EBE10RE8ACFA-6E-E [ELPIDA]

Memory IC, 128MX72, CMOS, PDMA240;
EBE10RE8ACFA-6E-E
型号: EBE10RE8ACFA-6E-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

Memory IC, 128MX72, CMOS, PDMA240

光电二极管
文件: 总29页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
1GB Registered DDR2 SDRAM DIMM  
EBE10RE8ACFA (128M words × 72 bits, 1 Rank)  
Specifications  
Features  
Density: 1GB  
Double-data-rate architecture; two data transfers per  
clock cycle  
Organization  
The high-speed data transfer is realized by the 4 bits  
prefetch pipelined architecture  
128M words × 72 bits, 1 rank  
Mounting 9 pieces of 1G bits DDR2 SDRAM sealed  
in FBGA  
Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
Package: 240-pin socket type dual in line memory  
module (DIMM)  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
PCB height: 30.0mm  
Lead pitch: 1.0mm  
Differential clock inputs (CK and /CK)  
Lead-free (RoHS compliant)  
DLL aligns DQ and DQS transitions with CK  
transitions  
Power supply: VDD = 1.8V ± 0.1V  
Data rate: 667Mbps/533Mbps/400Mbps (max.)  
Commands entered on each positive CK edge; data  
referenced to both edges of DQS  
Eight internal banks for concurrent operation  
(components)  
Data mask (DM) for write data  
Interface: SSTL_18  
Posted /CAS by programmable additive latency for  
better command and data bus efficiency  
Burst lengths (BL): 4, 8  
/CAS Latency (CL): 3, 4, 5  
Off-Chip-Driver Impedance Adjustment and On-Die-  
Termination for better signal quality  
Precharge: auto precharge option for each burst  
/DQS can be disabled for single-ended Data Strobe  
access  
operation  
Refresh: auto-refresh, self-refresh  
Refresh cycles: 8192 cycles/64ms  
1 piece of PLL clock driver, 1 piece of register driver  
and 1 piece of serial EEPROM (2K bits EEPROM) for  
Presence Detect (PD)  
Average refresh period  
7.8µs at 0°C TC ≤ +85°C  
3.9µs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Document No. E1075E20 (Ver.2.0)  
Date Published December 2007 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2007  
EBE10RE8ACFA  
Ordering Information  
Component  
Data rate  
JEDEC speed bin*1  
Mbps (max.) (CL-tRCD-tRP)  
Contact  
pad  
Part number  
Package  
Mounted devices  
EDE1108ACSE-8E-E  
EDE1108ACSE-6E-E  
EBE10RE8ACFA-6E-E  
667  
533  
400  
DDR2-667 (5-5-5)  
DDR2-533 (4-4-4)  
DDR2-400 (3-3-3)  
240-pin DIMM  
(lead-free)  
EDE1108ACSE-8E-E  
EDE1108ACSE-6E-E  
Gold  
EBE10RE8ACFA-5C-E  
EBE10RE8ACFA-4A-E  
EDE1108ACSE-8E-E  
EDE1108ACSE-6E-E  
Note: 1. Module /CAS latency = component CL + 1  
Pin Configurations  
Front side  
1 pin  
64 pin65 pin  
120 pin  
121 pin  
184 pin 185 pin  
240 pin  
Back side  
Pin name  
VDD  
Pin No.  
1
Pin name  
VREF  
VSS  
Pin No.  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
Pin name  
A4  
Pin No.  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
Pin name  
VSS  
Pin No.  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
2
VDD  
A2  
DQ4  
A3  
3
DQ0  
DQ5  
A1  
4
DQ1  
VDD  
VSS  
VSS  
VDD  
5
VSS  
DM0/DQS9  
NU/ /DQS9  
VSS  
CK0  
6
/DQS0  
DQS0  
VSS  
VSS  
/CK0  
VDD  
7
VDD  
NC/Par_In  
VDD  
A10  
8
DQ6  
A0  
9
DQ2  
DQ7  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
DQ3  
VSS  
BA1  
VSS  
BA0  
DQ12  
DQ13  
VSS  
VDD  
DQ8  
VDD  
/WE  
/RAS  
/CS0  
VDD  
DQ9  
VSS  
/CAS  
VDD  
NC  
DM1/DQS10  
NU/ /DQS10  
VSS  
/DQS1  
DQS1  
VSS  
ODT0  
A13  
NC  
NC  
VDD  
/RESET  
NC  
VDD  
VSS  
NC  
VSS  
VSS  
DQ36  
DQ37  
VSS  
VSS  
DQ32  
DQ33  
VSS  
DQ14  
DQ15  
VSS  
DQ10  
DQ11  
VSS  
DM4/DQS13  
NU/ /DQS13  
VSS  
/DQS4  
DQS4  
VSS  
DQ20  
DQ21  
VSS  
DQ16  
DQ17  
VSS  
DQ38  
DQ39  
DQ34  
DM2/DQS11  
Data Sheet E1075E20 (Ver.2.0)  
2
EBE10RE8ACFA  
Pin name  
VSS  
Pin No.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Pin name  
/DQS2  
DQS2  
VSS  
Pin No.  
87  
Pin name  
DQ35  
VSS  
Pin No.  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Pin name  
NU/ /DQS11  
VSS  
Pin No.  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
88  
DQ44  
89  
DQ40  
DQ41  
VSS  
DQ22  
DQ23  
VSS  
DQ45  
DQ18  
DQ19  
VSS  
90  
VSS  
91  
DM5/DQS14  
NU/ /DQS14  
VSS  
92  
/DQS5  
DQS5  
VSS  
DQ28  
DQ29  
VSS  
DQ24  
DQ25  
VSS  
93  
94  
DQ46  
95  
DQ42  
DQ43  
VSS  
DM3/DQS12  
NU/ /DQS12  
VSS  
DQ47  
/DQS3  
DQS3  
VSS  
96  
VSS  
97  
DQ52  
98  
DQ48  
DQ49  
VSS  
DQ30  
DQ31  
VSS  
DQ53  
DQ26  
DQ27  
VSS  
99  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
NC  
SA2  
CB4  
NC  
CB0  
NC  
CB5  
VSS  
CB1  
VSS  
VSS  
DM6/DQS15  
NU/ /DQS15  
VSS  
VSS  
/DQS6  
DQS6  
VSS  
DM8/DQS17  
NU/ /DQS17  
VSS  
/DQS8  
DQS8  
VSS  
DQ54  
DQ50  
DQ51  
VSS  
CB6  
DQ55  
CB2  
CB7  
VSS  
CB3  
VSS  
DQ60  
VSS  
DQ56  
DQ57  
VSS  
VDD  
DQ61  
VDD  
NC  
VSS  
CKE0  
VDD  
VDD  
DM7/DQS16  
NU/ /DQS16  
VSS  
/DQS7  
DQS7  
VSS  
NC  
BA2  
NC  
NC/ /Err_Out  
VDD  
VDD  
DQ62  
DQ58  
DQ59  
VSS  
A12  
DQ63  
A11  
A9  
VSS  
A7  
VDD  
VDDSPD  
SA0  
VDD  
SDA  
A8  
A5  
SCL  
A6  
SA1  
Data Sheet E1075E20 (Ver.2.0)  
3
EBE10RE8ACFA  
Pin Description  
Pin name  
Function  
Address input  
Row address  
Column address  
A0 to A13  
A0 to A13  
A0 to A9  
A10 (AP)  
Auto precharge  
BA0, BA1, BA2  
Bank select address  
Data input/output  
DQ0 to DQ63  
CB0 to CB7  
Check bit (Data input/output)  
Row address strobe command  
Column address strobe command  
Write enable  
/RAS  
/CAS  
/WE  
/CS0  
Chip select  
CKE0  
Clock enable  
CK0  
Clock input  
/CK0  
Differential clock input  
Input and output data strobe  
Input mask  
DQS0 to DQS17, /DQS0 to /DQS17  
DM0 to DM8  
SCL  
Clock input for serial PD  
Data input/output for serial PD  
Serial address input  
SDA  
SA0 to SA2  
VDD  
Power for internal circuit  
Power for serial EEPROM  
Input reference voltage  
Ground  
VDDSPD  
VREF  
VSS  
ODT0  
ODT control  
/RESET  
Par_In*2  
/Err_Out*2  
NC  
Reset pin (forces register and PLL inputs low) *1  
Parity bit for the address and control bus  
Parity error found on the address and control bus  
No connection  
NU  
Not usable  
Notes: 1. Reset pin is connected to both OE of PLL and reset to register.  
2. NC/ /Err_Out (Pin No. 55) and NC/Par_In (Pin No. 68) are for optional function to check address and  
command parity.  
Data Sheet E1075E20 (Ver.2.0)  
4
EBE10RE8ACFA  
Serial PD Matrix*1  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
128 bytes  
Number of bytes utilized by module  
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
80H  
08H  
manufacturer  
Total number of bytes in serial PD  
device  
256 bytes  
2
3
4
5
6
7
8
Memory type  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
08H  
0EH  
0AH  
60H  
48H  
00H  
05H  
DDR2 SDRAM  
Number of row address  
Number of column address  
Number of DIMM ranks  
Module data width  
14  
10  
1
72  
Module data width continuation  
0
Voltage interface level of this assembly 0  
SSTL 1.8V  
DDR SDRAM cycle time, CL = 5  
-6E  
9
0
0
1
1
0
0
0
0
30H  
3.0ns*1  
-5C  
-4A  
0
0
0
1
1
0
1
1
1
0
1
0
0
0
1
0
3DH  
50H  
3.75ns*1  
5.0ns*1  
SDRAM access from clock (tAC)  
-6E  
10  
0
1
0
0
0
1
0
1
45H  
0.45ns*1  
-5C  
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
50H  
60H  
02H  
82H  
08H  
08H  
00H  
0.5ns*1  
0.6ns*1  
ECC  
7.8µs  
× 8  
-4A  
11  
12  
13  
14  
15  
DIMM configuration type  
Refresh rate/type  
Primary SDRAM width  
Error checking SDRAM width  
Reserved  
× 8  
0
SDRAM device attributes:  
Burst length supported  
16  
17  
18  
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0CH  
08H  
38H  
4,8  
SDRAM device attributes: Number of  
banks on SDRAM device  
8
SDRAM device attributes:  
/CAS latency  
3, 4, 5  
19  
20  
21  
DIMM Mechanical Characteristics  
DIMM type information  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
01H  
01H  
00H  
4.00mm max.  
Registered  
Normal  
SDRAM module attributes  
Weak Driver  
50ODT  
Support  
22  
23  
SDRAM device attributes: General  
0
0
0
0
0
0
1
1
03H  
Minimum clock cycle time at CL = 4  
-6E, -5C  
0
0
0
1
1
0
1
1
1
0
1
0
0
0
1
0
3DH  
50H  
3.75ns*1  
5.0ns*1  
-4A  
Maximum data access time (tAC) from  
clock at CL = 4  
24  
0
1
0
1
0
0
0
0
50H  
0.5ns*1  
-6E, -5C  
-4A  
0
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
60H  
50H  
0.6ns*1  
5.0ns*1  
25  
26  
27  
Minimum clock cycle time at CL = 3  
Maximum data access time (tAC) from  
clock at CL = 3  
0
0
1
0
1
1
0
1
0
1
0
1
0
0
0
0
60H  
3CH  
0.6ns*1  
15ns  
Minimum row precharge time (tRP)  
Data Sheet E1075E20 (Ver.2.0)  
5
EBE10RE8ACFA  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
7.5ns  
Minimum row active to row active  
28  
29  
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1EH  
3CH  
delay (tRRD)  
Minimum /RAS to /CAS delay (tRCD)  
15ns  
Minimum active to precharge time  
30  
(tRAS)  
0
0
1
0
1
1
0
1
2DH  
45ns  
-6E, -5C  
-4A  
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
28H  
01H  
40ns  
1GB  
31  
32  
Module rank density  
Address and command setup time  
before clock (tIS)  
-6E  
0
0
1
0
0
0
0
0
20H  
0.20ns*1  
-5C  
-4A  
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
1
25H  
35H  
0.25ns*1  
0.35ns*1  
Address and command hold time after  
clock (tIH)  
-6E  
33  
0
0
1
0
0
1
1
1
27H  
0.27ns*1  
-5C  
-4A  
0
0
0
1
1
0
1
0
0
0
1
1
1
1
1
1
37H  
47H  
0.37ns*1  
0.47ns*1  
Data input setup time before clock  
(tDS)  
34  
35  
0
0
0
1
0
0
0
0
10H  
0.10ns*1  
-6E, -5C  
-4A  
0
0
0
0
0
0
1
1
0
0
1
1
0
1
1
1
15H  
17H  
0.15ns*1  
0.17ns*1  
Data input hold time after clock (tDH)  
-6E  
-5C  
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
1
1
1
1
0
0
1
0
22H  
27H  
3CH  
0.22ns*1  
0.27ns*1  
15ns*1  
-4A  
36  
37  
Write recovery time (tWR)  
Internal write to read command delay  
(tWTR)  
0
0
0
1
1
1
1
0
1EH  
7.5ns*1  
-6E, -5C  
-4A  
0
0
0
0
1
0
0
1
1
1
0
1
0
1
0
0
28H  
1EH  
10ns*1  
7.5ns*1  
TBD  
Internal read to precharge command  
delay (tRTP)  
38  
39  
40  
Memory analysis probe characteristics 0  
0
0
0
0
0
0
0
0
0
1
0
1
0
0
00H  
06H  
Extension of Byte 41 and 42  
0
0
0
0
1
0
Active command period (tRC)  
-6E, -5C  
41  
0
0
1
0
0
1
1
1
0
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
0
0
1
1
0
0
0
1
1
0
0
3CH  
37H  
7FH  
80H  
18H  
60ns*1  
-4A  
55ns*1  
Auto refresh to active/  
Auto refresh command cycle (tRFC)  
42  
43  
44  
127.5ns*1  
8ns*1  
SDRAM tCK cycle max. (tCK max.)  
Dout to DQS skew  
-6E  
0.24ns*1  
-5C  
-4A  
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
1EH  
23H  
0.30ns*1  
0.35ns*1  
Data hold skew (tQHS)  
-6E  
45  
0
0
1
0
0
0
1
0
22H  
0.34ns*1  
-5C  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
0
1
1
0
28H  
2DH  
0FH  
00H  
0.40ns*1  
0.45ns*1  
15µs  
-4A  
46  
PLL relock time  
47 to 61  
Data Sheet E1075E20 (Ver.2.0)  
6
EBE10RE8ACFA  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
Rev. 1.2  
62  
63  
SPD Revision  
0
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
12H  
32H  
Checksum for bytes 0 to 62  
-6E  
-5C  
-4A  
0
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
76H  
F0H  
Continuation  
code  
64 to 65  
Manufacturer’s JEDEC ID code  
0
1
1
1
1
1
1
1
7FH  
66  
Manufacturer’s JEDEC ID code  
Manufacturer’s JEDEC ID code  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
FEH  
00H  
Elpida Memory  
67 to 71  
(ASCII-8bit  
code)  
72  
Manufacturing location  
×
×
×
×
×
×
×
×
××  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
1
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
1
45H  
42H  
45H  
31H  
30H  
52H  
45H  
38H  
41H  
43H  
46H  
41H  
2DH  
E
B
E
1
0
R
E
8
A
C
F
A
Module part number  
-6E  
86  
0
0
1
1
0
1
1
0
36H  
6
-5C  
-4A  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
0
35H  
34H  
5
4
Module part number  
-6E  
87  
0
1
0
0
0
1
0
1
45H  
E
-5C  
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
1
1
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
43H  
41H  
2DH  
45H  
20H  
30H  
20H  
C
-4A  
A
88  
89  
90  
91  
92  
Module part number  
Module part number  
Module part number  
Revision code  
Revision code  
E
(Space)  
Initial  
(Space)  
Year code  
(BCD)  
93  
Manufacturing date  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××  
××  
Week code  
(BCD)  
94  
Manufacturing date  
95 to 98  
Module serial number  
99 to 127 Manufacture specific data  
Note: 1. These specifications are defined based on component specification, not module.  
Data Sheet E1075E20 (Ver.2.0)  
7
EBE10RE8ACFA  
Block Diagram  
/RCS0  
R
S
R
S
/DQS4  
DQS4  
/DQS0  
DQS0  
R
S
R
S
R
S
R
NU/  
S
/CS DQS /DQS  
NU/  
/CS DQS /DQS  
/DQS13  
/RDQS  
/DQS9  
/RDQS  
R
S
S
R
DM,  
RDQS  
S
S
DM/  
RDQS  
DM4/DQS13  
DM0/DQS9  
D4  
D0  
8
R
8
DQ0  
to DQ7  
R
DQ0  
to DQ7  
DQ32 to DQ39  
/DQS5  
DQ0 to DQ7  
/DQS1  
R
R
S
R
R
S
S
S
DQS5  
/DQS14  
DQS1  
/DQS10  
R
S
R
S
NU/  
/RDQS  
DM/  
/RDQS  
/CS DQS /DQS  
NU/  
/RDQS  
DM/  
RDQS  
/CS DQS /DQS  
R
R
S
R
R
S
DM5/DQS14  
DQ40 to DQ47  
D5  
DM1/DQS10  
DQ8 to DQ15  
D1  
8
S
8
S
DQ0  
to DQ7  
DQ0  
to DQ7  
R
S
R
S
/DQS6  
DQS6  
/DQS2  
DQS2  
R
S
R
S
R
S
R
NU/  
S
/CSDQS /DQS  
NU/  
/CS DQS /DQS  
/DQS15  
/RDQS  
/DQS11  
/RDQS  
R
S
R
S
DM/  
/RDQS  
DM/  
RDQS  
DM6/DQS15  
DM2/DQS11  
D6  
D2  
8
R
S
8
DQ0  
to DQ7  
R
S1  
DQ0  
to DQ7  
DQ48 to DQ55  
/DQS7  
DQ16 to DQ23  
/DQS3  
R
R
S
R
R
S
S
S
DQS7  
/DQS16  
DQS3  
/DQS12  
R
S
R
S
NU/  
/RDQS  
DM/  
/RDQS  
/CSDQS /DQS  
NU/  
/RDQS  
DM/  
RDQS  
/CS DQS /DQS  
R
R
S
R
R
S
DM7/DQS16  
DQ56 to DQ63  
D7  
DM3/DQS12  
DQ24 to DQ31  
D3  
8
S
8
S
DQ0  
to DQ7  
DQ0  
to DQ7  
R
S
/DQS8  
R
S
DQS8  
/DQS17  
R
S
NU/  
VDDSPD  
Serial PD  
D0 to D8  
/CS DQS /DQS  
Serial PD  
/RDQS  
VDD  
R
R
S
DM/  
/RDQS  
SCL  
SDA  
SCL  
SDA  
DM8/DQS17  
CB0 to CB7  
D8  
D0 to D8  
D0 to D8  
VREF  
VSS  
8
S
U0  
DQ0  
to DQ7  
A1 A2  
WP A0  
D0 to D8: 1G bits DDR2 SDRAM  
U0: 2k bits EEPROM  
RS 22Ω  
PLL: CUA877  
Register: SSTUB32866  
SA0 SA1  
SA2  
R
S
:
2
/CS0*  
/RCS0 -> /CS: SDRAMs D0 to D8  
R
E
G
I
S
T
E
R
R
S
R
S
R
S
BA0 to BA2  
A0 to A13  
/RAS  
RBA0 to RBA2 -> BA0 to BA2: SDRAMs D0 to D8  
RA0 to RA13 -> A0 to A13: SDRAMs D0 to D8  
/RRAS -> /RAS: SDRAMs D0 to D8  
/RCAS -> /CAS: SDRAMs D0 to D8  
RCKE0 -> CKE: SDRAMs D0 to D8  
/RWE -> /WE: SDRAMs D0 to D8  
Notes:  
1. DQ wiring may be changed within a byte.  
2. /CS0 connects to /DCS and VDD connects to /CSR on register.  
R
S
R
S
R
S
R
S
/CAS  
CKE0  
/WE  
ODT0  
RODT0 -> ODT0: SDRAMs D0 to D8  
/RST  
/RESET  
PCK7  
/PCK7  
P
L
L
PCK0 to PCK6, PCK8, PCK9 -> CK: SDRAMs D0 to D8  
/PCK0 to /PCK6, /PCK8, /PCK9 -> /CK: SDRAMs D0 to D8  
CK0  
/CK0  
PCK7 -> CK: register  
/PCK7 -> /CK: register  
/RESET  
OE  
Data Sheet E1075E20 (Ver.2.0)  
8
EBE10RE8ACFA  
Differential Clock Net Wiring (CK0, /CK0)  
0ns (nominal)  
SDRAM  
PLL  
OUT1  
120Ω  
120Ω  
CK0  
IN  
Register 1  
/CK0  
OUT'N'  
120Ω  
Feedback in  
Feedback out  
C
C
120Ω  
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl  
be set to 0ns (nominal).  
2. Input, output and feedback clock lines are terminated from line to line as shown, and not  
from line to ground.  
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired  
in a similar manner.  
4. Termination resistors for the PLL feedback path clocks are located as close to the  
input pin of the PLL as possible.  
Data Sheet E1075E20 (Ver.2.0)  
9
EBE10RE8ACFA  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Value  
Unit  
Notes  
1
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–0.5 to +2.3  
–0.5 to +2.3  
50  
V
VDD  
IOS  
PD  
V
mA  
W
°C  
°C  
1
9
Operating case temperature  
Storage temperature  
TC  
0 to +95  
–55 to +100  
1, 2  
1
Tstg  
Notes: 1. DDR2 SDRAM component specification.  
2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in  
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of  
EMRS (2) bit A7 is required.  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
VDD, VDDQ  
VSS  
min.  
typ.  
1.8  
0
max.  
1.9  
0
Unit  
V
Notes  
4
Supply voltage  
1.7  
0
V
VDDSPD  
VREF  
1.7  
3.6  
V
Input reference voltage  
Termination voltage  
DC input logic high  
DC input low  
0.49 × VDDQ  
VREF 0.04  
VREF + 0.125  
0.3  
0.50 × VDDQ 0.51 × VDDQ  
V
1, 2  
3
VTT  
VREF  
VREF + 0.04  
VDDQ + 0.3  
VREF – 0.125  
V
VIH (DC)  
VIL (DC)  
V
V
AC input logic high  
-6E  
VIH (AC)  
VIH (AC)  
VIL (AC)  
VIL (AC)  
VREF + 0.200  
V
V
V
V
-5C, -4A  
VREF + 0.250  
AC input low  
-6E  
VREF – 0.200  
VREF – 0.250  
-5C, -4A  
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically  
the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected  
to track variations in VDDQ.  
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).  
3. VTT of transmitting device must track VREF of receiving device.  
4. VDDQ must be equal to VDD.  
Data Sheet E1075E20 (Ver.2.0)  
10  
EBE10RE8ACFA  
AC Overshoot/Undershoot Specification (DDR2 SDRAM Component Specification)  
Parameter  
Pins  
Specification  
Unit  
V
Command, Address,  
CKE, ODT  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
0.5  
0.5  
0.8  
V
Maximum overshoot area above VDD  
DDR2-667  
V-ns  
DDR2-533  
DDR2-400  
1.0  
V-ns  
V-ns  
1.33  
Maximum undershoot area below VSS  
DDR2-667  
0.8  
V-ns  
DDR2-533  
1.0  
1.33  
0.5  
V-ns  
V-ns  
V
DDR2-400  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
CK, /CK  
0.5  
V
Maximum overshoot area above VDD  
DDR2-667  
0.23  
V-ns  
DDR2-533  
DDR2-400  
0.28  
0.38  
V-ns  
V-ns  
Maximum undershoot area below VSS  
DDR2-667  
0.23  
V-ns  
DDR2-533  
0.28  
0.38  
0.5  
V-ns  
V-ns  
V
DDR2-400  
Maximum peak amplitude allowed for overshoot  
DQ, DQS, /DQS,  
UDQS, /UDQS,  
LDQS, /LDQS,  
Maximum peak amplitude allowed for undershoot  
0.5  
V
Maximum overshoot area above VDDQ  
DDR2-667  
RDQS, /RDQS,  
DM, UDM, LDM  
0.23  
V-ns  
DDR2-533  
DDR2-400  
0.28  
0.38  
V-ns  
V-ns  
Maximum undershoot area below VSSQ  
DDR2-667  
0.23  
V-ns  
DDR2-533  
DDR2-400  
0.28  
0.38  
V-ns  
V-ns  
Maximum amplitude  
Overshoot area  
VDD, VDDQ  
Volts (V)  
VSS, VSSQ  
Undershoot area  
Time (ns)  
Overshoot/Undershoot Definition  
Data Sheet E1075E20 (Ver.2.0)  
11  
EBE10RE8ACFA  
DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V, VSS = 0V)  
Parameter  
Symbol Grade  
max.  
Unit  
Test condition  
one bank; tCK = tCK (IDD), tRC = tRC (IDD),  
tRAS = tRAS min.(IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
-6E  
-5C  
-4A  
1277  
1196  
1117  
Operating current  
(ACT-PRE)  
IDD0  
IDD1  
IDD2P  
mA  
one bank; IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = 0;  
-6E  
-5C  
-4A  
1475  
1026  
981  
tCK = tCK (IDD), tRC = tRC (IDD),  
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
Operating current  
(ACT-READ-PRE)  
mA  
all banks idle;  
tCK = tCK (IDD);  
CKE is L;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
-6E  
-5C  
-4A  
623  
553  
553  
Precharge power-down  
standby current  
mA  
mA  
mA  
all banks idle;  
tCK = tCK (IDD);  
CKE is H, /CS is H;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
-6E  
IDD2Q -5C  
-4A  
803  
723  
688  
Precharge quiet standby  
current  
all banks idle;  
-6E  
-5C  
-4A  
848  
768  
688  
tCK = tCK (IDD);CKE is H, /CS is H;  
Other control and address bus inputs are  
SWITCHING;  
Idle standby current  
IDD2N  
Data bus inputs are SWITCHING  
all banks open;  
tCK = tCK (IDD);  
CKE is L;  
Other control and  
address bus inputs are  
STABLE;  
Data bus inputs are  
FLOATING  
-6E  
IDD3P-F -5C  
-4A  
848  
768  
733  
Fast PDN Exit  
MRS(12) = 0  
mA  
mA  
Active power-down  
standby current  
-6E  
IDD3P-S -5C  
-4A  
713  
678  
643  
Slow PDN Exit  
MRS(12) = 1  
all banks open;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD),  
tRP = tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Other control and address bus inputs are  
SWITCHING;  
-6E  
-5C  
-4A  
1277  
1106  
982  
Active standby current  
IDD3N  
IDD4R  
mA  
mA  
mA  
Data bus inputs are SWITCHING  
all banks open, continuous burst reads, IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD),  
tRP = tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
-6E  
-5C  
-4A  
1880  
1648  
1416  
Operating current  
(Burst read operating)  
all banks open, continuous burst writes;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD),  
tRP = tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
-6E  
IDD4W -5C  
-4A  
1880  
1648  
1416  
Operating current  
(Burst write operating)  
Data Sheet E1075E20 (Ver.2.0)  
12  
EBE10RE8ACFA  
Parameter  
Symbol Grade  
-6E  
max.  
Unit  
mA  
Test condition  
tCK = tCK (IDD);  
3063  
2938  
2813  
Refresh command at every tRFC (IDD) interval;  
CKE is H, /CS is H between valid commands;  
Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Auto-refresh current  
IDD5  
-5C  
-4A  
Self Refresh Mode;  
CK and /CK at 0V;  
Self-refresh current  
IDD6  
149  
mA  
mA  
CKE 0.2V;  
Other control and address bus inputs are FLOATING;  
Data bus inputs are FLOATING  
all bank interleaving reads, IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = tRCD (IDD) 1 × tCK (IDD);  
tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD),  
tFAW = tFAW (IDD), tRCD = 1 × tCK (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are STABLE during DESELECTs;  
Data pattern is same as IDD4W;  
-6E  
-5C  
-4A  
3356  
3116  
2877  
Operating current  
(Bank interleaving)  
IDD7  
Notes: 1. IDD specifications are tested after the device is properly initialized.  
2. Input slew rate is specified by AC Input Test Condition.  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS. IDD values must be met with all  
combinations of EMRS bits 10 and 11.  
5. Definitions for IDD  
L is defined as VIN VIL (AC) (max.)  
H is defined as VIN VIH (AC) (min.)  
STABLE is defined as inputs stable at an H or L level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between H and L every other clock cycle (once per two clocks) for address and control  
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals  
not including masks or strobes.  
6. Refer to AC Timing for IDD Test Conditions.  
AC Timing for IDD Test Conditions  
For purposes of IDD testing, the following parameters are to be utilized.  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
5-5-5  
5
4-4-4  
4
3-3-3  
3
Unit  
tCK  
ns  
CL (IDD)  
tRCD (IDD)  
tRC (IDD)  
15  
15  
15  
60  
60  
55  
ns  
tRRD (IDD)  
tFAW (IDD)  
tCK (IDD)  
7.5  
37.5  
3
7.5  
7.5  
37.5  
5
ns  
37.5  
3.75  
45  
ns  
ns  
tRAS (min.)(IDD)  
tRAS (max.)(IDD)  
tRP (IDD)  
45  
40  
ns  
70000  
15  
70000  
15  
70000  
15  
ns  
ns  
tRFC (IDD)  
127.5  
127.5  
127.5  
ns  
Data Sheet E1075E20 (Ver.2.0)  
13  
EBE10RE8ACFA  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
ILI  
Value  
Unit  
µA  
Notes  
Input leakage current  
Output leakage current  
2
5
VDD VIN VSS  
VDDQ VOUT VSS  
ILO  
µA  
Minimum required output pull-up under AC  
test load  
VOH  
VOL  
VTT + 0.603  
V
V
5
5
Maximum required output pull-down under  
AC test load  
VTT 0.603  
Output timing measurement reference level VOTR  
0.5 × VDDQ  
+13.4  
V
1
Output minimum sink DC current  
Output minimum source DC current  
IOL  
mA  
mA  
3, 4, 5  
2, 4, 5  
IOH  
13.4  
Notes: 1. The VDDQ of the device under test is referenced.  
2. VDDQ = 1.7V; VOUT = 1.42V.  
3. VDDQ = 1.7V; VOUT = 0.28V.  
4. The DC value of VREF applied to the receiving device is expected to be set to VTT.  
5. After OCD calibration to 18at TC = 25°C, VDD = VDDQ = 1.8V.  
DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
min.  
max.  
Unit  
V
Notes  
1, 2  
2
AC differential input voltage  
AC differential cross point voltage  
AC differential cross point voltage  
VID (AC)  
VIX (AC)  
VOX (AC)  
0.5  
VDDQ + 0.6  
0.5 × VDDQ 0.175  
0.5 × VDDQ 0.125  
0.5 × VDDQ + 0.175  
0.5 × VDDQ + 0.125  
V
V
3
Notes: 1. VID (AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true  
input signal (such as CK, DQS, RDQS) and VCP is the complementary input signal (such as /CK, /DQS,  
/RDQS). The minimum value is equal to VIH (AC) VIL (AC).  
2. The typical value of VIX (AC) is expected to be about 0.5 × VDDQ of the transmitting device and VIX (AC)  
is expected to track variations in VDDQ. VIX (AC) indicates the voltage at which differential input signals  
must cross.  
3. The typical value of VOX (AC) is expected to be about 0.5 × VDDQ of the transmitting device and  
VOX (AC) is expected to track variations in VDDQ. VOX (AC) indicates the voltage at which differential  
output signals must cross.  
VDDQ  
VTR  
Crossing point  
VID  
VIX or VOX  
VCP  
VSSQ  
Differential Signal Levels*1, 2  
Data Sheet E1075E20 (Ver.2.0)  
14  
EBE10RE8ACFA  
ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
VM  
min.  
60  
typ.  
75  
max.  
90  
Unit  
Note  
Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω  
Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω  
Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω  
Deviation of VM with respect to VDDQ/2  
1
1
1
1
120  
40  
150  
50  
180  
60  
6  
+6  
%
Note: 1. Test condition for Rtt measurements.  
Measurement Definition for Rtt (eff)  
Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively.  
VIH(AC), and VDDQ values defined in SSTL_18.  
VIH(AC) VIL(AC)  
Rtt(eff ) =  
I(VIH(AC))I(VIL(AC))  
Measurement Definition for VM  
Measure voltage (VM) at test pin (midpoint) with no load.  
2×VM  
VM =  
-1 ×100  
VDDQ  
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
min.  
12.6  
0
typ.  
18  
max.  
23.4  
4
Unit  
Notes  
1, 5  
Output impedance  
Pull-up and pull-down mismatch  
Output slew rate  
1, 2  
1.5  
5
V/ns  
3, 4  
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;  
(VOUTVDDQ)/IOH must be less than 23.4for values of VOUT between VDDQ and VDDQ280mV.  
Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/IOL must be less than 23.4for values of VOUT between 0V and 280mV.  
2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and  
voltage.  
3. Slew rate measured from VIL(AC) to VIH(AC).  
4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate  
as measured from AC to AC. This is guaranteed by design and characterization.  
5. DRAM I/O specifications for timing, voltage, and slew rate are no longer applicable if OCD is changed  
from default settings.  
Pin Capacitance (TA = 25°C, VDD = 1.8V ± 0.1V)  
Parameter  
Symbol  
CI1  
Pins  
min.  
2.0  
2.0  
2.5  
max.  
3.5  
Unit  
pF  
Notes  
Address, /RAS, /CAS, /WE,  
/CS, CKE, ODT  
Input capacitance  
1
2
3
Input capacitance  
CI2  
CK, /CK  
3.0  
pF  
Input/output pin capacitance  
-6E  
DQ, DQS, /DQS, UDQS,  
/UDQS, LDQS, /LDQS,  
RDQS, /RDQS, DM,  
UDM, LDM, CB  
CI/O  
3.5  
pF  
-5C, -4A  
2.5  
4.0  
pF  
3
Notes: 1. Register component specification.  
2. PLL component specification.  
3. DDR2 SDRAM component specification.  
Data Sheet E1075E20 (Ver.2.0)  
15  
EBE10RE8ACFA  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V) [DDR2-667]  
(DDR2 SDRAM Component Specification)  
New units tCK(avg) and nCK, are introduced in DDR2-800 and DDR2-667  
tCK(avg): actual tCK(avg) of the input clock under operation.  
nCK: one clock cycle of the input clock, counting the actual clock edges.  
-6E  
Speed bin  
DDR2-667 (5-5-5)  
Parameter  
Symbol  
tRCD  
min.  
15  
max.  
Unit  
ns  
Notes  
Active to read or write command delay  
Precharge command period  
Active to active/auto-refresh command time  
DQ output access time from CK, /CK  
DQS output access time from CK, /CK  
CK high-level width  
tRP  
15  
ns  
tRC  
60  
ns  
tAC  
450  
400  
0.48  
0.48  
+450  
+400  
0.52  
0.52  
ps  
10  
10  
tDQSCK  
tCH (avg)  
tCL(avg)  
ps  
tCK (avg) 13  
tCK (avg) 13  
CK low-level width  
Min.  
CK half period  
tHP  
ps  
ps  
6, 13  
(tCL(abs), tCH(abs))  
Clock cycle time  
(CL = 6)  
tCK (avg)  
3000  
8000  
13  
(CL = 5)  
tCK (avg)  
tCK (avg)  
tCK (avg)  
3000  
3750  
5000  
8000  
8000  
8000  
ps  
ps  
ps  
ps  
ps  
13  
13  
13  
5
(CL = 4)  
(CL = 3)  
DQ and DM input hold time  
DQ and DM input setup time  
tDH (base) 175  
tDS (base) 100  
4
Control and Address input pulse width for each  
input  
tIPW  
0.6  
tCK (avg)  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK,/CK  
DQS, /DQS low-impedance time from CK,/CK  
tDIPW  
tHZ  
0.35  
tCK (avg)  
tAC max.  
tAC max.  
ps  
ps  
10  
10  
tLZ (DQS) tAC min.  
2
tLZ (DQ)  
DQ low-impedance time from CK,/CK  
tAC max.  
ps  
ps  
10  
× tAC min  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
tQHS  
240  
340  
DQ hold skew factor  
ps  
ps  
7
8
DQ/DQS output hold time from DQS  
tQH  
tHP – tQHS  
DQS latching rising transitions to associated clock  
edges  
tDQSS  
0.25  
+0.25  
tCK (avg)  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
tCK (avg)  
tCK (avg)  
tCK (avg)  
tCK (avg)  
nCK  
tDSH  
tMRD  
tWPST  
tWPRE  
tIH (base)  
tIS (base)  
tRPRE  
tRPST  
0.4  
0.35  
275  
200  
0.9  
0.4  
0.6  
tCK (avg)  
tCK (avg)  
ps  
Write preamble  
Address and control input hold time  
Address and control input setup time  
Read preamble  
5
4
ps  
1.1  
0.6  
tCK (avg) 11  
tCK (avg) 12  
Read postamble  
Data Sheet E1075E20 (Ver.2.0)  
16  
EBE10RE8ACFA  
-6E  
Speed bin  
DDR2-667 (5-5-5)  
Parameter  
Symbol  
tRAS  
tRAP  
tRRD  
tFAW  
tCCD  
tWR  
min.  
max.  
Unit  
ns  
Notes  
Active to precharge command  
Active to auto-precharge delay  
Active bank A to active bank B command period  
Four active window period  
/CAS to /CAS command delay  
Write recovery time  
45  
70000  
tRCD min.  
ns  
7.5  
37.5  
2
ns  
ns  
nCK  
ns  
15  
WR +  
Auto precharge write recovery + precharge time  
tDAL  
RU (tRP/  
tCK (avg))  
nCK  
1, 9  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self-refresh to a non-read command  
Exit self-refresh to a read command  
tWTR  
tRTP  
7.5  
ns  
7.5  
ns  
tXSNR  
tXSRD  
tRFC + 10  
200  
ns  
nCK  
Exit precharge power down to any non-read  
command  
tXP  
2
nCK  
nCK  
nCK  
Exit active power down to read command  
tXARD  
tXARDS  
2
3
Exit active power down to read command  
(slow exit/low power mode)  
7 AL  
2, 3  
CKE minimum pulse width (high and low pulse  
width)  
tCKE  
3
nCK  
Output impedance test driver delay  
MRS command to ODT update delay  
tOIT  
0
12  
12  
ns  
ns  
ns  
tMOD  
0
Auto-refresh to active/auto-refresh command time tRFC  
127.5  
Average periodic refresh interval  
tREFI  
7.8  
3.9  
µs  
µs  
ns  
(0°C TC +85°C)  
(+85°C < TC +95°C)  
tREFI  
Minimum time clocks remains ON after CKE  
asynchronously drops low  
tDELAY  
tIS + tCK(avg) + tIH  
Data Sheet E1075E20 (Ver.2.0)  
17  
EBE10RE8ACFA  
AC Characteristics [DDR2-533, 400]  
-5C  
-4A  
DDR2-400 (3-3-3)  
Speed bin  
Parameter  
DDR2-533 (4-4-4)  
Symbol  
min.  
max.  
min.  
max.  
Unit  
Notes  
Active to read or write command delay  
Precharge command period  
tRCD  
tRP  
15  
15  
ns  
15  
15  
ns  
Active to active/auto-refresh command time tRC  
60  
55  
ns  
DQ output access time from CK, /CK  
DQS output access time from CK, /CK  
CK high-level width  
tAC  
500  
+500  
+450  
0.55  
0.55  
600  
500  
0.45  
0.45  
+600  
+500  
0.55  
0.55  
ps  
tDQSCK 450  
ps  
tCH  
tCL  
0.45  
0.45  
tCK  
tCK  
CK low-level width  
Min.  
(tCL, tCH)  
Min.  
(tCL, tCH)  
CK half period  
tHP  
tCK  
ps  
ps  
Clock cycle time  
(CL = 6)  
3750  
8000  
5000  
8000  
(CL = 5)  
(CL = 4)  
(CL = 3)  
tCK  
tCK  
tCK  
3750  
3750  
5000  
8000  
8000  
8000  
5000  
5000  
5000  
8000  
8000  
8000  
ps  
ps  
ps  
DQ and DM input hold time  
(differential strobe)  
tDH (base) 225  
275  
+25  
150  
+25  
ps  
5
4
DQ and DM input hold time  
(single-ended strobe)  
tDH1  
–25  
ps  
(base)  
DQ and DM input setup time  
(differential strobe)  
tDS (base) 100  
ps  
DQ and DM input setup time  
(single-ended strobe)  
tDS1  
–25  
ps  
(base)  
Control and Address input pulse width for  
each input  
tIPW  
0.6  
0.6  
tCK  
DQ and DM input pulse width for each input tDIPW  
Data-out high-impedance time from CK,/CK tHZ  
Data-out low-impedance time from CK,/CK tLZ  
0.35  
0.35  
tCK  
ps  
tAC max.  
tAC max.  
tAC max.  
tAC max.  
tAC min.  
tAC min.  
ps  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
300  
400  
350  
450  
ps  
DQ hold skew factor  
tQHS  
tQH  
ps  
ps  
DQ/DQS output hold time from DQS  
tHP – tQHS  
tHP – tQHS  
DQS latching rising transitions to associated  
clock edges  
tDQSS  
0.25  
+0.25  
0.25  
+0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
0.35  
0.35  
0.2  
0.2  
2
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
tDSH  
tMRD  
tWPST  
tWPRE  
0.4  
0.35  
0.6  
0.4  
0.35  
475  
350  
0.9  
0.4  
0.6  
Write preamble  
Address and control input hold time  
Address and control input setup time  
Read preamble  
tIH (base) 375  
tIS (base) 250  
5
4
ps  
tRPRE  
tRPST  
0.9  
0.4  
1.1  
0.6  
1.1  
0.6  
tCK  
tCK  
Read postamble  
Data Sheet E1075E20 (Ver.2.0)  
18  
EBE10RE8ACFA  
-5C  
-4A  
DDR2-400 (3-3-3)  
Speed bin  
DDR2-533 (4-4-4)  
Parameter  
Symbol  
tRAS  
min.  
max.  
min.  
max.  
Unit  
ns  
Notes  
Active to precharge command  
Active to auto-precharge delay  
45  
70000  
40  
70000  
tRAP  
tRCD min.  
tRCD min.  
ns  
Active bank A to active bank B command  
period  
tRRD  
7.5  
7.5  
ns  
Four active window period  
/CAS to /CAS command delay  
Write recovery time  
tFAW  
tCCD  
tWR  
37.5  
2
37.5  
2
ns  
tCK  
ns  
15  
15  
Auto precharge write recovery + precharge  
time  
WR +  
RU(tRP/tCK)  
WR +  
RU(tRP/tCK)  
tDAL  
tCK  
1, 9  
Internal write to read command delay  
tWTR  
7.5  
10  
ns  
Internal read to precharge command delay tRTP  
7.5  
7.5  
ns  
Exit self-refresh to a non-read command  
Exit self-refresh to a read command  
tXSNR  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
tXSRD  
tXP  
tCK  
Exit precharge power-down to any non-read  
command  
2
2
tCK  
tCK  
tCK  
Exit active power-down to read command  
tXARD  
tXARDS  
2
2
3
Exit active power-down to read command  
(slow exit/low power mode)  
6 AL  
6 AL  
2, 3  
CKE minimum pulse width (high and low  
pulse width)  
tCKE  
3
3
tCK  
Output impedance test driver delay  
MRS command to ODT update delay  
tOIT  
0
0
12  
12  
0
0
12  
12  
ns  
ns  
tMOD  
Auto-refresh to active/auto-refresh command  
time  
tRFC  
127.5  
127.5  
ns  
Average periodic refresh interval  
(0°C TC +85°C)  
tREFI  
7.8  
3.9  
7.8  
3.9  
µs  
µs  
ns  
(+85°C < TC +95°C)  
tREFI  
Minimum time clocks remains ON after CKE  
asynchronously drops low  
tIS + tCK +  
tIH  
tIS + tCK +  
tIH  
tDELAY  
Notes: 1. For each of the terms above, if not already an integer, round to the next higher integer.  
2. AL: Additive Latency.  
3. MRS A12 bit defines which active power down exit timing to be applied.  
4. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the  
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test.  
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the  
VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under test.  
CK  
DQS  
/CK  
/DQS  
tIS  
tIH  
tIS  
tIH  
tDS tDH  
tDS tDH  
VDDQ  
VDDQ  
VIH (AC)(min.)  
VIH (DC)(min.)  
VREF  
VIH (AC)(min.)  
VIH (DC)(min.)  
VREF  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
Input Waveform Timing 1 (tDS, tDH)  
Input Waveform Timing 2 (tIS, tIH)  
Data Sheet E1075E20 (Ver.2.0)  
19  
EBE10RE8ACFA  
6. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not  
an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing  
tQH.  
The value to be used for tQH calculation is determined by the following equation;  
tHP = min ( tCH(abs), tCL(abs) ),  
where,  
tCH(abs) is the minimum of the actual instantaneous clock high time;  
tCL(abs) is the minimum of the actual instantaneous clock low time;  
7. tQHS accounts for:  
a. The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the  
input is transferred to the output; and  
b. The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are independent of each other, due to data pin skew, output pattern effects,  
and p-channel to n-channel variation of the output drivers.  
8. tQH = tHP – tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification  
value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye  
will be.}  
Examples:  
a. If the system provides tHP of 1315ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975ps  
(min.)  
b. If the system provides tHP of 1420ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080ps  
(min.)  
9. RU stands for round up. WR refers to the tWR parameter stored in the MRS.  
10. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps and  
tERR(6-10per) max. = +293ps, then tDQSCK min.(derated) = tDQSCK min. tERR(6-10per) max. =  
400ps 293ps = 693ps and tDQSCK max.(derated) = tDQSCK max. tERR(6-10per) min. = 400ps +  
272ps = +672ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ) min.(derated) = 900ps 293ps =  
1193ps and tLZ(DQ) max.(derated)= 450ps + 272ps = +722ps.  
11. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per) min. = 72ps and  
tJIT(per) max. = +93ps, then tRPRE min.(derated) = tRPRE min. + tJIT(per) min. = 0.9 × tCK(avg) 72ps  
= +2178ps and tRPRE max.(derated) = tRPRE max. + tJIT(per) max. = 1.1 × tCK(avg) + 93ps = +2843ps.  
12. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(duty) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty) min. = 72ps and  
tJIT(duty) max. = +93ps, then tRPST min.(derated) = tRPST min. + tJIT(duty) min. = 0.4 × tCK(avg) −  
72ps = +928ps and tRPST max.(derated) = tRPST max. + tJIT(duty) max. = 0.6 × tCK(avg) + 93ps =  
+1592ps.  
13. Refer to the Clock Jitter table.  
Data Sheet E1075E20 (Ver.2.0)  
20  
EBE10RE8ACFA  
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
tAOND  
min.  
2
max.  
2
Unit  
tCK  
Notes  
ODT turn-on delay  
ODT turn-on  
-6E  
tAON  
tAC(min)  
tAC(max) + 700  
ps  
1, 3  
1
-5C, -4A  
tAON  
tAC(min)  
tAC(max) + 1000  
2tCK + tAC(max) + 1000  
2.5  
ps  
ODT turn-on (power down mode)  
ODT turn-off delay  
tAONPD  
tAOFD  
tAOF  
tAC(min) + 2000  
ps  
2.5  
tCK  
ps  
5, 6  
ODT turn-off  
tAC(min)  
tAC(max) + 600  
2, 4, 5, 6  
ODT turn-off (power down mode)  
ODT to power down entry latency  
ODT power down exit latency  
tAOFPD  
tANPD  
tAXPD  
tAC(min) + 2000  
2.5tCK + tAC(max) + 1000 ps  
3
8
3
8
tCK  
tCK  
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
2. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
4. When the device is operated with input clock jitter, this parameter needs to be derated by  
{tJIT(duty) max. tERR(6-10per) max. } and { tJIT(duty) min. tERR(6-10per) min. } of the actual input  
clock.(output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps,  
tERR(6-10per) max. = +293ps, tJIT(duty) min. = 106ps and tJIT(duty) max. = +94ps, then  
tAOF min.(derated) = tAOF min. + { tJIT(duty) max. tERR(6-10per) max. } = 450ps + { 94ps 293ps}  
= 837ps and tAOF max.(derated) = tAOF max. + { tJIT(duty) min. tERR(6-10per) min. } = 1050ps +  
{ 106ps + 272ps} = +1428ps.  
5. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 × tCK assumes a tCH, input clock high pulse  
width of 0.5 relative to tCK. tAOF min. and tAOF max. should each be derated by the same amount as  
the actual amount of tCH offset present at the DRAM input with respect to 0.5. For example, if an input  
clock has a worst case tCH of 0.45, the tAOF min. should be derated by subtracting 0.05 × tCK from it,  
whereas if an input clock has a worst case tCH of 0.55, the tAOF max. should be derated by adding 0.05  
× tCK to it. Therefore, we have;  
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH min.)] × tCK  
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH max.) 0.5] × tCK  
or  
tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 tCH min.] × tCK)  
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH max. 0.5] × tCK)  
where tCH min. and tCH max. are the minimum and maximum of tCH actually measured at the DRAM  
input balls.  
6. For tAOFD of DDR2-667, the 1/2 clock of nCK in the 2.5 × nCK assumes a tCH(avg), average input clock  
high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be derated by the  
same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5. For  
example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by  
subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52,  
the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have;  
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH(avg) min.)] × tCK(avg)  
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) 0.5] × tCK(avg)  
or  
tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 tCH(avg) min.] × tCK(avg))  
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. 0.5] × tCK(avg))  
where tCH(avg) min. and tCH(avg) max. are the minimum and maximum of tCH(avg) actually measured  
at the DRAM input balls.  
Data Sheet E1075E20 (Ver.2.0)  
21  
EBE10RE8ACFA  
AC Input Test Conditions (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
Value  
0.5 × VDDQ  
1.0  
Unit  
V
Notes  
1
Input reference voltage  
VREF  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
VSWING(max.)  
SLEW  
V
1
1.0  
V/ns  
2, 3  
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL (AC) level applied to  
the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) (min.) for  
rising edges and the range from VREF to VIL(AC) (max.) for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive  
transitions and VIH(AC) to VIL(AC) on the negative transitions.  
VDDQ  
VIH (AC)(min.)  
VIH (DC)(min.)  
VSWING(max.)  
VREF  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
TF  
VREF  
TR  
VIL (AC)(max.)  
VIH (AC) min.  
VREF  
Falling slew =  
Rising slew =  
TF  
TR  
AC Input Test Signal Wave forms  
Measurement point  
DQ  
VTT  
RT =25 Ω  
Output Load  
Data Sheet E1075E20 (Ver.2.0)  
22  
EBE10RE8ACFA  
Clock Jitter [DDR2-667]  
-6E  
667  
Frequency (Mbps)  
Parameter  
Symbol  
min.  
max.  
8000  
125  
Unit  
ps  
Notes  
Average clock period  
Clock period jitter  
tCK (avg)  
tJIT (per)  
3000  
125  
1
5
ps  
Clock period jitter during  
DLL locking period  
tJIT  
(per, lck)  
100  
100  
250  
200  
ps  
ps  
ps  
5
6
6
Cycle to cycle period jitter  
tJIT (cc)  
Cycle to cycle clock period jitter during DLL  
locking period  
tJIT (cc, lck)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
tERR (2per)  
tERR (3per)  
tERR (4per)  
tERR (5per)  
175  
225  
250  
250  
175  
225  
250  
250  
ps  
ps  
ps  
ps  
7
7
7
7
Cumulative error across  
n=6,7,8,9,10 cycles  
tERR  
(6-10per)  
350  
450  
350  
450  
ps  
ps  
7
7
Cumulative error across  
n=11, 12,…49,50 cycles  
tERR  
(11-50per)  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg)  
tCL (avg)  
tJIT (duty)  
0.48  
0.48  
125  
0.52  
0.52  
125  
tCK (avg)  
tCK (avg)  
ps  
2
3
4
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window.  
N  
tCK(avg) =  
tCKj  
N
j =1  
N = 200  
2. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N  
tCH(avg) =  
tCHj (N ×tCK(avg))  
j =1  
N = 200  
3. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.  
N  
tCL(avg) =  
tCLj (N × tCK(avg))  
j =1  
N = 200  
4. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg).  
tJIT (duty) is not subject to production test.  
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where:  
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}  
tJIT (CL) = {tCLj tCL (avg) where j = 1 to 200}  
5. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).  
tJIT (per) = Min./Max. of { tCKj tCK (avg) where j = 1 to 200}  
tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same  
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not  
subject to production test.  
Data Sheet E1075E20 (Ver.2.0)  
23  
EBE10RE8ACFA  
6. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles:  
tJIT (cc) = Max. of |tCKj+1 tCKj|  
tJIT (cc) is defines the cycle to cycle jitter when the DLL is already locked. tJIT (cc, lck) uses the same  
definition for cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not  
subject to production test.  
7. tERR (nper) is defined as the cumulative error across multiple consecutive cycles from tCK (avg).  
tERR (nper) is not subject to production test.  
n
tERR(nper) =  
tCKj n×tCK(avg))  
j =1  
2 n 50 for tERR (nper)  
8. These parameters are specified per their average values, however it is understood that the following  
relationship between the average timing and the absolute instantaneous timing hold at all times.  
(minimum and maximum of spec values are to be used for calculations in the table below.)  
Parameter  
Symbol  
min.  
max.  
Unit  
Absolute clock period  
tCK (abs) tCK (avg) min. + tJIT (per) min. tCK (avg) max. + tJIT (per) max. ps  
Absolute clock high pulse  
width  
tCH (avg) min. × tCK (avg) min. + tCH (avg) max. × tCK (avg) max.  
tCH (abs)  
tCL (abs)  
ps  
ps  
tJIT (duty) min.  
tCL (avg) min. × tCK (avg) min. + tCL (avg) max. × tCK (avg) max.  
tJIT (duty) min. + tJIT (duty) max.  
+ tJIT (duty) max.  
Absolute clock low pulse  
width  
Example: For DDR2-667, tCH(abs) min. = ( 0.48 × 3000 ps ) - 125ps = 1315ps  
Data Sheet E1075E20 (Ver.2.0)  
24  
EBE10RE8ACFA  
Pin Functions  
CK, /CK (input pin)  
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross  
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross  
point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF  
level. DQSs for write operation are referred to the cross point of the CK and the /CK.  
/CS (input pin)  
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal  
operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.  
See “Command operation”.  
A0 to A13 (input pins)  
Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the  
VREF level in a bank active command cycle. Column address (AY0 to AY9) is loaded via the A0 to the A9 at the  
cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address  
becomes the starting address of a burst operation.  
A10 (AP) (input pin)  
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If  
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge  
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write  
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.  
BA0, BA1, BA2 (input pin)  
BA0, BA1 and BA2 are bank select signals (BA). The memory array is divided into 8 banks: bank 0 to bank 7. (See  
Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
BA2  
L
Bank 0  
Bank 1  
H
L
L
L
Bank 2  
H
H
L
L
Bank 3  
H
L
L
Bank 4  
H
H
H
H
Bank 5  
H
L
L
Bank 6  
H
H
Bank 7  
H
Remark: H: VIH. L: VIL.  
Data Sheet E1075E20 (Ver.2.0)  
25  
EBE10RE8ACFA  
CKE (input pin)  
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the  
CKE is driven low and exited when it resumes to high.  
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge  
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold  
time tIH.  
DQ, CB (input and output pins)  
Data are input to and output from these pins.  
DQS (input and output pin)  
DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).  
DM (input pins)  
DM is the reference signal of the data input mask function. DMs are sampled at the cross point of DQS and /DQS.  
DM function will be disabled when RDQS (DQS9 toDQS17 and /DQS9 to /DQS17) function is enabled by EMRS.  
VDD (power supply pins)  
1.8V is applied. (VDD is for the internal circuit.)  
VDDSPD (power supply pin)  
1.8V is applied (For serial EEPROM).  
VSS (power supply pin)  
Ground is connected.  
/RESET(input pin)  
LVCMOS reset input. When /RESET is Low, all registers are reset.  
Par_IN (Parity input pin)  
Parity bit for the address and control bus.  
/Err_Out (Error output pin)  
Parity error found on the address and control bus.  
Detailed Operation Part and Timing Waveforms  
Refer to the EDE1104ACSE, EDE1108ACSE, EDE1116ACSE datasheet (E0975E). DIMM /CAS latency =  
component CL + 1 for registered type.  
Data Sheet E1075E20 (Ver.2.0)  
26  
EBE10RE8ACFA  
Physical Outline  
Unit: mm  
4.00 max  
0.5 min  
(DATUM -A-)  
Component area  
(Front)  
1
120  
B
A
1.27 ± 0.10  
63.00  
55.00  
133.35  
121  
240  
Component area  
(Back)  
FULL R  
3.00  
Detail A  
Detail B  
1.00  
(DATUM -A-)  
FULL R  
4.00  
2.50  
5.00  
1.50 ± 0.10  
0.80 ± 0.05  
ECA-TS2-0093-01  
Data Sheet E1075E20 (Ver.2.0)  
27  
EBE10RE8ACFA  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on  
these components to prevent damaging them.  
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,  
which would be electrical defects.  
When re-packing memory modules, be sure the modules are not touching each other.  
Modules in contact with other modules may cause excessive mechanical stress, which may damage the  
modules.  
MDE0202  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Data Sheet E1075E20 (Ver.2.0)  
28  
EBE10RE8ACFA  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0706  
Data Sheet E1075E20 (Ver.2.0)  
29  

相关型号:

EBE10UE8ACFA

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACFA-6E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACFA-8E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACFA-8G-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWA

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWA-6E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWA-8E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWA-8G-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWB

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWB-6E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWB-8E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE10UE8ACWB-8G-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA