 oscillator mode)3  
Reserve  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRC mode, OSCO (P54) act as I/O pin  
IRC mode, OSCO (P54) act as RCOUT pin  
HXT2 (High Crystal 2 oscillator mode)4  
Reserve  
1
2
3
The Frequency range of HXT1 mode is 12 MHz ~ 6 MHz.  
The Frequency range of XT mode is 6 MHz ~ 1 MHz.  
The Frequency range of LXT1 mode is 1 MHz ~ 100kHz.  
4
The Frequency range of HXT2 mode is 20 MHz ~ 12 MHz.  
Bits 2 ~ 0 (PR2 ~ PR0): Protect Bit. PR2~PR0 are protect bits, protect type is as  
follows:  
PR2  
1
PR1  
1
PR0  
1
Protect  
Enable  
Disable  
0
0
0
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
65  
EM78F734N  
8-Bit Microcontroller  
6.12.2 Code Option Register (Word 1)  
Word 1  
Bit  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Mnemonic COBS TCEN  
C6  
C5  
C4  
C3  
C2  
C1  
C0 RCM1 RCM0 LVR1 LVR0  
1
0
High TCC High High High High High High High High High High High  
Low  
0
P77  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
Low  
0
default  
Bit 12 (COBS): Code Option Bit Selection  
0 : IRC frequency select for code option (default)  
1 : IRC frequency select internal register by Bank 1 R8(7,6)  
Bit 11 (TCEN): TCC enable bit  
0 : P77/TCC is set as P77  
1 : P77/TCC is set as TCC  
Bits 10 ~ 4 (C6 ~ C0): Internal RC mode calibration bits. (IRC frequency auto  
calibration)  
Bits 3 ~ 2 (RCM1 ~ RCM0): RC mode selection bits  
RCM 1  
RCM 0  
*Frequency (MHz)  
0
0
1
1
0
1
0
1
4
1
8
455k  
Bits 1 ~ 0 (LVR1 ~ LVR0): Low voltage reset enable bits  
LVR1 LVR0  
Reset Level  
NA  
Release Level  
0
0
1
1
0
1
0
1
NA  
2.5V  
2.6V  
3.0V  
3.3V  
2.9V  
3.2V  
Note: LVR1, LVR0=“0, 0: LVR disabled, power-on reset point of EM78F734N  
is 1.9V.  
LVR1, LVR0=“0, 1: If Vdd < 2.5V, the EM78F734N will reset.  
LVR1, LVR0=“1, 0: If Vdd < 2.9V, the EM78F734N will reset.  
LVR1, LVR0=“1, 1: If Vdd < 3.2V, the EM78F734N will reset.  
66   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.12.3 Code Option Register (Word 2)  
Word 2  
Bit  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
Bit 7  
SC2 SC1 SC0 EFTIM  
High High High 20MHz  
Low Low Low 10MHz  
Bit 6 Bit 5 Bit 4  
Bit 3  
IRE  
Bit 2 Bit 1 Bit 0  
Mnemonic SC4 SC3  
-
-
-
-
SFS  
-
-
-
-
-
-
1
0
High High  
Low Low  
128kHz Enable  
16kHz Disable  
-
-
-
-
-
Default  
0
0
0
0
0
1
0
0
0
0
0
0
0
Bits 12 ~ 8 (SC4 ~ SC0): Calibrator of sub frequency (WDT frequency auto  
calibration)  
Bit 7 (EFTIM): EFT improvement. If the MCU is at VDD=5V with working frequency  
of <12 MHz, or at VDD=3V with working frequency of <6 MHz, enabling  
this function can improve the performance of the electrical fast transient  
(EFT) test. If the MCU is at VDD=5V and the working frequency is >12  
MHz, choose EFTIM=1  
0: 10 MHz  
1: 20 MHz  
Bits 6 ~ 5:  
Not used, always set to “0”  
Bits 4 (SFS): Sub-frequency select.  
0: 16kHz (WDT frequency)  
1: 128kHz  
Bit 3 (IRE):  
Bits 2 ~ 0:  
IRC Regulator Enable bit  
0: Disable regulator for saving power but more error of IRC.  
1: Enable regulator for improving IRC accurately but more power  
consumed.  
Not used, always set to “0”  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
67  
EM78F734N  
8-Bit Microcontroller  
6.13 Power-on Considerations  
Any microcontroller is not guaranteed to start to operate properly before the power  
supply stays has stabilized. The EM78F734N has an on-chip Power-on Voltage  
Detector (POVD) with a detecting level of 2.0V. It will work well if Vdd can rise  
quickly enough (50ms or less). In many critical applications, however, extra devices  
are still required to assist in solving power-up problems.  
6.14 External Power-on Reset Circuit  
The circuit shown in Figure 6-24 uses an external RC to generate a reset pulse. The  
pulse width (time constant) should be kept long enough for Vdd to reached minimum  
operation voltage. This circuit is used when the power supply has slow rise time.  
Because the current leakage from the /RESET pin is 5A, it is recommended that R  
should not be greater than 40K. In this way, the /RESET pin voltage is held below  
0.2V. The diode (D) functions as a short circuit at the moment of power down.  
The capacitor C will discharge rapidly and fully. Rin, the current-limited resistor, will  
prevent high current or ESD (electrostatic discharge) from flowing to pin /RESET.  
Vdd  
R
/RESET  
D
Rin  
C
Figure 6-24 External Power-up Reset Circuit  
68   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
6.15 Residue-Voltage Protection  
When battery is replaced, device power (Vdd) is taken off but residue-voltage  
remains. The residue-voltage may trip below Vdd minimum, but not to zero. This  
condition may cause a poor power-on reset. Figure 6-25 and Figure 6-26 show how  
to build a residue-voltage protection circuits.  
Vdd  
Vdd  
33K  
Q1  
10K  
/RESET  
40K  
1N4684  
Figure 6-25 Circuit 1 for the Residue Voltage Protection  
Vdd  
Vdd  
R1  
Q1  
/RESET  
R2  
40K  
Figure 6-26 Circuit 2 for the Residue Voltage Protection  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
69  
EM78F734N  
8-Bit Microcontroller  
6.16 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and  
one or more operands. Normally, all instructions are executed within one single  
instruction cycle (one instruction consists of two oscillator periods), unless the  
program counter is changed by instrution "MOR,A", "ADR2,A", or by instructions  
of arithmetic or logic operation on R2 e.g. "SUR,A", "BS(CR,6", "LR R2", ). In  
this case, the execution takes two instruction cycles.  
(300)If for some reasons, the specification of the instruction cycle is not suitable for  
certain applications, try modifying the instruction as fol(A)"MP","CLL"”  
"ET","RTL","RETI" commands are executed with one instruction cycle, the  
conditional kip("BS""BC, JZ""ZA""JZ","DJZA") commands which were  
tested to be true, are executed within two instruction cycles. The instructions that  
are written to the program counter also take two instruction cycles.  
In addition, the instruction set has the following features:  
(1) Every bit of any register can be set, cleared, or tested directly.  
(2) The I/O register can be regarded as general register. That is, the same  
instruction  
can operate on the I/O register.  
70   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Instruction Set Table:  
The following symbols are used in the following table:  
RRegister designator that specifies which one of the registers (including operation and  
general purpose registers) is to be utilized by the instruction.  
bBit field designator that selects the value for the bit located in the register R and which  
affects the operation.  
K8 or 10-bit constant or literal value  
Mnemonic  
NOP  
Operation  
Status Affected  
No Operation  
Decimal Adjust A  
A CONT  
None  
DAA  
C
CONTW  
SLEP  
None  
0 WDT, Stop oscillator  
0 WDT  
T, P  
WDTC  
T, P  
IOW R  
A IOCR  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
[Top of Stack] PC, Enable Interrupt  
CONT A  
IOCR A  
A R  
None1  
ENI  
None  
DISI  
None  
RET  
None  
RETI  
None  
CONTR  
IOR R  
None  
None1  
MOV R,A  
CLRA  
None  
0 A  
Z
CLR R  
0 R  
Z
SUB A,R  
SUB R,A  
DECA R  
DEC R  
OR A,R  
OR R,A  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
INCA R  
INC R  
R-A A  
Z, C, DC  
R-A R  
Z, C, DC  
R-1 A  
Z
R-1 R  
Z
A R A  
A R R  
A & R A  
A & R R  
A R A  
A R R  
A + R A  
A + R R  
R A  
Z
Z
Z
Z
Z
Z
Z, C, DC  
Z, C, DC  
Z
Z
Z
Z
Z
Z
R R  
/R A  
/R R  
R+1 A  
R+1 R  
1
This instruction is applicable to IOC5~IOC7, IOCA ~ IOCF only.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
71  
EM78F734N  
8-Bit Microcontroller  
Mnemonic  
Operation  
Status Affected  
DJZA R  
DJZ R  
R-1 A, skip if zero  
R-1 R, skip if zero  
None  
None  
R(n) A(n-1),  
RRCA R  
RRC R  
C
C
R(0) C, C A(7)  
R(n) R(n-1),  
R(0) C, C R(7)  
R(n) A(n+1),  
RLCA R  
RLC R  
C
R(7) C, C A(0)  
R(n) R(n+1),  
R(7) C, C R(0)  
C
R(0-3) A(4-7),  
R(4-7) A(0-3)  
SWAPA R  
None  
SWAP R  
JZA R  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 R(b)  
None  
None  
None  
None2  
None3  
None  
None  
JZ R  
BC R,b  
BS R,b  
JBC R,b  
JBS R,b  
1 R(b)  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP],  
(Page, k) PC  
CALL k  
None  
JMP k  
(Page, k) PC  
k A  
None  
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
None  
A k A  
A & k A  
A k A  
Z
Z
Z
k A,  
[Top of Stack] PC  
RETL k  
None  
SUB A,k  
ADD A,k  
BANK k  
k-A A  
Z, C, DC  
Z, C, DC  
None  
k+A A  
K R4(7:6)  
Next instruction : k kkkk kkkk kkkk  
PC+1[SP], kPC4  
LCALL k  
LJMP k  
None  
None  
Next instruction : k kkkk kkkk kkkk  
kPC4  
If Bank 3 R6.7=0, machine code (7:0) R  
Else machine code (12:8) R(4:0),  
R(7:5)=(0,0,0)  
TBRD R  
None  
2 This instruction is not recommended for interrupt status register operation.  
3 This instruction cannot operate under interrupt status register.  
72   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
7 Timing Diagrams  
AC Test Input/Output Waveform  
2.4  
2.0  
0.8  
2.0  
0.8  
TEST POINTS  
.0.4  
AC Testing: Input are driven at 2.4V for logic “1” and 0.4V for logic “0.  
Timing measurements are made at 2.0V for logic “1, and 0.8V for logic “0.  
Figure 7-1 AC Test Timing Diagram  
Reset Timing (CLK=“0”)  
Instruction 1  
NOP  
Executed  
CLK  
/RESET  
Tdrh  
Figure 7-2 Reset Timing Diagram  
TCC Input Timing (CLKS=”0”)  
ins  
CLK  
TCC  
tcc  
Figure 7-3 TCC Input Timing Diagram  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
73  
EM78F734N  
8-Bit Microcontroller  
8 Absolute Maximum Ratings  
EM78F734N  
Items  
Rating  
Temperature under bias  
Storage temperature  
Working voltage  
-40C  
-65C  
2.2  
to  
to  
to  
to  
to  
to  
85C  
150C  
5.5V  
Working frequency  
Input voltage  
DC  
20 MHz*  
Vdd+0.5V  
Vdd+0.5V  
Vss-0.3V  
Vss-0.3V  
Output voltage  
Note: *These parameters are theoretical values and have not been tested.  
74   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
9 DC Electrical Characteristics  
VDD=5.0V, VSS=0V, Ta=25 C  
Symbol  
Parameter  
Crystal: VDD to 3V  
Condition  
Min.  
DC  
Typ.  
Max. Unit  
MHz  
-
-
4
Two cycles with two clocks  
Fxt  
Crystal: VDD to 5V  
IRC: VDD to 5 V  
DC  
20 MHz  
4 MHz, 455kHz, 1 MHz,,8 MHz F30  
F
-
F30Hz  
Input Leakage Current for input  
pins  
-
1  
A  
IIL  
VIN = VDD, VSS  
Input High Threshold Voltage  
(Schmitt Trigger )  
VIHRC  
VILRC  
IIL  
OSCI in RC mode  
OSCI in RC mode  
VIN = VDD, VSS  
Ports 5, 6, 7, 8  
3.9  
4
1.8  
0
4.1  
V
V
Input Low Threshold Voltage  
(Schmitt Trigger )  
1.7  
1.9  
Input Leakage Current for input  
pins  
-1  
-
1
-
-
-
-
-
-
A  
V
Input High Voltage (Schmitt  
trigge )  
0.7VDD  
(2.8V)  
VIH1  
VIL1  
0.3VDD  
(2.2V)  
Input Low Voltage (Schmitt trigger) Ports 5, 6, 7, 8  
-
V
Input High Threshold Voltage  
/RESET  
VIHT1  
VILT1  
VIHT2  
VILT2  
-
0.7VDD  
0.3VDD  
0.7VDD  
0.3VDD  
V
(Schmitt Trigger )  
Input Low Threshold Voltage  
/RESET  
-
V
(Schmitt trigger )  
Input High Threshold Voltage  
TCC, INT  
-
V
(Schmitt Trigger )  
Input Low Threshold Voltage  
TCC, INT  
-
V
(Schmitt Trigger )  
VIHX1 Clock Input High Voltage  
VILX1 Clock Input Low Voltage  
OSCI in crystal mode  
OSCI in crystal mode  
2.9  
1.7  
3.0  
1.8  
3.1  
1.9  
V
V
Note: * The parameters are theoretical and have not been tested or verified.  
* Data in the Minimum, Typical, Maximum (“Min.”, “T“p.”, "Max.”) column are based on hypothetical  
results at 25C. These data are for design guidance only.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
75  
EM78F734N  
8-Bit Microcontroller  
(Continuation)  
Symbol  
Parameter  
Condition  
VOH = 0.9VDD  
Min.  
Typ. Max. Unit  
High Drive Current  
(Ports 5, 6, 7, 8)  
IOH1  
IOL1  
-2.5  
-
-
-
-
mA  
mA  
Low Sink Current  
(Ports 5, 6, 7, 8)  
VOL = 0.1VDD  
10  
IPH  
IPL  
Pull-high current  
Pull-low current  
Pull-high active, input pin at VSS  
Pull-low active, input pin at Vdd  
Ta = 25C  
-
-
-95  
40  
A  
A  
V
-
-
2.13  
1.72  
2.48  
2.05  
2.72  
2.25  
2.6  
2.6  
3.0  
3.0  
3.3  
3.3  
3.07  
3.46  
3.51  
3.93  
3.86  
4.3  
Low voltage reset level 1  
(2.6V)  
LVR1  
LVR2  
LVR3  
Ta = -40C ~ 85C  
Ta = 25C  
V
V
Low voltage reset level 1  
(3.0V)  
Ta = -40C ~ 85C  
Ta = 25C  
V
V
Low voltage reset level 1  
(3.3V)  
Ta = -40C ~ 85C  
V
All input and I/O pins at VDD, output  
pin floating, WDT disabled  
ISB1  
ISB2  
Power down current  
Power down current  
-
-
-
-
2
5
A  
A  
All input and I/O pins at VDD, output  
pin floating, WDT enabled  
/RSET='High', Fosc=455kHz (IRC  
type), Voltage = 3V, output pin  
floating, WDT enabled, HLP='High'  
Operating supply current  
at two clocks  
ICC1  
ICC5  
ICC2  
ICC6  
ICC3  
ICC4  
-
-
-
-
-
-
96  
-
-
-
-
-
-
µA  
µA  
µA  
µA  
mA  
mA  
/RESET= 'High', Fosc=455kHz (IRC  
type), Voltage = 3V, output pin  
Operating supply current  
at two clocks  
84.5  
170  
160  
1.3  
floating, WDT enabled, HLP='Low'  
/RSET='High', Fosc=1MHz (IRC  
type), Voltage = 3V, output pin  
floating, WDT enabled, HLP='High'  
Operating supply current  
at two clocks  
/RESET= 'High', Fosc=1 MHz (IRC  
type), Voltage = 3V, output pin  
floating, WDT enabled, HLP='Low'  
Operating supply current  
at two clocks  
/RSET='High', Fosc=4 MHz (Crystal  
type), output pin floating, WDT  
enabled  
Operating supply current  
at two clocks  
/RSET='High', Fosc=10 MHz (Crystal  
type), output pin floating, WDT  
enabled  
Operating supply current  
at two clocks  
3.25  
76   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
NOTE  
The above parameters are theoretical values only and have not been tested or  
verified.  
Data under the “Min.”, “Typ.”, and Max.” (Minimum, Typical, and Maximum)  
columns are based on hypothetical results at 25C. These data are for design  
reference only.  
9.1 Data EEPROM Electrical Characteristics  
Symbol  
Tprog  
Parameter  
Erase/Write cycle time  
Data Retention  
Condition  
Min.  
Typ.  
-
Max.  
Unit  
ms  
-
-
-
-
-
-
Vdd = 2.2V~ 5.5V  
Treten  
Tendu  
10  
Years  
Cycles  
Temperature = -40C ~ 85C  
Endurance time  
100K  
9.2 Program Flash Memory Electrical Characteristics  
Symbol  
Tprog  
Parameter  
Erase/Write cycle time  
Data Retention  
Condition  
Min.  
Typ.  
-
Max.  
Unit  
ms  
-
-
-
-
-
-
Vdd = 5.0V  
Temperature = -40C ~ 85C  
Treten  
Tendu  
10  
Years  
Cycles  
Endurance time  
100K  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
77  
EM78F734N  
8-Bit Microcontroller  
9.3 A/D Converter Characteristics  
VDD=5.0V, VSS=0V, Ta=25 C  
Type  
Parameter  
Symbol  
Test Conditions  
Unit  
Min. Typ. Max.  
For 5.5v Fs=100KHz, Fin=2KHz,  
For 2.2v Fs=50KHz, Fin=1KHz  
Vdd  
2.2  
2.2  
-
-
5.5  
V
V
Operating Range  
VREFT  
Vdd  
Ivdd  
Iref  
-
-
-
-
0.5 mA  
VREFT= Vdd=5.5v,  
Fs=100KHz, Fin=2KHz  
Current Consumption  
50  
uA  
uA  
Standby Current  
ZAI  
Isb  
ZAI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.1  
10k ohm  
dBc  
-70 dBc  
dBc  
-73 dBc  
dBc  
VREFT= Vdd=3.3v,  
Fs=100kHz, Fin=2kHz  
SNR  
SNR  
THD  
SNDR  
WH  
70  
-
-
VREFT= Vdd=3.3v,  
Fs=100kHz, Fin=2kHz  
THD  
VREFT= Vdd=3.3v,  
Fs=100kHz, Fin=2kHz  
SNDR  
68  
-
-
VREFT= Vdd=3.3v,  
Fs=100kHz, Fin=2kHz  
Worst Harmonic  
SFDR  
VREFT= Vdd=3.3V,  
Fs=100kHz, Fin=2kHz  
SFDR  
OE  
73  
-
-
VREFT= Vdd=3.3V,  
Offset Error  
Gain Error  
DNL  
+/-4 LSB  
+/-8 LSB  
+/-1 LSB  
+/-4 LSB  
Fs=100kHz  
VREFT= Vdd=3.3V,  
GE  
-
Fs=100kHz  
VREFT= Vdd=3.3V,  
Fs=100kHz, Fin=2kHz  
DNL  
INL  
-
VREFT= Vdd=3.3V,  
Fs=100kHz, Fin=2kHz  
INL  
-
K
SPS  
Fs1  
Vdd=2.7~5.5V, Fin=2kHz  
100  
50  
-
-
Conversion Rate  
Vdd=2.2~2.7V,  
Fin=1kHz  
K
SPS  
Fs2  
VREFT=2.2V,  
SVREF=0or1, Vdd=2.2V ~ 5.5V,  
Fs=50kHz, Vin=0V ~ 2.2V  
Power Supply Rejection  
Ratio  
PSRR  
-
-
2
LSB  
Note: 1These parameters are hypothetical (not tested) and are provided for design reference only.  
2There is no current consumption when ADC is off other than minor leakage current.  
3The A/D conversion result will not decrease with an increase in the input voltage, and has  
no missing code.  
4These parameters are subject to change without prior notice.  
78   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
10 AC Electrical Characteristics  
EM78F734N, 0 Ta 70 C, VDD=5V, VSS=0V  
-40 Ta 85 C, VDD=5V, VSS=0V  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
50  
Max.  
55  
DC  
DC  
Unit  
%
Dclk  
Input CLK duty cycle  
45  
Crystal type  
100  
ns  
Instruction cycle time  
Tins  
CKS="0")  
RC type  
500  
ns  
Ttcc  
TCC input period  
(Tins+20)/N*  
ns  
Tdrh  
Trst  
Device reset hold time  
/RESET pulse width  
Watchdog timer period  
Input pin setup time  
Input pin hold time  
Output pin delay time  
Ta = 25C  
Ta = 25C  
11.8  
2000  
11.8  
16.8  
21.8  
ms  
ns  
Twdt  
Tset  
16.8  
0
21.8  
ms  
ns  
Thold  
Tdelay  
20  
50  
ns  
Cload=20pF  
ns  
Note: These parameters are theoretical values and have not been tested. Such parameters are for  
design  
reference only.  
Data in the Minimum, Typical, Maximum (“Min.”, “Typ.”, ”Max.”) columns are based on  
characterization results at 25C.  
* N = selected prescaler ratio  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
79  
EM78F734N  
8-Bit Microcontroller  
APPENDIX  
A Ordering and Manufacturing Information  
EM78F734ND20J  
Material Type  
J: RoHS complied  
S: Sony SS-00259 complied  
Contact Elan Sales for details  
Pin Number  
Package Type  
D: DIP  
SO: SOP  
Check the following section  
Specific Annotation  
Product Number  
Product Type  
F: Flash  
Elan 8-bit Product  
For example:  
EM78F734NSO20S  
is EM78F734N with Flash program memory, product,  
in 20-pin SOP 300mil package with Sony SS-00259 complied  
IC Mark  
‧‧‧‧‧‧‧  
Elan Product Number / Package, Material Type  
Batch Number  
EM78Paaaaaa  
1041c bbbbbb  
Manufacture Date  
YYWW”  
YY is year and WW is week  
c is Alphabetical suffix code for Elan use only  
‧‧‧‧‧‧‧  
80   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
Ordering Code  
EM78F734ND20J  
Material Type  
Contact Elan Sales for details  
Package Type / Pin Number  
Check the following section  
Elan IC Product Number  
B Package Type  
Flash MCU  
EM78F734ND20  
EM78F734NSO20  
EM78F734NSS20  
EM78F734NSS20A  
EM78F734NQN20  
EM78F734ND18  
EM78F734NSO18  
EM78F734ND16  
EM78F734NSO16  
EM78F734NSO16A  
EM78F734NSS16  
Package Type  
Pin Count  
Package Size  
PDIP  
SOP  
20  
20  
20  
20  
20  
18  
18  
16  
16  
16  
16  
300 mil  
300 mil  
209 mil  
150 mil  
4*4*0.8mm  
300 mil  
300 mil  
300 mil  
300 mil  
150 mil  
150 mil  
SSOP  
SSOP  
QFN  
PDIP  
SOP  
PDIP  
SOP  
SOP  
SSOP  
These are Green products which do not contain hazardous substances and comply  
with the third edition of Sony SS-00259 standard.  
Pb contents should be less than 100ppm and complies with Sony specifications.  
Part No.  
Electroplate type  
EM78F734NS/J  
Pure Tin  
Sn:100%  
232°C  
Ingredient (%)  
Melting point (°C)  
Electrical resistivity (µcm)  
Hardness (hv)  
11.4  
8~10  
Elongation (%)  
>50%  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
81  
EM78F734N  
8-Bit Microcontroller  
C Package Information  
C.1 EM78F734ND16 300mil  
Figure C-1 EM78F734N 16-Pin PDIP Package Type  
82   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
C.2 EM78F734NSO16 300mil  
Figure C-2 EM78F734N 16-Pin SOP Package Type  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
83  
EM78F734N  
8-Bit Microcontroller  
C.3 EM78F734NSO16A 150mil  
b
e
c
TITLE:  
SOP-16L(150MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
Edtion: A  
NSO16  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-3 EM78F734N 16-Pin SOP Package Type  
84   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
C.4 EM78F734NSS16 150mil  
Package Type : SSOP-16L  
EMC(mm )  
Symbal  
Min  
1.35  
Normal  
Max  
1.75  
0.25  
1.50  
0.30  
0.28  
0.25  
0.23  
5.00  
6.20  
3.99  
1.27  
1.63  
A
A1  
A2  
b
0.10  
-
0.18  
-
0.20  
0.20  
0.18  
0.18  
4.80  
5.79  
3.81  
0.41  
-
b1  
c
0.25  
-
0.20  
c1  
D
E
4.90  
5.99  
E1  
L
3.91  
0.64  
e
0.635BASIC  
-
θ
0°  
8°  
TITLE:  
SSOP 16L (150MIL)PACKAGE OUTLINE  
DIMENSION  
File :  
SSOP 16L  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-4 EM78F734N 16-Pin SSOP Package Type  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
85  
EM78F734N  
8-Bit Microcontroller  
C.5 EM78F734ND18 300mil  
Figure C-5 EM78F734N 18-Pin PDIP Package Type  
86   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
C.6 EM78F734NSO18 300mil  
Symbal  
Min  
2.350  
0.102  
Normal  
Max  
2.650  
0.300  
A
A1  
b
0.406(TYP)  
c
E
0.230  
7.400  
0.320  
7.600  
H
D
L
10.000  
11.350  
0.406  
10.650  
11.750  
1.270  
0.838  
1.27(TYP)  
e
θ
0
8
b
e
c
TITLE:  
SOP-18L(300MIL) PACKAGE  
OUTLINE DIMENSION  
File :  
Edtion: A  
SO18  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-6 EM78F734N 18-Pin SOP Package Type  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
87  
EM78F734N  
8-Bit Microcontroller  
C.7 EM78F734ND20 300mil  
Symbal Min Normal Max  
E
A
A1  
A2  
c
4.450  
0.381  
3.175  
3.302  
3.429  
0.203 0.254 0.356  
D
25.883 26.060 26.237  
E1  
E
eB  
B
B1  
L
e
6.220  
7.370  
8.510  
6.438  
7.620  
9.020  
6.655  
7.870  
9.530  
0.356 0.457 0.559  
1.143 1.524 1.778  
3.048 3.302 3.556  
2.540(TYP)  
θ
0
15  
TITLE:  
PDIP-20L 300MIL PACKAGE  
OUTLINE DIMENSION  
File :  
Edtion: A  
D20  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-7 EM78F734N 20-Pin PDIP Package Type  
88   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
C.8 EM78F734NSO20 300mil  
Figure C-8 EM78F734N 20-Pin SOP Package Type  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
89  
EM78F734N  
8-Bit Microcontroller  
C.9 EM78F734NSS20 209mil  
Symbal  
Min  
Normal  
Max  
2.130  
0.250  
1.880  
0.380  
0.200  
8.200  
5.600  
7.500  
0.850  
A
A1  
A2  
b
c
E
E1  
D
L
0.050  
1.620  
0.220  
0.090  
7.400  
5.000  
6.900  
0.650  
1.750  
7.800  
5.300  
7.200  
0.750  
L1  
e
θ
1.250(REF )  
0.650(TYP)  
4
0
8
b
e
c
TITLE:  
L1  
SSOP-20L(209MIL) OUTLINE  
PACKAGE PACKA OUTLINE  
DIMENSION  
File :  
Edtion: A  
SSOP20  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-9 EM78F734N 20-Pin SSOP Package Type  
90   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
C.10 EM78F734NSS20A 150mil  
Figure C-10 EM78F734N 20-Pin SSOP Package Type  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
91  
EM78F734N  
8-Bit Microcontroller  
C.11 EM78F734NQN20 4*4*0.8mm  
Figure C-11 EM78F734N 20-Pin QFN Package Type  
92   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
EM78F734N  
8-Bit Microcontroller  
D Quality Assurance and Reliability  
Test Category  
Test Conditions  
Remarks  
Solder temperature=2455°C, for 5 seconds up to the  
stopper using a rosin-type flux  
Solderability  
Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles  
Step 2: Bake at 125°C, TD (endurance)=24 hrs  
Step 3: Soak at 30°C/60%TD (endurance)=192 hrs  
Step 4: IR flow 3 cycles  
For SMD IC (such as  
SOP, QFP, SOJ, etc)  
Pre-condition  
(Pkg thickness 2.5mm or  
Pkg volume 350mm3 ----2255°C)  
(Pkg thickness 2.5mm or  
Pkg volume 350mm3 ----2405°C)  
Temperature cycle test  
Pressure cooker test  
-65°C (15mins)~150°C (15mins), 200 cycles  
TA =121°C, RH=100%, pressure=2 atm,  
TD (endurance)= 96 hrs  
High temperature /  
High humidity test  
TA=85°C , RH=85%TD (endurance) = 168 , 500 hrs  
High-temperature  
storage life  
TA=150°C, TD (endurance) = 500, 1000 hrs  
High-temperature  
operating life  
TA=125°C, VCC = Max. operating voltage,  
TD (endurance) = 168, 500, 1000 hrs  
Latch-up  
TA=25°C, VCC = Max. operating voltage, 150mA/20V  
IP_ND,OP_ND,IO_ND  
IP_NS,OP_NS,IO_NS  
IP_PD,OP_PD,IO_PD,  
IP_PS,OP_PS,IO_PS,  
ESD (HBM)  
TA=25°C, ± 3KV∣  
ESD (MM)  
TA=25°C, ± 300V∣  
VDD-VSS(+),VDD_VSS  
(-) mode  
D.1 Address Trap Detect  
An address trap detect is one of the MCU embedded fail-safe functions that detects  
MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch  
an instruction from a certain section of ROM, an internal recovery circuit is auto  
started. If a noise-caused address error is detected, the MCU will repeat execution of  
the program until the noise is eliminated. The MCU will then continue to execute the  
next program.  
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  
93  
EM78F734N  
8-Bit Microcontroller  
94   
Product Specification (V1.4) 09.05.2019  
(This specification is subject to change without prior notice)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY