SLG46620-AG [DIALOG]

Auto Grade GreenPAK Programmable Mixed-signal Matrix;
SLG46620-AG
型号: SLG46620-AG
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Auto Grade GreenPAK Programmable Mixed-signal Matrix

文件: 总186页 (文件大小:2253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
General Description  
The SLG46620-A provides a small, low power component for commonly used mixed-signal functions. The user creates their  
circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect  
logic, the IO Pins and the macrocells of the SLG46620-A. This highly versatile device allows a wide variety of mixed-signal  
functions to be designed within a very small, low power single integrated circuit.  
Key Features  
8-bit Successive Approximation Register Analog-to-Digital  
Converter (SAR ADC)  
ADC 3-bit Programmable Gain Amplifier (PGA)  
Two Digital-to-Analog Converters (DAC)  
Six Analog Comparators (ACMP)  
Power-On Reset (POR)  
Two Bandgaps  
Slave SPI  
Read Back Protection (Read Lock)  
Power Supply  
1.8 V (±5 %) to 3.3 V (±10 %)  
Operating Temperature Range: -40°C to 105°C  
RoHS Compliant / Halogen-Free  
Available Package  
Two Voltage References (Vref)  
Twenty Five Combinatorial Look Up Tables (LUTs)  
Eight 2-bit LUTs  
Sixteen 3-bit LUTs  
One 4-bit LUT  
20-pin TSSOP: 6.5 mm x 6.4 mm x 1.2 mm, 0.65 mm  
pitch  
One Combination Function Marcocells  
Pattern Generator or 4-bit LUT  
AEC-Q100 Grade 2 Qualified  
Three Digital Comparators/Pulse Width Modulators  
(DCMPs /PWMs) w/ Selectable Deadband  
Ten Counters/Delays (CNT/DLY)  
Two 14-bit Delay/Counter  
One 14-bit Delay/Counter (Wake-Sleep Control)  
One 14-bit Delay/Counter/Finite State Machine  
Five 8-bit Delay/Counter  
One 8-bit Delay/Counter/Finite State Machine  
Twelve D Flip-Flops/Latches  
Two Pipe Delays – 16 stage/ 2 output  
Two Programmable Delays w/ Edge Detection  
Three Internal Oscillators  
Low-Frequency  
Ring  
RC 25 kHz and 2 MHz  
Applications  
Infotainment  
Navigation  
Advanced Driver Assistance Systems (ADAS)  
Automotive Display Clusters  
Body Electronics  
Datasheet  
16-Mar-2020  
Revision 3.3  
1 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ....................................................................................................................................................................10  
2 Pinout ..................................................................................................................................................................................11  
2.1 Pin Configuration - TSSOP-20 .............................................................................................................................11  
3 Characteristics ...................................................................................................................................................................13  
3.1 Absolute Maximum Ratings .................................................................................................................................13  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................13  
3.3 Recommended Operating Conditions .................................................................................................................13  
3.4 Electrical Characteristics ......................................................................................................................................14  
3.5 Timing Characteristics ..........................................................................................................................................24  
3.6 Oscillator Characteristics .....................................................................................................................................27  
3.7 ACMP Characteristics ..........................................................................................................................................29  
3.8 Vref OUT Characteristics .....................................................................................................................................32  
3.9 ADC Characteristics Including PGA .....................................................................................................................33  
3.10 PGA Specifications ............................................................................................................................................37  
4 User Programmability ........................................................................................................................................................41  
5 IO Pins .................................................................................................................................................................................42  
5.1 Input Modes .........................................................................................................................................................42  
5.2 Output Modes .......................................................................................................................................................42  
5.3 Pull-Up/Down Resistors .......................................................................................................................................42  
5.4 GPI Structure .......................................................................................................................................................42  
5.5 Matrix OE IO Structure .........................................................................................................................................43  
5.6 Register OE IO Structure .....................................................................................................................................45  
5.7 IO Typical Performance .......................................................................................................................................47  
6 Connection Matrix ..............................................................................................................................................................49  
6.1 Matrix Input 0 Table ............................................................................................................................................52  
6.2 Matrix 0 Output Table ..........................................................................................................................................54  
6.3 Matrix Input 1 Table ............................................................................................................................................57  
6.4 Matrix 1 Output Table ..........................................................................................................................................59  
7 8-bit SAR ADC Analog-to-Digital Converter ....................................................................................................................62  
7.1 ADC Functional Diagram ....................................................................................................................................63  
7.2 ADC Operation Modes .........................................................................................................................................63  
7.3 ADC 3-bit Programmable Gain Amplifier .............................................................................................................63  
7.4 ADC Input Voltage Definition ...............................................................................................................................68  
7.5 ADC Reference Voltage .......................................................................................................................................69  
7.6 ADC Power-Down Select Mode ...........................................................................................................................69  
7.7 ADC Clock Source ...............................................................................................................................................69  
7.8 ADC Outputs ........................................................................................................................................................70  
7.9 ADC Interrupt Output Timing Diagram ................................................................................................................71  
8 8-bit Digital-to-Analog Converter ......................................................................................................................................72  
8.1 DAC0 Functional Diagram ...................................................................................................................................73  
8.2 DAC1 Functional Diagram ...................................................................................................................................73  
8.3 DAC Typical Performance ...................................................................................................................................74  
9 Combinatorial Logic ...........................................................................................................................................................75  
9.1 2-Bit LUT ..............................................................................................................................................................75  
9.2 3-Bit LUT ..............................................................................................................................................................79  
9.3 4-Bit LUT ..............................................................................................................................................................84  
10 Combination Function Macrocells ..................................................................................................................................86  
11 Analog Comparators ........................................................................................................................................................88  
11.1 ACMP Master Architecture ................................................................................................................................89  
11.2 ACMP0 Block Diagram .....................................................................................................................................90  
11.3 ACMP1 Block Diagram .....................................................................................................................................91  
11.4 ACMP2 Block Diagram ......................................................................................................................................92  
Datasheet  
16-Mar-2020  
Revision 3.3  
2 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.5 ACMP3 Block Diagram ......................................................................................................................................93  
11.6 ACMP4 Block Diagram .....................................................................................................................................94  
11.7 ACMP5 Block Diagram .....................................................................................................................................95  
11.8 ACMP Typical Performance ...............................................................................................................................96  
12 Digital Storage Elements .................................................................................................................................................97  
12.1 Initial Polarity Operations ................................................................................................................................103  
13 Counters/Delay Generators ...........................................................................................................................................106  
13.1 CNT/DLY Timing Diagrams ..............................................................................................................................112  
14 Digital Comparator/Pulse Width Modulator .................................................................................................................116  
14.1 DCMP Input Modes ..........................................................................................................................................116  
14.2 DCMP Output Modes .......................................................................................................................................116  
14.3 PWM Input Modes ............................................................................................................................................117  
14.4 PWM Output Modes .........................................................................................................................................117  
14.5 DCMP0/PWM0 Functional Diagram ................................................................................................................118  
14.6 DCMP1/PWM1 Functional Diagram ................................................................................................................118  
14.7 DCMP2/PWM2 Functional Diagram ................................................................................................................119  
14.8 PWM Dead Band Control .................................................................................................................................119  
14.9 PWM Dead Band Control Timing Diagram ......................................................................................................119  
14.10 DCMP/PWM Power-down Control .................................................................................................................119  
14.11 DCMP/PWM Clock Invert Control ..................................................................................................................120  
15 Slave SPI - Serial to Parallel/Parallel to Serial Converter (SPI) ..................................................................................121  
15.1 SPI Functional Diagram ...................................................................................................................................121  
15.2 Clock Polarity and Phase .................................................................................................................................121  
15.3 SPI Clock Synchronization ...............................................................................................................................124  
15.4 SPI Data Buffer Function .................................................................................................................................125  
16 Pipe Delay .......................................................................................................................................................................126  
17 Programmable Delay/Edge Detector ............................................................................................................................128  
17.1 Programmable Delay Timing Diagram - Edge Detector Output .....................................................................129  
17.2 Programmable Delay Timing Diagram - Glitch Filtering For Edge Detector Output ........................................130  
18 Voltage Reference ..........................................................................................................................................................131  
18.1 Voltage Reference Overview ...........................................................................................................................131  
18.2 Vref Selection Table ........................................................................................................................................131  
18.3 Vref Block Diagram .........................................................................................................................................132  
18.4 Vref Out Typical Performance .........................................................................................................................133  
19 Clocking ..........................................................................................................................................................................134  
19.1 Oscillators General Description ........................................................................................................................134  
19.2 Oscillators Power-On Delay .............................................................................................................................136  
19.3 Oscillators Accuracy .........................................................................................................................................138  
20 Power-On Reset ..............................................................................................................................................................141  
20.1 General Operation ............................................................................................................................................141  
20.2 POR Sequence ................................................................................................................................................142  
20.3 Macrocells Output States During POR Sequence ...........................................................................................142  
20.4 Initialization ......................................................................................................................................................143  
20.5 Power-Down ....................................................................................................................................................144  
20.6 External Reset ..................................................................................................................................................144  
21 Power Detector ...............................................................................................................................................................148  
22 Additional Logic Functions ...........................................................................................................................................148  
22.1 INV_0 Gate .....................................................................................................................................................148  
22.2 INV_1 Gate .....................................................................................................................................................148  
23 Register Definitions .......................................................................................................................................................149  
23.1 Register Map ....................................................................................................................................................149  
24 Package Top Marking Definitions .................................................................................................................................179  
24.1 TSSOP-20 ........................................................................................................................................................179  
25 Package Information ......................................................................................................................................................180  
25.1 Package outlines for TSSOP 20L 173 MIL Green Package ............................................................................180  
25.2 TSSOP Handling ..............................................................................................................................................181  
25.3 Soldering Information .......................................................................................................................................181  
Datasheet  
16-Mar-2020  
Revision 3.3  
3 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
26 Ordering Information .....................................................................................................................................................181  
26.1 Tape and Reel Specifications ..........................................................................................................................181  
26.2 Carrier Tape Drawing and Dimensions ............................................................................................................181  
26.3 TSSOP- 20 .......................................................................................................................................................182  
27 Layout Guidelines ..........................................................................................................................................................182  
27.1 TSSOP-20 ........................................................................................................................................................182  
Glossary................................................................................................................................................................................183  
Revision History...................................................................................................................................................................185  
Datasheet  
16-Mar-2020  
Revision 3.3  
4 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figures  
Figure 1: Steps to Create a Custom GreenPAK Device...........................................................................................................41  
Figure 2: PIN 2 GPI Structure Diagram....................................................................................................................................42  
Figure 3: Matrix OE IO Structure Diagram...............................................................................................................................43  
Figure 4: Matrix OE IO 4x Drive Structure Diagram.................................................................................................................44  
Figure 5: Register IO Structure Diagram..................................................................................................................................45  
Figure 6: Register OE 4x Drive Structure Diagram ..................................................................................................................46  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.......................................................47  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C .........................................47  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C .........................................48  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C .......................................48  
Figure 11: Matrix Cross Connection Block Diagram ................................................................................................................49  
Figure 12: Connection Matrix 0................................................................................................................................................50  
Figure 13: Connection Matrix 1................................................................................................................................................50  
Figure 14: Connection Matrix Example....................................................................................................................................51  
Figure 15: ADC Functional Diagram ........................................................................................................................................63  
Figure 16: ADC 2-Channel Selection.......................................................................................................................................64  
Figure 17: PGA Input Offset Distribution, Single-Ended Mode, G = 0.5 ..................................................................................65  
Figure 18: PGA Input Offset Distribution, Single-Ended Mode, G = 1 .....................................................................................65  
Figure 19: PGA Input Offset Distribution, Single-Ended Mode, G = 2 .....................................................................................66  
Figure 20: PGA Input Offset Distribution, Single-Ended Mode, G = 4 .....................................................................................66  
Figure 21: PGA Input Offset Distribution, Single-Ended Mode, G = 8 .....................................................................................66  
Figure 22: Typical Input Common Mode Voltage Range vs. Linear Output Voltage Range, Differential Mode, All Gains.......67  
Figure 23: Typical Negative Input Voltage Range vs. Linear Output Voltage, Pseudo-Differential Mode, G = 1.....................67  
Figure 24: Typical Negative Input Voltage Range vs. Linear Output Voltage, Pseudo-Differential Mode, G = 2.....................67  
Figure 25: ADC Reference Voltage..........................................................................................................................................69  
Figure 26: ADC Clock Source..................................................................................................................................................70  
Figure 27: ADC Interrupt Output Timing Diagram....................................................................................................................71  
Figure 28: DAC0 Functional Diagram ......................................................................................................................................73  
Figure 29: DAC1 Functional Diagram ......................................................................................................................................73  
Figure 30: DAC Typical Load Regulation, T = 25°C, VDD = 3.3 V............................................................................................74  
Figure 31: 2-bit LUTs................................................................................................................................................................76  
Figure 32: 3-bit LUTs................................................................................................................................................................79  
Figure 33: 3-bit LUTs................................................................................................................................................................80  
Figure 34: 4-bit LUT_1 .............................................................................................................................................................84  
Figure 35: 4-bit LUT1 or PGEN................................................................................................................................................86  
Figure 36: PGEN Timing Diagram............................................................................................................................................87  
Figure 37: Maximum Power-On Delay vs. VDD, BG = 550 µs, Regulator and Charge Pump set to automatic ON/OFF.........88  
Figure 38: Maximum Power-On Delay vs. VDD, BG = 100 µs, Regulator and Charge Pump set to automatic ON/OFF.........88  
Figure 39: ACMP Master Architecture Diagram.......................................................................................................................89  
Figure 40: ACMP0 Block Diagram ...........................................................................................................................................90  
Figure 41: ACMP1 Block Diagram ...........................................................................................................................................91  
Figure 42: ACMP2 Block Diagram ...........................................................................................................................................92  
Figure 43: ACMP3 Block Diagram ...........................................................................................................................................93  
Figure 44: ACMP4 Block Diagram ...........................................................................................................................................94  
Figure 45: ACMP5 Block Diagram ...........................................................................................................................................95  
Figure 46: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 105 °C, VDD = 3.3 V.............................................96  
Figure 47: DFF/Latch0 .............................................................................................................................................................97  
Figure 48: DFF/Latch1 .............................................................................................................................................................98  
Figure 49: DFF/Latch2 .............................................................................................................................................................98  
Figure 50: DFF/Latch3 .............................................................................................................................................................99  
Figure 51: DFF/Latch4 .............................................................................................................................................................99  
Figure 52: DFF/Latch5 .............................................................................................................................................................99  
Figure 53: DFF/Latch6 ...........................................................................................................................................................100  
Figure 54: DFF/Latch7 ...........................................................................................................................................................100  
Figure 55: DFF/Latch8 ...........................................................................................................................................................101  
Datasheet  
16-Mar-2020  
Revision 3.3  
5 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 56: DFF/Latch9 ...........................................................................................................................................................101  
Figure 57: DFF/Latch10 .........................................................................................................................................................102  
Figure 58: DFF/Latch11 .........................................................................................................................................................102  
Figure 59: DFF Polarity Operations........................................................................................................................................103  
Figure 60: DFF Polarity Operations with nRST......................................................................................................................104  
Figure 61: DFF Polarity Operations with nSet........................................................................................................................105  
Figure 62: CNT/DLY0.............................................................................................................................................................107  
Figure 63: CNT/DLY1.............................................................................................................................................................107  
Figure 64: CNT/DLY2/FSM0..................................................................................................................................................108  
Figure 65: CNT/DLY3.............................................................................................................................................................108  
Figure 66: CNT/DLY4/FSM0..................................................................................................................................................109  
Figure 67: CNT/DLY5.............................................................................................................................................................109  
Figure 68: CNT/DLY6.............................................................................................................................................................110  
Figure 69: CNT/DLY7.............................................................................................................................................................110  
Figure 70: CNT/DLY8/PWM_RAMP.......................................................................................................................................111  
Figure 71: CNT/DLY9/PWM_RAMP.......................................................................................................................................111  
Figure 72: Timing (Rising Edge) for Count Data = 3..............................................................................................................112  
Figure 73: Timing (Falling Edge) for Count Data = 3 .............................................................................................................112  
Figure 74: Timing (Reset Rising Edge Mode, Oscillator is Forced on) for Count Data = 3....................................................113  
Figure 75: Timing (Reset Falling Edge Mode, Oscillator is Forced on) for Count Data = 3 ...................................................113  
Figure 76: Timing (Reset High Level Mode, Oscillator is Autopowered on (Controlled by Reset)) for Count Data = 3 .........113  
Figure 77: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP=0) for Counter Data = 3 .....114  
Figure 78: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced on, UP=0) for Counter Data = 3..........114  
Figure 79: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced on, UP=1) for Counter Data = 3......115  
Figure 80: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced on, UP=1) for Counter Data = 3..........115  
Figure 81: DCMP Timing Diagram.........................................................................................................................................117  
Figure 82: DCMP0/PWM0 Functional Diagram......................................................................................................................118  
Figure 83: DCMP1/PWM1 Functional Diagram......................................................................................................................118  
Figure 84: DCMP2/PWM2 Functional Diagram......................................................................................................................119  
Figure 85: PWM Dead Band Control Timing Diagram ...........................................................................................................119  
Figure 86: SPI Functional Diagram........................................................................................................................................121  
Figure 87: Timing Diagram showing Clock Polarity and Phase, CPHA=0 .............................................................................122  
Figure 88: Timing Diagram showing Clock Polarity and Phase, CPHA = 1 ...........................................................................123  
Figure 89: Timing Diagram showing SPI Clock synchronization............................................................................................125  
Figure 90: The SPI used as ADC data buffer diagram...........................................................................................................125  
Figure 91: Pipe Delay 0..........................................................................................................................................................126  
Figure 92: Pipe Delay 1..........................................................................................................................................................127  
Figure 93: Programmable Delay ............................................................................................................................................128  
Figure 94: Programmable Delay ............................................................................................................................................128  
Figure 95: Edge Detector Output ...........................................................................................................................................129  
Figure 96: Delayed Edge Detector Output.............................................................................................................................129  
Figure 97: Glitch Filtering for Edge Detector Output..............................................................................................................130  
Figure 98: Voltage Reference Block Diagram........................................................................................................................132  
Figure 99: Typical Load Regulation, T = 25°C, VDD = 3.3 V ..................................................................................................133  
Figure 100: Oscillator Block Diagram.....................................................................................................................................135  
Figure 101: Oscillator Startup Diagram..................................................................................................................................136  
Figure 102: LF Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, OSC = 1.73 kHz ...............................................136  
Figure 103: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, RC OSC = 2 MHz............................................137  
Figure 104: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, RC OSC = 25 kHz ...........................................137  
Figure 105: Ring Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, OSC = 27 MHz..............................................138  
Figure 106: RC Oscillator Frequency vs. VDD, RC OSC = 25 kHz, T = 25 °C .......................................................................138  
Figure 107: RC Oscillator Frequency vs. VDD, RC OSC = 25 kHz, T = -40 °C to 105 °C ......................................................139  
Figure 108: Ring Oscillator Frequency vs. VDD, OSC = 27 MHz, T = 25 °C ..........................................................................139  
Figure 109: Ring Oscillator Frequency vs. VDD, OSC = 27 MHz, T = -40 °C to 105 °C.........................................................140  
Figure 110: POR sequence....................................................................................................................................................142  
Figure 111: Internal Macrocell States during POR sequence................................................................................................143  
Figure 112: Power-Down........................................................................................................................................................144  
Datasheet  
16-Mar-2020  
Revision 3.3  
6 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 113: External Reset Sequence (High Active)..............................................................................................................145  
Figure 114: External Reset Sequence (Rising Edge Detect).................................................................................................146  
Figure 115: External Reset Sequence (Falling Edge Detect).................................................................................................147  
Figure 116: INV_0 Gate .........................................................................................................................................................148  
Figure 117: INV_1 Gate .........................................................................................................................................................148  
Datasheet  
16-Mar-2020  
Revision 3.3  
7 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Tables  
Table 1: Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . 14  
Table 7: Input Leakage Current at T = -40 °C to +105 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 8: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C . . . . . . . . . . . . . . . 22  
Table 9: Typical Delay Estimated for Each Macrocell at T = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 10: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C . . . . . . . . . . . . . . . . . . . . 25  
Table 11: Oscillators Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 12: Oscillators Power-On Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13: ACMP Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted. . . . . . . . . . 29  
Table 14: Vref OUT Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted . . . . . . . 32  
Table 15: Delay Estimated for Each ACMP at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted . . . 32  
Table 16: Single-Ended ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . . . . 33  
Table 17: Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . . . . . . 34  
Table 18: Pseudo-Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . 35  
Table 19: Single-Ended PGA Operation, T = -40°C to +105°C, VDD = 1.71 V to 3.6V, Unless Otherwise Noted . . . . . . 37  
Table 20: Differential PGA Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . . . . . . 38  
Table 21: Pseudo-Differential PGA Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted . . 39  
Table 22: Differential/Pseudo-Differential PGA Mode, T = -40°C to +105°C, VDD = 1.71V to 3.6V, Unless Otherwise Noted 40  
Table 23: Matrix 0 Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 24: Matrix 0 Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 25: Matrix 1 Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 26: Matrix 1 Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 27: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 28: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 29: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 30: 2-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 31: 2-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 32: 2-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 33: 2-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 34: 2-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 35: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 36: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 37: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 38: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 39: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 40: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 41: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 42: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 43: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 44: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 45: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 46: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 47: 3-bit LUT11 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 48: 3-bit LUT12 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 49: 3-bit LUT13 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 50: 3-bit LUT14 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 51: 3-bit LUT15 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 52: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 53: 4-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 54: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 55: 4-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 56: Gain Divider Input Resistance (typical). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 57: Gain Divider typical Accuracy at T = (-40 to +105°C), VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 58: Counter/Delay Macrocell Functions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 59: CPHA = 0 Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 60: CPHA = 1 Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 61: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Datasheet  
16-Mar-2020  
Revision 3.3  
8 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 62: Vref Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Table 63: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Datasheet  
16-Mar-2020  
Revision 3.3  
9 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
1
Block Diagram  
Counters/Delay Generators  
Pin 1  
VDD  
Pin 20  
GPIO  
CNT0  
CNT5  
CNT1  
CNT2  
CNT7  
CNT3  
CNT4  
CNT9  
Programmable  
Delay0  
ACMP0  
Pin 2  
GPI  
CNT6  
CNT8  
Pin 19  
GPIO  
Programmable  
Delay1  
DFF/Latches  
Pin 18  
GPIO  
Pin 3  
DFF0  
DFF1  
DFF2  
DFF3  
DFF9  
DFF4  
DFF5  
ACMP1  
GPIO  
DFF6  
DFF7  
DFF8  
DFF10  
DFF11  
Pipe  
Delay0  
Vref  
Pin 17  
GPIO  
Pin 4  
GPIO  
ACMP2  
Look Up Tables (LUTs)  
2-bit  
LUT2_0  
2-bit  
LUT2_1  
2-bit  
LUT2_2  
2-bit  
LUT2_3  
2-bit  
LUT2_4  
Pipe  
Delay1  
POR  
Pin 16  
GPIO  
Pin 5  
GPIO  
2-bit  
LUT2_5  
2-bit  
LUT2_6  
2-bit  
LUT2_7  
3-bit  
LUT3_0  
3-bit  
LUT3_1  
ACMP3  
3-bit  
LUT3_2  
3-bit  
LUT3_3  
3-bit  
LUT3_4  
3-bit  
LUT3_5  
3-bit  
LUT3_6  
Additional  
Logic Functions  
Pin 15  
GPIO  
Pin 6  
GPIO  
3-bit  
LUT3_7  
3-bit  
LUT3_8  
3-bit  
LUT3_9  
3-bit  
LUT3_10  
3-bit  
LUT3_11  
INV_0  
INV_1  
ACMP4  
3-bit  
LUT3_12  
3-bit  
LUT3_13  
3-bit  
LUT3_14  
3-bit  
LUT3_15  
4-bit  
LUT4_0  
Pin 14  
GPIO  
Pin 7  
GPIO  
Combination Function  
Macrocell  
8-bit SAR  
ADC  
4-bit LUT4_1  
or PGEN  
DAC0  
DAC1  
Pin 13  
GPIO  
Pin 8  
ACMP5  
GPIO  
DCMP/PWM  
LF Oscillator  
Pin 9  
GPIO  
Pin 12  
GPIO  
PWR DET  
SPI  
PGA  
Ring Oscillator  
RC Oscillator  
Pin 11  
GND  
Pin 10  
GPIO  
Datasheet  
16-Mar-2020  
Revision 3.3  
10 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
2
Pinout  
2.1 PIN CONFIGURATION - TSSOP-20  
6.4 mm  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
4
5
6
7
8
9
10  
TSSOP-20  
(Top View)  
Table 1: Functional Pin Description  
Pin #  
Pin Name Function  
1
VDD  
Power Supply  
General Purpose Input  
External Reset  
ADC CLK  
2
GPI  
General Purpose IO with OE  
ACMP4(+)  
3
4
5
6
7
8
9
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
General Purpose IO  
ACMP5(+)  
General Purpose IO with OE  
ACMP5 (-)  
General Purpose IO  
ACMP0(+) / ACMP1(+) / ACMP2(+) / ACMP3(+) / ACMP4(+)  
General Purpose IO with OE  
ACMP0(-) / ACMP1(-) / PGA_OUT  
General Purpose IO  
PGA(+)  
General Purpose IO with OE  
PGA(-)  
General Purpose IO with OE  
ACMP0(-) / ACMP1(-) / ACMP2(-) / ACMP3(-) / ACMP4(-)  
Super Drive IO  
10  
11  
12  
GPIO  
GND  
GPIO  
Ground  
General Purpose IO  
ACMP1(+)  
Super Drive IO  
General Purpose IO with OE  
ACMP2(+) / ACMP3(+)  
13  
14  
GPIO  
GPIO  
General Purpose IO with OE  
ACMP2(-)  
Datasheet  
16-Mar-2020  
Revision 3.3  
11 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 1: Functional Pin Description(Continued)  
Pin #  
Pin Name Function  
General Purpose IO  
ACMP3(+) / ACMP4(+)  
15  
GPIO  
GPIO  
GPIO  
GPIO  
General Purpose IO with OE  
16  
17  
18  
General Purpose IO  
General Purpose IO with OE  
Vref OUT 1  
General Purpose IO with OE  
Vref OUT 0  
19  
20  
GPIO  
GPIO  
General Purpose IO  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPI  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
Ground  
GPIO  
GPO  
GND  
Datasheet  
16-Mar-2020  
Revision 3.3  
12 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
Max  
7
Unit  
V
-0.5  
GND - 0.5 V  
VDD + 0.5 V  
1.98/G  
V
Single-ended  
--  
--  
V
Differential  
(1.98 - 0.55)/G  
V
PGA Input voltage (Note 1)  
Pseudo-  
--  
(1.98 - 0.18)/G  
V
differential  
Maximum Average or DC  
Current Through VDD Pin  
(Per chip side, (Note 2))  
TJ = 85°C  
TJ = 110°C  
TJ = 85°C  
TJ = 110°C  
--  
--  
--  
--  
45  
21  
69  
33  
mA  
mA  
mA  
mA  
Maximum Average or DC  
Current Through GND Pin  
(Per chip side, (Note 2))  
Push-Pull 1x  
Push-Pull 2x  
Push-Pull 4x  
OD 1x  
--  
--  
10  
14  
--  
28  
Maximum Average or DC Current  
(Through pin)  
mA  
--  
14  
OD 2x  
--  
27  
OD 4x  
--  
46  
Current at Input Pin  
-1.0  
-65  
--  
1.0  
150  
150  
1
mA  
°C  
Storage Temperature Range  
Junction Temperature  
°C  
Moisture Sensitive Level  
Note 1 IN+ relative to GND in Single-ended mode, IN+ and IN- relative to each other in Differential and Pseudo-differential  
modes.  
Note 2 The GreenPAK’s power rails are divided in two sides. Pins 2, 3, 4, 5, 6, 7, 8, 9 and 10 are connected to one side, pins  
12, 13, 14, 15, 16, 17, 18, 19 and 20 to another.  
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
750  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model), corner pins  
ESD Protection (Charged Device Model), other pins  
--  
V
500  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
1.71  
-40  
Max  
3.6  
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
105  
°C  
Datasheet  
16-Mar-2020  
Revision 3.3  
13 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 5: Recommended Operating Conditions(Continued)  
Parameter  
Condition  
Min  
Max  
Unit  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD  
0.3  
+
--  
V
Capacitor Value at VDD  
0.1  
0
--  
µF  
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
V
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
3.6  
Unit  
VDD  
VPP  
Supply Voltage  
1.71  
7.25  
0
3.3  
7.50  
--  
V
V
V
V
Programming Voltage  
7.75  
VDD  
1.2  
Positive Input  
Negative Input  
VACMP  
ACMP Input Voltage Range  
0
--  
0.7x  
VDD  
VDD  
0.3  
+
Logic Input (Note 3)  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
0.8x  
VDD  
VDD  
0.3  
+
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 3)  
Logic Input (Note 3)  
VDD  
0.3  
+
1.25  
--  
GND-  
0.3  
0.3x  
VDD  
--  
GND-  
0.3  
0.2x  
VDD  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
--  
GND-  
0.3  
Low-Level Logic Input (Note 3)  
--  
0.5  
Logic Input with Schmitt Trigger,  
0.174  
0.181  
0.187  
0.253  
0.266  
0.271  
0.342  
0.346  
0.346  
0.405  
0.421  
0.432  
0.530  
0.530  
0.530  
0.630  
0.643  
0.681  
V
DD = 1.71 V  
Logic Input with Schmitt Trigger,  
DD = 1.8 V  
V
Logic Input with Schmitt Trigger,  
VDD = 1.89 V  
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Logic Input with Schmitt Trigger,  
VDD = 3 V  
Logic Input with Schmitt Trigger,  
VDD = 3.3 V  
Logic Input with Schmitt Trigger,  
VDD = 3.6 V  
PMOS OD, 1x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
1.677  
2.678  
3.011  
3.337  
1.697  
2.773  
3.092  
3.408  
--  
--  
--  
--  
V
V
V
V
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3 V  
VOH  
HIGH-Level Output Voltage  
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3.3 V  
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3.6 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
14 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
PMOS OD, 2x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
1.69  
1.704  
--  
V
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3 V  
2.843  
3.156  
3.467  
1.702  
2.918  
3.225  
3.53  
2.887  
3.196  
3.503  
1.707  
2.941  
3.245  
3.549  
1.703  
2.772  
3.091  
3.408  
1.704  
2.886  
3.196  
3.503  
1.707  
2.941  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3.3 V  
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3.6 V  
PMOS OD, 4x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
PMOS OD, 4x Drive, IOH = 3 mA,  
VDD = 3 V  
PMOS OD, 4x Drive, IOH = 3 mA,  
VDD = 3.3 V  
PMOS OD, 4x Drive, IOH = 3 mA,  
VDD = 3.6 V  
Push-Pull, 1x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
1.677  
2.675  
3.009  
3.336  
1.69  
VOH  
HIGH-Level Output Voltage  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3 V  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.3 V  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.6 V  
Push-Pull, 2x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3 V  
2.842  
3.156  
3.466  
1.702  
2.918  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.3 V  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.6 V  
Push-Pull, 4x Drive, IOH = 0.1 mA,  
VDD = 1.71 V  
Push-Pull, 4x Drive, IOH = 3 mA,  
VDD = 3 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
15 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 4x Drive, IOH = 3 mA,  
VDD = 3.3 V  
3.225  
3.246  
--  
V
VOH  
HIGH-Level Output Voltage  
Push-Pull, 4x Drive, IOH = 3 mA,  
VDD = 3.6 V  
3.53  
--  
3.549  
0.003  
0.064  
0.06  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NMOS OD, 1x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
0.007  
0.094  
0.088  
0.083  
0.004  
0.051  
0.048  
0.046  
0.002  
0.026  
0.025  
0.024  
0.017  
0.232  
0.216  
0.201  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3 V  
--  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3.3 V  
--  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = 3.6 V  
--  
0.056  
0.002  
0.035  
0.033  
0.031  
0.001  
0.018  
0.017  
0.016  
0.008  
0.153  
0.144  
0.133  
NMOS OD, 2x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
--  
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3 V  
--  
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3.3 V  
--  
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = 3.6 V  
--  
VOL  
LOW-Level Output Voltage  
NMOS OD, 4x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
--  
NMOS OD, 4x Drive, IOL = 3 mA,  
VDD = 3 V  
--  
NMOS OD, 4x Drive, IOL = 3 mA,  
VDD = 3.3 V  
--  
NMOS OD, 4x Drive, IOL = 3 mA,  
VDD = 3.6 V  
--  
Push-Pull, 1x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3 V  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.3 V  
--  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.6 V  
--  
Datasheet  
16-Mar-2020  
Revision 3.3  
16 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
--  
0.004  
0.009  
V
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3 V  
--  
--  
--  
--  
--  
--  
--  
0.079  
0.074  
0.069  
0.002  
0.04  
0.117  
0.109  
0.103  
0.004  
0.057  
0.053  
0.050  
V
V
V
V
V
V
V
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3.3 V  
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3.6 V  
VOL  
LOW-Level Output Voltage  
Push-Pull, 4x Drive, IOL = 0.1 mA,  
VDD = 1.71 V  
Push-Pull, 4x Drive, IOL = 3 mA,  
VDD = 3 V  
Push-Pull, 4x Drive, IOL = 3 mA,  
VDD = 3.3 V  
0.037  
0.035  
Push-Pull, 4x Drive, IOL = 3 mA,  
VDD = 3.6 V  
PMOS OD, 1x Drive,  
VOH = VDD - 0.2  
0.888  
1.327  
--  
mA  
VDD = 1.71 V  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 3 V  
5.014  
7.602  
10.22  
6.862  
10.292  
13.661  
--  
--  
--  
mA  
mA  
mA  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 3.3 V  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
PMOS OD, 2x Drive,  
VOH = VDD - 0.2  
HIGH-Level Output Pulse  
Current (Note 1)  
IOH  
1.784  
2.602  
--  
mA  
VDD = 1.71 V  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 3 V  
9.758  
14.765  
19.786  
13.325  
19.961  
26.453  
--  
--  
--  
mA  
mA  
mA  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 3.3 V  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
PMOS OD, 4x Drive,  
VOH = VDD - 0.2  
3.467  
4.940  
--  
mA  
VDD = 1.71 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
17 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
PMOS OD, 4x Drive,  
VOH = 2.4 V, VDD = 3 V  
18.41  
24.709  
--  
mA  
PMOS OD, 4x Drive,  
27.793  
37.08  
36.972  
48.908  
--  
--  
mA  
mA  
V
OH = 2.4 V, VDD = 3.3 V  
PMOS OD, 4x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
Push-Pull, 1x Drive,  
VOH = VDD - 0.2  
0.886  
1.328  
--  
mA  
VDD = 1.71 V  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3 V  
4.988  
7.57  
6.850  
10.274  
13.642  
--  
--  
--  
mA  
mA  
mA  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.3 V  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
10.186  
Push-Pull, 2x Drive,  
VOH = VDD - 0.2  
HIGH-Level Output Pulse  
Current (Note 1)  
IOH  
1.772  
2.602  
--  
mA  
VDD = 1.71 V  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3 V  
9.73  
13.308  
19.934  
26.407  
--  
--  
--  
mA  
mA  
mA  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.3 V  
14.727  
19.742  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
Push-Pull, 4x Drive,  
VOH = VDD - 0.2  
3.474  
4.967  
--  
mA  
VDD = 1.71 V  
Push-Pull, 4x Drive,  
VOH = 2.4 V, VDD = 3 V  
18.371  
27.716  
36.955  
2.605  
24.763  
37.017  
48.951  
3.747  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
Push-Pull, 4x Drive,  
VOH = 2.4 V, VDD = 3.3 V  
Push-Pull, 4x Drive,  
VOH = 2.4 V, VDD = 3.6 V  
NMOS OD, 1x Drive, VOL = 0.15 V  
VDD = 1.71 V  
LOW-Level Output Pulse  
Current (Note 1)  
IOL  
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 3 V  
11.731  
17.144  
--  
mA  
Datasheet  
16-Mar-2020  
Revision 3.3  
18 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 3.3 V  
12.68  
18.499  
--  
mA  
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 3.6 V  
13.405  
4.973  
21.614  
23.323  
24.348  
10.026  
43.796  
45.48  
49.417  
1.053  
4.903  
5.266  
5.67  
20.055  
7.184  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
NMOS OD, 2x Drive, VOL = 0.15 V  
VDD = 1.71 V  
NMOS OD, 2x Drive, VOL = 0.4 V  
VDD = 3 V  
32.171  
34.195  
37.261  
14.124  
62.595  
65.776  
72.104  
1.521  
NMOS OD, 2x Drive, VOL = 0.4 V  
VDD = 3.3 V  
NMOS OD, 2x Drive, VOL = 0.4 V  
VDD = 3.6 V  
NMOS OD, 4x Drive, VOL = 0.15 V  
VDD = 1.71 V  
NMOS OD, 4x Drive, VOL = 0.4 V  
VDD = 3 V  
NMOS OD, 4x Drive, VOL = 0.4 V  
VDD = 3.3 V  
LOW-Level Output Pulse  
Current (Note 1)  
IOL  
NMOS OD, 4x Drive, VOL = 0.4 V  
VDD = 3.6 V  
Push-Pull, 1x Drive, VOL = 0.15 V  
VDD = 1.71 V  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3 V  
7.109  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3.3 V  
7.734  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3.6 V  
8.393  
Push-Pull, 2x Drive, VOL = 0.15 V  
VDD = 1.71 V  
2.091  
9.54  
3.020  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 3 V  
13.867  
15.013  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 3.3 V  
10.285  
Datasheet  
16-Mar-2020  
Revision 3.3  
19 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 3.6 V  
10.928  
16.260  
--  
mA  
Push-Pull, 4x Drive, VOL = 0.15 V  
VDD = 1.71 V  
4.213  
19.57  
20.916  
22.726  
--  
6.012  
27.791  
29.449  
32.030  
--  
--  
--  
mA  
mA  
mA  
mA  
V
Push-Pull, 4x Drive, VOL = 0.4 V  
VDD = 3 V  
LOW-Level Output Pulse  
Current (Note 1)  
IOL  
Push-Pull, 4x Drive, VOL = 0.4 V  
VDD = 3.3 V  
--  
Push-Pull, 4x Drive, VOL = 0.4 V  
VDD = 3.6 V  
--  
Maximal Voltage Applied to  
any PIN in High-Impedance  
State  
VO  
VDD  
Tramp = 3 ms (Note 4)  
--  
--  
1.448  
1.567  
1.464  
3.229  
7.458  
1.700  
ms  
ms  
V
Startup Time (Note 2)  
From VDD rising past PONTHR  
TSU  
Tramp = 10 ms (Note 4)  
PONTHR Power-On Threshold  
POFFTHR Power-Off Threshold  
VDD Level Required to Start Up the Chip  
0.921  
V
DD Level Required to Switch Off the  
0.836  
1.107  
1.390  
V
Chip  
1 M Pull-up  
809.136 1047.55 1455.16  
632.228 1054.76 2574.69  
83.717 104.885 143.777  
k  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
1 M Pull-up (PINs 17, 18, 19)  
100 k Pull-up  
10 k Pull-up  
RPUP  
Pull-up Resistance  
8.945  
11.0738 16.687  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
410.19 1047.35 1448.22  
81.555 104.798 143.277  
RPDWN  
Pull-down Resistance  
Input Capacitance  
8.740  
--  
10.9851 17.198  
2.49 2.97  
CIN  
Note 1 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 2 VDD ramp rising speed must be less than 0.6 V/µs after Power-on. Violating this specification may cause chip to restart.  
Note 3 No hysteresis  
Note 4 Tramp - linear voltage ramp duration 0 V to VDD on PIN1 relative to GND.  
Note 5 Typical value is given for T = 25 °C, maximum value is given for T = -40 °C to 105 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
20 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 7: Input Leakage Current at T = -40 °C to +105 °C  
Parameter Description  
Condition  
IN- = 0 V, VDD = 1.71 V  
Ext.Vref/2  
Min  
Typ  
Max  
Unit  
V
--  
0.32  
6.49  
nA  
VIN- = 0 V, VDD = 1.71 V  
Ext.Vref  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.09  
1.30  
7.76  
5.90  
1.69  
0.81  
12.61  
1489  
5.16  
2078  
7.84  
7.10  
8.19  
6.78  
1.99  
0.95  
12.39  
1493  
10.06  
4389  
14.35  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
VIN+ = 0 V, VDD = 1.71 V  
Buffer Disable, Gain = 0.25, 0.33, 0.5  
VIN+ = 0 V, VDD = 1.71 V  
Buffer Disable, Gain = 1  
0.009  
0.005  
0.05  
VIN+ = 0 V, VDD = 1.71 V  
Buffer Enable  
VIN- = 1.2 V, VDD = 1.71 V  
Ext.Vref  
VIN- = 1.2 V, VDD = 1.71 V  
Ext.Vref/2  
1198  
0.003  
1649  
0.006  
0.31  
V
IN+ = VDD, VDD = 1.71 V  
Buffer Enable  
V
IN+ = VDD, VDD = 1.71 V  
Buffer Disable, Gain = 0.25, 0.33, 0.5  
V
IN+ = VDD, VDD = 1.71 V  
Buffer Disable, Gain = 1  
ACMP Input Leakage  
V
IN- = 0 V, VDD = 3.3 V ± 10%  
Ext.Vref/2  
ILKG  
(Absolute  
Value)  
V
IN- = 0 V, VDD = 3.3 V ± 10%  
0.1  
Ext.Vref  
V
IN+ = 0 V, VDD = 3.3 V ± 10%  
1.36  
Buffer Disable, Gain = 0.25, 0.33, 0.5  
V
IN+ = 0 V, VDD = 3.3 V ± 10%  
0.018  
0.005  
0.048  
1200  
0.007  
3483  
0.016  
Buffer Disable, Gain = 1  
V
IN+ = 0 V, VDD = 3.3 V ± 10%  
Buffer Enable  
VIN- = 1.2 V, VDD = 3.3 V ± 10%  
Ext.Vref  
VIN- = 1.2 V, VDD = 3.3 V ± 10%  
Ext.Vref/2  
VIN+ = VDD, VDD = 3.3 V ± 10%  
Buffer Enable  
VIN+ = VDD, VDD = 3.3 V ± 10%  
Buffer Disable, Gain = 0.25, 0.33, 0.5  
VIN+ = VDD, VDD = 3.3 V ± 10%  
Buffer Disable, Gain = 1  
VIN = 0 V, VDD = 1.71 V  
--  
--  
--  
--  
0.005  
0.008  
0.004  
0.004  
1
nA  
nA  
nA  
nA  
VIN = VDD, VDD = 1.71 V  
4.75  
0.84  
3.92  
PGA Input Leakage  
ADC Mode = DI, PD, SE  
VIN = 0 V, VDD = 3.3 V ± 10%  
VIN = VDD, VDD = 3.3 V ± 10%  
Datasheet  
16-Mar-2020  
Revision 3.3  
21 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 7: Input Leakage Current at T = -40 °C to +105 °C(Continued)  
Parameter Description  
Condition  
Min  
--  
Typ  
Max  
1.09  
5.46  
2.94  
Unit  
nA  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
0.003  
0.007  
0.004  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
V
IN = VDD, VDD = 1.71 V to 3.6 V  
--  
nA  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
(pin 17, 18, 19)  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
VIN = VDD, VDD = 1.71 V to 3.6 V  
--  
nA  
--  
2.56  
445.77  
nA  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
VIN = VDD, VDD = 1.71 V to 3.6 V  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
--  
--  
--  
0.003  
0.007  
0.004  
1.06  
5.43  
2.90  
nA  
nA  
nA  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
ILKG  
(Absolute  
Value)  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
(pin 17, 18, 19)  
V
IN = VDD, VDD = 1.71 V to 3.6 V  
--  
2.56  
442.87  
nA  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
VIN = VDD, VDD = 1.71 V to 3.6 V  
VIN = 0 V, VDD = 1.71 V to 3.6 V  
--  
--  
--  
0.003  
0.007  
0.004  
1.04  
5.39  
2.85  
nA  
nA  
nA  
Low-Level Logic Input  
(Floating) Leakage  
Low-Level Logic Input  
(Floating) Leakage  
(pin 17, 18, 19)  
VIN = VDD, VDD = 1.71 V to 3.6 V  
--  
2.57  
439.75  
nA  
Table 8: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C  
Condition  
VDD = 1.71 V VDD = 3.3 V VDD = 3.6 V Unit  
Quiescent current  
0.29  
35.56  
0.29  
0.47  
0.46  
0.39  
29.24  
0.38  
0.52  
0.49  
0.4  
29.89  
0.40  
0.53  
0.49  
µA  
µA  
µA  
µA  
µA  
BG Force On, Output Delay = 550 us  
Charge Pump Mode - Any  
LF OSC Force PWR On; Matrix PWR Down Dis; Pre-Divider = 1  
LF OSC Force PWR On; Matrix PWR Down Dis; Pre-Divider = 16  
RC OSC (25 kHz) Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 1; Second Divider = 1  
µA  
µA  
µA  
µA  
µA  
µA  
4.52  
4.30  
5.19  
4.73  
5.31  
4.80  
RC OSC (25 kHz) Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 8; Second Divider = 1  
RC OSC (2 MHz) Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 1; Second Divider = 1  
34.18  
16.92  
80.11  
57.28  
59.68  
23.22  
112.34  
62.06  
64.61  
24.43  
120.23  
64.75  
RC OSC (2 MHz) Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 8; Second Divider = 1  
RING OSC Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 1; Second Divider = 1  
RING OSC Force PWR On; Matrix PWR Down Dis;  
Pre-Divider = 16; Second Divider = 1  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Internal Vref  
77.63  
47.86  
97.63  
100  
77.3.  
41.90  
94  
77.95  
42.56  
94.67  
99.04  
63.06  
99.41  
99.69  
DAC0 Force On  
DAC0+DAC1 Force On  
PGA Force On; Gain = 0.5; ADC SE; Ext_OUT Dis  
PGA Force On; Gain = 1; ADC SE; Ext_OUT Dis/En  
PGA Force On; Gain = 2; ADC SE; Ext_OUT Dis  
PGA Force On; Gain = 4; ADC SE; Ext_OUT Dis  
98.13  
62.44  
98.51  
98.88  
67.84  
100.58  
101.15  
Datasheet  
16-Mar-2020  
Revision 3.3  
22 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 8: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C(Continued)  
Condition  
VDD = 1.71 V VDD = 3.3 V VDD = 3.6 V Unit  
µA  
PGA Force On; Gain = 8; ADC SE; Ext_OUT Dis  
101.87  
46.09  
99.59  
40.10  
100.47  
40.75  
ACMP0; Hyst Disable or Hyst = 25 mV; IN PIN6;  
Buff Bandwidth = 1 kHz; Gain = 1; Vref = 1 V  
µA  
ACMP0; Hyst Disable; IN Buffered PIN6;  
BUF Bandwidth = 1 kHz; Gain = 0.25, 0.33, 0.5; Vref = 1 V  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
47.68  
51.19  
56.49  
68.11  
89.69  
42.72  
80.52  
45.07  
45.83  
51.63  
64.36  
88.07  
41.95  
76.08  
45.99  
46.53  
52.34  
65.15  
89.07  
42.61  
76.83  
ACMP0; Hyst Disable; IN Buffered PIN6;  
BUF Bandwidth = 1 kHz; Gain = 1; Vref = 1 V  
ACMP0; Hyst Disable; IN Buffered PIN6;  
BUF Bandwidth = 5 kHz; Gain = 1; Vref = 1 V  
ACMP0; Hyst Disable; IN Buffered PIN6;  
BUF Bandwidth = 20 kHz; Gain = 1; Vref = 1 V  
ACMP0; Hyst Disable; IN Buffered PIN6;  
BUF Bandwidth = 50 kHz; Gain = 1; Vref = 1 V  
ACMP0; Hyst Disable; IN VDD; BUF Bandwidth = 1 kHz;  
Gain = 1; Vref = 1 V  
ACMP0; Hyst Disable; IN PIN6; BUF Bandwidth = 1 kHz;  
100uA En; Gain = 1; Vref = 1 V  
ACMP0,1,2,3,4,5; Hyst Disable; IN PIN6,12,13,15,3,4; BUF Bandwidth =  
1 kHz; Gain = 1; Vref = 1 V  
µA  
µA  
µA  
70.90  
4.69  
65.73  
4.19  
66.36  
4.26  
ACMP0 WS En; Force Sleep Low; CNT Data = 10  
ADC PD; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider = 1; WS En; Force Sleep Low; CNT Data = 10  
35.23  
37.45  
37.56  
ADC PD; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider = 1  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
368.32  
379.01  
36.28  
387.98  
400.05  
38.58  
389.54  
401.65  
38.75  
ADC DI; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider = 1  
ADC DI; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider = 1; WS En; Force Sleep Low; CNT Data = 10  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider - Any  
168.86  
16.57  
168.06  
16.64  
168.84  
16.75  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (25 kHz);  
CLK Divider = 1; WS En; Force Sleep Low; CNT Data = 10  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (2 MHz);  
CLK Divider = 1  
204.74  
198.20  
18.96  
239.56  
223.08  
21.86  
247.46  
228.91  
22.52  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (2 MHz);  
CLK Divider = 16  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RC OSC (2 MHz);  
CLK Divider = 1; WS En; Force Sleep Low; CNT Data = 10  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RING OSC;  
CLK Divider = 1  
273.88  
246.19  
162.09  
425.84  
332.03  
165.18  
499.10  
349.54  
166.51  
ADC SE; Vref = 1.2 V; Analog Force En; CLK Source: RING OSC;  
CLK Divider = 16  
ADC SE; Vref = PWR Div(0.25xVDD); Analog Force En; CLK Source:  
RC OSC (25 kHz); CLK Divider = 1  
Datasheet  
16-Mar-2020  
Revision 3.3  
23 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 8: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C(Continued)  
Condition  
VDD = 1.71 V VDD = 3.3 V VDD = 3.6 V Unit  
ADC SE; Vref = PWR Div(0.25xVDD); Analog Force En; CLK Source:  
RC OSC (25k kHz); CLK Divider = 1; WS En; Force Sleep Low;  
CNT Data = 10  
µA  
15.87  
16.37  
16.53  
3.5 TIMING CHARACTERISTICS  
Table 9: Typical Delay Estimated for Each Macrocell at T = 25°C  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
19  
21  
28  
23  
27  
27  
33  
--  
17  
18  
26  
19  
25  
23  
--  
6
7
6
6
6
6
5
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Both Matrix 2-bit LUT  
Both Matrix 3-bit LUT  
Matrix 0 4-bit LUT  
9
9
9
8
8
7
7
6
Matrix 1 4-bit LUT  
9
10  
10  
--  
8
9
Both Matrix DFF Q  
10  
11  
--  
9
9
Both Matrix DFF nQ  
Both Matrix DFF nSET Q  
Both Matrix DFF nSET nQ  
Both Matrix DFF nRST Q  
10  
--  
--  
9
--  
10  
9
30  
28  
--  
11  
10  
--  
--  
--  
31  
10  
--  
Both Matrix DFF nRST nQ  
Matrix 0 Digital Input to 1x 3-State  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
--  
47  
--  
42  
--  
--  
17  
--  
16  
--  
--  
16  
--  
15  
--  
ns  
ns  
ns  
ns  
(Hi-Z to 0)  
Matrix 0 Digital Input to 1x 3-State  
(Hi-Z to 1)  
Matrix 1 Digital Input to 1x 3-State  
(Hi-Z to 0)  
36  
--  
14  
--  
13  
--  
Matrix 1 Digital Input to 1x 3-State  
(Hi-Z to 1)  
41  
15  
14  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
44  
36  
--  
42  
34  
40  
32  
16  
13  
--  
17  
14  
16  
12  
15  
12  
--  
16  
13  
15  
11  
ns  
ns  
ns  
ns  
Matrix 0 Digital Input to PP 1x  
Matrix 1 Digital Input to PP 1x  
Matrix 0 Digital Input to NMOS 1x  
--  
--  
--  
Matrix 1 Digital Input to NMOS 1x  
Matrix 0 Digital Input to PP 2x 3-State  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
--  
45  
--  
41  
--  
--  
17  
--  
16  
--  
--  
16  
--  
14  
--  
ns  
ns  
ns  
ns  
(Hi-Z to 0)  
Matrix 0 Digital Input to PP 2x 3-State  
(Hi-Z to 1)  
Matrix 1 Digital Input to PP 2x 3-State  
(Hi-Z to 0)  
35  
--  
13  
--  
12  
--  
Matrix 1 Digital Input to PP 2x 3-State  
(Hi-Z to 1)  
39  
15  
14  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
42  
34  
--  
41  
32  
39  
16  
13  
--  
16  
13  
15  
15  
12  
--  
15  
12  
14  
ns  
ns  
ns  
Matrix 0 Digital Input to PP 2x  
Matrix 1 Digital Input to PP 2x  
Matrix 0 Digital Input to NMOS 2x  
Datasheet  
16-Mar-2020  
Revision 3.3  
24 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 9: Typical Delay Estimated for Each Macrocell at T = 25°C(Continued)  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
Delay  
Delay  
--  
31  
43  
--  
12  
18  
--  
11  
17  
ns  
ns  
Matrix 1 Digital Input to NMOS 2x  
Matrix 0 Digital Input to PP 1x With  
Schmitt Trigger  
44  
17  
16  
Matrix 1 Digital Input to PP 1x With  
Schmitt Trigger  
tpd  
Delay  
38  
35  
14  
15  
13  
14  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
51  
41  
19  
25  
27  
30  
--  
564  
392  
16  
24  
22  
--  
18  
15  
6
187  
134  
7
17  
14  
5
168  
121  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Matrix 0 Digital Input Low Voltage  
Matrix 1 Digital Input Low Voltage  
Both Matrix INV  
9
9
8
8
Both Matrix LATCH Q  
8
9
7
8
Both Matrix LATCH nQ  
10  
--  
--  
9
--  
Both Matrix LATCH nSET Q  
Both Matrix LATCH nSET nQ  
Both Matrix LATCH nRST Q  
Both Matrix LATCH nRST nQ  
Matrix Ports P0 - P9  
26  
30  
--  
10  
11  
--  
--  
9
--  
--  
--  
10  
--  
33  
15  
22  
31  
--  
11  
5
10  
4
13  
20  
32  
33  
--  
4
4
8
7
7
7
Matrix Ports P10 - P19  
12  
--  
12  
13  
--  
11  
--  
11  
12  
--  
PGen CLK  
PGen Hi-Z to 0  
37  
37  
--  
13  
13  
--  
11  
12  
--  
PGen Hi-Z to 1  
35  
40  
38  
--  
14  
16  
15  
--  
13  
15  
14  
--  
Both Matrix Pipe Delay CLK Q  
Both Matrix Pipe Delay CLK nQ  
Both Matrix Pipe Delay CLK nRST Q  
Both Matrix Pipe Delay CLK nRST nQ  
--  
--  
--  
45  
16  
15  
Table 10: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C  
Parameter  
Description  
Note  
VDD = 1.71V VDD = 3.3V VDD = 3.6V Unit  
Mode: (any) edge detector,  
Output mode: Non-delayed  
time 1  
Pulse Width, 1 cell  
401  
798  
1196  
1592  
37  
160  
316  
473  
630  
13  
148  
292  
437  
582  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Mode: (any) edge detector,  
Output mode: Non-delayed  
time 1  
time 1  
time 1  
tpd  
Pulse Width, 2 cell  
Pulse Width, 3 cell  
Pulse Width, 4 cell  
Delay, 1 cell  
Mode: (any) edge detector,  
Output mode: Non-delayed  
Mode: (any) edge detector,  
Output mode: Non-delayed  
Mode: (any) edge detector,  
Output mode: Non-delayed  
Mode: (any) edge detector,  
Output mode: Non-delayed  
tpd  
Delay, 2 cell  
37  
13  
12  
Mode: (any) edge detector,  
Output mode: Non-delayed  
tpd  
Delay, 3 cell  
37  
13  
12  
Mode: (any) edge detector,  
Output mode: Non-delayed  
tpd  
Delay, 4 cell  
37  
13  
12  
Datasheet  
16-Mar-2020  
Revision 3.3  
25 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 10: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C (Continued)  
Parameter  
Description  
Note  
VDD = 1.71V VDD = 3.3V VDD = 3.6V Unit  
Mode: (any) edge detector,  
Output mode: Delayed  
time 1  
Pulse Width, 1 cell  
393  
790  
157  
312  
466  
621  
78  
145  
288  
430  
573  
71  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Mode: (any) edge detector,  
Output mode: Delayed  
time 1  
time 1  
time 1  
time 2  
time 2  
time 2  
time 2  
Pulse Width, 2 cell  
Pulse Width, 3 cell  
Pulse Width, 4 cell  
Delay, 1 cell  
Mode: (any) edge detector,  
Output mode: Delayed  
1179  
1578  
226  
Mode: (any) edge detector,  
Output mode: Delayed  
Mode: (any) edge detector,  
Output mode: Delayed  
Mode: (any) edge detector,  
Output mode: Delayed  
Delay, 2 cell  
407  
143  
207  
271  
172  
328  
485  
641  
128  
186  
244  
158  
303  
447  
592  
Mode: (any) edge detector,  
Output mode: Delayed  
Delay, 3 cell  
591  
Mode: (any) edge detector,  
Output mode: Delayed  
Delay, 4 cell  
772  
time 2 +  
time 1  
Delay, 1 cell  
Mode: Both edge delay  
Mode: Both edge delay  
Mode: Both edge delay  
Mode: Both edge delay  
438  
time 2 +  
time 1  
Delay, 2 cell  
835  
time 2 +  
time 1  
Delay, 3 cell  
1233  
1631  
time 2 +  
time 1  
Delay, 4 cell  
Note: See Timing Diagram Section 17.1  
Datasheet  
16-Mar-2020  
Revision 3.3  
26 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
3.6 OSCILLATOR CHARACTERISTICS  
See Section 19 Clocking  
Table 11: Oscillators Frequency Limits  
Temperature Range  
Error, %  
Power  
Supply  
Range  
(VDD), V  
+25 °C  
-40 °C to +105 °C  
Minimum Maximum  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Value, kHz Value, kHz  
-16.2  
+20.9  
-16.2  
+20.6  
-15.8  
+20.9  
-15.8  
-21.2  
+23.3  
-21.2  
+23.2  
-20.6  
+23.3  
-20.6  
1.71 V to 3.6 V  
1.449  
2.092  
2.087  
2.092  
1.364  
1.364  
1.373  
2.133  
2.132  
2.133  
1.8 V ± 5%  
1.450  
1.457  
3.3 V ± 10%  
LF OSC  
(1.73 kHz)  
3.3 V ± 10%  
over lifetime at 105 °C  
(Note 2)  
1.457  
1.454  
2.161  
2.092  
1.373  
1.371  
2.202  
2.133  
+24.9  
+27.3  
-16  
+20.9  
-16  
-20.8  
+23.3  
-20.8  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
over lifetime at 105 °C  
(Note 2)  
1.454  
2.161  
1.371  
2.202  
+24.9  
-8.4  
+27.3  
-9.9  
52.3  
(Note 1)  
1.71 V to 3.6 V  
1.8 V ± 5%  
22.888  
31.065  
22.527  
38.073  
+24.3  
-6.6  
+7.8  
-1  
-19.3  
23.343  
24.741  
26.946  
25.344  
20.176  
23.490  
37.500  
26.450  
50 (Note 1)  
-6  
+5.8  
-6  
3.3 V ± 10%  
3.3 V ± 10%  
+1.4  
-1  
RC OSC  
(25 kHz)  
24.741  
24.432  
24.433  
26.544  
26.066  
27.266  
23.490  
23.353  
23.353  
27.650  
27.063  
28.263  
over lifetime at 105 °C  
(Note 2)  
+6.2  
+10.6  
-2.3  
+4.3  
-2.3  
-6.6  
+8.3  
-6.6  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
over lifetime at 105 °C  
(Note 2)  
+9.1  
+13.1  
Datasheet  
16-Mar-2020  
Revision 3.3  
27 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 11: Oscillators Frequency Limits(Continued)  
Temperature Range  
Error, %  
Power  
Supply  
Range  
(VDD), V  
+25 °C  
-40 °C to +105 °C  
Minimum Maximum  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Value, kHz Value, kHz  
-13.7  
+5.5  
-2.9  
+2.7  
-1.6  
+2  
-16.2  
+9  
1.71 V to 3.6 V  
1726.1  
2110.3  
2053  
1676  
2179.1  
2117.4  
2121.8  
-6.5  
+5.9  
-7.9  
+6.1  
-7.9  
1.8 V ± 5%  
1942.4  
1967.8  
1869.8  
1842.4  
3.3 V ± 10%  
3.3 V ± 10%  
2039.9  
RC OSC  
(2 MHz)  
-1.6  
1967.8  
1908.3  
1908.3  
2119.9  
2095.6  
2175.6  
1842.4  
1842.4  
1842.4  
2201.8  
2158  
over lifetime at 105 °C  
(Note 2)  
+6  
+10.1  
-4.6  
+4.8  
-4.6  
-7.9  
+7.9  
-7.9  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
2238  
over lifetime at 105 °C  
(Note 2)  
+11.9  
+8.8  
-19.3  
+12.7  
-18.8  
+12.7  
-12.3  
+11.9  
-12.3  
-24.4  
+12.7  
-23.8  
+12.7  
-16.5  
+11.9  
-16.5  
1.71 V to 3.6 V  
1.8 V ± 5%  
21787.1  
21920  
30437.8  
30424.3  
30224  
20418  
20579.6  
22551.8  
30437.8  
30424.3  
30224  
3.3 V ± 10%  
3.3 V ± 10%  
23687.7  
Ring OSC  
(27 MHz)  
23687.7  
23679.8  
23679.8  
31304  
30224.7  
31304.7  
22551.8  
22548.5  
22548.5  
31304  
30224.7  
31304.7  
over lifetime at 105 °C  
(Note 2)  
+15.9  
+15.9  
-12.3  
+11.9  
-12.3  
-16.5  
+11.9  
-16.5  
2.3 V to 3.6 V  
2.3 V to 3.6 V  
over lifetime at 105 °C  
(Note 2)  
+15.9  
+15.9  
Note 1 Based on characterization data and is not guaranteed. Due to the large frequency error of this device at 1.8V, the  
SLG46620-A is not recommended for applications requiring accurate frequency at VDD below 2.2V. This maximum  
frequency value is documented only to provide designers guidance on the part's expected performance at these condi-  
tions.  
Note 2 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
3.6.1 OSC Power-On Delay  
Table 12: Oscillators Power-On Delay  
Power  
Supply  
Range  
LF OSC (1.73 kHz)  
RC OSC (2 MHz)  
RC OSC (25 kHz)  
Ring OSC (27MHz)  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
(VDD), V  
Value, µs  
Value, ns  
Value, µs  
Value, ns  
1.71  
575.10  
722.19  
886.5  
1335.33  
41.55  
45.16  
134  
283.46  
Datasheet  
16-Mar-2020  
Revision 3.3  
28 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 12: Oscillators Power-On Delay(Continued)  
Power  
Supply  
Range  
LF OSC (1.73 kHz)  
RC OSC (2 MHz)  
RC OSC (25 kHz)  
Ring OSC (27MHz)  
Typical  
Value, µs  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Value, µs  
Maximum  
Value, µs  
Typical  
Value, ns  
Maximum  
Value, ns  
(VDD), V  
Value, ns  
695.5  
677.5  
662  
3
566.94  
564.91  
562.19  
709.98  
900.10  
849.62  
810.79  
40.56  
43.36  
43.11  
43.19  
88.5  
87  
150.98  
155.79  
150.40  
3.3  
3.6  
706.96  
40.51  
706.39  
40.46  
82.75  
Note 1 Typical value is given for T = 25 °C, maximum value is given for T = -40 °C to 105 °C  
Note 2 RC OSC Power Setting: "Auto Power-On", RC OSC Clock to Matrix Input: “Enable”  
3.7 ACMP CHARACTERISTICS  
Table 13: ACMP Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
0
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
VDD  
1.2  
ACMP Input Voltage  
VACMP  
Range  
0
--  
V
T = 25°C  
-8.09  
-11.77  
-9.34  
-9.35  
-17.43  
-23.30  
-17.59  
-23.76  
-39.29  
-74.22  
--  
20.71 mV  
20.71 mV  
Vhys = 0 mV, Gain =1,  
Vref = 1200 mV  
--  
ACMP Input Voltage  
Offset  
Voffset  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
--  
5.96  
6.36  
mV  
mV  
Vhys = 0 mV, Gain =1,  
Vref = 100 mV  
--  
--  
13.39 mV  
19.34 mV  
13.15 mV  
19.71 mV  
20.62 mV  
36.09 mV  
Vhys = 0 mV, Gain =1,  
Vref = 100 mV  
--  
--  
ACMP Buffer Input  
Voltage Offset  
Vhys = 0 mV, Gain =1,  
Vref = 600 mV  
VBUF_offset  
--  
--  
Vhys = 0 mV, Gain =1,  
Vref = 1200 mV  
--  
Datasheet  
16-Mar-2020  
Revision 3.3  
29 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 13: ACMP Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Force BG on - Disable,  
Output Delay - 100 µs,  
VDD = 1.71 V  
--  
89.1  
696.2  
µs  
Force BG on - Disable,  
Output Delay - 100 µs,  
VDD ≥ 3 V  
--  
--  
--  
84.2  
732.6  
µs  
Force BG on - Disable,  
Output Delay - 550 µs,  
VDD = 1.71 V  
421.7 3381.8 µs  
418.6 3349.8 µs  
Force BG on - Disable,  
Output delay - 550 µs,  
VDD ≥ 3 V  
Force BG on - Enable,  
ACMP0,1, 2, 3, 4,  
Vref = 50 mV to 600 mV,  
--  
--  
--  
--  
--  
--  
--  
--  
290.7  
194.9  
401.1  
280  
ns  
ns  
V
DD = 1.71 V  
Force BG on - Enable,  
ACMP0,1, 2, 3, 4,  
Vref = 50 mV to 600 mV,  
V
DD ≥ 3 V  
ACMP Power-On  
delay, Minimal  
requiredwaketimefor  
the “Wake and Sleep  
function”  
Force BG on - Enable,  
ACMP0,1, 2, 3, 4,  
Vref = 1200 mV,  
tstart  
ACMP Startup Time  
469.1 1040.4 ns  
V
DD = 1.71 V  
Force BG on - Enable,  
ACMP0,1, 2, 3, 4,  
Vref = 1200 mV,  
221.3  
405.6  
291.4  
289.1  
514.7  
389.2  
ns  
ns  
ns  
V
DD ≥ 3 V  
Force BG on - Enable,  
ACM5,  
Vref = 50 mV to 600 mV,  
V
DD = 1.71 V  
Force BG on - Enable,  
ACMP5,  
Vref = 50 mV to 600 mV,  
VDD ≥ 3 V  
Force BG on - Enable,  
ACMP5,  
Vref = 1200 mV,  
718.6 1653.6 ns  
VDD = 1.71 V  
Force BG on - Enable,  
ACMP5,  
Vref = 1200 mV,  
335.7  
449.4  
ns  
VDD ≥ 3 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
30 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 13: ACMP Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
VHYS = 25 mV  
VIL = Vref - VHYS/2  
VIH = Vref + VHYS/2  
T = 25°C  
10.59  
--  
36.5  
mV  
VHYS = 50 mV  
VIL = Vref - VHYS  
VIH = Vref  
T = 25°C  
T = 25°C  
45.57  
193.38  
3.35  
--  
--  
--  
--  
--  
59.75 mV  
210.47 mV  
37.75 mV  
VHYS = 200 mV  
VIL = Vref - VHYS  
VIH = Vin  
VHYS  
Built-in Hysteresis  
VHYS = 25 mV  
VIL = Vref - VHYS/2  
VIH = Vref + VHYS/2  
V
HYS = 50 mV  
VIL = Vref - VHYS  
VIH = Vref  
45.45  
193.06  
64  
mV  
VHYS = 200 mV  
V
IL = Vref - VHYS  
214.68 mV  
VIH = Vin  
Gain = 1x  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
G = 1  
--  
100.0  
1.0  
0.8  
1.0  
1
--  
ΜΩ  
ΜΩ  
ΜΩ  
ΜΩ  
--  
--  
Rsin  
Series Input Resistance  
--  
--  
--  
--  
Vref = 50…1200 mV  
Vref = 100 mV  
Vref = 600 mV  
Vref = 100 mV  
Vref = 600 mV  
Vref = 1200 mV  
--  
--  
-1.98  
-1.14  
-2.39  
-0.91  
-0.72  
-1.01  
-1.28  
-0.37  
-2.06  
-2.32  
-1.03  
--  
2.65  
1.10  
2.69  
1.24  
0.92  
3.82  
3.92  
2.56  
3.11  
3.08  
1.47  
%
%
%
%
%
%
%
%
%
%
%
G = 0.5, VDD = 1.71 V  
--  
--  
G = 0.5,  
--  
V
DD = 3.3 V ±10 %  
Gain error (including  
threshold and internal  
Vref error),  
--  
G
G = 0.33, VDD = 1.71 V Vref = 100 mV  
--  
T = (-40…+105)°C  
Vref = 100 mV  
G = 0.33,  
--  
V
DD = 3.3 V ±10 %  
Vref = 600 mV  
--  
G = 0.25, VDD = 1.71 V Vref = 100 mV  
--  
Vref = 100 mV  
G = 0.25,  
VDD = 3.3 V ±10 %  
--  
Vref = 600 mV  
--  
Note Typical value is given at T = 25 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
31 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
3.8 VREF OUT CHARACTERISTICS  
Table 14: Vref OUT Specifications at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
T = 25 °C  
Min  
-10.47  
-13.92  
-1.64  
-2.35  
-0.85  
-1.49  
Typ  
--  
Max  
12.72  
11.97  
2.26  
2.70  
1.24  
1.48  
Unit  
%
Vref = 100 mV  
--  
%
T = 25 °C  
T = 25 °C  
--  
%
Vref OUT Vref OUT through PINs  
Vref = 600 mV  
Vref = 1200 mV  
Error  
18 or 19  
--  
%
--  
%
--  
%
Table 15: Delay Estimated for Each ACMP at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V Unless Otherwise Noted  
Typ  
Max  
Note  
Parameter Description  
Propagation Delay,  
Unit  
Rising Falling Rising Falling  
VDD = 1.71 V  
VDD = 3.3 V  
0.98  
0.82  
0.83  
0.53  
0.36  
0.35  
14.7  
8.81  
8.92  
5.52  
3.27  
3.27  
1.17 3.7181 4.4846 µs  
Response Time  
for ACMP 0  
VIN+ Source - Buffered PIN  
Overdrive = 10 mV  
0.72  
0.75  
0.61  
0.37  
0.36  
1.62  
1.67  
3.19  
0.69  
0.67  
1.49  
1.56  
3.13  
0.78  
0.76  
µs  
µs  
µs  
µs  
µs  
V
DD = 3.6 V  
VDD = 1.71 V  
VDD = 3.3 V  
Overdrive = 100 mV  
Overdrive = 10 mV  
Overdrive = 100 mV  
Overdrive = 10 mV  
Overdrive = 100 mV  
V
DD = 3.6 V  
VDD = 1.71 V  
DD = 3.3 V  
Propagation Delay,  
Response Time  
for ACMP 0 to 4  
VIN+ Source - PIN  
13.92 283.55 269.09 µs  
8.85 116.97 104.27 µs  
8.92 117.28 106.04 µs  
4.79 144.40 120.16 µs  
V
VDD = 3.6 V  
VDD = 1.71 V  
VDD = 3.3 V  
2.91  
2.92  
49.47 42.87 µs  
50.99 43.57 µs  
V
DD = 3.6 V  
Propagation Delay,  
Response Time  
for ACMP 5  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6 V  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6 V  
26.59 25.02 438.23 301.34 µs  
15.99 16.29 177.78 132.07 µs  
16.24 16.34 184.23 133.69 µs  
VIN+ Source - PIN  
PROP  
10.17  
5.75  
5.77  
7.78 226.93 153.63 µs  
4.76  
4.76  
78.08 57.31 µs  
78.15 57.61 µs  
Datasheet  
16-Mar-2020  
Revision 3.3  
32 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
3.9 ADC CHARACTERISTICS INCLUDING PGA  
Note: PGA input voltage should not exceed values given in Table 3.  
Table 16: Single-Ended ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
60  
Max  
2060  
1030  
520  
Unit  
mV  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
VDD = 2.5 to 3.6 V  
30  
mV  
Input Voltage Range  
(bit 0 to bit 255),  
Vinp  
20  
mV  
relative to GND  
15  
265  
mV  
12  
137  
mV  
T = 25°C, VDD = 3.3 V to 3.6 V  
-2.6  
-4.9  
-2.2  
-1.7  
-2.6  
-4.0  
-4.6  
-5.7  
-8.5  
-14.3  
-4.4  
-5.8  
-4.7  
-4.5  
-3.9  
-4.7  
-6.8  
-6.3  
-5.1  
-5.2  
-2.8  
-6.1  
-2.9  
-6.4  
-2.8  
-6.2  
-2.3  
-5.9  
-2.3  
-5.3  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
+3.8  
+4.2  
+4.3  
+3.3  
+3.7  
+5.0  
+6.4  
+6.3  
+7.7  
+12.7  
T = 25°C  
Offset Zero Error  
(Note 2)  
ZE  
VDD = 3.3 to 3.6 V  
T = 25°C, VDD = 3.3 V to 3.6 V  
+5.1  
+4.2  
+4.0  
+4.0  
+3.8  
+6.4  
+5.3  
+6.1  
+5.9  
+6.5  
+2.1  
+2.1  
+2.4  
+2.3  
+2.1  
+2.4  
+2.0  
+2.3  
+2.2  
+2.5  
T = 25°C  
GE  
Gain Error  
VDD = 3.3 to 3.6 V  
T = 25°C, VDD = 3.3 to 3.6 V  
VDD = 3.3 to 3.6 V  
T = 25°C  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
T = 25°C  
T = 25°C  
T = 25°C  
Integral Non-Linearity  
Error  
INL  
Datasheet  
16-Mar-2020  
Revision 3.3  
33 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 16: Single-Ended ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
-1.5  
-1.6  
-1.7  
-1.7  
-1.3  
-1.5  
-1.3  
-1.4  
-1.4  
-1.4  
Max  
+0.3  
+0.3  
+0.3  
+0.3  
+0.3  
+0.4  
+0.4  
+0.4  
+0.6  
+0.6  
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
T = 25°C, VDD = 3.3 to 3.6 V  
VDD = 3.3 to 3.6 V  
T = 25°C  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
T = 25°C  
T = 25°C  
T = 25°C  
Differential Non-  
DNL  
Linearity  
Note 1 To ensure linear operation, absolute input voltage on each pin should not exceed VDD - 0.5  
Note 2 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Table 17: Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
-500  
Max  
500  
Unit  
mV  
mV  
mV  
mV  
mV  
mV  
G = 1  
G = 2  
-250  
-125  
250  
125  
Input Voltage Range  
Vind  
(bit 0 to bit 255),  
Differential  
G = 4  
G = 8  
-62.5  
-31.25  
400  
62.5  
31.25  
550  
G = 16  
G = 1, 2, 4, 8, 16  
Typical Input  
Common Voltage  
(Note 2)  
VDD = 1.8 V ±5%  
VDD = 3.3 V ±10%  
Vcm  
400  
950  
mV  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
-2.4  
-2.4  
-2.4  
-3.1  
-6.8  
-6.3  
-6.3  
-8.1  
-10.3  
-18.3  
+3.9  
+3.6  
+3.7  
+4.1  
+6.3  
+4.8  
+5.9  
+5.9  
+9.0  
+17.5  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
T = 25°C  
Offset Zero Error  
(Note 4)  
ZE  
Datasheet  
16-Mar-2020  
Revision 3.3  
34 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 17: Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Conditions  
Min  
-5.3  
Max  
+2.9  
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
-5.1  
-4,0  
-3.6  
-5.8  
-6.4  
-6.1  
-6.3  
-5.1  
-6.9  
-2.4  
-5.5  
-2.4  
-5.3  
-2.5  
-5.5  
-2.4  
-5.6  
-3.2  
-5.6  
-1.3  
-1.3  
-1.2  
-1.2  
-1.0  
-1.2  
-1,0  
-1.1  
-1.3  
-1.3  
+3.6  
+3.3  
+3.1  
+4.3  
+5.0  
+6.2  
+6.7  
+5.2  
+7.5  
+1.9  
+2.0  
+1.9  
+2,0  
+1.8  
+2.1  
+2.2  
+2.4  
+3.3  
+3.4  
+0.5  
+0.5  
+0.5  
+0.5  
+0.5  
+0.5  
+0.6  
+0.7  
+1.1  
+1.1  
T = 25°C  
GE  
Gain Error  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
Integral Non-Linearity  
Error  
INL  
Differential Non-  
Linearity  
DNL  
Note 1 Vcm = 500 mV  
Note 2 Vcm range is given for stable CMRR > 34 dB.  
Note 3 To ensure linear operation, absolute input voltage on each pin should not exceed VDD - 0.5.  
Note 4 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Table 18: Pseudo-Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Input Voltage Range  
Note  
Conditions  
Min  
Max  
980  
Unit  
G = 1  
0
mV  
Vind  
(bit 0 to bit 255),  
Differential  
G = 2  
0
490  
mV  
Datasheet  
16-Mar-2020  
Revision 3.3  
35 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 18: Pseudo-Differential ADC Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise  
Parameter Description  
Note  
Conditions  
Min  
500  
Max  
500  
Unit  
VDD = 1.8 V ±5%  
G = 1, 2  
mV  
Typical Negative input  
Vinn  
voltage range  
VDD = 3.3 V ±10%  
500  
1250  
mV  
T = 25°C, VDD = 3.3 to 3.6 V  
G = 1  
G = 2  
G = 1  
G = 2  
G = 1  
G = 2  
G = 1  
G = 2  
-3.1  
-2.5  
-5.3  
-6.5  
-3.5  
-5.0  
-4.8  
-6.8  
-2.2  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
+2.9  
+2.7  
+4.5  
+4.4  
T = 25°C  
Offset Zero Error  
(Note 4)  
ZE  
VDD = 3.3 to 3.6 V  
T = 25°C, VDD = 3.3 to 3.6 V  
+3.5  
+4.1  
+6.2  
+5.9  
T = 25°C  
GE  
INL  
Gain Error  
VDD = 3.3 to 3.6 V  
T = 25°C, VDD = 3.3 to 3.6 V  
+1.8  
G = 1  
G = 2  
G = 1  
G = 2  
V
DD = 3.3 to 3.6 V  
-3.2  
-2.3  
-3.2  
-1.1  
LSB  
LSB  
LSB  
LSB  
Integral Non-Linearity  
Error  
+1.9  
+2.6  
+3.1  
T = 25°C  
T = 25°C, VDD = 3.3 to 3.6 V  
+0.4  
V
DD = 3.3 to 3.6 V  
-1.1  
-1.1  
-1.1  
LSB  
LSB  
LSB  
Differential Non-  
Linearity  
+0.4  
+0.4  
+0.4  
DNL  
T = 25°C  
Note 1 Vcm = 500 mV  
Note 2 Vinn is given for convenience instead of Vcm.  
Note 3 To ensure linear operation, absolute input voltage on each pin should not exceed VDD-0.5.  
Note 4 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Datasheet  
16-Mar-2020  
Revision 3.3  
36 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
3.10 PGA SPECIFICATIONS  
Note 1 PGA input voltage should not exceed values given in Section 3.1.  
Table 19: Single-Ended PGA Operation, T = -40°C to +105°C, VDD = 1.71 V to 3.6V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
T = 25°C,  
G = 0.5  
-24.65  
1.15  
+27.61  
mV  
VDD = 3.3 V to 3.6 V  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
T = 25°C  
-9.59  
-14.76  
-13.74  
-13.47  
-34.49  
-12.83  
-20.13  
-18.42  
-18.57  
-0.8  
0.95  
-0.80  
-1.02  
-1.31  
1.20  
0.91  
0.77  
1.04  
1.23  
+13.52  
+12.45  
+10.38  
+10.48  
+33.34  
+15.37  
+14.77  
+11.53  
+12.25  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
%
T = 25°C  
T = 25°C  
Offset Voltage  
(RTI (Note 1))  
(Note 3)  
T = 25°C  
Vos  
VDD = 3.3 V to 3.6 V  
VDD = 3.3 V to 3.6 V  
0.2  
0
1.1  
0.1  
1.0  
0.9  
0.8  
-0.2  
%
ΔG  
Vsw  
Gain Error  
-1.5  
-0.3  
-0.6  
-1.3  
%
-2.3  
%
-4.0  
%
Output Voltage  
Swing  
50 to  
1380  
--  
--  
mV  
VDD 3.3 V to 3.6 V  
G = 0.5  
G = 1  
G = 2  
G = 4  
G = 8  
56.65  
80.10  
97.83  
108.5  
144.1  
--  
--  
--  
--  
--  
1257  
1155  
1159  
1156  
1143  
mV  
mV  
mV  
mV  
mV  
Linear Output  
Voltage Range  
(Note 2)  
VOUT_LIN  
Note 1 RTI - referred to input.  
Note 2 Gain Error < 10%  
Note 3 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Datasheet  
16-Mar-2020  
Revision 3.3  
37 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 20: Differential PGA Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Offset Voltage  
Vos  
Vid = 0  
(RTO,  
All gains  
--  
550  
--  
mV  
(Note 2))  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
T = 25°C  
-3.07  
-4.01  
-5.84  
-9.83  
-21.57  
-15.07  
-16.99  
-23.44  
-38.27  
-70.14  
-1.4  
0.86  
0.80  
0.57  
0.28  
-0.26  
0.14  
0.18  
0.18  
0.13  
-0.06  
-0.2  
-0.5  
-0.9  
-1.5  
-1.8  
57  
+5.64  
+5.96  
+8.10  
+12.05  
+23.96  
+12.38  
+14.37  
+20.45  
+35.20  
+70.15  
0.9  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
%
Offset Voltage  
Error (RTO)  
(Note 4)  
ΔVos  
-2.0  
0.9  
%
ΔG  
Gain Error  
-2.5  
0.6  
%
-3.9  
0.4  
%
-4.3  
0.6  
%
--  
--  
dB  
dB  
dB  
dB  
dB  
--  
57  
--  
Common-Mode  
Rejection Rate  
CMRR  
--  
56  
--  
--  
55  
--  
--  
51  
--  
Input Common  
Mode Range  
ICMR  
Vsw  
All gains  
See Figure 22  
Output Voltage  
Swing  
50 to  
1380  
--  
--  
mV  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
101.5  
102.8  
109.8  
156.6  
156.6  
--  
--  
--  
--  
--  
1262  
1262  
1266  
1327  
1327  
mV  
mV  
mV  
mV  
mV  
Linear Output  
Voltage Range  
(Note 3)  
VOUT_LIN  
Note 1 ADC - Power-On, Vcm = 500 mV  
Note 2 RTO - referred to output.  
Note 3 Gain Error < 10%.  
Note 4 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Datasheet  
16-Mar-2020  
Revision 3.3  
38 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 21: Pseudo-Differential PGA Operation, T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Offset Voltage  
Vos  
Vid = 0  
(RTO,  
All gains  
--  
180  
--  
mV  
(Note 2))  
G = 1  
G = 2  
G = 1  
G = 2  
G = 1  
G = 2  
G = 1  
G = 2  
T = 25°C,  
T = 25°C  
-2.53  
-3.78  
-12.75  
-16.04  
-3.0  
0.68  
0.64  
0.50  
0.43  
-0.3  
-0.5  
56  
+5.43  
+7.19  
+13.70  
+17.09  
1.1  
mV  
mV  
mV  
mV  
%
Offset Voltage  
Error (RTO)  
(Note 4)  
ΔVos  
ΔG  
Gain Error  
-2.2  
0.9  
%
--  
--  
dB  
dB  
Common-Mode  
Rejection Rate  
CMRR  
--  
57  
--  
Negative Input  
Voltage Range  
See Figure 23  
and Figure 24  
Vinn  
Vsw  
All gains  
Output Voltage  
Swing  
50 to  
1380  
--  
--  
mV  
Linear Output  
Voltage Range  
(Note 3)  
G = 1  
G = 2  
83.75  
96.38  
--  
--  
1252  
1155  
mV  
mV  
VOUT_LIN  
Note 1 ADC - Power-On, Vinn = 500 mV  
Note 2 RTO - Referred to output  
Note 3 Gain Error < 10%.  
Note 4 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Datasheet  
16-Mar-2020  
Revision 3.3  
39 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 22: Differential/Pseudo-Differential PGA Mode, T = -40°C to +105°C, VDD = 1.71V to 3.6V, Unless Otherwise Noted  
Parameter Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
T = 25°C,  
VDD = 3.3 V  
Offset Voltage  
Vos  
All gains  
--  
±1.9  
--  
mV  
(RTI (Note 2))  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
--  
--  
--  
--  
--  
-0.2  
-0.5  
-0.9  
-1.5  
-1.8  
--  
--  
--  
--  
--  
%
%
%
%
%
ΔG  
Gain Error  
Note 1 ADC - Power-down, Vcm = 500 mV  
Note 2 RTI - referred to input.  
Note 3 WhenADC is powered down, PGAoperation in Differential or Pseudo-Differential mode is not recommended. Parameters  
in Table 22 are for reference only.  
Datasheet  
16-Mar-2020  
Revision 3.3  
40 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
4
User Programmability  
The SLG46620-A is a user programmable device with One-Time-Programmable (OTP) memory elements that are able to  
configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial  
devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a  
production process.  
Product  
Definition  
Customer creates their own design in  
E-mail Product Idea, Definition, Drawing or  
GreenPAK Designer  
Schematic to  
CMBUGreenPAK@diasemi.com  
Emulate design to verify behavior  
Dialog Semiconductor Applications  
Engineers will review design specifications  
with customer  
Program Engineering Samples with  
GreenPAK Development Tools  
Samples, Design and Characterization  
Report send to customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
E-mail .gpx to  
CMBUGreenPAK@diasemi.com  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 1: Steps to Create a Custom GreenPAK Device  
Datasheet  
16-Mar-2020  
Revision 3.3  
41 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5
IO Pins  
The SLG46620-A has a total of 18 multi-function IO pins which can function as either a user defined Input or Output, as well as  
serving as a special function (such as outputting the voltage reference), or serving as a signal for programming of the on-chip  
Non Volatile Memory (NVM). Refer to Section 2 for normal and programming mode pin definitions  
Of the 18 user defined IO pins on the SLG46620-A, all but one of the pins (Pin 2) can serve as both digital input and digital output.  
Pin 2 can only serve as a digital input pin or external reset.  
5.1 INPUT MODES  
Each IO pin can be configured as a digital input pin with/without buffered Schmitt trigger, or can also be configured as a low voltage  
digital input. Pins 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16 and 17 can also be configured to serve as analog inputs to the on-chip  
comparators. Pins 18 and 19 can also be configured as analog reference voltage outputs.  
5.2 OUTPUT MODES  
Pins 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, and 20 can all be configured as digital output pins.  
5.3 PULL-UP/DOWN RESISTORS  
All IO pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 k, 100 kand 1 M. In the case of Pin 2, the resistors are fixed to a Pull-down configuration. In the case of all other IO  
pins, the internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 GPI STRUCTURE  
5.4.1 GPI Structure (for Pin 2)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital IN without Schmitt Trigger, WOSMT_EN = 1, OE = 0  
01: Digital IN with Schmitt Trigger, SMT_EN = 1, OE = 0  
10: Low Voltage Digital IN mode, LV_EN = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital IN is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Figure 2: PIN 2 GPI Structure Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
42 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5.5 MATRIX OE IO STRUCTURE  
5.5.1 Matrix OE IO Structure (for Pins 3, 5, 7, 9, 13, 14, 16, 18, 19)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital IN without Schmitt Trigger, WOSMT_EN = 1  
01: Digital IN with Schmitt Trigger, SMT_EN = 1  
10: Low Voltage Digital IN mode, LV_EN = 1  
11: Analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: 1x Push-Pull mode, PP1x_EN = 1  
01: 2x Push-Pull mode, PP2x_EN = 1, PP1x_EN = 1  
10: 1x NMOS Open-DRAIN mode, OD1x_EN = 1  
11: 2x NMOS Open-DRAIN mode, OD2x_EN = 1, OD1x_EN = 1  
Low Voltage  
Input  
Note 1: Digital OUT and OE are Matrix output, Digital IN is Matrix input  
Note 2: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 3: Matrix OE IO Structure Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
43 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5.5.2 Matrix OE 4x Drive Structure (for Pin 10)  
Trigger Input  
Input Mode [1:0]  
00: Digital IN without Schmitt Trigger, WOSMT_EN = 1  
01: Digital IN with Schmitt Trigger, SMT_EN = 1  
10: Low Voltage Digital IN mode, LV_EN = 1  
11: Analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: 1x Push-Pull mode, PP1x_EN = 1  
01: 2x Push-Pull mode, PP2x_EN = 1, PP1x_EN = 1  
10: 1x NMOS Open-DRAIN mode, OD1x_EN =1, ODn_EN = 1  
11: 2x NMOS Open-DRAIN mode, OD2x_EN =1, OD1x_en=1, ODn_EN = 1  
Low Voltage  
Input  
Note 1: Digital OUT and OE are Matrix output, Digital IN is Matrix input  
Note 2: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
VDD  
Digital OUT  
OE  
OD2x_EN  
4x_EN  
PAD  
VDD  
ODn_EN  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
ODn_EN  
PP2x_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 4: Matrix OE IO 4x Drive Structure Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
44 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5.6 REGISTER OE IO STRUCTURE  
5.6.1 Register OE IO Structure (for Pins 4, 6, 8, 15, 17, 20)  
Trigger Input  
Mode [2:0]  
WOSMT_EN  
SMT_EN  
000: Digital IN without Schmitt Trigger, WOSMT_EN = 1, OE = 0  
001: Digital IN with Schmitt Trigger, SMT_EN = 1, OE = 0  
010: Low Voltage Digital IN mode, LV_EN = 1, OE = 0  
011: Analog IO mode  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
100: Push-Pull mode, PP_EN = 1, OE = 1  
101: NMOS Open-DRAIN mode, ODn_EN = 1, OE = 1  
110: PMOS Open-DRAIN mode, ODp_EN = 1, OE = 1  
111: Analog IO and NMOS Open-DRAIN mode, ODn_EN = 1 and AIO_EN = 1  
Low Voltage  
Input  
Note 1: OE cannot be selected by user  
Note 2: Can be varied over PVT, for reference only  
Note 3: Digital OUT and OE are Matrix output, Digital IN is Matrix input  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
ODn_EN  
2x_EN  
PP_EN  
VDD  
PAD  
VDD  
ODp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
2x_EN  
PP_EN  
2x_EN  
ODn_EN  
Figure 5: Register IO Structure Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
45 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5.6.2 Register OE 4x Drive Structure (for Pin 12)  
Non-Schmitt  
Trigger Input  
Mode [2:0]  
000: Digital IN without Schmitt Trigger, WOSMT_EN = 1, OE = 0  
001: Digital IN with Schmitt Trigger, SMT_EN = 1, OE = 0  
010: Low Voltage Digital IN mode, LV_EN = 1, OE = 0  
011: Analog IO mode  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
100: Push-Pull mode, PP_EN = 1, OE = 1  
101: NMOS Open-DRAIN mode, ODn_EN = 1, OE = 1  
110: PMOS Open-DRAIN mode, ODp_EN = 1, OE = 1  
111: Analog IO and NMOS Open-DRAIN mode, odn_EN = 1 and AIO_EN = 1  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: Digital OUT and OE are Matrix output, Digital IN is Matrix input  
Note 3: Can be varied over PVT, for reference only  
Low Voltage  
Input  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 3)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
Pull-up_EN  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
Digital OUT  
OE  
VDD  
OD2x_EN  
4x_EN  
ODn_EN  
PAD  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
PP2x_EN  
ODn_EN  
Digital OUT  
OE  
4x_EN  
ODn_EN  
Figure 6: Register OE 4x Drive Structure Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
46 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
5.7 IO TYPICAL PERFORMANCE  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
45  
40  
35  
30  
25  
20  
15  
10  
5
NMOS 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 3.3 V  
NMOS 1x @ VDD = 1.71 V  
Push-Pull 1x @ VDD = 1.71 V  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
VOL (V)  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
47 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
80  
NMOS 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 3.3 V  
NMOS 2x @ VDD = 1.71 V  
Push-Pull 2x @ VDD = 1.71 V  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
160  
150  
140  
130  
120  
110  
100  
90  
NMOS 4x @ VDD = 3.3 V  
Push-Pull 4x @ VDD = 3.3 V  
NMOS 4x @ VDD = 1.71 V  
Push-Pull 4x @ VDD = 1.71 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Datasheet  
16-Mar-2020  
Revision 3.3  
48 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
6
Connection Matrix  
The SLG46620-A has two Connection Matrices, which are used to create the internal routing for internal digital signals inside the  
device, once it is programmed. The registers are programmed from the one-time NVM cells during Test Mode Operation. All of  
the connection points for each logic cell within the SLG46620-A have a specific digital bit code assigned to it that is either set to  
active “High” or inactive “Low” based on the design that is created. Once the 2048 register bits within the SLG46620-A are  
programmed, a fully custom circuit will be created.  
Each Connection Matrix within the device has 64 inputs and 95 outputs. Each of the 64 inputs to each Connection Matrix is hard-  
wired to the digital output of a particular source macrocell, including I/O pins, LUTs, ADC, analog comparators, other digital  
macrocells and VDD and VSS. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines. All  
macrocells associated with a particular matrix has both its inputs and outputs connected to that matrix. To make connections to  
macrocells associated with the other matrix, the user can select the Matrix Cross Connection lines (see Figure 11).  
Each matrix has 10 dedicated output connections for connecting to the other matrix, known as the “Cross Connection “outputs.  
When using these cross connections, any macrocell can be connected to any other macrocell in the device by first going through  
the other matrix. As there is fixed number of the Matrix Cross Connections, it is important when making connections of the outputs  
of macrocells to the inputs of other macrocells that this is done within the same matrix whenever possible. This will leave the  
Matrix Cross Connection lines free for digital connections to resources associated with the other matrix.  
For a complete list of the SLG46620-A’s register table, see Section 23.  
Matrix 0  
Matrix 1  
Matrix 0 to Matrix 1 Cross Connection  
Matrix 1 to Matrix 0 Cross Connection  
Figure 11: Matrix Cross Connection Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
49 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Matrix Input Signal  
N
Functions  
GROUND  
0
1
2
3
LUT2_0 Output  
LUT2_1 Output  
LUT2_2 Output  
Cross Connection In-  
61  
62  
63  
put[9] from Matrix 1  
nRESET_matrix  
VDD  
Matrix Inputs  
N
0
1
2
94  
Registers  
[5:0]  
[11:6]  
[17:12]  
[569:564]  
IN0 of LUT2_0  
IN0 of LUT2_1  
IN0 of LUT2_1  
Cross Connection  
Output[9] to Matrix 1  
Function  
Matrix Outputs  
Figure 12: Connection Matrix 0  
Matrix Input Signal  
N
0
1
2
3
Functions  
GROUND  
LUT2_4 Output  
LUT2_5 Output  
LUT2_6 Output  
Cross Connection In-  
61  
62  
63  
put[9] from Matrix 0  
nRESET_matrix  
VDD  
Matrix Inputs  
N
0
1
2
94  
Registers  
register[1029:1024] register[1035:1030] register[1041:1036]  
IN0 of LUT2_4 IN0 of LUT2_4 IN0 of LUT2_5  
registers 1593:1588]  
Cross Connection  
Output[9] to Matrix 0  
Function  
Matrix Outputs  
Figure 13: Connection Matrix 1  
Datasheet  
16-Mar-2020  
Revision 3.3  
50 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Function  
Connection Matrix  
Pin 13  
LUT  
Pin 12  
Pin 13  
Pin 14  
Pin 12  
LUT  
Pin 14  
Figure 14: Connection Matrix Example  
Datasheet  
16-Mar-2020  
Revision 3.3  
51 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
6.1 MATRIX INPUT 0 TABLE  
Table 23: Matrix 0 Input Table  
Matrix Decode  
N
Matrix 0 Input Signal Function  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GROUND  
1
LUT2_0 Output  
2
LUT2_1 Output  
3
LUT2_2 Output  
4
LUT2_3 Output  
5
LUT3_0 Output  
6
LUT3_1 Output  
7
LUT3_2 Output  
8
LUT3_3 Output  
9
LUT3_4 Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
LUT3_5 Output  
LUT3_6 Output  
LUT3_7 Output  
LUT4_0/PGEN Output  
DFF0/LATCH0 Output  
DFF1/LATCH1 Output  
DFF2/LATCH2 Output  
DFF3/LATCH3 Output  
DFF4/LATCH4 Output  
DFF5/LATCH5 Output  
Pipe Delay 0 Out0  
Pipe Delay 0 Out1  
Edge Detect Programmable Delay 0 Output  
Inverter 0 Output  
Pin2 Digital Output  
Pin3 Digital Output  
Pin4 Digital Output  
Pin5 Digital Output  
Pin6 Digital Output  
Pin7 Digital Output  
Pin8 Digital Output  
Pin9 Digital Output  
Pin10 Digital Output  
ACMP0 Output  
ACMP4 Output  
ACMP5 Output  
DLY0/CNT0 Output  
DLY2/CNT2 Output  
Datasheet  
16-Mar-2020  
Revision 3.3  
52 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 23: Matrix 0 Input Table  
Matrix Decode  
N
Matrix 0 Input Signal Function  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
DLY5/CNT5 Output  
DLY6/CNT6 Output  
DLY9/CNT9 Output  
Sig_BG_OK  
Power Detector Output  
ADC interrupt  
SPI interrupt  
GROUND  
GROUND  
GROUND  
Ring Oscillator Output  
RC Oscillator Output  
Low Frequency Oscillator Output  
GROUND  
Cross Connection Input from Matrix 1 [0]  
Cross Connection Input from Matrix 1 [1]  
Cross Connection Input from Matrix 1 [2]  
Cross Connection Input from Matrix 1 [3]  
Cross Connection Input from Matrix 1 [4]  
Cross Connection Input from Matrix 1 [5]  
Cross Connection Input from Matrix 1 [6]  
Cross Connection Input from Matrix 1 [7]  
Cross Connection Input from Matrix 1 [8]  
Cross Connection Input from Matrix 1 [9]  
nReset_Matrix  
VDD  
Datasheet  
16-Mar-2020  
Revision 3.3  
53 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
6.2 MATRIX 0 OUTPUT TABLE  
Table 24: Matrix 0 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 0 Output Signal Function  
Address  
[5:0]  
Matrix 0 OUT: In0 of LUT2_0  
Matrix 0 OUT: In1 of LUT2_0  
Matrix 0 OUT: In0 of LUT2_1  
Matrix 0 OUT: In1 of LUT2_1  
Matrix 0 OUT: In0 of LUT2_2  
Matrix 0 OUT: In1 of LUT2_2  
Matrix 0 OUT: In0 of LUT2_3  
Matrix 0 OUT: In1 of LUT2_3  
Matrix 0 OUT: In0 of LUT3_0  
Matrix 0 OUT: In1 of LUT3_0  
Matrix 0 OUT: In2 of LUT3_0  
Matrix 0 OUT: In0 of LUT3_1  
Matrix 0 OUT: In1 of LUT3_1  
Matrix 0 OUT: In2 of LUT3_1  
Matrix 0 OUT: In0 of LUT3_2  
Matrix 0 OUT: In1 of LUT3_2  
Matrix 0 OUT: In2 of LUT3_2  
Matrix 0 OUT: In0 of LUT3_3  
Matrix 0 OUT: In1 of LUT3_3  
Matrix 0 OUT: In2 of LUT3_3  
Matrix 0 OUT: In0 of LUT3_4  
Matrix 0 OUT: In1 of LUT3_4  
Matrix 0 OUT: In2 of LUT3_4  
Matrix 0 OUT: In0 of LUT3_5  
Matrix 0 OUT: In1 of LUT3_5  
Matrix 0 OUT: In2 of LUT3_5  
Matrix 0 OUT: In0 of LUT3_6  
Matrix 0 OUT: In1 of LUT3_6  
Matrix 0 OUT: In2 of LUT3_6  
Matrix 0 OUT: In0 of LUT3_7  
Matrix 0 OUT: In1 of LUT3_7  
Matrix 0 OUT: In2 of LUT3_7  
Matrix 0 OUT: In0 of LUT4_0  
Matrix 0 OUT: In1 of LUT4_0  
Matrix 0 OUT: In2 of LUT4_0 or PGEN CLK  
Matrix 0 OUT: In3 of LUT4_0 or PGEN nRST  
Matrix 0 OUT: nSET or nRST of DFF0/Latch0  
Matrix 0 OUT: Data of DFF0/Latch0  
0
[11:6]  
1
[17:12]  
2
[23:18]  
3
[29:24]  
4
[35:30]  
5
[41:36]  
6
[47:42]  
7
[53:48]  
8
[59:54]  
9
[65:60]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
[71:66]  
[77:72]  
[83:78]  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
Datasheet  
16-Mar-2020  
Revision 3.3  
54 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 24: Matrix 0 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 0 Output Signal Function  
Address  
[233:228]  
[239:234]  
[245:240]  
[251:246]  
[257:252]  
[263:258]  
[269:264]  
[275:270]  
[281:276]  
[287:282]  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
[419:414]  
[425:420]  
[431:426]  
[437:432]  
[443:438]  
[449:444]  
[455:450]  
[461:456]  
Matrix 0 OUT: Clock of DFF0/Latch0  
Matrix 0 OUT: nSET or nRST of DFF1/Latch1  
Matrix 0 OUT: Data of DFF1/Latch1  
Matrix 0 OUT: Clock of DFF1/Latch1  
Matrix 0 OUT: nSET or nRST of DFF2/LatcOUTh2  
Matrix 0 OUT: Data of DFF2/Latch2  
Matrix 0 OUT: Clock of DFF2/Latch2  
Matrix 0 OUT: Data of DFF3/Latch3  
Matrix 0 OUT: Clock of DFF3/Latch3  
Matrix 0 OUT: Data of DFF4/Latch4  
Matrix 0 OUT: Clock of DFF4/Latch4  
Matrix 0 OUT: Data of DFF5/Latch5  
Matrix 0 OUT: Clock of DFF5/Latch5  
Matrix 0 OUT: Clock of Pipe Delay 0  
Matrix 0 OUT: Input Data of Pipe Delay 0  
Matrix 0 OUT: Reset of Pipe Delay 0  
Matrix 0 OUT: Input of Edge Detector and Programmable Delay 0  
Matrix 0 OUT: Input of Inverter 0  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Matrix 0 OUT: Digital Output of Pin3  
Matrix 0 OUT: OE of Pin3  
Matrix 0 OUT: Digital Output of Pin4  
Matrix 0 OUT: Digital Output of Pin5  
Matrix 0 OUT: OE of Pin5  
Matrix 0 OUT: Digital Output of Pin6  
Matrix 0 OUT: Digital Output of Pin7  
Matrix 0 OUT: OE of Pin7  
Matrix 0 OUT: Digital Output of Pin8  
Matrix 0 OUT: Digital Output of Pin9  
Matrix 0 OUT: OE of Pin9  
Matrix 0 OUT: Digital Output of Pin10  
Matrix 0 OUT: OE of Pin10  
Matrix 0 OUT: PDB (Power-down) for ACMP0  
Matrix 0 OUT: PDB (Power-down) for ACMP4  
Matrix 0 OUT: PDB (Power-down) for ACMP5  
Matrix 0 OUT: CNT0/CNT2/CNT9/ External Clock(CLK_Matrix0)  
Matrix 0 OUT: CNT5/CNT6 External Clock (CLK_Matrix1)  
Matrix 0 OUT: Input of DLY/CNT0  
Matrix 0 OUT: Input of DLY/CNT2  
Matrix 0 OUT: Keep of DLY/CNT2  
Datasheet  
16-Mar-2020  
Revision 3.3  
55 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 24: Matrix 0 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 0 Output Signal Function  
Address  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
[503:498]  
[509:504]  
[515:510]  
[521:516]  
[527:522]  
[533:528]  
[539:534]  
[545:540]  
[551:546]  
[557:552]  
[563:558]  
[569:564]  
Matrix 0 OUT: Up of DLY/CNT2  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
Matrix 0 OUT: Input of DLY/CNT5  
Matrix 0 OUT: Input of DLY/CNT6  
Matrix 0 OUT: Input of DLY/CNT9  
Matrix 0 OUT: ADC Power-down  
Matrix 0 OUT: CSB of SPI  
Matrix 0 OUT: SCLK of SPI  
Matrix 0 OUT: Oscillator Power-down  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [0]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [1]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [2]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [3]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [4]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [5]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [6]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [7]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [8]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [9]  
Datasheet  
16-Mar-2020  
Revision 3.3  
56 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
6.3 MATRIX INPUT 1 TABLE  
Table 25: Matrix 1 Input Table  
Matrix Decode  
N
Matrix 1 Input Signal Function  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GROUND  
1
LUT2_4 Output  
2
LUT2_5 Output  
3
LUT2_6 Output  
4
LUT2_7 Output  
5
LUT3_8 Output  
6
LUT3_9 Output  
7
LUT3_10 Output  
8
LUT3_11 Output  
9
LUT3_12 Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
LUT3_13 Output  
LUT3_14 Output  
LUT3_15 Output  
LUT4_1 Output  
DFF6/LATCH6 Output  
DFF7/LATCH7 Output  
DFF8/LATCH8 Output  
DFF9/LATCH9 Output  
DFF10/LATCH10 Output  
DFF11/LATCH11 Output  
Pipe Delay 1 Out0  
Pipe Delay 1 Out1  
Edge Detect Programmable Delay 1 Output  
Inverter 1 Output  
Pin12 Digital Output  
Pin13 Digital Output  
Pin14 Digital Output  
Pin15 Digital Output  
Pin16 Digital Output  
Pin17 Digital Output  
Pin18 Digital Output  
Pin19 Digital Output  
Pin20 Digital Output  
ACMP1 Output  
ACMP2 Output  
ACMP3 Output  
DLY1/CNT1 Output  
DLY3/CNT3 Output  
Datasheet  
16-Mar-2020  
Revision 3.3  
57 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 25: Matrix 1 Input Table  
Matrix Decode  
N
Matrix 1 Input Signal Function  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
DLY4/CNT4 Output  
DLY7/CNT7 Output  
DLY8/CNT8 Output  
Sig_BG_OK  
PWM0_DCMP0_Out_negative  
PWM0_DCMP0_Out_positive  
PWM1_DCMP1_Out_negative/SPI_Out[0]  
PWM1_DCMP1_Out_positive/SPI_Out[1]  
PWM2_DCMP2_Out_negative/SPI_Out[2]  
PWM2_DCMP2_Out_positive/SPI_Out[3]  
Ring Oscillator Output/SPI_Out[4]  
RC Oscillator Output/SPI_Out[5]  
Low Frequency Oscillator Output/SPI_Out[6]  
GROUND/SPI_Out[7]  
Cross Connection Input from Matrix 0 [0]  
Cross Connection Input from Matrix 0 [1]  
Cross Connection Input from Matrix 0 [2]  
Cross Connection Input from Matrix 0 [3]  
Cross Connection Input from Matrix 0 [4]  
Cross Connection Input from Matrix 0 [5]  
Cross Connection Input from Matrix 0 [6]  
Cross Connection Input from Matrix 0 [7]  
Cross Connection Input from Matrix 0 [8]  
Cross Connection Input from Matrix 0 [9]  
nRESET_Matrix  
VDD  
Datasheet  
16-Mar-2020  
Revision 3.3  
58 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
6.4 MATRIX 1 OUTPUT TABLE  
Table 26: Matrix 1 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 1 Output Signal Function  
Address  
[1029:1024]  
[1035:1030]  
[1041:1036]  
[1047:1042]  
[1053:1048]  
[1059:1054]  
[1065:1060]  
[1071:1066]  
[1077:1072]  
[1083:1078]  
[1089:1084]  
[1095:1090]  
[1101:1096]  
[1107:1102]  
[1113:1108]  
[1119:1114]  
[1125:1120]  
[1131:1126]  
[1137:1132]  
[1143:1138]  
[1149:1144]  
[1155:1150]  
[1161:1156]  
[1167:1162]  
[1173:1168]  
[1179:1174]  
[1185:1180]  
[1191:1186]  
[1197:1192]  
[1203:1198]  
[1209:1204]  
[1215:1210]  
[1221:1216]  
[1227:1222]  
[1233:1228]  
[1239:1234]  
[1245:1240]  
[1251:1246]  
Matrix 1 OUT: In0 of LUT2_4  
Matrix 1 OUT: In1 of LUT2_4  
Matrix 1 OUT: In0 of LUT2_5  
Matrix 1 OUT: In1 of LUT2_5  
Matrix 1 OUT: In0 of LUT2_6  
Matrix 1 OUT: In1 of LUT2_6  
Matrix 1 OUT: In0 of LUT2_7  
Matrix 1 OUT: In1 of LUT2_7  
Matrix 1 OUT: In0 of LUT3_8  
Matrix 1 OUT: In1 of LUT3_8  
Matrix 1 OUT: In2 of LUT3_8  
Matrix 1 OUT: In0 of LUT3_9  
Matrix 1 OUT: In1 of LUT3_9  
Matrix 1 OUT: In2 of LUT3_9  
Matrix 1 OUT: In0 of LUT3_10  
Matrix 1 OUT: In1 of LUT3_10  
Matrix 1 OUT: In2 of LUT3_10  
Matrix 1 OUT: In0 of LUT3_11  
Matrix 1 OUT: In1 of LUT3_11  
Matrix 1 OUT: In2 of LUT3_11  
Matrix 1 OUT: In0 of LUT3_12  
Matrix 1 OUT: In1 of LUT3_12  
Matrix 1 OUT: In2 of LUT3_12  
Matrix 1 OUT: In0 of LUT3_13  
Matrix 1 OUT: In1 of LUT3_13  
Matrix 1 OUT: In2 of LUT3_13  
Matrix 1 OUT: In0 of LUT3_14  
Matrix 1 OUT: In1 of LUT3_14  
Matrix 1 OUT: In2 of LUT3_14  
Matrix 1 OUT: In0 of LUT3_15  
Matrix 1 OUT: In1 of LUT3_15  
Matrix 1 OUT: In2 of LUT3_15  
Matrix 1 OUT: In0 of LUT4_1  
Matrix 1 OUT: In1 of LUT4_1  
Matrix 1 OUT: In2 of LUT4_1  
Matrix 1 OUT: In3 of LUT4_1  
Matrix 1 OUT: nSET or nRST of DFF6/Latch6  
Matrix 1 OUT: Data of DFF6/Latch6  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Datasheet  
16-Mar-2020  
Revision 3.3  
59 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 26: Matrix 1 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 1 Output Signal Function  
Address  
[1257:1252]  
[1263:1258]  
[1269:1264]  
[1275:1270]  
[1281:1276]  
[1287:1282]  
[1293:1288]  
[1299:1294]  
[1305:1300]  
[1311:1306]  
[1317:1312]  
[1323:1318]  
[1329:1324]  
[1335:1330]  
[1341:1336]  
[1347:1342]  
[1353:1348]  
[1359:1354]  
[1365:1360]  
[1371:1366]  
[1377:1372]  
[1383:1378]  
[1389:1384]  
[1395:1390]  
[1401:1396]  
[1407:1402]  
[1413:1408]  
[1419:1414]  
[1425:1420]  
[1431:1426]  
[1437:1432]  
[1443:1438]  
[1449:1444]  
[1455:1450]  
[1461:1456]  
[1467:1462]  
[1473:1468]  
[1479:1474]  
[1485:1480]  
Matrix 1 OUT: Clock of DFF6/Latch6  
Matrix 1 OUT: nSET or nRST of DFF7/Latch7  
Matrix 1 OUT: Data of DFF7/Latch7  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Matrix 1 OUT: Clock of DFF7/Latch7  
Matrix 1 OUT: nSET or nRST of DFF8/Latch8  
Matrix 1 OUT: Data of DFF8/Latch8  
Matrix 1 OUT: Clock of DFF8/Latch8  
Matrix 1 OUT: Data of DFF9/Latch9  
Matrix 1 OUT: Clock of DFF9/Latch9  
Matrix 1 OUT: Data of DFF10/Latch10  
Matrix 1 OUT: Clock of DFF10/Latch10  
Matrix 1 OUT: Data of DFF11/Latch11  
Matrix 1 OUT: Clock of DFF11/Latch11  
Matrix 1 OUT: Clock of Pipe Delay 1  
Matrix 1 OUT: Input Data of Pipe Delay 1  
Matrix 1 OUT: Reset of Pipe Delay 1  
Matrix 1 OUT: Input of Edge Detector and Programmable Delay 1  
Matrix 1 OUT: Input of Inverter 1  
Matrix 1 OUT: Digital Output of PIN 12  
Matrix 1 OUT: Digital Output of PIN 13  
Matrix 1 OUT: OE of PIN 13  
Matrix 1 OUT: Digital Output of PIN 14  
Matrix 1 OUT: OE of PIN 14  
Matrix 1 OUT: Digital Output of PIN 15  
Matrix 1 OUT: Digital Output of PIN 16  
Matrix 1 OUT: OE of PIN 16  
Matrix 1 OUT: Digital Output of PIN 17  
Matrix 1 OUT: Digital Output of PIN 18  
Matrix 1 OUT: OE of PIN 18  
Matrix 1 OUT: Digital Output of PIN 19  
Matrix 1 OUT: OE of PIN 19  
Matrix 1 OUT: Digital Output of PIN 20  
Matrix 1 OUT: PDB (Power-down) for ACMP1  
Matrix 1 OUT: PDB (Power-down) for ACMP2  
Matrix 1 OUT: PDB (Power-down) for ACMP3  
Matrix 1 OUT: CNT7/CNT8/PWM/ADC External Clock (CLK_Matrix2)  
Matrix 1 OUT: CNT1/CNT3/CNT4 External Clock (CLK_Matrix3)  
Matrix 1 OUT: Input of DLY/CNT1  
Matrix 1 OUT: Input of DLY/CNT3  
Datasheet  
16-Mar-2020  
Revision 3.3  
60 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 26: Matrix 1 Output Table  
Register Bit  
Matrix Output  
Number  
Matrix 1 Output Signal Function  
Address  
[1491:1486]  
[1497:1492]  
[1503:1498]  
[1509:1504]  
[1515:1510]  
[1521:1516]  
Matrix 1 OUT: Input of DLY/CNT4  
Matrix 1 OUT: Keep of DLY/CNT4  
Matrix 1 OUT: Up of DLY/CNT4  
Matrix 1 OUT: Input of DLY/CNT7  
Matrix 1 OUT: Input of DLY/CNT8  
Matrix 1 OUT: PWM Power-down  
77  
78  
79  
80  
81  
82  
83  
Matrix 1 OUT: PWM/DCMP0 Positive Input and PWM/DCMP1 Negative Input Reg-  
ister Selection Bit 0  
[1527:1522]  
[1533:1528]  
Matrix 1 OUT: PWM/DCMP0 Positive Input and PWM/DCMP1 Negative Input Reg-  
ister Selection Bit 1  
84  
[1539:1534]  
[1545:1540]  
[1551:1546]  
[1557:1552]  
[1563:1558]  
[1569:1564]  
[1575:1570]  
[1581:1576]  
[1587:1582]  
[1593:1588]  
[1599:1594]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [0]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [1]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [2]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [3]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [4]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [5]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [6]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [7]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [8]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [9]  
Reserved  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
Datasheet  
16-Mar-2020  
Revision 3.3  
61 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
7
8-bit SAR ADC Analog-to-Digital Converter  
The Analog to Digital Converter (ADC) in the SLG46620-A is an 8-bit Successive Approximation Register Analog to Digital  
Converter (SAR ADC) which operates at a sampling speed of 100 kHz. The ADC’s DNL < ± 0.5 LSB and INL < ± 3.4 LSB and  
has a ADC Vref accuracy of ± 50 mV. The ADC consists of two parts: PGA which provides signal amplification and conditioning  
and SAR ADC which handles analog to digital conversion. PGA can be used as amplifier when ADC is disabled. Please see  
Section 7.3.2 PGA Output for more details. User controlled inputs and outputs of the ADC are listed below:  
Inputs:  
CH SELECTOR: Single-Ended Mode ADC Selection and Analog Input MUX Control Signal (PIN 16, VDD  
IN+: Single-Ended Mode Input (PIN8 or PIN9) and Differential Mode Positive Input (PIN8)  
IN-: Differential Mode Negative Input (PIN 9 or DAC0)  
Vref: ADC Voltage Reference Input (ADC Vref, VDD/4, none)  
CLK or CLK/16: ADC Clock Input (Ring OSC, Ext. CLK2 (Matrix1_OUT73), RC OSC, SPI SCLK)  
)
Wake/Sleep  
Outputs:  
PGA_Out: Output of the PGA to PIN7  
PGA_Out: Output of the PGA to ACMP1  
SER DATA: ADC serial output (SPI)  
PAR DATA: 8-bit ADC parallel data to either the SPI, PWM, or DCMP  
INT_ OUT: ADC Interrupt Output (Matrix0_OUT43)  
Datasheet  
16-Mar-2020  
Revision 3.3  
62 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
7.1 ADC FUNCTIONAL DIAGRAM  
VDD  
PGAOUT_en register [886]  
0
PGA OUT  
to ACMP  
CH Select (PIN 16)  
1
ADC Programmable  
Gain Amplifier  
register [816]  
Pin 9  
Gain Selection  
register [820:818]  
0
1
SER DATA  
PAR DATA  
INT OUT  
Pin 8  
ADC  
PGA  
PGA Power register [821]  
0
1
/16  
0
ADC Vref  
CLK  
00  
01  
10  
Vref  
Reserved  
1
DAC_in_en register [815]  
VDD * (0.25)  
register [1639]  
DAC 0  
registers [842:841]  
Ring OSC  
8-bit registers [851:844]  
DCMP1_Neg.IN  
Diff_mode_en register [817]  
pseudo_en register [822]  
0
1
00  
Wake/Sleep En register [884]  
Wake/Sleep Signal  
Ext. CLK2  
01  
10  
11  
(matrix1_out73)  
RC OSC  
SPI CLK  
register [843]  
ADC CLK SRC registers [1629:1628]  
Figure 15: ADC Functional Diagram  
7.2 ADC OPERATION MODES  
The ADC has three operating modes:  
Single-Ended ADC operation using IN+ from PIN 8 or 9, when ADC_sel (register [817]) is “0”  
Differential ADC operation using IN+ from PIN 8 and IN- from PIN 9, when ADC_sel (register [817]) is “1”  
Pseudo-Differential ADC operation using IN+ from PIN 8 and IN- from PIN 9, when ADC_sel (register [817]) and  
ADC_pseudodiff_en (register [822]) bits are both set to “1”.  
7.3 ADC 3-BIT PROGRAMMABLE GAIN AMPLIFIER  
The front end of the ADC is a PGA with 3 bits for setting gain. The PGA buffers the ADC in all cases. The PGA gain is set by the  
ADC_gain_control (registers [820:818]). See ADC Register Settings Table.  
Available gain settings depending on PGA mode selected (when used as ADC front-end):  
Single-ended: 0.5x, 1x, 2x, 4x, 8x;  
Differential: 1x, 2x, 4x, 8x, 16x;  
Pseudo-Differential: 1x, 2x.  
PGA inputs:  
CH SELECTOR: Single-Ended Mode ADC Selection and Analog Input MUX Control Signal (PIN16, VDD  
IN+: Single-Ended Mode Input (PIN8 or PIN9) and Differential Mode Positive Input (PIN8)  
IN-: Differential Mode Negative Input (PIN9 or DAC0)  
)
Datasheet  
16-Mar-2020  
Revision 3.3  
63 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
PGA output is connected directly to ADC input. Also, it is possible to connect PIN7 to PGA output (register [886]), when ADC is  
not in use only. The output of PGA has an offset when used as ADC front-end. Please see section 7.3.2 for more details.  
7.3.1 PGA 2-Channel Selection  
When ADC_channel_sel (register [816]) is set to “1”, the PGA of the ADC will sample either PIN 8 or PIN 9 on the IN+ input,  
where the selection is controlled by PIN 16.  
When PIN 16 is set to “0”, the ADC will sample PIN 9  
When PIN 16 is set to “1”, the ADC will sample PIN 8  
When ADC_channel_sel (register [816]) is set to “0”, the PGA of the ADC will sample PIN 8 on the IN+ input.  
Logic “1”  
0
CH Selector (Pin 16)  
1
register [816]  
IN+ CH#2 (Pin 9)  
0
IN+  
IN+ CH#1 (Pin 8)  
1
Figure 16: ADC 2-Channel Selection  
7.3.2 PGA Output  
PGA can be used either in standalone mode or as ADC font-end / ACMP input buffer.  
In PGA standalone mode (ADC in POWER-DOWN mode) PGA output is always referenced to GND. When ADC is powered on,  
it powers also the PGA output reference macrocell, so that the output voltage is referenced to one of predefined output offset  
voltages Vos(RTO) which can be found in PGA specifications. This offset is required for correct ADC operation and it does not  
affect output code calculation.  
PGA output reference (when ADC is on):  
Single-ended mode: Vos(RTO) = GND  
Differential mode: Vos(RTO) = 550 mV  
Pseudo-Differential mode: Vos(RTO) = 180 mV  
Note that the reference voltage macrocell is controlled by ADC, therefore if ADC is in POWER-DOWN mode, the reference  
macrocell is OFF and PGA output is referenced to GND. In this case both Differential and Pseudo-Differential modes provide the  
same output. Typical PGA specifications in Differential/Pseudo-Differential mode with ADC in POWER-DOWN state are given in  
specifications section for information only.  
Note 1: PGA operation in Differential/Pseudo-Differential mode with ADC in POWER-DOWN state is not recommended to use.  
Note 2: Toggling ADC POWER-DOWN mode will also toggle the PGA output reference macrocell, that will influence the ACMP  
input voltage.  
PGA has a few output connection possibilities: to ACMP1 and/or ADC, and to external output on PIN7. Connection to external  
output is possible only when ADC is powered down.  
PGA output connection options:  
Single-Ended mode:  
• ADC  
• ACMP  
Datasheet  
16-Mar-2020  
Revision 3.3  
64 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
• External output  
Differential mode:  
• ADC  
• ACMP (Note 2)  
• External output (Operation in this mode is not recommended)  
Pseudo-Differential mode:  
• ADC  
• ACMP (Note 2)  
• External output (Operation in this mode is not recommended)  
7.3.3 PGA Power-On Signal  
Whenever ADC is enabled, PGA is powered on automatically. However, it is possible to use PGA separately. In this case, Power-  
On function must be enabled, register [821] = 1.  
Note 1 In ADC Wake/Sleep dynamic ON/OFF mode, must be set to 0  
7.3.4 PGA Typical Performance  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
200 samples  
VDD = 3.3 V  
T = 25°C  
200 samples  
VDD = 3.3 V  
T = 25°C  
0
0
Vos, mV  
Vos, mV  
Figure 18: PGA Input Offset Distribution, Single-Ended  
Mode, G = 1  
Figure 17: PGA Input Offset Distribution, Single-Ended  
Mode, G = 0.5  
Datasheet  
16-Mar-2020  
Revision 3.3  
65 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
18  
20  
18  
16  
14  
12  
10  
8
200 samples  
200 samples  
VDD = 3.3 V  
T = 25°C  
16  
14  
12  
10  
8
VDD = 3.3 V  
T = 25°C  
6
6
4
4
2
2
0
0
Vos, mV  
Vos, mV  
Figure 19: PGA Input Offset Distribution, Single-Ended  
Mode, G = 2  
Figure 20: PGA Input Offset Distribution, Single-Ended  
Mode, G = 4  
20  
200 samples  
18  
VDD = 3.3 V  
16  
T = 25°C  
14  
12  
10  
8
6
4
2
0
Vos, mV  
Figure 21: PGA Input Offset Distribution, Single-Ended  
Mode, G = 8  
Datasheet  
16-Mar-2020  
Revision 3.3  
66 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
1300  
1200  
1100  
1000  
900  
1300  
1200  
1100  
1000  
900  
800  
800  
700  
700  
600  
600  
500  
500  
400  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6 V  
400  
VDD = 1.71 V  
VDD = 3.3 V  
VDD = 3.6 V  
300  
200  
100  
300  
200  
100  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Vcm, V  
Vinn, V  
Figure 22: Typical Input Common Mode Voltage Range vs.  
Linear Output Voltage Range, Differential Mode, All Gains  
Figure 23: Typical Negative Input Voltage Range vs.  
Linear Output Voltage, Pseudo-Differential Mode, G = 1  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
VDD = 1.71 V  
200  
100  
VDD = 3.3 V  
VDD = 3.6 V  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Vinn, V  
Figure 24: Typical Negative Input Voltage Range vs.  
Linear Output Voltage, Pseudo-Differential Mode, G = 2  
Datasheet  
16-Mar-2020  
Revision 3.3  
67 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
7.4 ADC INPUT VOLTAGE DEFINITION  
The ADC’s input voltage (VIN_ADC) is calculated based on either the single-ended or differential operation modes the logic cell is  
set to. In single-ended mode VIN_ADC is the positive input voltage multiplied by the gain of the PGA. While in differential mode  
the VIN_ADC is the difference between the positive and negative input voltages multiplied by the gain of the PGA plus one half of  
the reference voltage.  
VOUT(PGA) = VIN(ADC) = G  
·
(Vinp + Vos(RTI)) - for SE mode  
VOUT(PGA) = VIN(ADC) = G Vind + Vos(RTO) - for DI and PD mode  
·
Vos - PGA offset voltage. RTI and RTO denotes referred to input and referred to output Vos.  
Vos(RTO)  
----------------------  
G
Vos(RTI)  
=
G - PGA nominal gain  
Vind - PGA input voltage (differential):  
Vind = Vinp - Vinn  
Vind  
----------  
2
Vinp = Vcm  
+
Vind  
----------  
2
Vinn = Vcm  
Vinn and Vinp - absolute voltage at negative and positive PGA input correspondingly  
Vcm - common mode PGA voltage:  
Vinn + Vinp  
----------------------------  
=
Vcm  
2
Note: In Pseudo-Differential mode Vcm is replaced by Vinn voltage for convenience  
ADC code for PGA differential input voltage Vind can be calculated as follows:  
Single-ended mode:  
V
ind = Vinp  
255  
ADC  
= -----------------------------------------------------------------(V  
V  
)
code  
inp  
inp[min]  
V
V  
inp[max]  
inp[min]  
Vinp[min] and Vinp[max] - positive input voltage for bit0 and bit255 correspondingly (can be found in ADC specifications)  
Differential and Pseudo-Differential mode:  
255  
ADC  
= -----------------------------------------------------------------(Vind Vind[min])  
code  
V
V  
ind[max]  
ind[min]  
Vind[min] and Vind[max] - differential input voltage for bit0 and bit255 correspondingly (can be found in ADC specifications)  
Least significant bit size (LSB) calculates as follows:  
Datasheet  
16-Mar-2020  
Revision 3.3  
68 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
FS  
LSB = ---------  
255  
where FS is full-scale range:  
FS = Vind[max] - Vind[min]  
7.5 ADC REFERENCE VOLTAGE  
The ADC’s reference voltage (Vref) is controlled by ADC_Vref_sel (registers [842:841]). The two reference voltage inputs are  
chosen from the following:  
ADC Vref from Internal Source (ADC Vref = 1.2 V)  
Power Divider of (0.25) * VDD  
ADC Vref  
00  
01  
10  
Vref  
Reserved  
V
DD * (0.25)  
registers [842:841]  
Figure 25: ADC Reference Voltage  
7.6 ADC POWER-DOWN SELECT MODE  
The ADC’s power-down source is selected by Matrix0_Out81 registers [491:486]. A value of “1” will drive the ADC and the PGA  
to power-down mode. The SLG46620-A also has a slow/fast power-on mode feature controlled by register [885]. When register  
[885] = 0, the ADC is in slow power-on mode and the entire analog macrocell is controlled by connection matrix output0 81. When  
register [885] = 1, ADC is in fast power-on mode, where only the ADC will be controlled by connection matrix output0 81 and the  
analog macrocell will remain on. With this feature, the first ADC power-on (with the rest of the analog macrocell) will be  
approximately 500 µs; the next power cycle the ADC power-on (ADC only) time is < 5 µs.  
7.7 ADC CLOCK SOURCE  
TheADC clock source comes from either the internal RC Oscillator, Matrix1_Out73, Ring Oscillator, or SPI CLK. TheADC requires  
16 clock cycles to sample the analog voltage and output the sampled data.  
Note: Sampling rate should not exceed approximately 100 kbps.  
The selection is made from the ADC_clk_sel signal via registers [1629:1628] where:  
00: Ring Oscillator  
01: Matrix1_Out 73  
10: RC Oscillator  
11: SPI CLK  
Datasheet  
16-Mar-2020  
Revision 3.3  
69 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Note: It is not recommended to design in high frequency signals (input our output) on pins adjacent to the following pins: Pin7,  
Pin8, Pin9 as this may affect ADC performance.  
/16  
0
1
CLK  
register [1639]  
Ring OSC  
00  
Matrix1 OUT [73]  
RC OSC  
01  
10  
11  
SPI CLK  
ADC CLK SRC registers [1629:1628]  
Figure 26: ADC Clock Source  
7.8 ADC OUTPUTS  
The ADC’s output can be shifted out through the SPI logic cell. Both SER DATA and PAR DATA produce an 8-bit data string over  
16 clock cycles. See Figure 27.  
7.8.1 ADC Serial Output  
The 8-bit serial data can be output from the SLG46620-A device on PIN 10. The individual 8 serial data bits can be read into an  
external device within the larger system design.  
To initialize the SER DATA the ADC needs a Power-down signal, which can be configured through the connection matrix. After 6  
ADC_CLK cycles the ADC will start to output the 8-Bit Serial Data. This PD signal needs to be held for at least 16 ADC_CLK  
cycles. The ADC_CLK is determined by either the RC OSC, RingOSC OSC, Matrix1_Out73, or SPI CLK.OSC  
7.8.2 ADC Parallel Output  
The 16-bit parallel data can be output from the ADC logic cell to either the DCMP/PWM or FSM logic cells within the SLG46620-  
A device.  
To initialize the PAR DATA the ADC needs a Power-down signal, which can be configured through the connection matrix. After  
tenADC_CLK cycles theADC will start to output the 16-Bit Parallel Data. This PD signal needs to be held for at least 32 ADC_CLK  
cycles. The ADC_CLK is determined by either the RC OSC, Ring OSC, Matrix1_Out73, or SPI CLK.  
Datasheet  
16-Mar-2020  
Revision 3.3  
70 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
7.9 ADC INTERRUPT OUTPUT TIMING DIAGRAM  
Power_Down  
T_ADC_startup > 500µs (force analog disable)  
T_ADC_startup > 5 µs (force analog enable)  
CLK case 1  
CLK case 2  
1
1
2
3
4
5
6
7
8
9
10  
10  
11  
11  
12 13  
14 15 16  
1
1
16  
16  
2
3
4
5
6
7
8
9
12 13  
14 15  
16  
SER DATA  
D7  
D0  
SER DATA  
Input Signal case 1  
PAR DATA  
Input Signal case 2  
PAR DATA  
ADC_int  
First pulse  
Bandgap OK  
Figure 27: ADC Interrupt Output Timing Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
71 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
8
8-bit Digital-to-Analog Converter  
There are two Digital-to-Analog Converters (DACs) in the SLG46620-A (DAC0 and DAC1), they are 8-bit Digital to Analog  
Converters which operate at a maximum sampling speed of 100 kbps. The DAC's DNL is less than 1 LSB and INL is less than  
1LSB. DAC output to PIN resistance is 1 k. Load resistance is recommended to be no less than 10 k; load capacitance is  
recommended to be no more than 100 pF.  
User controlled inputs and outputs of the DAC are listed below:  
DAC0 Inputs:  
Registers  
CNT9_Q[7:0]  
8LSBs SPI  
FSM0[7:0]  
DAC0 Outputs:  
PIN19  
PGA negative input (00: 0 V; FF: 1 V)  
ACMP0 negative input  
ACMP1 negative input  
ACMP2 negative input  
ACMP3 negative input  
ACMP4 negative input  
ACMP5 negative input  
DAC1 Inputs:  
Registers  
CNT9_Q[7:0]  
8LSBs SPI  
FSM0[7:0]  
DAC1 Outputs:  
PIN18  
ACMP0 negative input  
ACMP1 negative input  
ACMP2 negative input  
ACMP3 negative input  
ACMP4 negative input  
ACMP5 negative input  
If a DAC output is connected to one of SLG46620-A's external pins (Pin19 for DAC0 and Pin18 for DAC1), it is necessary to  
enable those external pins as analog input/output. Register [840]: 0 - DAC0 power-off, 1 - DAC0 power-on. Register [834]: 0 -  
DAC1 power-off, 1 - DAC1 power-on.  
DAC0 output range: 0 V…1 V  
DAC1 output range: 50 mV…1.05 V  
Please note that DAC1 is shared with ADC macrocell. Therefore it is impossible to use DAC1, when ADC is used. Also to activate  
DAC1, DAC0 must be enabled (register [840] = 1 and register [834] = 1). In addition, DAC0 is used as a part of pseudo-differential  
mode of PGA macrocell. Therefore DAC0 is not available when PGA is in pseudo-differential mode.  
Datasheet  
16-Mar-2020  
Revision 3.3  
72 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
8.1 DAC0 FUNCTIONAL DIAGRAM  
register [843]  
Pin19_aio_en  
registers [1962:1961]=11  
Register  
0
01  
10  
11  
Vref Out_0 (Pin19)  
DAC0  
DCMP1's neg. input  
1
PWR DOWN  
registers [879:878]  
register [840]  
PGA negative input  
ACMP0 negative input  
ACMP5 negative input  
Figure 28: DAC0 Functional Diagram  
8.2 DAC1 FUNCTIONAL DIAGRAM  
register [883]  
Pin19_aio_en  
registers [1955:1954]=11  
Register  
01  
10  
11  
Vref Out_1 (Pin18)  
1
0
DAC1  
DCMP1's neg. input  
PWR DOWN  
registers [877:876]  
register [834]  
ACMP0 negative input  
ACMP5 negative input  
Figure 29: DAC1 Functional Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
73 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
8.3 DAC TYPICAL PERFORMANCE  
ꢂꢃꢀꢀ  
ꢂꢂꢁꢀ  
ꢂꢂꢀꢀ  
ꢂꢀꢁꢀ  
ꢂꢀꢀꢀ  
ꢉꢁꢀ  
ꢉꢀꢀ  
ꢈꢁꢀ  
ꢈꢀꢀ  
ꢇꢁꢀ  
ꢇꢀꢀ  
ꢆꢁꢀ  
ꢆꢀꢀ  
ꢁꢁꢀ  
ꢁꢀꢀ  
ꢅꢁꢀ  
ꢅꢀꢀ  
ꢄꢁꢀ  
ꢄꢀꢀ  
ꢃꢁꢀ  
ꢃꢀꢀ  
ꢂꢁꢀ  
ꢂꢀꢀ  
ꢁꢀ  
8-bit register control = 255  
8-bit register control = 200  
8-bit register control = 160  
8-bit register control = 100  
8-bit register control = 20  
ꢀ8ꢀꢃ ꢀ8ꢀꢅ ꢀ8ꢀꢆ ꢀ8ꢀꢈ ꢀ8ꢂ ꢀ8ꢃ ꢀ8ꢅ ꢀ8ꢆ ꢀ8ꢈ  
ꢂꢀ ꢃꢀ ꢅꢀ ꢆꢀ ꢈꢀ ꢂꢀꢀ ꢃꢀꢀ ꢅꢀꢀ ꢆꢀꢀ ꢈꢀꢀ ꢂꢀꢀꢀ ꢃꢀꢀꢀ  
Load, uA  
Figure 30: DAC Typical Load Regulation, T = 25°C, VDD = 3.3 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
74 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
9
Combinatorial Logic  
Combinatorial logic is supported via twenty five Lookup Tables (LUTs) within the SLG46620-A. There are eight 2-bit LUTs, sixteen  
3-bit LUTs, and one 4-bit LUT. The device also includes one Combination Function Macrocell that can be used as a 4-bit LUT.  
For more details, please see Section 10.  
Inputs/Outputs for the twenty five LUTs are configured from one of the connection matrices with specific logic functions being  
defined by the state of NVM bits. The outputs of the LUTs can be configured to any user defined function, including the following  
standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
9.1 2-BIT LUT  
The eight 2-bit LUTs each take in two input signals from one of the two connection matrices and produce a single output, which  
goes back into the same connection matrix that the inputs came from. The output state of each 2-bit LUT is defined by four register  
bits, the output state is based on the appropriate bit selected by the value of the two inputs to the LUT.  
Datasheet  
16-Mar-2020  
Revision 3.3  
75 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
registers [579:576]  
registers [583:580]  
From Connection  
Matrix Output 0 [0]  
IN0  
From Connection  
Matrix Output 0 [2]  
IN0  
To Connection  
Matrix Input 0[1]  
To Connection  
Matrix Input 0 [2]  
OUT  
OUT  
OUT  
OUT  
OUT  
2-bit LUT0  
2-bit LUT1  
From Connection  
Matrix Output 0 [1]  
IN1  
From Connection  
Matrix Output 0 [3]  
IN1  
registers [587:584]  
registers [591:588]  
From Connection  
Matrix Output 0 [4]  
IN0  
From Connection  
Matrix Output 0 [6]  
IN0  
To Connection  
To Connection  
Matrix Input 0 [4]  
Matrix Input 0[3]  
OUT  
2-bit LUT2  
2-bit LUT3  
From Connection  
Matrix Output 0 [5]  
IN1  
From Connection  
Matrix Output 0 [7]  
IN1  
registers [701:698]  
registers [705:702]  
From Connection  
Matrix Output 1 [0]  
IN0  
From Connection  
Matrix Output 1 [2]  
IN0  
To Connection  
Matrix Input 1 [1]  
To Connection  
Matrix Input 1 [2]  
OUT  
2-bit LUT4  
2-bit LUT5  
From Connection  
Matrix Output 1 [1]  
IN1  
From Connection  
Matrix Output 1 [3]  
IN1  
registers [709:706]  
registers [713:710]  
From Connection  
Matrix Output 1 [4]  
IN0  
From Connection  
Matrix Output 1 [6]  
IN0  
To Connection  
Matrix Input 1 [3]  
To Connection  
Matrix Input 1 [4]  
OUT  
2-bit LUT6  
2-bit LUT7  
From Connection  
Matrix Output 1 [5]  
IN1  
From Connection  
Matrix Output 1 [7]  
IN1  
Figure 31: 2-bit LUTs  
Datasheet  
16-Mar-2020  
Revision 3.3  
76 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 27: 2-bit LUT0 Truth Table  
Table 31: 2-bit LUT4 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [576]  
register [577]  
register [578]  
register [579]  
register [698]  
register [699]  
register [700]  
register [701]  
0
1
0
1
1
0
1
0
1
1
1
1
Table 28: 2-bit LUT1 Truth Table  
Table 32: 2-bit LUT5 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [580]  
register [581]  
register [582]  
register [583]  
register [702]  
register [703]  
register [704]  
register [705]  
0
1
0
1
1
0
1
0
1
1
1
1
Table 29: 2-bit LUT2 Truth Table  
Table 33: 2-bit LUT6 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [584]  
register [585]  
register [586]  
register [587]  
register [706]  
register [707]  
register [708]  
register [709]  
0
1
0
1
1
0
1
0
1
1
1
1
Table 30: 2-bit LUT3 Truth Table  
Table 34: 2-bit LUT7 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [588]  
register [589]  
register [590]  
register [591]  
register [710]  
register [711]  
register [712]  
register [713]  
0
1
0
1
1
0
1
0
1
1
1
1
Each Macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function;  
2-Bit LUT0 is defined by registers [579:576]  
2-Bit LUT1 is defined by registers [583:580]  
2-Bit LUT2 is defined by registers [587:584]  
2-Bit LUT3 is defined by registers [591:588]  
2-Bit LUT4 is defined by registers [701:698]  
2-Bit LUT5 is defined by registers [705:702]  
2-Bit LUT6 is defined by registers [709:706]  
2-Bit LUT7 is defined by registers [713:710]  
Datasheet  
16-Mar-2020  
Revision 3.3  
77 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
The table below shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be  
created within each of the 2-bit LUT logic cells.  
Table 35: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
16-Mar-2020  
Revision 3.3  
78 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
9.2 3-BIT LUT  
The sixteen 3-bit LUTs each take in three input signals from one of the two connection matrices and produce a single output,  
which goes back into the same connection matrix that the inputs came from. The output state of each 3-bit LUT is defined by eight  
register bits, the output state is based on the appropriate bit selected by the value of the three inputs to the LUT.  
registers [599:592]  
registers [607:600]  
From Connection  
Matrix Output 0 [8]  
From Connection  
Matrix Output 0 [11]  
IN0  
IN1  
IN0  
IN1  
To Connection  
To Connection  
Matrix Input 0 [6]  
From Connection  
Matrix Output 0 [9]  
From Connection  
Matrix Output 0 [12]  
Matrix Input 0 [5]  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3-bit LUT0  
3-bit LUT1  
From Connection  
Matrix Output 0 [10]  
From Connection  
Matrix Output 0 [13]  
IN2  
IN2  
registers [615:608]  
registers [623:616]  
From Connection  
Matrix Output 0 [14]  
From Connection  
Matrix Output 0 [17]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 0 [7]  
To Connection  
From Connection  
Matrix Output 0 [15]  
From Connection  
Matrix Output 0 [18]  
Matrix Input 0 [8]  
3-bit LUT2  
3-bit LUT3  
From Connection  
Matrix Output 0 [16]  
From Connection  
Matrix Output 0 [19]  
IN2  
IN2  
registers [631:624]  
registers [639:632]  
From Connection  
Matrix Output 0 [20]  
From Connection  
Matrix Output 0 [23]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 0 [9]  
To Connection  
Matrix Input 0 [10]  
From Connection  
Matrix Output 0 [21]  
From Connection  
Matrix Output 0 [24]  
3-bit LUT4  
3-bit LUT5  
From Connection  
Matrix Output 0 [22]  
From Connection  
Matrix Output 0 [25]  
IN2  
IN2  
registers [647:640]  
registers [655:648]  
From Connection  
Matrix Output 0 [26]  
From Connection  
Matrix Output 0 [29]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 0 [11]  
To Connection  
Matrix Input 0 [12]  
From Connection  
Matrix Output 0 [27]  
From Connection  
Matrix Output 0 [30]  
3-bit LUT6  
3-bit LUT7  
From Connection  
Matrix Output 0 [28]  
From Connection  
Matrix Output 0 [31]  
IN2  
IN2  
Figure 32: 3-bit LUTs  
Datasheet  
16-Mar-2020  
Revision 3.3  
79 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
registers [721:714]  
registers [729:722]  
From Connection  
From Connection  
Matrix Output 1 [8]  
Matrix Output 1 [11]  
IN0  
IN0  
IN1  
To Connection  
To Connection  
From Connection  
Matrix Output 1 [9]  
From Connection  
Matrix Output 1 [12]  
Matrix Input 1 [5]  
Matrix Input 1 [6]  
IN1  
IN2  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3-bit LUT8  
3-bit LUT9  
From Connection  
Matrix Output 1[10]  
From Connection  
Matrix Output 1 [13]  
IN2  
registers [737:730]  
registers [745:738]  
From Connection  
Matrix Output 1 [14]  
From Connection  
Matrix Output 1 [17]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 1 [7]  
To Connection  
Matrix Input 1 [8]  
From Connection  
Matrix Output 1 [15]  
From Connection  
Matrix Output 1 [18]  
3-bit LUT10  
3-bit LUT11  
From Connection  
Matrix Output 1 [16]  
From Connection  
Matrix Output 1 [19]  
IN2  
IN2  
registers [753:746]  
registers [761:754]  
From Connection  
Matrix Output 1 [20]  
From Connection  
Matrix Output 0 [23]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 1 [9]  
To Connection  
Matrix Input 1 [10]  
From Connection  
Matrix Output 1 [21]  
From Connection  
Matrix Output 0 [24]  
3-bit LUT12  
3-bit LUT13  
From Connection  
Matrix Output 1 [22]  
From Connection  
Matrix Output 0 [25]  
IN2  
IN2  
registers [769:762]  
registers [777:770]  
From Connection  
Matrix Output 1 [26]  
From Connection  
Matrix Output 1 [29]  
IN0  
IN1  
IN0  
IN1  
To Connection  
Matrix Input 1 [11]  
To Connection  
Matrix Input 1 [12]  
From Connection  
Matrix Output 1 [27]  
From Connection  
Matrix Output 1 [30]  
3-bit LUT14  
3-bit LUT15  
From Connection  
Matrix Output 1 [28]  
From Connection  
Matrix Output 1 [31]  
IN2  
IN2  
Figure 33: 3-bit LUTs  
Datasheet  
16-Mar-2020  
Revision 3.3  
80 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 36: 3-bit LUT0 Truth Table  
Table 40: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [592]  
register [593]  
register [594]  
register [595]  
register [596]  
register [597]  
register [598]  
register [599]  
register [624]  
register [625]  
register [626]  
register [627]  
register [628]  
register [629]  
register [630]  
register [631]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 37: 3-bit LUT1 Truth Table  
Table 41: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [600]  
register [601]  
register [602]  
register [603]  
register [604]  
register [605]  
register [606]  
register [607]  
register [632]  
register [633]  
register [634]  
register [635]  
register [636]  
register [637]  
register [638]  
register [639]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 38: 3-bit LUT2 Truth Table  
Table 42: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [608]  
register [609]  
register [610]  
register [611]  
register [612]  
register [613]  
register [614]  
register [615]  
register [640]  
register [641]  
register [642]  
register [643]  
register [644]  
register [645]  
register [646]  
register [647]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 39: 3-bit LUT3 Truth Table  
Table 43: 3-bit LUT7 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [616]  
register [617]  
register [618]  
register [619]  
register [620]  
register [621]  
register [622]  
register [623]  
register [648]  
register [649]  
register [650]  
register [651]  
register [652]  
register [653]  
register [654]  
register [655]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Datasheet  
16-Mar-2020  
Revision 3.3  
81 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 44: 3-bit LUT8 Truth Table  
Table 48: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
reg <714>  
register [746]  
register [747]  
register [748]  
register [749]  
register [750]  
register [751]  
register [752]  
register [753]  
0
0
1
register [715]  
register [716]  
register [717]  
register [718]  
register [719]  
register [720]  
register [721]  
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 45: 3-bit LUT9 Truth Table  
Table 49: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [722]  
register [723]  
register [724]  
register [725]  
register [726]  
register [727]  
register [728]  
register [729]  
register [754]  
register [755]  
register [756]  
register [757]  
register [758]  
register [759]  
register [760]  
register [761]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 46: 3-bit LUT10 Truth Table  
Table 50: 3-bit LUT14 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [730]  
register [731]  
register [732]  
register [733]  
register [734]  
register [735]  
register [736]  
register [737]  
register [762]  
register [763]  
register [764]  
register [765]  
register [766]  
register [767]  
register [768]  
register [769]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 47: 3-bit LUT11 Truth Table  
Table 51: 3-bit LUT15 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [738]  
register [739]  
register [740]  
register [741]  
register [742]  
register [743]  
register [744]  
register [745]  
register [770]  
register [771]  
register [772]  
register [773]  
register [774]  
register [775]  
register [776]  
register [777]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Datasheet  
16-Mar-2020  
Revision 3.3  
82 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Each 3-bit LUT uses an 8-bit register signal to define their output functions;  
3-Bit LUT0 is defined by registers [599:592]  
3-Bit LUT1 is defined by registers [607:600]  
3-Bit LUT2 is defined by registers [615:608]  
3-Bit LUT3 is defined by registers [623:616]  
3-Bit LUT4 is defined by registers [631:624]  
3-Bit LUT5 is defined by registers [639:632]  
3-Bit LUT6 is defined by registers [647:640]  
3-Bit LUT7 is defined by registers [655 648]  
3-Bit LUT8 is defined by registers [721:714]  
3-Bit LUT9 is defined by registers [729:722]  
3-Bit LUT10 is defined by registers [737:730]  
3-Bit LUT11 is defined by registers [745:738]  
3-Bit LUT12 is defined by registers [753:746]  
3-Bit LUT13 is defined by registers [761:754]  
3-Bit LUT14 is defined by registers [769:762]  
3-Bit LUT15 is defined by registers [777:770]  
The Table 52 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be  
created within each of the 3-bit LUT logic cells.  
Table 52: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
16-Mar-2020  
Revision 3.3  
83 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
9.3 4-BIT LUT  
The one 4-bit LUT (LUT4_1) takes in four input signals from connection matrix 1 and produces a single output, which goes back  
into connection matrix 1. The output state of the 4-bit LUT is defined by sixteen register bits, the output state is based on the  
appropriate bit selected by the value of the four inputs to the LUT.  
registers [793:778]  
From Connection  
Matrix Output 1 [32]  
IN0  
From Connection  
Matrix Output 1 [33]  
To Connection  
Matrix Input 1 [13]  
IN1  
IN2  
IN2  
From Connection  
Matrix Output 1 [34]  
OUT  
4-bit LUT1  
From Connection  
Matrix Output 1 [35]  
Figure 34: 4-bit LUT_1  
The device also includes one Combination Function Macrocell that can be used as a 4-bit LUT. For more details, please see  
Section 10.  
Table 53: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [778]  
register [779]  
register [780]  
register [781]  
register [782]  
register [783]  
register [784]  
register [785]  
register [786]  
register [787]  
register [788]  
register [789]  
register [790]  
register [791]  
register [792]  
register [793]  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Each 4-bit LUT uses an 16-bit register signal to define their output functions;  
4-Bit LUT1 is defined by registers [793:778]  
Datasheet  
16-Mar-2020  
Revision 3.3  
84 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
The Table 54 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be  
created within the 4-bit LUT logic cell.  
Table 54: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
16-Mar-2020  
Revision 3.3  
85 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
10 Combination Function Macrocells  
The SLG46620-A has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve  
as a Look Up Table (LUT), or Programmable Function Generator (PGEN).  
When used to implement LUT functions, the 4-bit LUT takes in four input signals from the connection matrix 0 and produce a  
single output, which goes back into the connection matrix 0. When used as a LUT to implement combinatorial logic functions, the  
outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND,  
NAND, OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any  
selectable function.  
When operating as a Programmable Function Generator, the output of the macrocell with clock out a sequence of two to sixteen  
bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the  
pattern repeats. See Figure 36.  
From Connection Matrix Output 0 [32]  
From Connection Matrix Output 0 [33]  
From Connection Matrix Output 0 [34]  
From Connection Matrix Output 0 [35]  
In0  
In1  
In2  
In3  
OUT  
4-bit LUT1  
LUT Truth  
Table  
0
1
To Connection Matrix 0 Input [13]  
registers [671:656]  
0: 4-bit LUT1 OUT  
1: PGEN OUT  
PGEN  
Data  
nRST  
clk  
PGEN  
OUT  
Pattern  
size  
register [676]  
registers [675:672]  
Figure 35: 4-bit LUT1 or PGEN  
Datasheet  
16-Mar-2020  
Revision 3.3  
86 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
VDD  
t
t
t
t
nRST  
CLK  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
OUT  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D15  
D0  
Figure 36: PGEN Timing Diagram  
When this macrocell is used to implement LUT function, the 4-bit LUT uses a 16-bit register signal to define its output function;  
4-Bit LUT0 is defined by registers [671:656]  
Table 55: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [656]  
register [657]  
register [658]  
register [659]  
register [660]  
register [661]  
register [662]  
register [663]  
register [664]  
register [665]  
register [666]  
register [667]  
register [668]  
register [669]  
register [670]  
register [671]  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Datasheet  
16-Mar-2020  
Revision 3.3  
87 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11 Analog Comparators  
There are six Analog Comparator (ACMP) macrocells in the SLG46620-A. In order for the ACMP cells to be used in a GreenPAK  
design, the power up signals (ACMPx_pdb) need to be active. By connecting to signals coming from the Connection Matrix, it is  
possible to have each ACMP be always on, always off, or power cycled based on a digital signal coming from the Connection  
Matrix. When ACMP is powered down, output is low.  
PWR UP = 1 → ACMP is powered up.  
PWR UP = 0 → ACMP is powered down.  
During ACMP power up, its output will remain low, and then becomes valid 2.08 ms (max) after ACMP power up signal goes high,  
see Figure 37. If VDD is greater or equal to 2.7 V, it is possible to decrease turn-on time by setting the BG ok delay to 100  
see Figure 38. To ensure proper chip startup operation, it is recommended to enable the ACMPs with the POR signal, and not  
the VDD signal.  
µ
s,  
Figure 38: Maximum Power-On Delay vs. V , BG = 100 µs,  
DD  
Figure 37: Maximum Power-On Delay vs. V , BG = 550 µs,  
DD  
Regulator and Charge Pump set to automatic ON/OFF  
Regulator and Charge Pump set to automatic ON/OFF  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources. There is also a selectable  
gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The Gain divider is unbuffered and consists of  
250 kΩ (typ.) resistors, see Table 56. For gain divider accuracy refer to Table 57. IN- voltage range: 0 - 1.2 V. Can use Vref selection  
V
DD/4 and VDD/3 to maintain this input range.  
Input bias current < 1 nA (typ).  
Table 56: Gain Divider Input Resistance (typical)  
Gain  
x1  
x0.5  
x0.33  
x0.25  
1 MΩ  
Input Resistance  
100 GΩ  
1 MΩ  
0.75 MΩ  
Table 57: Gain Divider typical Accuracy at T = (-40 to +105°C), VDD = 3.3 V  
Gain  
x0.5  
x0.33  
x0.25  
±0.25%  
Accuracy  
±0.50%  
±0.33%  
Each cell also has a hysteresis selection, to offer hysteresis of 0 mV, 25 mV, 50 mV or 200 mV. The 50 mV and 200 mV hysteresis  
options can be used with internal voltage reference only, while 25 mV hysteresis option can be used with both internal and external  
Datasheet  
16-Mar-2020  
Revision 3.3  
88 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
voltage reference. The 50 mV and 200 mV hysteresis options are one way hysteresis. It means that the actual thresholds will be  
Vref (high threshold) and Vref - hysteresis (low threshold). The ACMP output will retain its previous value, if the input voltage is  
within threshold window (between Vref and Vref - hysteresis). Please note: for the 25 mV hysteresis option threshold levels will  
be Vref + hysteresis/2 (high threshold) and Vref – hysteresis/2 (low threshold).  
Note: Any ACMP powered on enables the Bandgap internal circuit as well. An analog voltage will appear on Vref even when the  
Force Bandgap option is set as Disabled.  
For high input impedance when using the gain divider (x0.25, x0.33, x0.5), it is possible to use the input buffer (except ACMP5).  
However, this will add an offset.  
Note 1 When VDD < 1.8 V voltage reference should not exceed 1100 mV.  
Note 2 For electrical specification refer to Section 3.7.  
11.1 ACMP MASTER ARCHITECTURE  
PIN 19  
VDD  
DAC0  
selectable gain will be 1.0x, 0.5x, 0.333x, 0.25x  
ACMP Buffer  
Vref OUT  
selectable  
+
-
ACMP0  
ACMP1  
gain 2-bit  
PIN 6  
PIN 7  
Internal Vref  
27 values  
5-bit  
selectable gain will be 1.0x, 0.5x, 0.333x, 0.25x  
From ADC PGA  
selectable  
gain 2-bit  
+
-
PIN 12  
PIN 10  
Internal Vref  
27 values  
5-bit  
selectable gain will be 1.0x, 0.5x, 0.333x, 0.25x  
selectable  
gain 2-bit  
+
-
ACMP2  
PIN 13  
PIN 14  
Internal Vref  
27 values  
5-bit  
selectable gain will be 1.0x, 0.5x, 0.333x, 0.25x  
selectable  
gain 2-bit  
+
-
ACMP3  
PIN 15  
Internal Vref  
27 values  
PIN 18  
5-bit  
DAC1  
selectable gain will be 1.0x, 0.5x, 0.333x, 0.25x  
selectable  
gain 2-bit  
+
-
ACMP4  
ACMP5  
PIN 3  
Internal Vref  
27 values  
5-bit  
PIN 4  
PIN 5  
no selectable gain on ACMP5  
+
-
Internal Vref  
27 values  
5-bit  
Figure 39: ACMP Master Architecture Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
89 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.2 ACMP0 BLOCK DIAGRAM  
to ACMP1, ACMP2, ACMP3,  
ACMP4’s MUX input  
registers [935:934]  
register [832]  
Hysteresis  
Selection  
registers [854:853]  
ACMP Buffer*  
100 µA  
Current  
Source  
01  
00  
10  
PIN6: ACMP0(+)  
External VDD 1.71 V ~ 3.6 V  
Selectable  
Gain  
To Connection  
Matrix 0 Input[33]  
+
-
L/S  
pdb  
Vref  
registers [856:855]  
ON after  
BG on Delay  
DAC0 OUT  
DAC1 OUT  
ACMP0 /2  
ACMP1 /2  
ACMP0  
11111  
11110  
11101  
11100  
11011  
11010  
ACMP1  
From Connection  
Matrix 0 Output [69]  
11001-  
00000  
Internal  
Vref  
*External VDD  
2.7 V ~ 3.6 V  
=
registers [896:892]  
Figure 40: ACMP0 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
90 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.3 ACMP1 BLOCK DIAGRAM  
registers [933:932]  
register [831]  
Hysteresis  
Selection  
100 µA  
Current  
Source  
registers [858:857]  
Pin 12: ACMP1(+)  
00  
ADC PGA OUT  
Selectable  
Gain  
+
-
01  
To Connection  
Matrix 1 Input [33]  
L/S  
ACMP0 Input (before gain)  
pdb  
10  
Vref  
registers [860:859]  
ON after  
BG on Delay  
DAC0 OUT  
11111  
DAC1 OUT  
11110  
ACMP0 /2  
11101  
ACMP1 /2  
11100  
ACMP0  
11011  
ACMP1  
11010  
From Connection  
Matrix 1 Output [70]  
11001-  
00000  
Internal  
Vref  
registers [901:897]  
Figure 41: ACMP1 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
91 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.4 ACMP2 BLOCK DIAGRAM  
registers [931:930]  
Hysteresis  
Selection  
registers [865:864]  
Pin 13 ACMP2(+)  
0
Selectable  
Gain  
+
-
To Connection  
Matrix 1 Input [34]  
L/S  
ACMP0 Input (before gain)  
pdb  
1
Vref  
register [863]  
ON after  
BG on Delay  
DAC0 OUT  
11111  
DAC1 OUT  
11110  
ACMP2 /2  
11101  
ACMP1 /2  
11100  
ACMP2  
11011  
ACMP1  
11010  
From Connection  
Matrix 1 Output [71]  
11001-  
00000  
Internal  
Vref  
registers [906:902]  
Figure 42: ACMP2 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
92 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.5 ACMP3 BLOCK DIAGRAM  
registers [929:928]  
Hysteresis  
Selection  
registers [868:867]  
PIN15: ACMP3(+)  
00  
PIN13: ACMP2(+)  
Selectable  
Gain  
+
-
To Connection  
Matrix 1 Input [35]  
01  
L/S  
ACMP0 Input (before gain)  
pdb  
10  
Vref  
registers[870:869]  
ON after  
BG on Delay  
DAC0 OUT  
11111  
DAC1 OUT  
11110  
ACMP2 /2  
11101  
ACMP1 /2  
11100  
ACMP2  
11011  
ACMP1  
11010  
From Connection  
Matrix 1 Output [72]  
11001-  
00000  
Internal  
Vref  
registers [911:907]  
Figure 43: ACMP3 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
93 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.6 ACMP4 BLOCK DIAGRAM  
registers [927:926]  
Hysteresis  
Selection  
registers [872:871]  
PIN3: ACMP4(+)  
00  
PIN15: ACMP3(+)  
Selectable  
Gain  
+
-
To Connection  
Matrix 0 Input [34]  
01  
L/S  
ACMP0 Input (before gain)  
pdb  
10  
Vref  
registers[874:873]  
ON after  
BG on Delay  
DAC0 OUT  
11111  
DAC1 OUT  
11110  
ACMP2 /2  
11101  
ACMP1 /2  
11100  
ACMP2  
11011  
ACMP1  
11010  
From Connection  
Matrix 0 Output [70]  
11001-  
00000  
Internal  
Vref  
registers [916:912]  
Figure 44: ACMP4 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
94 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.7 ACMP5 BLOCK DIAGRAM  
registers [925:924]  
Hysteresis  
Selection  
Pin4 ACMP5(+)  
+
-
To Connection  
Matrix 0 Input [35]  
L/S  
pdb  
Vref  
ON after  
BG on Delay  
DAC0 OUT  
11111  
DAC1 OUT  
11110  
ACMP5 /2  
11101  
ACMP1 /2  
11100  
ACMP5  
11011  
ACMP1  
11010  
From Connection  
Matrix 0 Output [71]  
11001-  
00000  
Internal  
Vref  
registers [921:917]  
Figure 45: ACMP5 Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
95 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
11.8 ACMP TYPICAL PERFORMANCE  
180  
160  
140  
120  
100  
80  
Max  
Typ  
Min  
60  
40  
20  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Input Voltage (V)  
Figure 46: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 105 °C, VDD = 3.3 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
96 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
12 Digital Storage Elements  
There are twelve D Flip-Flop/Latches (DFF/LATCH) logic cells within the SLG46620-A available for design. The source and  
destination of the inputs and outputs for the DFF/Latches are configured from the connection matrix. All DFF/LATCH macrocells  
have user selection for initial state. The macrocells DFF0, DFF1, DFF2, DFF6, DFF7, and DFF8 have an additional input from  
the matrix that can serve as a nSet or nRST function to the macrocell.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
DFF or LATCH Select  
register [677]  
Initial Polarity Select  
register [680]  
From Connection Matrix 0 Output [37]  
From Connection Matrix 0 Output [38]  
To Connection Matrix 0 Input [14]  
D
Q/nQ  
DFF/Latch0  
CLK  
nRST  
nSET  
From Connection Matrix 0 Output [36]  
0
1
Output Select (Q or nQ)  
register [678]  
0
1
register [679]  
Figure 47: DFF/Latch0  
Datasheet  
16-Mar-2020  
Revision 3.3  
97 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
DFF or LATCH Select  
Initial Polarity Select  
register [684]  
register [681]  
From Connection Matrix 0 Output [40]  
From Connection Matrix 0 Output [41]  
To Connection Matrix 0 Input [15]  
D
Q/nQ  
DFF/Latch1  
CLK  
nRST  
nSET  
From Connection Matrix 0 Output [39]  
0
1
Output Select (Q or nQ)  
register [682]  
0
1
register [683]  
Figure 48: DFF/Latch1  
DFF or LATCH Select  
register [685]  
Initial Polarity Select  
register [688]  
From Connection Matrix 0 Output [43]  
From Connection Matrix 0 Output [44]  
To Connection Matrix 0 Input [16]  
D
Q/nQ  
DFF/Latch2  
CLK  
nRST  
nSET  
From Connection Matrix 0 Output [42]  
0
1
Output Select (Q or nQ)  
register [686]  
0
1
register [687]  
Figure 49: DFF/Latch2  
Datasheet  
16-Mar-2020  
Revision 3.3  
98 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
DFF or LATCH Select  
register [689]  
Initial Polarity Select  
register [691]  
From Connection Matrix 0 Output [45]  
To Connection Matrix 0 Input [17]  
D
Q/nQ  
DFF/Latch3  
From Connection Matrix 0 Output [46]  
CLK  
Output Select (Q or nQ)  
register [690]  
Figure 50: DFF/Latch3  
DFF or LATCH Select  
register [692]  
Initial Polarity Select  
register [694]  
From Connection Matrix 0 Output [47]  
From Connection Matrix 0 Output [48]  
To Connection Matrix 0 Input [18]  
D
Q/nQ  
DFF/Latch4  
CLK  
Output Select (Q or nQ)  
register [693]  
Figure 51: DFF/Latch4  
DFF or LATCH Select  
register [695]  
Initial Polarity Select  
register [697]  
From Connection Matrix 0 Output [49]  
To Connection Matrix 0 Input [19]  
D
Q/nQ  
DFF/Latch5  
From Connection Matrix 0 Output [50]  
CLK  
Output Select (Q or nQ)  
register [709]  
Figure 52: DFF/Latch5  
Datasheet  
16-Mar-2020  
Revision 3.3  
99 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
DFF or LATCH Select  
Initial Polarity Select  
register [797]  
register [794]  
From Connection Matrix 1 Output [37]  
From Connection Matrix 1 Output [38]  
To Connection Matrix 1 Input [14]  
D
Q/nQ  
DFF/Latch6  
CLK  
nRST  
nSET  
From Connection Matrix 1 Output [36]  
0
1
Output Select (Q or nQ)  
register [795]  
0
1
register [796]  
Figure 53: DFF/Latch6  
DFF or LATCH Select  
register [798]  
Initial Polarity Select  
register [801]  
From Connection Matrix 1 Output [40]  
From Connection Matrix 1 Output [41]  
To Connection Matrix 1 Input [15]  
D
Q/nQ  
DFF/Latch7  
CLK  
nRST  
nSET  
From Connection Matrix 1 Output [39]  
0
1
Output Select (Q or nQ)  
register [799]  
0
1
register [800]  
Figure 54: DFF/Latch7  
Datasheet  
16-Mar-2020  
Revision 3.3  
100 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
DFF or LATCH Select  
Initial Polarity Select  
register [805]  
register [802]  
From Connection Matrix 1 Output [43]  
From Connection Matrix 1 Output [44]  
To Connection Matrix 1 Input [16]  
D
Q/nQ  
DFF/Latch8  
CLK  
nRST  
nSET  
From Connection Matrix 1 Output [42]  
0
1
Output Select (Q or nQ)  
register [803]  
0
1
register [804]  
Figure 55: DFF/Latch8  
DFF or LATCH Select  
register [806]  
Initial Polarity Select  
register [808]  
From Connection Matrix Output [45]  
From Connection Matrix Output [46]  
To Connection Matrix Input [17]  
D
Q/nQ  
DFF/Latch9  
CLK  
Output Select (Q or nQ)  
register [807]  
Figure 56: DFF/Latch9  
Datasheet  
16-Mar-2020  
Revision 3.3  
101 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
DFF or LATCH Select  
register [809]  
Initial Polarity Select  
register [811]  
From Connection Matrix 1 Output [47]  
To Connection Matrix 1 Input [18]  
D
Q/nQ  
DFF/Latch10  
From Connection Matrix 1 Output [48]  
CLK  
Output Select (Q or nQ)  
register [810]  
Figure 57: DFF/Latch10  
DFF or LATCH Select  
register [812]  
Initial Polarity Select  
register [814]  
From Connection Matrix 1 Output [49]  
From Connection Matrix 1 Output [50]  
To Connection Matrix 1 Input [19]  
D
Q/nQ  
DFF/Latch11  
CLK  
Output Select (Q or nQ)  
register [813]  
Figure 58: DFF/Latch11  
Datasheet  
16-Mar-2020  
Revision 3.3  
102 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
12.1 INITIAL POLARITY OPERATIONS  
Figure 59: DFF Polarity Operations  
Datasheet  
16-Mar-2020  
Revision 3.3  
103 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 60: DFF Polarity Operations with nRST  
Datasheet  
16-Mar-2020  
Revision 3.3  
104 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 61: DFF Polarity Operations with nSet  
Datasheet  
16-Mar-2020  
Revision 3.3  
105 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
13 Counters/Delay Generators  
There are ten configurable counters/delay (CNT/DLY) generators in the SLG46620-A. Four of these counters/delay generators  
(CNT/DLY 0, 1, 2 and 3) are 14-bit, and six of the counters/delay generators (CNT/DLY 4, 5, 6, 7, 8 and 9) are 8-bit. Each macrocell  
has a dedicated matrix input connection, some of the macrocells have additional matrix connections to support optional functions,  
as listed below. For flexibility, each of these macrocells has a large selection of internal and external clock sources, as well as the  
option to chain from the output of the previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits.  
The delay time and counter output equation is as follows:  
Delay time = ((counter data + 1) + variable) / Clock  
Variable = (0 or 1) * period  
Counter period = (counter data + 1) / Clock  
Note: Variable can be negative, since OSC can operate while Delay input changes. In this case it might be possible that we will  
not see first period, if OSC rising edge appears immediately after input change.  
Counter/delay macrocells (0, 2, 5, 6, 9) are connected to Matrix 0 with both inputs and outputs, counter/delay macrocells (1, 3, 4  
7, 8) are connected to Matrix 1 with both inputs and outputs.  
Four of the counter/delay generator macrocells (CNT/DLY 0,1,2,3) have an optional Edge Detector function.  
Two of the counter/delay generator macrocells (CNT/DLY 2,4) have an optional Finite State Machine (FSM) function.These two  
macrocells each have two additional matrix inputs for Up and Keep to support FSM functionality.  
Two of the counter/delay generator macrocells (CNT/DLY 8,9) have an optional PWM Ramp function.  
One of the counter/delay generator macrocells (CNT/DLY 0) can optionally serve as a Wake/Sleep Counter.  
Please see Table 58 for a summary of all optional functions:  
Table 58: Counter/Delay Macrocell Functions Summary  
Finite State  
Machine  
(FSM)  
Edge  
Detector  
Wake/Sleep  
Counter  
Macrocell  
Bit-Width  
Counter  
Delay  
PWM Ramp  
CNT/DLY0  
CNT/DLY1  
CNT/DLY2  
CNT/DLY3  
CNT/DLY4  
CNT/DLY5  
CNT/DLY6  
CNT/DLY7  
CNT/DLY8  
CNT/DLY9  
14-bit  
14-bit  
14-bit  
14-bit  
8-bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
8-bit  
8-bit  
8-bit  
8-bit  
X
X
8-bit  
Note: Counters initialize with counter data after POR.  
Datasheet  
16-Mar-2020  
Revision 3.3  
106 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Mode Select: registers [1749:1748]  
Connection Matrix 0 Output [74]  
Macrocell Function Select: registers [1751:1750]  
Wake/Sleep Output State: register [1752]  
Clock Source Select: registers [1747:1745]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 0 Input [36]  
1
CNT/DLY0  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
clk  
LF OSC  
4
CNT_END9  
5
RING OSC  
6
Matrix 0 Output [72]  
7
Counter Control Data  
registers [1744:1731]  
Figure 62: CNT/DLY0  
Mode Select: registers [1771:1770]  
Connection Matrix 1 Output [75]  
Macrocell Function Select: registers [1773:1772]  
Clock Source Select: registers [1769:1767]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 1 Input [36]  
1
CNT/DLY1  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
CLK  
LFOSC  
4
CNT_END0  
5
RING OSC  
6
Matrix 1 Output [74]  
7
Counter Control Data  
registers [1766:1753]  
Figure 63: CNT/DLY1  
Datasheet  
16-Mar-2020  
Revision 3.3  
107 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Mode Select: registers [1793:1792]  
Macrocell Function Select: registers [1795:1794]  
FSM Input Source Select:  
registers [1797:1796]  
Connection Matrix 0 Output [77]  
UP  
FSM0  
KEEP  
Connection Matrix 0 Output [76]  
Connection Matrix 0 Output [75]  
Clock Source Select: registers [1791:1788]  
RC OSC  
0
RC OSC/4  
1
IN  
RC OSC/12  
2
RC OSC/24  
3
To Connection  
Matrix 0 Input [37]  
RC OSC/64  
4
CNT/DLY2  
CNT_END1  
5
Counter_end  
Matrix 0 Output [72]  
Matrix 0 Output [72] /8  
RING OSC  
6
7
8
CLK  
Matrix 0 Output [83]  
9
LFOSC  
CLK_FSM/256  
CLK_PWM  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
Counter Control Data  
registers [1787:1774]  
CNT2 Value Control: register [1798]  
Figure 64: CNT/DLY2/FSM0  
Mode Select: registers [1817:1816]  
Connection Matrix 1 Output [76]  
Macrocell Function Select: registers [1819:1818]  
Clock Source Select: registers [1815:1813]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 1 Input [37]  
1
CNT/DLY3  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
clk  
LF OSC  
4
CNT_END2  
5
Ring OSC  
6
Matrix 1 Output [74]  
7
Counter Control Data  
registers [1812:1799]  
Figure 65: CNT/DLY3  
Datasheet  
16-Mar-2020  
Revision 3.3  
108 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Mode Select: registers [1833:1832]  
Macrocell Function Select: register [1834]  
FSM Input Source Select:  
registers [1836:1835]  
Connection Matrix 1 Output [79]  
UP  
FSM1  
KEEP  
Connection Matrix 1 Output [78]  
Connection Matrix 1 Output [77]  
Clock Source Select: registers [1831:1828]  
RC OSC  
0
RC OSC/4  
1
IN  
RC OSC/12  
2
RC OSC/24  
3
To Connection  
Matrix 1 Input [38]  
RC OSC/64  
4
CNT/DLY4  
CNT_END3  
5
Counter_end  
Matrix 1 Output [74]  
Matrix 0 Output [72] /8  
RING OSC  
6
7
8
CLK  
Matrix 0 Output [83]  
9
LF OSC  
CLK_FSM/256  
CLK_PWM  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
Counter Control Data  
registers [1827:1820]  
CNT4 Value Control register [1837]  
Figure 66: CNT/DLY4/FSM0  
Mode Select: registers [1850:1849]  
Connection Matrix 0 Output [78]  
Macrocell Function Select: register [1851]  
Clock Source Select: registers [1848:1846]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 0 Input [38]  
1
CNT/DLY5  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
clk  
LF OSC  
4
CNT_END4  
5
Ring OSC  
6
Matrix 0 Output [73]  
7
Counter Control Data  
registers [1845:1838]  
Figure 67: CNT/DLY5  
Datasheet  
16-Mar-2020  
Revision 3.3  
109 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Mode Select: registers [1864:1863]  
Connection Matrix 0 Output [79]  
Macrocell Function Select: register [1865]  
Clock Source Select: registers [1862:1860]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 0 Input [39]  
1
CNT/DLY6  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
clk  
LF OSC  
4
CNT_END5  
5
Ring OSC  
6
Matrix 0 Output [73]  
7
Counter Control Data  
registers [1859:1852]  
Figure 68: CNT/DLY6  
Mode Select: registers [1878:1877]  
Connection Matrix 1 Output [80]  
Macrocell Function Select: registers [1879]  
Clock Source Select: registers [1876:1874]  
RC OSC  
IN  
0
RC OSC/4  
To Connection  
Matrix 1 Input [39]  
1
CNT/DLY7  
RC OSC/24  
2
Counter_end  
RC OSC/64  
3
clk  
LF OSC  
4
CNT_END6  
5
Ring OSC  
6
Matrix 1 Output [73]  
7
Counter Control Data  
registers [1873:1866]  
Figure 69: CNT/DLY7  
Datasheet  
16-Mar-2020  
Revision 3.3  
110 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Mode Select: registers [1893:1892]  
Connection Matrix 1 Output [81]  
Macrocell Function Select: registers [1894]  
Clock Source Select: registers [1891:1888]  
RC OSC  
0
RC OSC/4  
1
IN  
RC OSC/12  
2
RC OSC/24  
3
To Connection  
Matrix 1 Input [40]  
RC OSC/64  
4
CNT/DLY8  
CNT_END7  
5
Counter_end  
Matrix 1 Output [73]  
Matrix 0 Output [72] /8  
RING OSC  
6
7
8
CLK  
Matrix 0 Output [83]  
9
LF OSC  
CLK_FSM/256  
CLK_PWM  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
Counter Control Data  
registers [1887:1880]  
Figure 70: CNT/DLY8/PWM_RAMP  
Mode Select: registers [1908:1907]  
Connection Matrix 0 Output [80]  
Macrocell Function Select: registers [1909]  
Clock Source Select: registers [1906:1903]  
RC OSC  
0
RC OSC/4  
1
IN  
RC OSC/12  
2
RC OSC/24  
3
To Connection  
Matrix 0 Input [40]  
RC OSC/64  
4
CNT/DLY9  
CNT_END8  
5
Counter_end  
Matrix 0 Output [72]  
Matrix 0 Output [72] /8  
RING OSC  
Matrix 0 Output [83]  
LF OSC  
6
7
8
CLK  
9
10  
11  
12  
13  
14  
15  
CLK_FSM/256  
CLK_PWM  
Reserved  
Reserved  
Reserved  
Counter Control Data  
registers [1902:1895]  
Figure 71: CNT/DLY9/PWM_RAMP  
Datasheet  
16-Mar-2020  
Revision 3.3  
111 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
13.1 CNT/DLY TIMING DIAGRAMS  
13.1.1 Delay Mode (Counter Data: 3) CNT/DLY0...CNT/DLY9  
DLYIN  
offset  
period  
1
2
3
4
5
CLK (OSC force on)  
DLYOUT  
delay = offset + period x (count_data + 1)  
offset = (0 or 1) * period  
DLYIN  
offset  
1
2
3
4
5
CLK (single DLY usage,  
OSC is autopower-on)  
DLYOUT  
delay = offset + period x (count_data + 1)  
offset = (0 or 1) * period (25 kHz)  
offset = (0, 1 or 2) * period (2 MHz)  
Figure 72: Timing (Rising Edge) for Count Data = 3  
DLYIN  
offset  
period  
1
2
3
4
5
CLK (OSC force on)  
DLYOUT  
delay = offset + period x (count_data + 1)  
offset = (0 or 1) * period  
DLYIN  
offset  
1
2
3
4
5
CLK (single DLY usage,  
OSC is autopower-on)  
DLYOUT  
delay = offset + period x (count_data + 1)  
offset = (0 or 1) * period (25 kHz)  
offset = (0, 1 or 2) * period (2 MHz)  
Figure 73: Timing (Falling Edge) for Count Data = 3  
Datasheet  
16-Mar-2020  
Revision 3.3  
112 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
13.1.2 Counter Mode (Counter Data: 3) CNT/DLY0...CNT/DLY9  
RESETIN  
The pulse width is about 10 ns, depending on PVT  
EDGE DETECT OUT  
CLK  
OUT  
Q
4 clk period pulse  
1
0
3
2
1
0
3
2
1
0
3
2
3
2
1
0
3
2
0
Note: Q = current counter value  
Figure 74: Timing (Reset Rising Edge Mode, Oscillator is Forced on) for Count Data = 3  
RESETIN  
From Matrix  
The pulse width is about 10 ns, depending on PVT  
EDGE DETECT OUT  
CLK  
OUT  
Q
4 clk period pulse  
1
0
3
2
1
0
3
2
1
0
3
2
3
2
1
0
3
2
0
Note: Q = current counter value  
Figure 75: Timing (Reset Falling Edge Mode, Oscillator is Forced on) for Count Data = 3  
RESETIN  
From Matrix  
one clock cycle time + offset  
CLK ENABLE  
the offset value is the same as the DLYs auto on case  
CLK  
COUNTEND  
1
0
3
2
1
0
3
0
3
2
0
3
2
Q
Note: Q = current counter value  
Figure 76: Timing (Reset High Level Mode, Oscillator is Autopowered on (Controlled by Reset)) for Count Data = 3  
Datasheet  
16-Mar-2020  
Revision 3.3  
113 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
13.1.3 CNT/FSM Mode CNT/DLY2, CNT/DLY4  
RESETIN  
KEEP  
COUNT_END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 77: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP=0) for Counter Data = 3  
RESETIN  
KEEP  
COUNTEND  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 78: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced on, UP=0) for Counter Data = 3  
Datasheet  
16-Mar-2020  
Revision 3.3  
114 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
RESETIN  
KEEP  
COUNTEND  
CLK  
5
6
7
8
9
253 254 255  
3
4
5
3
4
5
1
2
3
4
0
Q
FSM0 16383  
FSM1 255  
Note: Q = current counter value  
Figure 79: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced on, UP=1) for Counter Data = 3  
RESETIN  
KEEP  
COUNTEND  
CLK  
8
9
10 11 12  
253 254 255  
3
4
5
3
4
5
4
5
6
7
3
Q
FSM0 16383  
FSM1 255  
Note: Q = current counter value  
Figure 80: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced on, UP=1) for Counter Data = 3  
Datasheet  
16-Mar-2020  
Revision 3.3  
115 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
14 Digital Comparator/Pulse Width Modulator  
The SLG46620-A has three 8-bit digital comparator (DCMP)/ pulse width modulator (PWM) logic macrocells. Each of these three  
logic macrocells can be either a digital comparator (DCMP) or a pulse width modulator (PWM) independently of how the other  
two logic macrocells are defined.  
Both the DCMP and PWM logic can operate at up to a frequency of 10 MHz. The input power for the three logic macrocells is  
controlled independently by register [1678] for DCMP0/PWM0, register [1698] for DCMP1/PWM1 and register [1718] for DCMP2/  
PWM2.  
PWM power-down control is configured by register [1677] which is also shared with the ADC and OSC.  
14.1 DCMP INPUT MODES  
All three DCMP logic macrocells have a positive (IN+) and a negative (IN-) input. The signal (through the IN+ input) takes the  
value from a 4:1 MUX selection between the following signals:  
8-bit signal from the ADC Parallel Output  
8-bit signal from the SPI logic cell output (SPI[15:8] for DCMP0 and DCMP2 or SPI[7:0] for DCMP1)  
8-bit signal from the FSM (FSM0[7:0] for DCMP0 or FSM1[7:0] for DCMP1 and DCMP2)  
8-bit user defined signal value.  
The signal (through the IN- input) takes the value from a 4:1 MUX selection between the following signals:  
8-bit signal from the CNT (CNT9'Q [7:0] for DCMP1 or CNT8'Q [7:0] for DCMP0 and DCMP2)  
8-bit signal from the SPI logic cell output (SPI[7:0] for DCMP0 and DCMP2 or SPI[15:8] for DCMP1)  
8-bit signal from the FSM (FSM1' Q [7:0] for DCMP0 or FSM0'Q[7:0] for DCMP1 and DCMP2)  
8-bit user defined signal value.  
14.2 DCMP OUTPUT MODES  
The two 8-bit parallel data inputs from IN+ and IN- are compared within the DCMP logic macrocells to produce the output (OUT+)  
and an Equal signal (EQ).  
There are two cases for the OUT+ signal controlled by register [1714], register [1694], register [1673].  
If these registers = 0, then  
if inp > inn, OUT+ = 1, EQ = 0  
if inp < inn, OUT+ = 0, EQ = 0  
if inp = inn, OUT+ = 0, EQ = 1  
If these registers = 1, then  
if inp > inn, OUT+ = 1, EQ = 0  
if inp < inn, OUT+ = 0, EQ = 0  
if inp = inn, OUT+ = 1, EQ = 1  
Both the OUT+ and EQ signals are triggered by the rising or falling edge (controlled by register [1676], register [1697] and  
register[1717]) of the CLK OSC signal (clock source is defined by registers [1629:1628]) and result of comparison can be read in  
the next clock pulse, see Figure 81, where register [1714], register [1694], register [1673] are equal 0.  
Datasheet  
16-Mar-2020  
Revision 3.3  
116 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
CLK  
IN+  
78  
254  
200  
178  
250  
248  
249  
95  
255  
240  
254  
(ADC Parallel data)  
IN-  
253  
252  
251  
248  
255  
(CNT8'Q [7:0])  
IN+ = IN-  
IN+ > IN-  
IN+ < IN-  
EQ  
EQ = 0  
OUT = 1  
EQ = 0  
OUT = 0  
EQ = 1  
OUT = 0  
OUT  
Figure 81: DCMP Timing Diagram  
14.3 PWM INPUT MODES  
IN+ for the PWM is an 8-bit data string that can be selected from one of four sources;  
8-bit signal from the ADC Parallel Output  
8-bit signal from the SPI logic cell output (SPI[15:8] for DCMP0 and DCMP1 or SPI[7:0] for DCMP2)  
8-bit signal from the FSM0[7:0]  
8-bit user defined signal value  
IN-’s 8-bit data string for all PWMs is sourced from an 8-bit signal from CNT/DLY1.  
14.4 PWM OUTPUT MODES  
The output (OUT+) duty cycle can be set to either count down to 0% or count up to 100% and each PWM is independently  
controlled by the value of register [1673] (PWM0), register [1694] (PWM1), and register [1714] (PWM2). When both inputs are  
equal the output signal (EQ) will go high. The outputs (OUT- and OUT+) are non-overlapping.  
When registers [1673/1694/1714] = “0”  
PWM output duty cycle ranges from 0% to 99.61% and is determined by: Output Duty Cycle = IN+/256  
(IN+ = 0: output duty cycle = 0/256 = 0%; IN+ = 255: output duty cycle = 255/256 = 99.61%)  
Output signals are triggered by the rising or falling edge of the CLK OSC signal (defined by bit registers [1676], [1697],  
[1717]).  
When registers [1673/1694/1714] = “1”  
PWM output duty cycle ranges from 0.39% to 100% and is determined by Output Duty Cycle = (IN+ + 1)/256  
8(IN+ = 0: output duty cycle = 1/256 = 0.39%; IN+ = 255: output duty cycle = 256/256 = 100%)  
Output signals are triggered by the rising or falling edge of the CLK OSC signal (defined by bit registers [1676], [1697],  
[1717]).  
When IN+ = IN- then EQ = “1”  
Datasheet  
16-Mar-2020  
Revision 3.3  
117 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
14.5 DCMP0/PWM0 FUNCTIONAL DIAGRAM  
register [1678]  
Connection Matrix 1 Output [82]  
register [1677]  
PWM PD  
Select  
registers [1680:1674]  
Connection Matrix 1  
Output [84:83]  
ADC[7:0]  
00  
8MSBs SPI  
FSM0[7:0]  
01  
10  
11  
register 0 [1730:1723]  
IN+  
00  
register 1 [1710:1703]  
register 2 [1690:1683]  
register 3 [1669:1662]  
01  
10  
11  
DCMP0/PWM0  
To Connection Matrix 1 Input [43]  
To Connection Matrix 1 Input [42]  
CNT8_Q[7:0]  
reg0  
OUT+  
00  
01  
10  
11  
IN-  
8LSBs SPI  
FSM1[7:0]  
EQ/OUT-  
CLK OSC  
Output Range Select  
0 = 0% to 99.61%  
1 = 0.39% to 100%  
registers [1682:1681]  
register [1676]  
register [1673]  
Figure 82: DCMP0/PWM0 Functional Diagram  
14.6 DCMP1/PWM1 FUNCTIONAL DIAGRAM  
register [1698]  
Connection Matrix 1 Output [82]  
register [1677]  
PWM PD  
Select  
registers [1700:1699]  
ADC [7:0]  
00  
8LSBs SPI  
Connection Matrix 1  
Output [84:83]  
01  
10  
11  
IN+  
FSM1[7:0]  
reg1  
DCMP1/PWM1  
To Connection Matrix 1 Input [45]  
To Connection Matrix 1 Input [44]  
register 3 [1669:1662]  
00  
CNT9_Q[7:0]  
OUT+  
register 2 [1690:1683]  
register 1 [1710:1703]  
register 0 [1730:1723]  
00  
01  
10  
11  
01  
10  
11  
IN-  
8LSBs SPI  
FSM0[7:0]  
EQ/OUT-  
CLK OSC  
Output Range Select  
registers [1702:1701]  
0 = 0% to 99.61%  
1 = 0.39% to 100%  
register [1694]  
register [1697]  
Figure 83: DCMP1/PWM1 Functional Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
118 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
14.7 DCMP2/PWM2 FUNCTIONAL DIAGRAM  
register [1718]  
Connection Matrix 1 Output [82]  
register [1677]  
PWM PD  
Select  
registers [1720:1719]  
ADC]7:0]  
00  
SPI [15:8]  
01  
10  
11  
IN+  
FSM1[7:0]  
reg3  
DCMP2/PWM2  
To Connection Matrix 1 Input [47]  
To Connection Matrix 1 Input [46]  
CNT8_Q[7:0]  
OUT+  
00  
01  
10  
11  
registers [1690:1683]  
IN-  
EQ/OUT-  
8LSBs SPI  
FSM0[7:0] (CNT2_Q[7:0])  
CLK OSC  
Output Range Select  
0 = 0% to 99.61%  
1 = 0.39% to 100%  
registers [1722:1721]  
register [1717]  
register [1714]  
Figure 84: DCMP2/PWM2 Functional Diagram  
14.8 PWM DEAD BAND CONTROL  
The dead band interval can be controlled with NVM bits from PWM0 registers [1722:1720], from PWM1 registers [1693:1691],  
from PWM2 registers [1713:1711]. The typical dead band time starts at 8 ns and can go to 64 ns, increasing by 8 ns intervals.  
For the Delay dead band control, the dead time control range is:  
T
D = (PWM Register bits + 1) x 8ns  
14.9 PWM DEAD BAND CONTROL TIMING DIAGRAM  
PWM (out)  
Reference  
outp  
outn  
Dead time  
Dead time  
Figure 85: PWM Dead Band Control Timing Diagram  
14.10 DCMP/PWM POWER-DOWN CONTROL  
The power-down source for the DCMP/PWM logic cells is selected by registers [1521:1516]. The DCMP/PWM logic cells can  
then be turned on or off individually with the appropriate register. The power-down control of each logic cell is managed by the  
following register settings:  
Datasheet  
16-Mar-2020  
Revision 3.3  
119 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
When register [1678] = “0” DCMP0/PWM0 is powered down, when “1” logic cell is ON  
When register [1698] = “0” DCMP1/PWM1 is powered down, when “1” logic cell is ON  
When register [1718] = “0” DCMP2/PWM2 is powered down, when “1” logic cell is ON  
14.11 DCMP/PWM CLOCK INVERT CONTROL  
The three DCMP/PWM logic cells can invert the CLK OSC input signal during the compare or PWM function. Register [1676],  
register [1697] and register [1717] is used to control the three logic cells clock inversion for PWM0, PWM1, and PWM2  
respectively.  
Datasheet  
16-Mar-2020  
Revision 3.3  
120 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
15 Slave SPI - Serial to Parallel/Parallel to Serial Converter (SPI)  
The Slave SPI data can be communicated between the SLG46620-A and the larger system design through either the serial to  
parallel or parallel to serial interface. The SPI has two 8-bit registers (2 bytes) that are used for data transfer. The external clock  
signal and the nCSB (Enable Control Signal) comes from the Connection Matrix OUT.  
For serial to parallel operation (S2P), the serial data in (MOSI) comes from PIN 10 of the SLG46620-A. The S2P will produce a  
16-bit parallel data output (S2P[15:0]) where the MSB [15:8] can be used by the PWM/DCMP0_IN+, PWM/DCMP1_IN-, PWM/  
DCMP2_IN+ and FSM1 logic cells, while the LSB [7:0] can be used by the PWM/DCMP0_IN-, PWM/DCMP1_IN+, PWM/  
DCMP2_IN- and FSM0 logic cells.  
In parallel to serial mode (P2S) there is an additional configuration of the length of converted code - 8-bit and 16-bit. With 8-bit  
configuration the parallel data from FSM0 or ADC can be converted to serial data. PIN 10 is used to output this 8-bit serial data  
OUT (MISO) signal. With 16 bit configuration the parallel data from FSM0 and FSM1 can be converted into a serial code. 8 LSB  
bits of FSM1 data will be sent to PAR_IN[7:0] and 8-bits of FSM0 will be sent to PAR_IN[15:8]. Same as in 8-bit mode 16 bit serial  
data will be output to PIN 10.  
15.1 SPI FUNCTIONAL DIAGRAM  
FSM1  
FSM CLK SYNC register [1634]  
PWM/DCMP0 IN+  
PWM/DCMP1 IN-  
PWM/DCMP2 IN+  
PWM CLK SYNC register [1633]  
ADC CLK SYNC register [1641]  
ADC Buffer Enable register [1656]  
IO Mode register [1661]  
PDO[15:8]  
PDO [7:0]  
SPI  
SPI Mode registers [1659:1658]  
16/8-bit Mode select register [1660]  
Parallel Data in Source register[1657]  
FSM0  
PWM/DCMP0 IN-  
PWM/DCMP1 IN+  
PWM/DCMP2 IN-  
Matrix 1 IN [51:44]  
FSM0 and FSM1  
0
PDI  
ADC  
1
Pin 10  
SDI  
Connection Matrix 0 Output [82]  
Connection Matrix 0 Output [83]  
CSB  
SCLK  
SDO  
0X  
10  
11  
Pin 10  
SDO path select registers [2017:2016]  
Figure 86: SPI Functional Diagram  
15.2 CLOCK POLARITY AND PHASE  
In addition to setting the clock frequency, it is possible to configure the clock polarity and phase with respect to the data. This is  
configured by the CPOL and CPHA respectively.  
Datasheet  
16-Mar-2020  
Revision 3.3  
121 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 87 shows the SPI timing diagram when CPHA=0; in this mode data can only be transmitted from serial to parallel, not from  
parallel to serial. Figure 88 shows the SPI timing diagram when CPHA=1; in this mode data can be transmitted both from serial  
to parallel and from parallel to serial.  
tCSW  
CSB  
tCSS  
tCH tCL  
tCP  
tCSH  
SCLK (CPOL=0)  
tCSH  
SCLK (CPOL=1)  
tDIS tDIH  
SDI  
LSB  
MSB  
Bit[1]  
LSB  
MSB  
Bit[1]  
Figure 87: Timing Diagram showing Clock Polarity and Phase, CPHA=0  
Table 59: CPHA = 0 Timing Characteristics  
Description  
Parameter  
tCP  
Min  
500  
250  
250  
250  
250  
500  
100  
50  
Max  
--  
Units  
ns  
SCLK period  
SCLK pulse width high  
SCLK pulse width low  
CSB fall to SCLK first edge setup  
SCLK last edge to CSB rise hold  
CSB pulse width high  
SCLK to SDI hold  
tCH  
--  
ns  
tCL  
--  
ns  
tCSS  
tCSH  
tCSW  
tDIH  
--  
ns  
--  
ns  
--  
ns  
--  
ns  
SCLK to SDI setup  
tDIS  
--  
ns  
SCLK rise/fall time  
tCKR  
--  
20  
ns  
Datasheet  
16-Mar-2020  
Revision 3.3  
122 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
tCSW  
CSB  
SCLK (CPOL=0)  
tCSS  
tCH tCL  
tCP  
tCSH  
tCSH  
LSB  
SCLK (CPOL=1)  
tDOD tDOS  
tDOD  
tDOE  
tDOH  
MSB  
Bit[1]  
LSB  
tSIR  
MSB  
tSIF  
Bit[1]  
SDO  
tSI  
tCI  
Interrupt  
tDIS tDIH  
SDI  
LSB  
MSB  
Bit[1]  
LSB  
MSB  
Bit[1]  
Figure 88: Timing Diagram showing Clock Polarity and Phase, CPHA = 1  
Table 60: CPHA = 1 Timing Characteristics  
Description  
Parameter  
tCP  
Min  
500  
250  
250  
250  
250  
100  
100  
--  
Max  
--  
Units  
SCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width high  
SCLK pulse width low  
CSB fall to SCLK first edge setup  
SCLK last edge to CSB rise hold  
SCLK to SDO hold  
tCH  
--  
tCL  
--  
tCSS  
--  
tCSH  
tDOH  
tDOS  
tDOD  
tDOD  
tDOE  
tCSW  
tSIR  
--  
--  
SCLK to SDO setup  
--  
SCLK to SDO delay  
150 (Note 1)  
150 (Note 1)  
150 (Note 1)  
--  
CSB rise to SDO disable  
CSB fall to SDO enable  
CSB pulse width high  
LSB' SCLK fall to Interrupt high  
MSB' SCLK fall to Interrupt low  
SCLK to Interrupt high  
CSB rise to Interrupt low  
SCLK to SDI hold  
5
5
500  
5
150 (Note 1)  
150 (Note 1)  
150 (Note 1)  
150 (Note 1)  
--  
tCIF  
5
tSI  
5
tCI  
5
tDIH  
100  
50  
--  
SCLK to SDI setup  
tDIS  
--  
SCLK rise/fall time  
tCKR/tCKF  
tDOR/tDOF  
20  
SDO rise/fall time  
--  
20*  
Datasheet  
16-Mar-2020  
Revision 3.3  
123 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 60: CPHA = 1 Timing Characteristics  
Description  
Parameter  
Min  
Max  
Units  
Interrupt rise/fall time  
tIR/tIF  
--  
20*  
ns  
Note 1 The data is based on 50 pF loading on the output PIN, and the output drive strength is 2x option.  
At CPOL=0 the base value of the clock is zero  
For CPHA=0, data are captured on the clock's rising edge (LOW→HIGH transition) and data is propagated on a falling  
edge (HIGH→LOW clock transition)  
For CPHA=1, data are captured on the clock's falling edge and data is propagated on a rising edge  
At CPOL=1 the base value of the clock is one (inversion of CPOL=0)  
For CPHA=0, data are captured on clock's falling edge and data is propagated on a rising edge  
For CPHA=1, data are captured on clock's rising edge and data is propagated on a falling edge  
That is, CPHA=0 means sample on the leading (first) clock edge, while CPHA=1 means sample on the trailing (second) clock  
edge, regardless of whether that clock edge is rising or falling. Note that with CPHA=0, the data must be stable for a half cycle  
before the first clock cycle.  
The MOSI and MISO signals are usually stable (at their reception points) for the half cycle until the next clock transition. SPI  
master and slave devices may well sample data at different points in that half cycle.  
This adds more flexibility to the communication channel between the master and slave.  
15.3 SPI CLOCK SYNCHRONIZATION  
When the parallel data is going to be loaded into the buffer in SPI, the SPI will generate the "sync" signal, it will be gating the  
ADC/PWM CLOCK or FSM CLOCK/256 to stop the running ADC, PWM, FSM or CNTs to avoid mis-catch data due to the  
asynchronization of SCLK and the internal clocks, see Figure 79.  
Datasheet  
16-Mar-2020  
Revision 3.3  
124 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Note: The internal clock and SPI clock must satisfy the: 2TCLK_INT<1/2TSCK  
SYNC  
CLK_INT  
sync_pipe  
The delay is within 2 CLK_INT period  
CLK_synced  
Half of the SCK period  
LOAD (in the SPI)  
When load to trigger the ADC data,  
the data must be frozen  
Figure 89: Timing Diagram showing SPI Clock synchronization  
15.4 SPI DATA BUFFER FUNCTION  
SPI data buffer can be used to have DCMP compare two different ADC timing data. The ADC buffer is shared with the DFFs that  
are in the SPI macrocell. When the SPI is set to ADC buffer mode (register [1656]=1), the DFF 's data inputs of SPI's parallel  
outputs are from ADC and the DFF's clock source comes from matrix0_output83 which can be programmed by user. The DFF's  
output (SPI[7:0]) is the ADC data's buffered output which can be sent to DCMP/PWMs or FSM (CNT)s.  
register [1656]  
0
16  
0,ADC[7:0]  
SPI [15:0]  
D
Q
Q
16  
1
Ck  
RB  
register [1659]  
SPI_SCLK  
(matrix0_out83)  
nRST_core  
Figure 90: The SPI used as ADC data buffer diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
125 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
16 Pipe Delay  
The SLG46620-A has two 16-stages DFF Pipe Delay (PD) Macrocells.  
Each Pipe Delay has three input signals from the matrix, Input (IN), Clock (CLK) and Reset (RST). The pipe delay cell is built  
from 16 D Flip-Flop logic cells that provide two delay options which are user selectable. The DFF cells are tied in series where  
the output (Q) of each delay cell goes to the next DFF cell. The two outputs (OUT0 and OUT1) provide user selectable options  
for 1 – 16 stages of delay. There are delay output points for each set of the OUT0 and OUT1 outputs to a 4-input MUX that is  
controlled by register bits. The 4-input MUX is used to control the selection of the amount of delay.  
The overall time of the delay is based on the clock used in the SLG46620-A design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or any Oscillator within the SLG46620-A). The sum of the number of DFF cells used will  
be the total time delay of the Pipe Delay logic cell.  
registers [1617:1614]  
register [1618]  
0
OUT1  
To Connection  
Matrix 0 Input [21]  
1
From Connection  
RST  
Matrix 0 Output [53]  
From Connection  
IN  
16 Flip-Flops  
Matrix 0 Output [52]  
From Connection  
CLK  
Matrix 0 Output [51]  
OUT0  
To Connection  
Matrix 0 Input [20]  
registers [1613:1610]  
Figure 91: Pipe Delay 0  
Datasheet  
16-Mar-2020  
Revision 3.3  
126 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
registers [1626:1623]  
register [1627]  
0
1
OUT1  
To Connection  
Matrix 1 Input [21]  
From Connection  
RST  
Matrix 1 Output [53]  
From Connection  
IN  
16 Flip-Flops  
Matrix 1 Output [52]  
From Connection  
Matrix 1 Output [51]  
CLK  
OUT0  
To Connection  
Matrix 1 Input [20]  
registers [1622:1619]  
Figure 92: Pipe Delay 1  
Datasheet  
16-Mar-2020  
Revision 3.3  
127 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
17 Programmable Delay/Edge Detector  
The SLG46620-A has two programmable time delay logic cells available that can generate a delay that is selectable from one of  
four timings (time1) configured in the GreenPAK Designer. The programmable time delay cells can generate one of four different  
delay patterns, rising edge detection, falling edge detection, both edge detection and both edge delay. Three of these patterns  
can be further modified with the addition of delayed edge detection, which adds an extra unit of delay as well as glitch rejection  
during the delay period. Note that, delayed edge detection function is not available for both edge delay pattern. See the timing  
diagrams below for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out  
registers [1603:1602]  
Delay Value Selection  
registers [1601:1600]  
Edge Mode Selection  
To Connection  
Matrix 0 Input [22]  
Programmable  
From Connection Matrix 0 Output [54]  
IN  
OUT  
Delay 0  
register [1604]  
Delayed Edge Detector Output  
Figure 93: Programmable Delay  
registers [1608:1607]  
Delay Value Selection  
registers [1606:1605]  
Edge Mode Selection  
To Connection  
Matrix 1 Input [22]  
Programmable  
From Connection Matrix 1 Output [54]  
IN  
OUT  
Delay 1  
register [1609]  
Delayed Edge Detector Output  
Figure 94: Programmable Delay  
Datasheet  
16-Mar-2020  
Revision 3.3  
128 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
17.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
time1  
time1  
IN  
Rising Edge Detector  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time1 can be set by register value, see Table 10  
Figure 95: Edge Detector Output  
time2  
time2  
time1  
time1  
IN  
Delayed Rising Edge Detector  
Delayed Falling Edge Detector  
Delayed Edge  
Detector Output  
Delayed Both Edge Detector  
time1  
Delayed Both Edge Delay  
time1  
time1 can be set by register value (150 ns, 300 ns, 450 ns, 600 ns)  
time2 is a fixed value at ~200 ns  
Figure 96: Delayed Edge Detector Output  
Datasheet  
16-Mar-2020  
Revision 3.3  
129 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
17.2 PROGRAMMABLE DELAY TIMING DIAGRAM - GLITCH FILTERING FOR EDGE DETECTOR OUTPUT  
IN  
Edge  
Rising Edge Detector  
Detector Output  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Rising Edge Detector  
Falling Edge Detector  
Delayed Edge  
Detector Output  
Both Edge Detector  
Both Edge Delay  
Figure 97: Glitch Filtering for Edge Detector Output  
Datasheet  
16-Mar-2020  
Revision 3.3  
130 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
18 Voltage Reference  
18.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46620-A has a Voltage Reference Macrocell to provide references to the six analog comparators. This macrocell can  
supply a user selection of fixed voltage references, /3 and /4 reference off of the VDD power supply to the device, and externally  
supplied voltage references from pins 5, 7,10 and 14. The macrocell also has the option to output reference voltages on pins 18  
and 19. See table below for the available selections for each analog comparator. Also see Figure 98 below, which shows the  
reference output structure.  
18.2 VREF SELECTION TABLE  
Table 61: Vref Selection Table  
registers  
acmpxref_sel  
[4:0]  
11111  
11110  
ACMP0_Vref  
DAC0_OUT  
DAC1_OUT  
ACMP1_Vref  
DAC0_OUT  
DAC1_OUT  
ACMP2_Vref  
DAC0_OUT  
DAC1_OUT  
ACMP3_Vref  
DAC0_OUT  
DAC1_OUT  
ACMP4_Vref  
DAC0_OUT  
DAC1_OUT  
ACMP5_Vref  
DAC0_OUT  
DAC1_OUT  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
11101  
11100  
11011  
11010  
mp0 / 2  
mp0 / 2  
mp2 / 2  
mp2 / 2  
mp2 / 2  
mp5 / 2  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
mp1 / 2  
mp1 / 2  
mp1 / 2  
mp1 / 2  
mp1 / 2  
mp1 / 2  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
mp0  
mp0  
mp2  
mp2  
mp2  
mp5  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
Vref_ext_ac-  
mp1  
mp1  
mp1  
mp1  
mp1  
mp1  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
V
DD/4  
VDD/4  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VDD/4  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VDD/4  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VDD/4  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VDD/4  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VDD/3  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
Datasheet  
16-Mar-2020  
Revision 3.3  
131 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 61: Vref Selection Table  
registers  
acmpxref_sel  
[4:0]  
00001  
00000  
ACMP0_Vref  
0.10  
ACMP1_Vref  
0.10  
ACMP2_Vref  
0.10  
ACMP3_Vref  
0.10  
ACMP4_Vref  
0.10  
ACMP5_Vref  
0.10  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Table 62: Vref Range  
VDD  
Practical Vref Range Note  
2.0 V - 3.6 V  
1.7 V - 2.0V  
50 mV ~ 1.2 V  
50 mV ~ 1.1 V  
Do not operate above 1.1 V  
18.3 VREF BLOCK DIAGRAM  
registers [896:892]  
register [936]  
External VDD  
2.7 V - 3.6 V  
ACMP0_Vref  
ext_Vref_acmp5  
(Pin5)  
Pin19_aio_en  
registers [1962:1961]=11  
registers [901:897]  
01  
10  
11  
ext_Vref_acmp0  
ext_Vref_acmp1  
ACMP1_Vref  
Vref Out_0 (Pin19)  
OP  
(Pin7)  
registers [906:902]  
ext_Vref_acmp0  
ext_Vref_acmp1  
ext_Vref_acmp2  
ext_Vref_acmp3  
ext_Vref_acmp4  
ext_Vref_acmp5  
registers [879:878]  
ACMP2_Vref  
Pin18_aio_en  
registers [1955:1954]=11  
01  
10  
11  
registers [911:907]  
Vref Out_1 (Pin18)  
OP  
(Pin10)  
ACMP3_Vref  
ext_Vref_acmp2  
ext_Vref_acmp3  
ext_Vref_acmp4  
registers [916:912]  
ACMP4_Vref  
registers [877:876]  
(Pin14)  
VDD / 3  
VDD / 4  
DAC0  
DAC1  
registers [921:917]  
Vref Out_0 is floating in case of registers[879:878]=00  
Vref Out_1 is floating in case of registers[877:876]=00  
ACMP5_Vref  
Figure 98: Voltage Reference Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
132 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
18.4 VREF OUT TYPICAL PERFORMANCE  
ꢂꢃꢁꢀ  
ꢂꢃꢀꢀ  
ꢂꢂꢁꢀ  
ꢂꢂꢀꢀ  
ꢂꢀꢁꢀ  
ꢂꢀꢀꢀ  
ꢉꢁꢀ  
ꢉꢀꢀ  
ꢈꢁꢀ  
ꢈꢀꢀ  
ꢇꢁꢀ  
ꢇꢀꢀ  
ꢆꢁꢀ  
ꢆꢀꢀ  
ꢁꢁꢀ  
ꢁꢀꢀ  
ꢅꢁꢀ  
ꢅꢀꢀ  
ꢄꢁꢀ  
ꢄꢀꢀ  
ꢃꢁꢀ  
ꢃꢀꢀ  
ꢂꢁꢀ  
ꢂꢀꢀ  
ꢁꢀ  
Vref = 1200 mV  
Vref = 800 mV  
Vref = 600 mV  
Vref = 300 mV  
Vref = 100 mV  
ꢀ8ꢀꢃ ꢀ8ꢀꢅ ꢀ8ꢀꢆ ꢀ8ꢀꢈ ꢀ8ꢂ ꢀ8ꢃ ꢀ8ꢅ ꢀ8ꢆ ꢀ8ꢈ  
ꢂꢀ ꢃꢀ ꢅꢀ ꢆꢀ ꢈꢀ ꢂꢀꢀ ꢃꢀꢀ ꢅꢀꢀ ꢆꢀꢀ ꢈꢀꢀ ꢂꢀꢀꢀ ꢃꢀꢀꢀ  
Load, uA  
Figure 99: Typical Load Regulation, T = 25°C, VDD = 3.3 V  
Datasheet  
16-Mar-2020  
Revision 3.3  
133 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
19 Clocking  
19.1 OSCILLATORS GENERAL DESCRIPTION  
The SLG46620-A has three internal RC oscillators (25 kHz or 2 MHz, user selectable), as well as one Low-Frequency oscillator  
(1.73 kHz) and one Ring oscillator (27 MHz).  
There are two divider stages for the RC and Ring oscillators, one divider stage for the Low-Frequency oscillator, that gives the  
user flexibility for introducing clock signals to connection matrix 0 and 1, as well as various other Macrocells. The pre-divider (first  
stage) for RC Oscillator allows the selection of /1, /2, /4 or /8, for LF OSC - /1, /2, /4 or /16 and for Ring OSC - /1, /4, /8 or /16 to  
divide down frequency from the fundamental. The second stage divider (does not apply for LF OSC) has an input of frequency  
from the pre-divider, and outputs one of eight different frequencies on Connection Matrix Input lines [49] and [48]. The output of  
LF OSC Pre-divider goes directly on Connection Matrix Input line [50]. Please see Figure 87, for more details on the SLG46620-  
A clock scheme.  
The Matrix Power-down function allows to switch on/off the oscillators using an external pin (register [1648] for 25 kHz / 2 MHz  
OSC, register [1652] for LF OSC and register [1638] for Ring OSC):  
Enable [1]. If PWR DOWN input of oscillator is LOW, the oscillator will be turned on. If PWR DOWN input of oscillator is HIGH  
the oscillator will be turned off.  
Disable [0]. Turns off the Matrix Power-down function.  
The PWR CONTROL signal has the highest priority.  
The user can select two OSC POWER MODEs (register [1649] for 25 kHz / 2 MHz OSC, register [1653] for LF OSC and register  
[1640] for Ring OSC):  
If FORCE POWER-ON [1] is selected, the OSC will run when the SLG46620-A is powered on.  
If AUTO POWER-ON [0] is selected, the OSC will run only when any macrocell that uses OSC is powered on.  
OSC can be turned on by:  
Register control (force power-on)  
Delay mode, when delay requires OSC  
ADC  
PWM/DCMP  
Datasheet  
16-Mar-2020  
Revision 3.3  
134 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
register [1642]  
PWR DOWN  
Matrix0_out84  
en  
registers [1644:1643]  
registers [1647:1645]  
1/2/4/3/8/12/24/64  
1/2/4/3/8/12/24/64  
cko  
cko  
divs  
cki  
Matrix IN0_49  
register [1637]  
RC OSC  
(2 MHz,  
25kHz)  
en  
DIV1/2/4/8  
registers [1632:1630]  
Matrix IN0_48  
Matrix IN0_50  
divs  
cki  
registers [2:0]  
0
Cnt_end0 used as the wake/  
shared with  
wake/sleep  
oscillator  
sleep signal to matrix in  
registers [1655:1654]  
DIV4  
DIV24  
DIV64  
1
2
3
4
5
6
7
LF OSC  
(1.73 kHz)  
CNT/ DLY  
DIV1/2/4/16  
cnt(x-1)_end  
cnt_end  
clk  
Matrix OUT  
CNT0/CNT1/CNT3/CNT5/CNT6/CNT7  
Matrix0_72 for CNT0/CNT2/CNT9/  
Matrix0_73 for CNT5/CNT6  
Matrix1_73 for CNT7/CNT8/PWM/ADC  
Matrix1_74 for CNT1/CNT3/CNT4  
registers[3:0]  
0
CNT/  
DLY/  
FSM/  
DIV4  
DIV12  
DIV24  
1
2
3
4
5
DIV64  
PWM_ramp  
cnt(x-1)_end  
clk  
6
7
8
DIV8  
CLK_SPI_SCK  
9
Matrix Out0_83  
10  
11  
12  
DIV256  
CNT2/CNT4/CNT8/CNT9  
register [1675] /  
register [1696] /  
register [1716]  
Regulator  
(1.8 V)  
PWM/  
1
0
DCMP/  
CLK_RINGOSC  
clk  
Ring OSC  
(27 MHz)  
DIV1/4/8/16  
0
PWM0/PWM1/PWM2/  
1
2
3
registers [1636:1635]  
DIV16  
0
ADC  
CLK_ADC  
CLK  
1
register [1639]  
Figure 100: Oscillator Block Diagram  
Datasheet  
16-Mar-2020  
Revision 3.3  
135 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
19.2 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 101: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC Enable” signal appears when any macrocell that uses OSC is powered on.  
Note 3 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Figure 102: LF Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, OSC = 1.73 kHz  
Datasheet  
16-Mar-2020  
Revision 3.3  
136 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
1300  
1200  
1100  
1000  
900  
800  
1.71  
3
3.3  
3.6  
VDD (V)  
Figure 103: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, RC OSC = 2 MHz  
Figure 104: RC Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, RC OSC = 25 kHz  
Datasheet  
16-Mar-2020  
Revision 3.3  
137 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
280  
260  
240  
220  
200  
180  
160  
140  
1.71  
3
3.3  
3.6  
VDD (V)  
Figure 105: Ring Oscillator Maximum Power-On Delay vs. VDD at T = 25°C, OSC = 27 MHz  
19.3 OSCILLATORS ACCURACY  
Note calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Figure 106: RC Oscillator Frequency vs. VDD, RC OSC = 25 kHz, T = 25 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
138 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 107: RC Oscillator Frequency vs. VDD, RC OSC = 25 kHz, T = -40 °C to 105 °C  
Figure 108: Ring Oscillator Frequency vs. VDD, OSC = 27 MHz, T = 25 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
139 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Figure 109: Ring Oscillator Frequency vs. VDD, OSC = 27 MHz, T = -40 °C to 105 °C  
Datasheet  
16-Mar-2020  
Revision 3.3  
140 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
20 Power-On Reset  
The SLG46620-A has a power-on reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IO pins.  
20.1 GENERAL OPERATION  
The SLG46620-A is guaranteed to be powered down and non-operational when the VDD voltage (voltage on PIN1) is less than  
Power-Off Threshold (see in Section 3.4), but not less than -0.6 V. Another essential condition for the chip to be powered down  
is that no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a  
voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46620-A, the voltage applied on the VDD should be higher than the Power_ON threshold  
(Note 1). The full operational VDD range for the SLG46620-A is 1.71V – 3.6V (1.8 V ±5% - 3.3 V±10%). This means that the VDD  
voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises  
to the Power_ON threshold. After the POR sequence has started, the SLG46620-A will have a typical period of time to go through  
all the steps in the sequence (see Figure 96 and Figure 97), and will be ready and completely operational after the POR sequence  
is complete.  
Note 1: The Power_ON threshold is defined in Section 3.4.  
Note 2: VDD ramp rising speed must be less than 0.6 V/µs after power-on. Violating this specification may cause chip to restart.  
To power-down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also as it was mentioned before the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
16-Mar-2020  
Revision 3.3  
141 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
20.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 110.  
VDD  
t
POR_NVM  
(reset for NVM)  
t
t
t
t
t
t
t
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 110: POR sequence  
As can be seen from Figure 110 after the VDD has start ramping up and crosses the Power_ON threshold, first, the on-chip NVM  
memory is reset. Next the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, RC OSC, DFFs,  
Latches and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature and even will vary from chip to chip (process influence).  
20.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46620-A operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 111 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. Only P DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.  
Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal  
switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.  
Datasheet  
16-Mar-2020  
Revision 3.3  
142 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
t
t
Input PIN_out  
to matrix  
Determined by External Signal  
Determined by Input signals  
LUT_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Prog. Edge_Detector_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
Determined by initial state  
DFF/Latch_out  
to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Figure 111: Internal Macrocell States during POR sequence  
20.4 INITIALIZATION  
All internal macrocells by default have initial low level. Starting from indicated powerup time of 1.15 V - 1.6 V, macrocells in  
SLG46620-A are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, ACMP, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin →  
VDD and pin → GND on each pin. So if the input signal applied to pin is higher than VDD, then current will sink through the diode  
to VDD. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following the voltage on the input  
pin.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
Datasheet  
16-Mar-2020  
Revision 3.3  
143 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
20.5 POWER-DOWN  
VDD (V)  
2 V  
1.6 V  
1.15 V  
1 V Vref OUT Signal  
1 V  
Time  
Not guaranteed output state  
Figure 112: Power-Down  
During powerdown, macrocells in SLG46620-A are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
20.6 EXTERNAL RESET  
The SLG46620-A has an optional External Reset function on Pin2. It allows to reset the chip while powered on.  
Pin2 must be configured as Digital Input registers [942:941] and function Reset must be enabled also, register [2020]: 0 - disabled,  
1 - enabled. Unlike POR, External Reset affects only GPI, LUTs, DLY, RC OSC, DFFs, Latchs, Pipe Delay, Matrix and GPO. While  
NVM remains its previous state, see Figure 113 to Figure 115.  
Note: External Reset affects Pipe Delay only if its nRST is connected to POR.  
Note that during External Reset the output pin's status will depend on the OE control circuits and current consumption is  
determined by the design.  
Datasheet  
16-Mar-2020  
Revision 3.3  
144 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
External Reset  
(
high active)  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 113: External Reset Sequence (High Active).  
Datasheet  
16-Mar-2020  
Revision 3.3  
145 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
External Reset  
(
rising edge detect)  
t
t
VDD  
POR_NVM  
(reset for NVM)  
t
NVM_ready_out  
t
POR_GPI  
(reset for input enable)  
t
POR_LUT  
(reset for LUT output)  
t
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
t
POR_OUT  
(generate low to high  
t
POR_GPO  
(reset for output en-  
t
Figure 114: External Reset Sequence (Rising Edge Detect).  
Datasheet  
16-Mar-2020  
Revision 3.3  
146 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
External Reset  
(
falling edge detect)  
t
t
VDD  
POR_NVM  
(reset for NVM)  
t
NVM_ready_out  
t
POR_GPI  
(reset for input enable)  
t
POR_LUT  
(reset for LUT output)  
t
POR_CORE  
reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
t
POR_OUT  
(generate low to high  
t
POR_GPO  
(reset for output en-  
t
Figure 115: External Reset Sequence (Falling Edge Detect).  
Datasheet  
16-Mar-2020  
Revision 3.3  
147 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
21 Power Detector  
The Power Detect (PWR DET) is used to monitor the state of the internal Charge Pump regulator. The macrocell only has one  
output (OUT). The PWR DET output is HIGH when VDD < 2.7V and LOW when VDD > 2.7V. In order to use the macrocell  
register[2010] must be set to 0.  
22 Additional Logic Functions  
The SLG46620-A has two additional logic functions that are connected directly to the Connection Matrix inputs and outputs. There  
are two inverters which can switch the polarity of any Connection Matrix signal.  
22.1 INV_0 GATE  
INV_0 Gate  
From Connection Matrix0 Output [55]  
To Connection Matrix0 Input [23]  
Figure 116: INV_0 Gate  
22.2 INV_1 GATE  
INV_1 Gate  
From Connection Matrix1 Output [55]  
To Connection Matrix1 Input [23]  
Figure 117: INV_1 Gate  
Datasheet  
16-Mar-2020  
Revision 3.3  
148 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
23 Register Definitions  
23.1 REGISTER MAP  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
5:0  
Matrix 0 OUT: In0 of LUT2_0  
Matrix 0 OUT: In1 of LUT2_0  
Matrix 0 OUT: In0 of LUT2_1  
Matrix 0 OUT: In1 of LUT2_1  
Matrix 0 OUT: In0 of LUT2_2  
Matrix 0 OUT: In1 of LUT2_2  
Matrix 0 OUT: In0 of LUT2_3  
Matrix 0 OUT: In1 of LUT2_3  
Matrix 0 OUT: In0 of LUT3_0  
Matrix 0 OUT: In1 of LUT3_0  
Matrix 0 OUT: In2 of LUT3_0  
Matrix 0 OUT: In0 of LUT3_1  
Matrix 0 OUT: In1 of LUT3_1  
Matrix 0 OUT: In2 of LUT3_1  
Matrix 0 OUT: In0 of LUT3_2  
Matrix 0 OUT: In1 of LUT3_2  
Matrix 0 OUT: In2 of LUT3_2  
Matrix 0 OUT: In0 of LUT3_3  
Matrix 0 OUT: In1 of LUT3_3  
Matrix 0 OUT: In2 of LUT3_3  
Matrix 0 OUT: In0 of LUT3_4  
Matrix 0 OUT: In1 of LUT3_4  
Matrix 0 OUT: In2 of LUT3_4  
Matrix 0 OUT: In0 of LUT3_5  
Matrix 0 OUT: In1 of LUT3_5  
Matrix 0 OUT: In2 of LUT3_5  
Matrix 0 OUT: In0 of LUT3_6  
Matrix 0 OUT: In1 of LUT3_6  
Matrix 0 OUT: In2 of LUT3_6  
Matrix 0 OUT: In0 of LUT3_7  
Matrix 0 OUT: In1 of LUT3_7  
Matrix 0 OUT: In2 of LUT3_7  
Matrix 0 OUT: In0 of LUT4_0  
Matrix 0 OUT: In1 of LUT4_0  
Matrix 0 OUT: In2 of LUT4_0 or PGEN CLK  
Matrix 0 OUT: In3 of LUT4_0 or PGEN nRST  
Matrix 0 OUT: nSET or nRST of DFF0/Latch0  
Matrix 0 OUT: Data of DFF0/Latch0  
Matrix 0 OUT: Clock of DFF0/Latch0  
Matrix 0 OUT: nSET or nRST of DFF1/Latch1  
11:6  
17:12  
23:18  
29:24  
35:30  
41:36  
47:42  
53:48  
59:54  
65:60  
71:66  
77:72  
83:78  
89:84  
95:90  
101:96  
107:102  
113:108  
119:114  
125:120  
131:126  
137:132  
143:138  
149:144  
155:150  
161:156  
167:162  
173:168  
179:174  
185:180  
191:186  
197:192  
203:198  
209:204  
215:210  
221:216  
227:222  
233:228  
239:234  
Datasheet  
16-Mar-2020  
Revision 3.3  
149 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
245:240  
251:246  
257:252  
263:258  
269:264  
275:270  
281:276  
287:282  
293:288  
299:294  
305:300  
311:306  
317:312  
323:318  
Matrix 0 OUT: Data of DFF1/Latch1  
Matrix 0 OUT: Clock of DFF1/Latch1  
Matrix 0 OUT: nSET or nRST of DFF2/Latch2  
Matrix 0 OUT: Data of DFF2/Latch2  
Matrix 0 OUT: Clock of DFF2/Latch2  
Matrix 0 OUT: Data of DFF3/Latch3  
Matrix 0 OUT: Clock of DFF3/Latch3  
Matrix 0 OUT: Data of DFF4/Latch4  
Matrix 0 OUT: Clock of DFF4/Latch4  
Matrix 0 OUT: Data of DFF5/Latch5  
Matrix 0 OUT: Clock of DFF5/Latch5  
Matrix 0 OUT: Clock of Pipe Delay 0  
Matrix 0 OUT: Input Data of Pipe Delay 0  
Matrix 0 OUT: Reset of Pipe Delay 0  
Matrix 0 OUT: Input of Edge Detector and Programma-  
ble Delay 0  
329:324  
335:330  
341:336  
347:342  
353:348  
359:354  
365:360  
371:366  
377:372  
383:378  
389:384  
395:390  
401:396  
407:402  
413:408  
419:414  
425:420  
431:426  
Matrix 0 OUT: Input of Inverter 0  
Matrix 0 OUT: Digital Output of PIN 3  
Matrix 0 OUT: OE of PIN 3  
Matrix 0 OUT: Digital Output of PIN 4  
Matrix 0 OUT: Digital Output of PIN 5  
Matrix 0 OUT: OE of PIN 5  
Matrix 0 OUT: Digital Output of PIN 6  
Matrix 0 OUT: Digital Output of PIN 7  
Matrix 0 OUT: OE of PIN 7  
Matrix 0 OUT: Digital Output of PIN 8  
Matrix 0 OUT: Digital Output of PIN 9  
Matrix 0 OUT: OE of PIN 9  
Matrix 0 OUT: Digital Output of PIN 10  
Matrix 0 OUT: OE of PIN 10  
Matrix 0 OUT: PDB (Power-down) for ACMP0  
Matrix 0 OUT: PDB (Power-down) for ACMP4  
Matrix 0 OUT: PDB (Power-down) for ACMP5  
Matrix 0 OUT: CNT0/CNT2/CNT9/ External  
Clock(CLK_Matrix0)  
437:432  
443:438  
Matrix 0 OUT: CNT5/CNT6 External Clock(CLK_Ma-  
trix1)  
449:444  
455:450  
461:456  
467:462  
473:468  
479:474  
Matrix 0 OUT: Input of DLY/CNT0  
Matrix 0 OUT: Input of DLY/CNT2  
Matrix 0 OUT: Keep of DLY/CNT2  
Matrix 0 OUT: Up of DLY/CNT2  
Matrix 0 OUT: Input of DLY/CNT5  
Matrix 0 OUT: Input of DLY/CNT6  
Datasheet  
16-Mar-2020  
Revision 3.3  
150 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
485:480  
491:486  
497:492  
503:498  
509:504  
515:510  
521:516  
527:522  
533:528  
539:534  
545:540  
551:546  
557:552  
563:558  
569:564  
575:570  
Matrix 0 OUT: Input of DLY/CNT9  
Matrix 0 OUT: ADC Power-down  
Matrix 0 OUT: CSB of SPI  
Matrix 0 OUT: SCLK of SPI  
Matrix 0 OUT: Oscillator Power-down  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [0]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [1]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [2]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [3]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [4]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [5]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [6]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [7]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [8]  
Matrix 0 OUT: Cross Connection Output to Matrix 1 [9]  
Reserved  
LUT Data  
579:576  
583:580  
587:584  
591:588  
599:592  
607:600  
615:608  
623:616  
631:624  
639:632  
647:640  
655:648  
LUT2_0 Data  
LUT2_1 Data  
LUT2_2 Data  
LUT2_3 Data  
LUT3_0 Data  
LUT3_1 Data  
LUT3_2 Data  
LUT3_3 Data  
LUT3_4 Data  
LUT3_5 Data  
LUT3_6 Data  
LUT3_7 Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
LUT4_0 and PGEN  
671:656  
675:672  
LUT4_0 & PGEN Data  
Data  
Data  
4-bit counter Data in PGEN  
0: LUT4 Function  
1: PGEN Function  
676  
PGEN Enable Signal  
DFF/LATCH 0  
0: DFF Function  
1: LATCH Function  
677  
Mode Select  
0: Q Output  
1: nQ Output  
678  
679  
680  
Output Parity Control  
nSET or nRST Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
Datasheet  
16-Mar-2020  
Revision 3.3  
151 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
DFF/LATCH 1  
0: DFF Function  
1: LATCH Function  
681  
682  
683  
684  
Mode Select  
0: Q Output  
1: nQ Output  
Output Parity Control  
Set or Reset Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 2  
0: DFF Function  
1: LATCH Function  
685  
Mode Select  
0: Q Output  
1: nQ Output  
686  
687  
688  
Output Parity Control  
Set or Reset Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 3  
0: DFF Function  
1: LATCH Function  
689  
Mode Select  
0: Q Output  
1: nQ Output  
690  
691  
Output Parity Control  
Initial State During POR  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 4  
0: DFF Function  
1: LATCH Function  
692  
Mode Select  
0: Q Output  
1: nQ Output  
693  
694  
Output Parity Control  
Initial State During POR  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 5  
0: DFF Function  
1: LATCH Function  
695  
Mode Select  
0: Q Output  
1: nQ Output  
696  
697  
Output Parity Control  
Initial State During POR  
0: Initial State is 0  
1: Initial State is 1  
LUT Data  
701:698  
705:702  
709:706  
713:710  
721:714  
729:722  
LUT2_4 Data  
LUT2_5 Data  
LUT2_6 Data  
LUT2_7 Data  
LUT3_8 Data  
LUT3_9 Data  
Data  
Data  
Data  
Data  
Data  
Data  
Datasheet  
16-Mar-2020  
Revision 3.3  
152 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
737:730  
745:738  
753:746  
761:754  
769:762  
777:770  
793:778  
LUT3_10 Data  
LUT3_11 Data  
LUT3_12 Data  
LUT3_13 Data  
LUT3_14 Data  
LUT3_15 Data  
LUT4_1 Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
DFF/LATCH 6  
0: DFF Function  
1: LATCH Function  
794  
Mode Select  
0: Q Output  
1: nQ Output  
795  
796  
797  
Output Parity Control  
Set or Reset Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 7  
0: DFF Function  
1: LATCH Function  
798  
Mode Select  
0: Q Output  
1: nQ Output  
799  
800  
801  
Output Parity Control  
Set or Reset Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 8  
0: DFF Function  
1: LATCH Function  
802  
Mode Select  
0: Q Output  
1: nQ Output  
803  
804  
805  
Output Parity Control  
Set or Reset Selection  
Initial State During POR  
0: Reset State by Matrix  
1: Set State by Matrix  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 9  
0: DFF Function  
1: LATCH Function  
806  
Mode Select  
0: Q Output  
1: nQ Output  
807  
808  
Output Parity Control  
Initial State During POR  
0: Initial State is 0  
1: Initial State is 1  
DFF/LATCH 10  
0: DFF Function  
1: LATCH Function  
809  
Mode Select  
0: Q Output  
1: nQ Output  
810  
Output Parity Control  
Datasheet  
16-Mar-2020  
Revision 3.3  
153 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0: Initial State is 0  
1: Initial State is 1  
811  
Initial State During POR  
DFF/LATCH 11  
0: DFF Function  
1: LATCH Function  
812  
Mode Select  
0: Q Output  
1: nQ Output  
813  
814  
Output Parity Control  
Initial State During POR  
0: Initial State is 0  
1: Initial State is 1  
ADC and ACMP Control  
0: Disable  
1: Enable  
815  
816  
817  
ADC Native Input From Internal DAC0  
0: Disable (PIN 16 can not Control)  
1: Enable  
Multichannel Input MUX Enable (State by PIN 16)  
ADC Input Mode Control  
0: Single-Ended Input  
1: Differential Input  
000: Reserved  
001: 0.5x (For single-ended operation only)  
010: 1x  
011: 2x  
820:818  
ADC PGA Gain Selection  
100: 4x (For single-ended and differential operation)  
101: 8x (For single-ended and differential operation)  
110: 16x (For differential operation only)  
111: Reserved  
PGA Power-On Signal  
Note: in ADC Wake Sleep/dynamic On/Off Mode, it  
should Set to 0  
0: Power-Down  
1: Power-On  
821  
0: Disable  
1: Enable  
822  
830:823  
831  
ADC Pseudo-Differential Mode Enable  
DAC1 8 Bit register Control  
00: DAC1 Output is ADC Vref bottom Voltage  
FF: DAC1's Output is ADC Vref top Voltage  
0: Disable  
1: Enable  
ACMP 1 Input 100u Current Source Enable  
0: Disable  
1: Enable  
832  
ACMP 0 Input 100u Current Source Enable  
Reserved  
833  
0: Power-down  
834  
835  
DAC1 Power-On Signal  
Reserved  
1: Power-On When DAC0 Used Only, need set this  
bit  
00: 1 K  
01: 5 K  
10: 20 K  
11: 50 K  
837:836  
839:838  
ACMP Buffer Bandwidth Selection  
ADC Speed Selection  
00: Reserved  
01: Reserved  
10: 100 kHz  
11: Reserved  
Datasheet  
16-Mar-2020  
Revision 3.3  
154 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0: Power-down  
840  
DAC0 Power-On Signal  
1: Power-On When DAC0 Used Only, need set this  
bit  
00: ADC Vref  
01: Reserved10: 1/4 VDD  
11: None  
842:841  
843  
ADC Vref Source Select  
DAC0 Input Selection  
0: From Register  
1: From DCMP1's Negative Input  
00: DAC0 Output is 0  
FF: DAC0 Output is 1 V  
851:844  
852  
DAC0 8 Bit Register Control  
Reserved  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
854:853  
856:855  
858:857  
860:859  
ACMP 0 Positive Input Gain Control  
ACMP 0 Input Selection  
00: PIN 6 Input  
01: With Buffer  
10: VDD  
11: None  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP 1 Positive Input Gain Control  
ACMP 1 Input Selection  
00: PIN 12 Input  
01: ADC PGA OUT  
10: ACMP 0 Input (before Gain)  
11: None  
861  
862  
Reserved  
Reserved  
0: PIN 13 Input  
1: ACMP 0 Input (before Gain)  
863  
ACMP 2 Input Selection  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
865:864  
866  
ACMP 2 Positive Input Gain Control  
Reserved  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
868:867  
ACMP 3 Positive Input Gain Control  
00: PIN 15 Input  
01: PIN 13 Input  
10: ACMP 0 Input (before Gain)  
11: None  
870:869  
872:871  
ACMP 3 Input Selection  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP 4 Positive Input Gain Control  
Datasheet  
16-Mar-2020  
Revision 3.3  
155 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: PIN 3 Input  
01: PIN 15 Input  
10: ACMP 0 Input (before Gain)  
11: None  
874:873  
875  
ACMP 4 Input Selection  
Reserved  
00: Buffer Power-down  
01: ACMP 2' Input  
10: ACMP 3's Input  
11: DAC1's Output  
877:876  
Output Buffer1 Source Selection  
00: Buffer Power-down  
01: ACMP 0' Input  
10: ACMP 1's Input  
11: DAC0's Output  
879:878  
Output Buffer0 Source Selection  
880  
881  
Reserved  
Reserved  
Reserved  
0: Disable  
1: Enable  
882  
883  
884  
885  
886  
ADC Wake Sleep Enable  
DAC1 Input Selection  
0: From DCMP1's Negative input  
1: From Register  
0: Disable  
1: Enable  
ADC Wake Sleep Enable  
Force ADC Analog Circuit On  
PGA Output Enable  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
BG, ACMP and Vref  
891:887 Reserved  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
896:892  
ACMP0 Vref Value Selection  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP0  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP0 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
Datasheet  
16-Mar-2020  
Revision 3.3  
156 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
901:897  
906:902  
911:907  
ACMP1 Vref Value Selection  
ACMP2 Vref Value Selection  
ACMP3 Vref Value Selection  
10100: 1.05 V  
10110: 11.5 V  
11000: VDD/3  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP0  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP0 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP2  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP2 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP2  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP2 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
Datasheet  
16-Mar-2020  
Revision 3.3  
157 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
916:912  
ACMP4 Vref Value Selection  
10100: 1.05 V  
10110: 1.15 V  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11000: VDD  
3
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP2  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP2 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
00000: 50 mV  
00001: 100 mV  
00010: 150 mV 00011: 200 mV  
00100: 250 mV 00101: 300 mV  
00110: 350 mV 00111: 400 mV  
01000: 450 mV 01001: 500 mV  
01010: 550 mV 01011: 600 mV  
01100: 650 mV 01101: 700 mV  
01110: 750 mV 01111: 800 mV  
10000: 850 mV 10001: 900 mV  
10010: 950 mV 10011: 1 V  
921:917  
ACMP5 Vref Value Selection  
10100: 1.05 V  
10110: 1.15 V  
11000: VDD/3  
10101: 1.1 V  
10111: 1.2 V  
11001: VDD/4  
11010: Vref_Ext_ACMP1  
11011: Vref_Ext_ACMP5  
11100: Vref_Ext_ACMP1 / 2  
11101: Vref_Ext_ACMP5 / 2  
11110: DAC1_OUT  
11111: DAC0_OUT  
Reserved  
922  
923  
Bangap OK for ADC, ACMP Output Delay Time Select, 0: 550 us  
the start Time is porb_core go to High  
ACMP5 Hysteresis Control  
1: 100 us  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
925:924  
927:926  
929:928  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
ACMP4 Hysteresis Control  
ACMP3 Hysteresis Control  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
Datasheet  
16-Mar-2020  
Revision 3.3  
158 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
931:930  
933:932  
ACMP2 Hysteresis Control  
ACMP1 Hysteresis Control  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
00: 0  
01: 25 mV  
10: 50 mV  
11: 200 mV  
935:934  
936  
ACMP0 Hysteresis Control  
0: Turn Off  
Bandgap Turn On by Register  
1: Turn On (if chip is Power-down, the Bandgap will  
Power-down even if it is set to 1)  
937  
938  
939  
Reserved  
Reserved  
Reserved  
IO Pad  
940  
0: Disable  
1: Enable  
IO pre-Charge Enable Bit  
PIN2 Input Mode Control  
PIN 2  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Reserved  
942:941  
00: Floating  
01: 10 K  
10: 100 K  
944:943  
945  
PIN2 Pull-Up/Down Resistor Selection  
PIN2 Pull-Up Resistor Enable  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
PIN 3  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Analog IO  
947:946  
949:948  
PIN 3 Input Mode Control  
PIN 3 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
951:950  
952  
PIN 3 Pull-Up/Down Resistor Selection  
PIN 3 Pull-Up Resistor Enable  
0: Pull-Down  
1: Pull-Up  
Datasheet  
16-Mar-2020  
Revision 3.3  
159 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
PIN 4  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
955:953  
PIN 4 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
957:956  
PIN 4 Pull-Up/Down Resistor Selection  
0: Pull-Down  
1: Pull-Up  
958  
959  
PIN 4 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 4 Output Driver Current double  
PIN 5  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Analog IO  
961:960  
963:962  
PIN 5 Input Mode Control  
PIN 5 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
965:964  
966  
PIN 5 Pull-Up/Down Resistor Selection  
PIN 5 Pull-Up Resistor Enable  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
PIN 6  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
969:967  
PIN 6 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
971:970  
PIN 6 Pull-Up/Down Resistor Selection  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
972  
973  
PIN 6 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 6 Output Driver Current double  
PIN 7  
Datasheet  
16-Mar-2020  
Revision 3.3  
160 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Analog IO  
975:974  
977:976  
PIN 7 Input Mode Control  
PIN 7 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
979:978  
980  
PIN 7 Pull-Up/Down Resistor Selection  
PIN 7 Pull-Up Resistor Enable  
0: Pull-Down  
1: Pull-Up  
PIN 8  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
983:981  
PIN 8 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
985:984  
PIN 8 Pull-Up/Down Resistor Selection  
0: Pull-Down  
1: Pull-Up  
986  
987  
PIN 8 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 8 Output Driver Current double  
PIN 9  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Analog IO  
989:988  
991:990  
PIN 9 Input Mode Control  
PIN 9 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
993:992  
994  
PIN 9 Pull-Up/Down Resistor Selection  
PIN 9 Pull-Up Resistor Enable  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
PIN 10  
00: Digital in without Schmitt trigger  
01: Digital in with Schmitt trigger  
10: Low Voltage Digital IN  
11: Analog IO  
996:995  
PIN 10 Input Mode Control  
Datasheet  
16-Mar-2020  
Revision 3.3  
161 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
998:997  
PIN 10 Output Mode Control  
00: Floating  
01: 10 K  
10: 100 K  
1000:999  
1001  
PIN 10 Pull-Up/Down Resistor Selection  
PIN 10 Pull-Up Resistor Enable  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
0: Disable  
1: Enable  
1002  
PIN 10 4x Drive Enable  
Reserved  
1015:1003  
1023:1016  
Reserved  
Die ID:  
Power up Sequence Bits  
Data  
Hex: 5A  
Matrix 1 Output Selection  
Matrix 1 OUT:In0 of LUT2_4  
1029:1024  
1035:1030  
1041:1036  
1047:1042  
1053:1048  
1059:1054  
1065:1060  
1071:1066  
1077:1072  
1083:1078  
1089:1084  
1095:1090  
1101:1096  
1107:1102  
1113:1108  
1119:1114  
1125:1120  
1131:1126  
1137:1132  
1143:1138  
1149:1144  
1155:1150  
1161:1156  
1167:1162  
1173:1168  
1179:1174  
1185:1180  
1191:1186  
Matrix 1 OUT:In1 of LUT2_4  
Matrix 1 OUT:In0 of LUT2_5  
Matrix 1 OUT:In1 of LUT2_5  
Matrix 1 OUT:In0 of LUT2_6  
Matrix 1 OUT:In1 of LUT2_6  
Matrix 1 OUT:In0 of LUT2_7  
Matrix 1 OUT:In1 of LUT2_7  
Matrix 1 OUT:In0 of LUT3_8  
Matrix 1 OUT:In1 of LUT3_8  
Matrix 1 OUT:In2 of LUT3_8  
Matrix 1 OUT:In0 of LUT3_9  
Matrix 1 OUT:In1 of LUT3_9  
Matrix 1 OUT:In2 of LUT3_9  
Matrix 1 OUT:In0 of LUT3_10  
Matrix 1 OUT:In1 of LUT3_10  
Matrix 1 OUT:In2 of LUT3_10  
Matrix 1 OUT:In0 of LUT3_11  
Matrix 1 OUT:In1 of LUT3_11  
Matrix 1 OUT:In2 of LUT3_11  
Matrix 1 OUT:In0 of LUT3_12  
Matrix 1 OUT:In1 of LUT3_12  
Matrix 1 OUT:In2 of LUT3_12  
Matrix 1 OUT:In0 of LUT3_13  
Matrix 1 OUT:In1 of LUT3_13  
Matrix 1 OUT:In2 of LUT3_13  
Matrix 1 OUT:In0 of LUT3_14  
Matrix 1 OUT:In1 of LUT3_14  
Datasheet  
16-Mar-2020  
Revision 3.3  
162 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
1197:1192  
1203:1198  
1209:1204  
1215:1210  
1221:1216  
1227:1222  
1233:1228  
1239:1234  
1245:1240  
1251:1246  
1257:1252  
1263:1258  
1269:1264  
1275:1270  
1281:1276  
1287:1282  
1293:1288  
1299:1294  
1305:1300  
1311:1306  
1317:1312  
1323:1318  
1329:1324  
1335:1330  
1341:1336  
1347:1342  
Matrix 1 OUT:In2 of LUT3_14  
Matrix 1 OUT:In0 of LUT3_15  
Matrix 1 OUT:In1 of LUT3_15  
Matrix 1 OUT:In2 of LUT3_15  
Matrix 1 OUT:In0 of LUT4_1  
Matrix 1 OUT:In1 of LUT4_1  
Matrix 1 OUT:In2 of LUT4_1  
Matrix 1 OUT:In3 of LUT4_1  
Matrix 1 OUT: Set or nRST of DFF6/Latch6  
Matrix 1 OUT: Data of DFF6/Latch6  
Matrix 1 OUT: Clock of DFF6/Latch6  
Matrix 1 OUT: Set or nRST of DFF7/Latch7  
Matrix 1 OUT: Data of DFF7/Latch7  
Matrix 1 OUT: Clock of DFF7/Latch7  
Matrix 1 OUT: Set or nRST of DFF8/Latch8  
Matrix 1 OUT: Data of DFF8/Latch8  
Matrix 1 OUT: Clock of DFF8/Latch8  
Matrix 1 OUT: Data of DFF9/Latch9  
Matrix 1 OUT: Clock of DFF9/Latch9  
Matrix 1 OUT: Data of DFF10/Latch10  
Matrix 1 OUT: Clock of DFF10/Latch10  
Matrix 1 OUT: Data of DFF11/Latch11  
Matrix 1 OUT: Clock of DFF11/Latch11  
Matrix 1 OUT: Clock of Pipe Delay 1  
Matrix 1 OUT: Input Data of Pipe Delay 1  
Matrix 1 OUT: Reset of Pipe Delay 1  
Matrix 1 OUT: Input of Edge Detector and Programma-  
ble Delay 1  
1353:1348  
1359:1354  
1365:1360  
1371:1366  
1377:1372  
1383:1378  
1389:1384  
1395:1390  
1401:1396  
1407:1402  
1413:1408  
1419:1414  
1425:1420  
1431:1426  
1437:1432  
Matrix 1 OUT: Input of Inverter 1  
Matrix 1 OUT: Digital Output of PIN 12  
Matrix 1 OUT: Digital Output of PIN 13  
Matrix 1 OUT: OE of PIN 13  
Matrix 1 OUT: Digital Output of PIN 14  
Matrix 1 OUT: OE of PIN 14  
Matrix 1 OUT: Digital Output of PIN 15  
Matrix 1 OUT: Digital Output of PIN 16  
Matrix 1 OUT: OE of PIN 16  
Matrix 1 OUT: Digital Output of PIN 17  
Matrix 1 OUT: Digital Output of PIN 18  
Matrix 1 OUT: OE of PIN 18  
Matrix 1 OUT: Digital Output of PIN 19  
Matrix 1 OUT: OE of PIN 19  
Datasheet  
16-Mar-2020  
Revision 3.3  
163 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
1443:1438  
1449:1444  
1455:1450  
1461:1456  
Matrix 1 OUT: Digital Output of PIN 20  
Matrix 1 OUT: PDB(Power-down) for ACMP1  
Matrix 1 OUT: PDB(Power-down) for ACMP2  
Matrix 1 OUT: PDB(Power-down) for ACMP3  
Matrix 1 OUT:CNT7/CNT8/PWM/ADC External Clock  
(CLK_Matrix2)  
1467:1462  
1473:1468  
Matrix 1 OUT:CNT1/CNT3/CNT4 External Clock  
(CLK_Matrix3)  
1479:1474  
1485:1480  
1491:1486  
1497:1492  
1503:1498  
1509:1504  
1515:1510  
1521:1516  
Matrix 1 OUT: Input of DLY/CNT1  
Matrix 1 OUT: Input of DLY/CNT3  
Matrix 1 OUT: Input of DLY/CNT4  
Matrix 1 OUT: Keep of DLY/CNT4  
Matrix 1 OUT: Up of DLY/CNT4  
Matrix 1 OUT: Input of DLY/CNT7  
Matrix 1 OUT: Input of DLY/CNT8  
Matrix 1 OUT: PWM Power-down  
Matrix 1 OUT: PWM/DCMP0 Positive Input and PWM/  
DCMP1 Negative Input Register Selection Bit 0  
1527:1522  
1533:1528  
Matrix 1 OUT: PWM/DCMP0 Positive Input and PWM/  
DCMP1 Negative Input Register Selection Bit 1  
1539:1534  
1545:1540  
1551:1546  
1557:1552  
1563:1558  
1569:1564  
1575:1570  
1581:1576  
1587:1582  
1593:1588  
1599:1594  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [0]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [1]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [2]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [3]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [4]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [5]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [6]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [7]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [8]  
Matrix 1 OUT: Cross Connection Output to Matrix 0 [9]  
Reserved  
Programmable Delay with Edge Detector 0  
00: Rising Edge Detect  
01: Falling Edge Detect  
10: Both Edge Detect  
11: Both Edge Delay  
1601:1600  
Mode Selection  
00: 110 ns Delay  
01: 220 ns Delay  
10: 330 ns Delay  
11: 440 ns Delay  
1603:1602  
1604  
Delay Time Selection  
Output Delay Control  
0: Output no Delay  
1: Output Delay  
Datasheet  
16-Mar-2020  
Revision 3.3  
164 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
Programmable Delay with Edge Detector 1  
00: Rising Edge Detect  
01: Falling Edge Detect  
10: Both Edge Detect  
11: Both Edge Delay  
1606:1605  
Mode Selection  
00: 110 ns Delay  
01: 220 ns Delay  
10: 330 ns Delay  
11: 440 ns Delay  
1608:1607  
1609  
Delay Time Selection  
Output Delay Control  
0: Output No Delay  
1: Output Delay  
Pipe Delay 0  
Register Bits From 0 to 15, Data Delay From 1 to 16  
pipes  
1613:1610  
OUT0 Selection Bits  
Register Bits From 0 to 15, Data Delay From 1 to 16  
pipes  
1617:1614  
1618  
OUT1 Selection Bits  
0: non-inverted  
1: inverted  
OUT1 Output polarity Control  
Pipe Delay 1  
Register Bits From 0 to 15, Data Delay From 1 to 16  
pipes  
1622:1619  
OUT0 Selection Bits  
Register Bits From 0 to 15, Data Delay From 1 to 16  
pipes  
1626:1623  
OUT1 Selection Bits  
0: non-inverted  
1: inverted  
1627  
OUT1 Output polarity Control  
Oscillator  
00: RING OSC  
01: Matrix(Matrix1_OUT73)  
10: RC OSC  
11: SPI_SCLK(Matrix0_OUT83)  
1629:1628  
1632:1630  
PWM and ADC Clock Source Select  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
Clock divide Ratio Control for ring OSC to Matrix  
0: Disable  
1: Enable  
1633  
1634  
PWM Data synchronized with SPI Clock Enable  
FSM Data synchronized with SPI Clock Enable  
0: Disable  
1: Enable  
00: /1  
01: /4  
10: /8  
11: /16  
1636:1635  
Clock divide Ratio Control for RING OSC  
Ring OSC Clock to Matrix Input Enable  
0: Disable  
1: Enable  
1637  
1638  
Matrix Power-down (Matrix0_OUT84) enable for ring 0: Disable  
Oscillator 1: Enable  
Datasheet  
16-Mar-2020  
Revision 3.3  
165 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0: Non-Bypass  
1: Bypass  
1639  
ADC Clock divide by 16 Bypass  
Ring OSC Turn On by Register  
Note: if chip is Powered Down, the Ring OSC will Power-  
down even if this bit is set to 1  
0: Turn Off  
1: Turn On  
1640  
0: Disable  
1: Enable  
1641  
1642  
ADC Data synchronized with SPI Clock Enable  
RC OSC Clock to Matrix Input Enable  
0: Disable  
1: Enable  
00: /1  
01: /2  
10: /4  
11: /8  
1644:1643  
Clock divide Ratio Control for RC OSC  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
1647:1645  
Clock divide Ratio Control for RC OSC to Matrix  
Matrix Power-down (Matrix0_OUT84) enable for RC  
Oscillator  
0: Disable  
1: Enable  
1648  
1649  
RC OSC Turn On by Register  
Note: if chip is Powered Down, the Ring OSC will Power-  
down even if this Bit is Set to 1  
0: Turn Off  
1: Turn On  
0: 25 kHz  
1: 2 MHz  
1650  
1651  
1652  
RC OSC frequency Select  
bypass RC oscillator with external clock(matrix-  
_OUT1_73)  
0: RC OSC  
1: external clock  
matrix power-down (matrix0_OUT84) enable for LF os- 0: Disable  
cillator  
1: Enable  
0: Turn Off  
1653  
Low Frequency OSC turn on by register  
1: Turn On (if chip is Power-down, the LF OSC will  
Power-down even if it is Set to 1)  
00: /1  
01: /2  
10: /4  
11: /16  
1655:1654  
Clock divide Ratio Control for LF OSC  
SPI  
1656  
1657  
SPI Used as ADC Buffer Enable (1 Clock Delayed)  
SPI Parallel Input Data Source Selection  
0: FSM0[7:0], FSM1[7:0]  
1: ADC  
1658  
1659  
SPI Clock phase (CPHA)  
SPI Clock polarity (CPOL)  
0: 16 bits  
1: 8-bits (least significant 8 Bits)  
1660  
1661  
byte Selection  
0: Serial IN Parallel OUT  
1: Parallel IN Serial OUT  
SPI Input/Output Mode Selection  
PWM0  
Datasheet  
16-Mar-2020  
Revision 3.3  
166 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
Register 3, 8 Bits NVM Data to PWM/DCMP or DAC  
Input  
1669:1662  
1672:1670  
Data  
000: 10 ns  
001: 20 ns  
010: 30 ns  
011: 40 ns  
100: 50 ns  
101: 60 ns  
110: 70 ns  
111: 80 ns  
PWM0 Dead Band zone Control  
0: PWM Output duty cycle Down to 0% and DCMP  
OUT=1 if IN+ > IN-  
1: PWM Output duty cycle up to 100% and DCMP  
OUT=1 if IN+ >= IN-  
1673  
1674  
PWM/DCMP0 Mode Selection  
PWM/DCMP0 Function Selection  
0: PWM  
1: DCMP When in PWM Mode, OUTN0 is pwm1's  
Negative output When in DCMP Mode, OUTN0 is  
DCMP1's match Output  
0: Clock From MUX State by registers [1629:1628]  
1: Matrix1_73  
1675  
1676  
PWM/DCMP0 Clock Source Selection  
PWM/DCMP0 Clock Inversion  
0: Disable  
1: Enable  
0: power-down is not synchronized with clock, and  
output reset to 0 when PWM/DCMP is power-down,  
power-down sync to clock and output state control in 1: power-down is synchronized with clock, when  
1677  
power-down mode  
PD=0, the clock is enabled after 2 clock cycles, while  
when PD=1, the clock is gated immediately. and the  
output is kept at current state when PD=1.  
0: Disable  
1: Enable  
1678  
PWM/DCMP0 Turn On by Register  
00: ADC  
01: 8MSBs SPI  
10: FSM0_Q[7:0]  
1680:1679  
PWM/DCMP0 Positive Input Source Selection  
11: From MUX State by Matrix1_OUT[84:83]  
00: CNT8_Q[7:0]  
01: Register 0  
10: 8LSBs SPI  
11: FSM1_Q[7:0]  
1682:1681  
1690:1683  
PWM/DCMP0 Negative Input Source Selection  
Register 2, 8 Bits NVM Data to PWM/DCMP or DAC  
Input  
Data  
PWM1  
000: 10 ns  
001: 20 ns  
010: 30 ns  
011: 40 ns  
100: 50 ns  
101: 60 ns  
110: 70 ns  
111: 80 ns  
1693:1691  
PWM1 Dead Band zone Control  
PWM/DCMP1 Mode Selection  
0: PWM Output duty cycle Down to 0% and DCMP  
OUT=1 if IN+ > IN-  
1: PWM Output duty cycle up to 100% and DCMP  
OUT=1 if IN+ >= IN-  
1694  
Datasheet  
16-Mar-2020  
Revision 3.3  
167 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0: PWM  
1: DCMP When in PWM Mode, OUTN1 is pwm1's  
Negative output When in DCMP Mode, OUTN0 is  
DCMP1's match Output  
1695  
PWM/DCMP1 Function Selection  
0: Clock From MUX State by registers [1629:1628]  
1: Matrix1_73  
1696  
1697  
1698  
PWM/DCMP1 Clock Source Selection  
PWM/DCMP1 Clock Inversion  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
PWM/DCMP1 Turn On by Register  
00: ADC  
01: 8LSBs SPI  
10: FSM1[7: 0]  
11: Register 1  
1700:1699  
PWM/DCMP1 Positive Input Source Selection  
00: CNT11_Q[7:0]  
PWM/DCMP1 Negative Input and DAC Input Source 01: From MUX State by Matrix1_OUT[84:83]  
1702:1701  
1710:1703  
Selection  
10: 8MSBs SPI  
11: FSM0_Q[7:0]  
Register 1, 8 Bits NVM Data to PWM/DCMP or DAC  
Input  
Data  
PWM2  
000: 10 ns  
001: 20 ns  
010: 30 ns  
011: 40 ns  
100: 50 ns  
101: 60 ns  
110: 70 ns  
111: 80 ns  
1713:1711  
PWM2 Dead Band zone Control  
0: PWM Output duty cycle Down to 0% and DCMP  
OUT=1 if IN+ > IN-  
1: PWM Output duty cycle up to 100% and DCMP  
OUT=1 if IN+ >= IN-  
1714  
1715  
PWM/DCMP2 Mode Selection  
PWM/DCMP2 Function Selection  
0: PWM  
1: DCMP When in PWM Mode, OUTN2 is pwm2's  
Negative output When in DCMP Mode, OUTN2 is  
DCMP1's match Output  
0: Clock From MUX State by registers [1629: 1628]  
1: Matrix1_73  
1716  
1717  
1718  
PWM/DCMP2 Clock Source Selection  
PWM/DCMP2 Clock Inversion  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
PWM/DCMP2 Turn On by Register  
00: ADC  
01: 8MSBs SPI  
10: FSM1[7: 0]  
11: Register 3  
1720:1719  
1722:1721  
PWM/DCMP2 Positive Input Source Selection  
00: CNT8_Q[7: 0]  
PWM/DCMP2 Negative Input and DAC Input Source 01: Register 2  
Selection  
10: 8LSBs SPI  
11: FSM0_Q[7: 0]  
Datasheet  
16-Mar-2020  
Revision 3.3  
168 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
Register 0, 8 Bits NVM Data to PWM/DCMP or DAC  
Input  
1730:1723  
Data  
DLY/CNT 0  
1744:1731  
1747:1745  
CNT0 14bits Data From Register  
Data  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LFOSC  
DLY/CNT0 Clock Source Select  
101: DLY_OUT9  
110: RING OSC  
111: Matrix0_OUT72  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1749:1748  
DLY0 Edge Mode Select or CNT0 Reset Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
00: DLY  
01: CNT  
10: Edge Detect  
11: Wake Sleep Ratio Control  
1751:1750  
1752  
DLY/CNT0 Macrocell Function Select  
Wake Sleep Output State When WS Oscillator is Power- 0: in Power-down Mode  
down  
1: in Normal Operation State  
DLY/CNT 1  
1766:1753  
CNT1 14-bits Data from Register  
Data  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LF OSC  
1769:1767  
DLY/CNT1 Clock Source Select  
101: DLY_OUT0  
110: RING OSC  
111: Matrix1_OUT74  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1771:1770  
1773:1772  
DLY1 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
00: DLY  
01: CNT  
10: Edge Detect  
DLY/CNT1 Macrocell Function Select  
11: Reserved  
Datasheet  
16-Mar-2020  
Revision 3.3  
169 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
DLY/CNT 2/FSM0  
1787:1774  
1791:1788  
CNT2 14-bits Data from Register  
Data  
0000: RC OSC  
0001: RC OSC_DIV4  
0010: RC OSC_DIV12  
0011: RC OSC_DIV24  
0100: RC OSC_DIV64  
0101: DLY_OUT1  
0110: Matrix0_OUT72  
0111: Matrix0_OUT72 divide by 8  
1000: RING OSC  
DLY2/CNT2/FSM0 Clock Source Select  
1001: Matrix0_OUT83(SPI_SCLK)  
1010: LF OSC  
1011: CLK of FSM_DIV256  
1100: CLK PWM  
1101: Reserved  
1110: Reserved  
1111: Reserved  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1793:1792  
1795:1794  
DLY2 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
00: DLY  
01: CNT/FSM  
10: Edge Detect  
11: None  
DLY/CNT2 Macrocell Function Select  
00: 14 Bits NVM Data  
01: 8-bits ADC Data  
10: 0  
1797:1796  
1798  
FSM0 Input Data Source Select  
CNT2 Value Control  
11: 8LSBs SPI Parallel Data  
0: Reset (CNT value = 0)  
1: Set (CNT value = FSM Data)  
DLY/CNT 3  
1812:1799  
CNT3 14-bits Data from Register  
Data  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LF OSC  
1815:1813  
DLY/CNT3 Clock Source Select  
101: DLY_OUT2  
110: RING OSC  
111: Matrix1_OUT74  
Datasheet  
16-Mar-2020  
Revision 3.3  
170 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1817:1816  
DLY3 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
00: DLY  
01: CNT  
10: Edge Detect  
11: CNT (the Reset From Matrix not Control the Os-  
cillator)  
1819:1818  
DLY/CNT3 Macrocell Function Select  
CNT4 8-bits Data From Register  
DLY/CNT 4/FSM1  
1827:1820  
Data  
0000: RC OSC  
0001: RC OSC_DIV4  
0010: RC OSC_DIV12  
0011: RC OSC_DIV24  
0100: RC OSC_DIV64  
0101: DLY_OUT3  
0110: Matrix1_OUT74  
0111: Matrix0_OUT72 divide by 8  
1000: RING OSC  
1831:1828  
DLY4/CNT4/FSM1 Clock Source Select  
1001: Matrix0_OUT83(SPI_SCLK)  
1010: LF OSC  
1011: CLK FSM_DIV256  
1100: CLK PWM  
1101: Reserved  
1110: Reserved  
1111: Reserved  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1833:1832  
DLY4 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT/FSM  
1834  
DLY4/CNT4/FSM1 Macrocell Function Select  
FSM1 Input Data Source Select  
CNT4 Value Control  
00: 8-bits NVM Data  
01: 8-bits ADC Data  
10: 8MSBs SPI Parallel Data  
11: 0  
1836:1835  
0: Reset (CNT value = 0)  
1: Set (CNT value = FSM Data)  
1837  
DLY/CNT 5  
Datasheet  
16-Mar-2020  
Revision 3.3  
171 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
1845:1838  
CNT5 8-bits Data From Register  
Data  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LF OSC  
1848:1846  
DLY/CNT5 Clock Source Select  
101: DLY_OUT4  
110: RING OSC  
111: Matrix0_OUT73  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1850:1849  
DLY5 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT  
1851  
DLY/CNT 6  
DLY/CNT5 Macrocell Function Select  
CNT6 8-bits Data from Register  
1859:1852  
Data  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LF OSC  
1862:1860  
DLY/CNT6 Clock Source Select  
101: DLY_OUT5  
110: RING OSC  
111: Matrix0_OUT73  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1864:1863  
DLY6 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT  
1865  
DLY/CNT6 Macrocell Function Select  
CNT7 8-bits Data from Register  
DLY/CNT 7  
1873:1866  
Data  
Datasheet  
16-Mar-2020  
Revision 3.3  
172 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
000: RC OSC  
001: RC OSC_DIV4  
010: RC OSC_DIV24  
011: RC OSC_DIV64  
100: LF OSC  
1876:1874  
DLY/CNT7 Clock Source Select  
101: DLY_OUT6  
110: RING OSC  
111: Matrix1_OUT73  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1878:1877  
DLY7 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT  
1879  
DLY/CNT 8  
DLY/CNT7 Macrocell Function Select  
CNT8 8-bits Data from Register  
1887:1880  
Data  
0000: RC OSC  
0001: RC OSC_DIV4  
0010: RC OSC_DIV12  
0011: RC OSC_DIV24  
0100: RC OSC_DIV64  
0101: DLY_OUT7  
0110: Matrix1_OUT73  
0111: Matrix0_OUT72 divide by 8  
1000: RING OSC  
1891:1888  
DLY/CNT8 Clock Source Select  
1001: Matrix0_OUT83(SPI_SCLK)  
1010: LF OSC  
1011: CLK FSM_DIV256  
1100: CLK PWM  
1101: Reserved  
1110: Reserved  
1111: Reserved  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1893:1892  
DLY8 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT/PWM_RAMP  
1894  
DLY/CNT 9  
1902:1895  
DLY/CNT8 Macrocell Function Select  
CNT9 8-bits Data from Register  
Data  
Datasheet  
16-Mar-2020  
Revision 3.3  
173 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0000: RC OSC  
0001: RC OSC_DIV4  
0010: RC OSC_DIV12  
0011: RC OSC_DIV24  
0100: RC OSC_DIV64  
0101: DLY_OUT8  
0110: Matrix0_OUT72  
0111: Matrix0_OUT72 divide by 8  
1000: RING OSC  
1906:1903  
DLY/CNT9 Clock Source Select  
1001: Matrix0_OUT83(SPI_SCLK)  
1010: LF OSC  
1011: CLK FSM_DIV256  
1100: CLK PWM  
1101: Reserved  
1110: Reserved  
1111: Reserved  
If DLY Mode;  
00: Both Edge  
01: Falling Edge  
10: Rising Edge  
11: None  
1908:1907  
DLY9 Edge Mode Select  
If CNT Reset Mode;  
00: Both Edge Reset  
01: Falling Edge Reset  
10: Rising Edge Reset  
11: High level Reset  
0: DLY  
1: CNT/PWM_RAMP  
1909  
1910  
DLY/CNT9 Macrocell Function Select  
Reserved  
PIN 12  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital in  
011: Analog IO  
1913:1911  
PIN 12 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
1915:1914  
PIN 12 Pull-Up/Down Resistor Selection  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
1916  
1917  
1918  
PIN 12 Pull-Up Resistor Enable  
PIN 12 Output Driver Current double  
PIN 12 4x Drive Enable  
0: 1x drive  
1: 2x drive  
0: Disable  
1: Enable  
PIN 13  
00: Digital Input without Schmitt trigger  
01: Digital Input with Schmitt trigger  
10: Low Voltage Digital Input  
11: Analog IO  
1920:1919  
PIN 13 Input Mode Control  
Datasheet  
16-Mar-2020  
Revision 3.3  
174 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
1922:1921  
PIN 13 Output Mode Control  
00: Floating  
01: 10 K  
10: 100 K  
1924:1923  
1925  
PIN 13 Pull-Up/Down Resistor Selection  
PIN 13 Pull-Up Resistor Enable  
11: 1 M  
0: Pull-Down  
1: Pull-Up  
PIN 14  
00: Digital Input without Schmitt trigger  
01: Digital Input with Schmitt trigger  
10: Low Voltage Digital Input  
11: Analog IO  
1927:1926  
1929:1928  
PIN 14 Input Mode Control  
PIN 14 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1931:1930  
1932  
PIN 14 Pull-Up/Down Resistor Selection  
PIN 14 Pull-Up Resistor Enable  
0: Pull-Down  
1: Pull-Up  
PIN 15  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
1935:1933  
PIN 15 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10K  
10: 100K  
11: 1M  
1937:1936  
PIN 15 Pull-Up/Down Resistor Selection  
0: Pull-Down  
1: Pull-Up  
1938  
1939  
PIN 15 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 15 Output Driver Current double  
PIN 16  
00: Digital Input without Schmitt trigger  
01: Digital Input with Schmitt trigger  
10: Low Voltage Digital Input  
11: Analog IO  
1941:1940  
1943:1942  
PIN 16 Input Mode Control  
PIN 16 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
Datasheet  
16-Mar-2020  
Revision 3.3  
175 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
00: Floating  
01: 10K  
10: 100K  
11: 1M  
1945:1944  
PIN 16 Pull-Up/Down Resistor Selection  
PIN 16 Pull-Up Resistor Enable  
0: Pull-Down  
1: Pull-Up  
1946  
PIN 17  
000: Digital in without Schmitt trigger  
001: Digital in with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
1949:1947  
PIN 17 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1951:1950  
PIN 17 Pull-Up/Down Resistor Selection  
0: Pull-Down  
1: Pull-Up  
1952  
1953  
PIN 17 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 17 Output Driver Current double  
PIN 18  
00: Digital Input without Schmitt trigger  
01: Digital Input with Schmitt trigger  
10: Low Voltage Digital Input  
11: Analog IO  
1955:1954  
1957:1956  
PIN 18 Input Mode Control  
PIN 18 Output Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1959:1958  
1960  
PIN 18 Pull-Up/Down Resistor Selection  
PIN 18 Pull-Up Resistor Enable  
0: Pull-Down  
1: Pull-Up  
PIN 19  
00: Digital Input without Schmitt trigger  
01: Digital Input with Schmitt trigger  
10: Low Voltage Digital Input  
11: Analog IO  
1962:1961  
1964:1963  
1966:1965  
PIN 19 Input Mode Control  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-DRAIN  
11: 2x Open-DRAIN  
PIN 10 Output Mode Control  
00: Floating  
01: 10 K  
10: 100 K  
PIN 19 Pull-Up/Down Resistor Selection  
11: 1 M  
Datasheet  
16-Mar-2020  
Revision 3.3  
176 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
0: Pull-Down  
1: Pull-Up  
1967  
PIN 20  
PIN 19 Pull-Up Resistor Enable  
000: Digital IN without Schmitt trigger  
001: Digital IN with Schmitt trigger  
010: Low Voltage Digital IN  
011: Analog IO  
1970:1968  
PIN 20 Mode Control  
100: Push-Pull  
101: NMOS Open-DRAIN  
110: PMOS Open-DRAIN  
111: Analog IO & NMOS Open-DRAIN  
00: Floating  
01: 10 K  
10: 100 K  
11: 1 M  
1972:1971  
PIN 20 Pull-Up/Down Resistor Selection  
0: Pull-Down  
1: Pull-Up  
1973  
1974  
PIN 20 Pull-Up Resistor Enable  
0: 1x drive  
1: 2x drive  
PIN 20 Output Driver Current double  
1981:1975  
1987:1982  
1995:1988  
2001:1996  
2007:2002  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0: 1.8 V Use Regulator  
1: Bypass VDD as 1.8 V Device Power  
2008  
2009  
2010  
Bypass VDD to 1.8 V Device Only When Power is 1.8 V  
Input pad Enable to Core nRST Delay 500 us Enable  
Power Auto Detector Function for Charge Pump  
0: Delay 4 us  
1: Delay 500 us  
0: Enable  
1: Disable  
2012:2011  
2014:2013  
Reserved  
Reserved  
SPI top Control  
SPI Parallel Output Selection for Matrix 1 (IN[44] →  
IN[51])  
0: Matrix 1 Input From DCMP  
1: Matrix 1 Input From SPI Parallel Output [7: 0]  
2015  
0X: PIN 10 digital OUT From Matrix 0 (OUT67)  
10: From SPI (SDO)  
2017:2016  
SPI SDIO Output Control  
11: From ADC serial Output  
PIN 2 Reset Control  
0: PIN 2 Edge Active  
1: PIN 2 High Active  
2018  
2019  
Bypass the PIN 2  
0: Rising Edge  
1: Falling Edge  
PIN2 Edge Detect Mode  
0: Enable  
1: Disable  
2020  
PIN2 Reset Enable  
Reserved  
2027:2021  
Reserved  
NVM  
2029:2028  
Reserved  
Datasheet  
16-Mar-2020  
Revision 3.3  
177 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Table 63: Register Map  
Register Bit  
Signal Function  
Address  
Register Bit Definition  
2030  
Reserved  
Data  
2038:2031  
Pattern ID  
Note: assigned to track code revision  
0: Protection Disable  
1: Protection Enable  
2039  
Read Protection  
Data  
Hex: A5  
2047:2040  
Die ID: Power up Sequence Bits  
Datasheet  
16-Mar-2020  
Revision 3.3  
178 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
24 Package Top Marking Definitions  
24.1 TSSOP-20  
XXXXXXXX  
$RR###NNNN  
YYWW  
Device Name  
$: Subcon  
RR: Revision  
###: Programming Code  
NNNN: Alphanumeric  
Date Code  
Pin 1  
Identifier  
Datasheet  
16-Mar-2020  
Revision 3.3  
179 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
25 Package Information  
25.1 PACKAGE OUTLINES FOR TSSOP 20L 173 MIL GREEN PACKAGE  
JEDEC MO-220  
IC Net Weight: TBD g  
Datasheet  
16-Mar-2020  
Revision 3.3  
180 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
25.2 TSSOP HANDLING  
Be sure to handle TSSOP package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle TSSOP package with fingers as this can contaminate the package pins and interface with solder reflow.  
25.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 25.74 mm3 (nominal) for  
TSSOP-20. More information can be found at www.jedec.org.  
26 Ordering Information  
Part Number  
Type  
SLG46620-AG  
SLG46620-AGTR  
20-pin TSSOP  
20-pin TSSOP Tape and Reel (4k units)  
26.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
per Reel per Box  
Leader (min)  
Trailer (min)  
Nominal  
Package Size  
(mm)  
Reel &  
Hub Size  
(mm)  
Tape  
Width Pitch  
(mm)  
Part  
Package # of  
Length  
(mm)  
Length  
Type  
Pins  
Pockets  
Pockets  
(mm)  
(mm)  
TSSOP  
20L 173  
MILGreen  
20  
6.5 x 6.4  
4,000  
4,000  
330/100  
42  
336  
42  
336  
16  
8
Package  
26.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Pocket Pocket  
Index  
Hole  
Pitch  
Index Hole Index Hole  
Pocket  
Depth  
Pocket Index Hole  
Tape  
Tape  
BTM  
BTM  
to Tape  
Edge  
to Pocket  
Center  
Package  
Type  
Pitch  
Diameter  
Width Thickness  
Length  
Width  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
T
TSSOP 20L  
173 MIL  
Green  
6.8  
6.9  
1.6  
4
8
1.5  
1.75  
7.5  
16  
0.3  
Package  
Datasheet  
16-Mar-2020  
Revision 3.3  
181 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
26.3 TSSOP- 20  
Refer to EIA-481 specification  
Note: 1.Orientation in carrier: Pin1 is at upper left corner (Quadrant 1).  
27 Layout Guidelines  
27.1 TSSOP-20  
Unit: µm  
Datasheet  
16-Mar-2020  
Revision 3.3  
182 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Glossary  
A
ACMP  
ADC  
Analog Comparator  
Analog-to-Digital Converter  
B
BG  
BW  
Bandgap  
Bandwidth  
C
CH  
Channel Selection  
Clock  
CLK  
CNT  
CSB  
Counter  
Chip Select  
D
DAC  
DCMP  
DFF  
DLY  
Digital to Analog Converter  
Digital Comparator  
D Flip-Flop  
Delay  
E
ESD  
Electrostatic discharge  
Finite State Machine  
F
FSM  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
H
HTOL  
High Temperature Operating Life  
I
IN  
IO  
Input  
Input/Output  
L
LSB  
LUT  
Least Significant Bit  
Look-Up Table  
M
MOSI, SDI  
Master Output Slave Input  
Datasheet  
16-Mar-2020  
Revision 3.3  
183 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
MISO, SDO  
MSB  
Master Input Slave Output  
Most Significant Bit  
Multiplexer  
MUX  
N
nRST  
NVM  
Reset  
Non-Volatile Memory  
O
OD  
Open Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One-Time-Programmable  
Output  
P
PD  
Power-Down  
PGA  
PGEN  
POR  
PWR  
P DLY  
PWM  
Programmable Gain Amplifier  
Pattern Generator  
Power-On Reset  
Power  
Programmable Delay  
Pulse-Width Modulator  
R
RTI  
RTO  
Referred to input  
Referred to output  
S
SCLK  
SMT  
Serial Clock  
With Schmitt Trigger  
V
Vref  
Voltage Reference  
W
WOSMT  
WS  
Without Schmitt Trigger  
Wake and Sleep Controller  
Datasheet  
16-Mar-2020  
Revision 3.3  
184 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Revision History  
Revision  
Date  
Description  
Corrected Table Electrical Characteristics (VIH, VIL)  
Added note for CNTs  
Added Note 3 in Register OE 4x Drive Structure Diagram  
Fixed typos  
3.3  
16-Mar-2020  
Updated Digital Comparator/Pulse Width Modulator section  
Updated Block Diagram  
Fixed typos  
3.2  
3.1  
7-Oct-2019  
30-Sept-2019  
Updated Electrostatic Discharge Ratings  
Updated ACMP Input Voltage Offset  
Added Vref OUT Specification Table  
Updated Oscillator Frequency Limits  
Updated PGA Typical Performance Section  
Updated ACMP Maximum Power-On Delay Figures  
Added IO Typical Performance Section  
Updated Input Leakage Current  
Updated PIN Block Diagrams  
Updated PGA Offset and Gain error for all mode  
Updated ADC Characteristics (including PGA)  
Updated graph for ACMP Input Current Source  
Updated Programmable Delay Expected Delays and Widths  
Updated Typical Current Consumption Estimated for Each Macrocell table  
Updated Delay Estimated for Each ACMP table  
Updated Typical Delay Estimated for Each Macrocell  
Updated Vref Output Error  
3.0  
27-Sept-2019  
Updated ACMP Buffer Input Voltage Offset  
Updated ACMP Gain Error  
Updated ACMP Startup Time  
Updated Table EC at T = -40 °C to +105 °C, VDD = 1.71 V to 3.6 V, Unless Otherwise Noted  
Updated Table Oscillators Frequency Limits  
Updated Figures OSC Power-on Delay  
Added Figures Oscillators Frequency vs. VDD  
Updated Table OSC Power-On  
Corrected Programmable Delay / Edge Detector description and timing diagrams  
Corrected Oscillator Block Diagram  
Final version  
Datasheet  
16-Mar-2020  
Revision 3.3  
185 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  
SLG46620-A  
Auto Grade GreenPAK  
Programmable Mixed-signal Matrix  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
4.<n>  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
2020. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
186  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
16-Mar-2020  
Revision 3.3  
186 of 186  
© 2020 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG46620-AGTR

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46722

Personal Computers and Servers
DIALOG

SLG46722V

Personal Computers and Servers
DIALOG

SLG46722VTR

Personal Computers and Servers
DIALOG

SLG46811

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46811V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46811VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46827-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46827-AG

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46827-AGTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46855

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG