PI6C49X0204AWIE [DIODES]

Low Skew Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), CMOS, PDSO8, SOIC-8;
PI6C49X0204AWIE
型号: PI6C49X0204AWIE
厂家: DIODES INCORPORATED    DIODES INCORPORATED
描述:

Low Skew Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), CMOS, PDSO8, SOIC-8

驱动 光电二极管 逻辑集成电路
文件: 总10页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Features  
Description  
ÎLow skew outputs (250 ps)  
ÎPackaged in 8-pin SOIC  
The PI6C49X0204A is a low skew, single input to four output,  
clock buffer. Perfect for fanning out multiple clock outputs.  
ÎLow power CMOS technology  
ÎOperating Voltages of 1.5 V to 3.3 V  
ÎOutput Enable pin tri-states outputs  
Î3.6 V tolerant input clock  
ÎIndustrial temperature ranges  
Block Diagram  
Pin Assignment  
Q0  
OE  
CLK  
Q1  
1
2
3
4
8
7
6
5
Q1  
Q2  
CLK  
VDD  
Q2  
GND  
Q3  
Q4  
Q3  
Output Enable  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
1
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Pin Descriptions  
Pin#  
Pin Name  
CLK  
Pin Type  
Input  
Pin Description  
Clock Input. 3.3 V tolerant input.  
1
2
3
4
5
6
7
Q1  
Output  
Output  
Output  
Output  
Power  
Clock Output 1.  
Q2  
Clock Output 2.  
Q3  
Clock Output 3.  
Q4  
Clock Output 4.  
GND  
VDD  
Connect to ground.  
Power  
Connect to 1.5 V, 1.8V, 2.5V or 3.3V.  
Output Enable. Tri-states outputs when low. Connect to VDD for  
normal operation.  
8
OE  
Input  
External Components  
A minimum number of external components are required for proper operation. A decoupling capacitor of 0.01 μF should be connected  
between VDD on pin 7 and GND on pin 6, as close to the device as possible. A 33 Ω series terminating resistor may be used on each  
clock output if the trace is longer than 1 inch.  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
2
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Maximum Ratings  
Note:  
Stresses above the ratings listed below can cause  
permanent damage to the PI6C49X0204A. Functional  
operation of the device at these or any other conditions  
above those indicated in the operational sections of the  
specifications is not implied.  
Supply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6V  
Output Enable and All Outputs . . . . . . . . . . . .-0.5 V to VDD+0.5 V  
CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 3.6 V (VDD > 0V)  
Ambient Operating Temperature (industrial) . . . . . . . -40 to +85 °C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . -65 to +150°C  
Soldering Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260°C  
ESD Protection (HBM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 V  
Exposure to absolute maximum rating conditions for  
extended periods can affect product reliability. Electrical  
parameters are guaranteed only over the recommended  
operating temperature range.  
Recommended Operation Conditions  
Parameter  
Min.  
Typ.  
Max.  
Units  
Ambient Operating Temperature (industrial)  
-40  
+85  
°C  
V
Power Supply Voltage (measured in respect to GND)  
+3.6  
+1.425  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
3
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
DC ELECTRICAL CHARACTERISTICS  
VDD=1.5 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
1.425  
1.17  
Typ.  
Max.  
Units  
VDD  
Operating Voltage  
1.5  
1.575  
V
VIH  
VIL  
IIH  
Input High Voltage  
Note 1, CLK  
3.6  
0.575  
40  
V
Input Low Voltage  
Note 1, CLK  
V
Input High Current  
Input Low Current  
Note 1, CLK, OE  
Note 1, CLK, OE  
IOH = -6 mA  
µA  
µA  
V
IIL  
1
VOH  
VOL  
IDD  
ZO  
Output High Voltage  
Output Low Voltage  
Operating Supply Current  
Nominal Output Impedance  
Input Capacitance  
0.95  
IOL = 6 mA  
0.45  
9
V
No load, 133 MHz  
mA  
Ω
20  
5
CIN  
IOS  
CLK, OE pin  
pF  
mA  
Short Circuit Current  
±12  
Notes: 1. Nominal switching threshold is VDD/2  
VDD=1.8 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
1.7  
Typ.  
Max.  
Units  
VDD  
Operating Voltage  
1.8  
1.89  
V
VIH  
VIL  
IIH  
Input High Voltage  
Note 1, CLK  
1.7  
3.6  
0.6  
50  
1
V
Input Low Voltage  
Note 1, CLK  
V
Input High Current  
Input Low Current  
Note 1, CLK, OE  
Note 1, CLK, OE  
IOH = -8 mA  
µA  
µA  
V
IIL  
VOH  
VOL  
IDD  
ZO  
Output High Voltage  
Output Low Voltage  
Operating Supply Current  
Nominal Output Impedance  
Input Capacitance  
1.4  
IOL = 8 mA  
0.4  
11  
V
No load, 133 MHz  
mA  
Ω
20  
5
CIN  
IOS  
CLK, OE pin  
pF  
mA  
Short Circuit Current  
±20  
Notes: 1. Nominal switching threshold is VDD/2  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
4
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
VDD=2.5 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
2.375  
1.7  
Typ.  
Max.  
Units  
VDD  
Operating Voltage  
2.5  
2.625  
V
VIH  
VIL  
IIH  
Input High Voltage  
Note 1, CLK  
3.6  
0.7  
60  
3
V
Input Low Voltage  
Note 1, CLK  
V
Input High Current  
Input Low Current  
Note 1, CLK, OE  
Note 1, CLK, OE  
IOH = -8 mA  
µA  
µA  
V
IIL  
VOH  
VOL  
IDD  
ZO  
Output High Voltage  
Output Low Voltage  
Operating Supply Current  
Nominal Output Impedance  
Input Capacitance  
2
IOL = 8 mA  
0.4  
15  
V
No load, 133 MHz  
mA  
Ω
20  
5
CIN  
IOS  
CLK, OE pin  
pF  
mA  
Short Circuit Current  
±50  
Notes: 1. Nominal switching threshold is VDD/2  
VDD=3.3 V ±10%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
3.0  
Typ.  
Max.  
Units  
VDD  
Operating Voltage  
3.3  
3.6  
V
VIH  
VIL  
IIH  
Input High Voltage  
Note 1, CLK  
2.1  
3.6  
0.7  
85  
1
V
Input Low Voltage  
Note 1, CLK  
V
Input High Current  
Input Low Current  
Note 1, CLK, OE  
Note 1, CLK, OE  
IOH = -8 mA  
µA  
µA  
V
IIL  
VOH  
VOL  
IDD  
ZO  
Output High Voltage  
Output Low Voltage  
Operating Supply Current  
Nominal Output Impedance  
Input Capacitance  
2.8  
IOL = 8 mA  
0.2  
21  
V
No load, 133 MHz  
mA  
Ω
20  
5
CIN  
IOS  
CLK, OE pin  
pF  
mA  
Short Circuit Current  
±50  
Notes: 1. Nominal switching threshold is VDD/2  
AC ELECTRICAL CHARACTERISTICS  
VDD=1.5 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
FOUT  
Output Frequency  
0
166  
MHz  
tOR  
tOF  
TPD  
TSK  
Output Rise Time  
20% to 80%  
20% to 80%  
1.0  
1.0  
3
1.5  
1.5  
5
ns  
ns  
ns  
ps  
Output Fall Time  
Propagation Delay (Note1)  
Output to Output Skew (Note2)  
2
Rising edges at VDD/2  
0
±250  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
5
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
AC ELECTRICAL CHARACTERISTICS  
VDD=1.8 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
FOUT  
Output Frequency  
0
166  
MHz  
tOR  
tOF  
TPD  
TSK  
Output Rise Time  
20% to 80%  
20% to 80%  
1.0  
1.0  
2
1.5  
1.5  
4
ns  
ns  
ns  
ps  
Output Fall Time  
Propagation Delay (Note1)  
Output to Output Skew (Note2)  
1.3  
Rising edges at VDD/2  
0
±250  
@156.25MHz, 12k to  
20MHz  
JADD  
Additive Jitter  
0.1  
ps  
VDD=2.5 V ±5%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
FOUT  
Output Frequency  
0
200  
MHz  
tOR  
tOF  
TPD  
TSK  
Output Rise Time  
20% TO 80%  
20% TO 80%  
1.0  
1.0  
1.5  
0
1.5  
1.5  
3
ns  
ns  
ns  
ps  
Output Fall Time  
Propagation Delay (Note1)  
Output to Output Skew (Note2)  
0.8  
Rising edges at VDD/2  
±250  
@156.25MHz, 12k to  
20MHz  
JADD  
Additive Jitter  
0.05  
ps  
Notes:  
1. With rail to rail input clock  
2. Between any 2 outputs with equal loading.  
VDD=3.3 V ±10%, Ambient temperature -40 to +85° C, unless stated otherwise  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
FOUT  
Output Frequency  
0
200  
MHz  
tOR  
tOF  
TPD  
TSK  
Output Rise Time  
20% TO 80%  
20% TO 80%  
1.0  
1.0  
1.0  
0
1.5  
ns  
ns  
ns  
ps  
Output Fall Time  
1.5  
Propagation Delay (Note1)  
Output to Output Skew (Note2)  
0.8  
2.5  
Rising edges at VDD/2  
±250  
@156.25MHz, 12k to  
20MHz  
JADD  
Additive Jitter  
0.05  
ps  
Notes:  
1. With rail to rail input clock  
2. Between any 2 outputs with equal loading.  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Thermal Resistance Junction to  
Ambient  
θJA  
θJC  
Still air  
157  
42  
°C/W  
°C/W  
Thermal Resistance Junction to Case  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
6
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Phase Noise Plot  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
7
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Application information  
CMOS Output Termination  
Suggest for Unused Inputs and Outputs  
Popular CMOS Output Termination  
LVCMOS Input Control Pins  
e most popular CMOS termination is a serial resitor close to  
the output pin (<=200mil). It is simple and balances the drive  
strength. e resistor's value can be fine tuned for best perfor-  
mance during board bring-up based on VDDO voltage used.  
It is suggested to add pull-up=4.7k and pull-down=1k for LVC-  
MOS pins even though they have internal pull-up/down but  
with much higher value (>=50k) for higher design reliability.  
Outputs  
All unused outputs are suggested to be leꢀ open and not con-  
nected to any trace. is can lower the IC power consumption.  
Power Decoupling & Routing  
VDD Pin Decoupling  
Each VDD pin must have a 0.1uF decoupling capacitor. For  
better decoupling, 1uF can be used. Locating the decoupling  
capacitor on the component side has better decoupling filter  
result as shown.  
Combining Serial and Parallel Termination  
14  
Designers can also use a parallel termination for CMOS outputs.  
For example, a 50 ohm pull-down resistor can be used at the  
Rx side to reduce signal reflection, but it reduces the signals  
V_swing in half. is pull-down can be combined with a serial  
resitor to form a smaller clock voltage difference. e following  
diagram shows how to transition a 2.5V clock into 1.8V clock.  
13  
GND  
0.1uF  
12  
VDD  
GND  
11  
10  
9
0.1uF  
VDD  
GND  
VDD  
8
Decouple cap.  
on comp. side  
Clock IC Device  
Placement of Decoupling caps  
CMOS Clock Trace Routing  
Please ensure that there is a sufficent keep-out area to the adja-  
cent trace (>20mil.). In an example using a 125MHz XO driving  
a buffer IC, it is better to route the clock trace on the component  
side with a 33 ohm termination resistor.  
Rs = 33 ohm with Rn = 100 ohm, to transition 3.3V CMOS to  
2.5V  
Rs= 43 ohm with Rn =70 ohm to transition 3.3V CMOS to 1.8V  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
8
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Clock Jitter Definitions  
Total jitter= RJ + DJ  
Device Thermal Calculation  
e JEDEC thermal model in a 4-layer PCB is shown below.  
Random Jitter (RJ) is unpredictable and unbounded timing noise  
that can fit in a Gaussian math distribution in RMS. RJ test val-  
ues are directly related with how long or how many test samples  
are available. Deterministic Jitter (DJ) is timing jitter that is pre-  
dictable and periodic in fixed interference frequency. Total Jitter  
(TJ) is the combination of random jitter and deterministic jitter:  
, where is a factor based on total test sample count. JEDEC std.  
specifies digital clock TJ in 10k random samples.  
JEDEC IC ermal Model  
Phase Jitter  
Phase noise is short-term random noise attached on the clock  
carrier and it is a function of the clock offset from the car-  
rier, for example dBc/Hz@10kHz which is phase noise power  
in 1-Hz normalized bandwidth vs. the carrier power @10kHz  
offset. Integration of phase noise in plot over a given frequency  
band yields RMS phase jitter, for example, to specify phase jitter  
<=1ps at 12k to 20MHz offset band as SONET standard specifi-  
cation.  
Important factors to influence device operating temperature are:  
1) e power dissipation from the chip (P_chip) is aꢀer subtract-  
ing power dissipation from external loads. Generally it can be  
the no-load device Idd  
2) Package type and PCB stack-up structure, for example, 1oz  
4 layer board. PCB with more layers and are thicker has better  
heat dissipation  
3) Chassis air flow and cooling mechanism. More air flow M/s  
and adding heat sink on device can reduce device final die junc-  
tion temperature Tj  
e individual device thermal calculation formula:  
Tj =Ta + Pchip x Ja  
Tc = Tj - Pchip x Jc  
Ja ___ Package thermal resistance from die to the ambient air  
in C/W unit; is data is provided in JEDEC model simulation.  
An air flow of 1m/s will reduce Ja (still air) by 20~30%  
Jc ___ Package thermal resistance from die to the package case  
in C/W unit  
Tj ___ Die junction temperature in C (industry limit <125C  
max.)  
Ta ___ Ambiant air température in C  
Tc ___ Package case temperature in C  
Pchip___ IC actually consumes power through Iee/GND cur-  
rent  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
9
PI6C49X0204A  
Low Skew 1 TO 4 Clock Buffer  
Note:  
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php  
Ordering Information(1-3)  
Ordering Code  
Package Code  
Package Description  
PI6C49X0204AWIE  
W
W
8-pin, Pb-free & Green, SOIC  
PI6C49X0204AWIEX  
8-pin, Pb-free & Green, SOIC, Tape & Reel  
Notes:  
1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/  
2. E = Pb-free and Green  
3. Adding an X suffix = Tape/Reel  
Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com  
PI6C49X0204A  
Rev D  
5/4/2016  
16-0097  
10  
All trademarks are property of their respective owners.  

相关型号:

PI6C49X0204AWIEX

Low Skew 1 TO 4 Clock Buffer
PERICOM

PI6C49X0204B

Low Skew, 1-TO-4 LVCMOS/LVTTL Fanout Buffer
PERICOM

PI6C49X0204B-A

Low Skew, 1-TO-4 LVCMOS/LVTTL Fanout Buffer
PERICOM

PI6C49X0204B-AWE

Low Skew, 1-TO-4 LVCMOS/LVTTL Fanout Buffer
PERICOM

PI6C49X0204BWIE

Low Skew, 1-TO-4 LVCMOS/LVTTL Fanout Buffer
PERICOM

PI6C49X0204BWIEX

Low Skew, 1-TO-4 LVCMOS/LVTTL Fanout Buffer
PERICOM

PI6C49X0204CWIE

Low Skew Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), CMOS, PDSO8, SOIC-8
DIODES

PI6C49X0204CWIEX

Low Skew Clock Driver, 6C Series, 4 True Output(s), 0 Inverted Output(s), CMOS, PDSO8, SOIC-8
DIODES

PI6C49X0206T

Low Skew, 1-To-6 LVCMOS / LVTTL Fanout Buffer
PERICOM

PI6C49X0206TLIE

Low Skew, 1-To-6 LVCMOS / LVTTL Fanout Buffer
PERICOM

PI6C49X0206TLIEX

Low Skew, 1-To-6 LVCMOS / LVTTL Fanout Buffer
PERICOM

PI6C49X0208

High Performance 1:8 Multi-Voltage CMOS Buffer
PERICOM