NC12S0A0V60NNFA [DELTA]

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A; 德尔福NC系列非隔离负载DC / DC电源模块的点: 12VIN , 0.9V - 5Vout , 60A
NC12S0A0V60NNFA
型号: NC12S0A0V60NNFA
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
德尔福NC系列非隔离负载DC / DC电源模块的点: 12VIN , 0.9V - 5Vout , 60A

电源电路
文件: 总13页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
High Efficiency:  
95% @ 12Vin, 5V/60A out  
Voltage and resistor-based trim  
No minimum load required  
Output voltage programmable from  
0.9Vdc to 5.0Vdc via external resistors  
Fixed frequency operation  
Input UVLO, output OTP, OCP, SCP  
Remote ON/OFF (default: positive)  
ISO 9001, TL 9000, ISO 14001, QS9000,  
OHSAS 18001 certified manufacturing  
facility  
UL/cUL 60950 (US & Canada) Recognized,  
and TUV (EN60950) Certified  
CE mark meets 73/23/EEC and 93/68/EEC  
directives  
Delphi NC Series Non-Isolated Point of Load  
DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A  
OPTIONS  
Negative On/Off logic  
The Delphi NC Series, 12V input, single output, non-isolated point of  
load DC/DC converters are the latest offering from a world leader in  
power systems technology and manufacturing Delta Electronics,  
Inc. This product family provides up to 60A of power in a vertical or  
horizontal mounted through-hole package. The NC12S0A0V60 will  
provide up to 60A of output current and the output can be resistor- or  
voltage-trimmed from 0.9Vdc to 5.0Vdc. It provides a very cost  
effective point of load solution. With creative design technology and  
optimization of component placement, these converters possess  
outstanding electrical and thermal performance, as well as extremely  
high reliability under highly stressful operating conditions.  
APPLICATIONS  
DataCom  
Distributed power architectures  
Servers and workstations  
LAN/WAN applications  
Data processing applications  
DATASHEET  
DS_NC12S60A_02072007  
TECHNICAL SPECIFICATIONS (TA=25°C, airflow rate=400LFM, Vin=12Vdc, nominal Vout unless otherwise noted)  
PARAMETER  
NOTES and CONDITIONS  
NC12S0A0V60  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Operating Temperature  
12.6  
50  
125  
Vdc  
°C  
°C  
V
0
-40  
Storage Temperature  
Refer to Figure 36 for the measuring point  
Non-isolated  
Input/Output Isolation Voltage  
INPUT CHARACTERISTICS  
Operating Input Voltage  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Hysteresis Voltage  
Maximum Input Current  
NA  
12  
11.04  
12.6  
32  
1
V
9.4  
8.3  
1.1  
V
V
V
A
mA  
100% Load, 11.04Vin, 5Vout  
No-Load Input Current  
250  
40  
150  
45  
Off Converter Input Current  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Short-Circuit Input Current  
OUTPUT CHARACTERISTICS  
Output Voltage Adjustment Range  
Output Voltage Set Point  
Output Voltage Regulation  
Over Load  
mA  
mA  
dB  
A
Refer to Figure 35  
120 Hz  
V
0.9  
-3.0  
5.0  
+3.0  
Vin=12V, Io=Io,max, 1% trim resistors  
%
Io=Io,min to Io,max  
Vin=Vin,min to Vin,max  
-1.5  
-0.2  
+1.5  
+0.2  
%
%
Over Line  
Output Voltage Ripple and Noise  
Peak-to-Peak  
5Hz to 20MHz bandwidth  
Full Load, 0.1µF ceramic, 10µF tantalum  
Full Load, 0.1µF ceramic, 10µF tantalum  
50  
15  
60  
1
mV  
mV  
A
%
mV  
A
RMS  
Output Current Range  
0
Output Voltage Over-shoot at Start-up  
Output Voltage Under-shoot at Power-Off  
Output DC Current-Limit Inception  
DYNAMIC CHARACTERISTICS  
Out Dynamic Load Response  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Settling Time  
Vin=12V, Turn ON  
Vin=12V, Turn OFF  
100  
94  
12Vin, 10µF Tan & 1µF Ceramic load cap, 10A/µs  
50% Io,max to 75% Io,max  
75% Io,max to 50% Io,max  
Settling to be within regulation band (+/- 3.0%)  
Io=Io.max  
75  
75  
100  
100  
150  
mV  
mV  
µs  
Turn-On Transient  
ms  
ms  
µF  
µF  
µF  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Minimum Output Startup Capacitive Load  
Maximum Output Startup Capacitive Load  
Minimum Input Capacitance  
EFFICIENCY  
Vin=12V, Vo=10% of Vo,set  
Vo=10% of Vo,set  
Ex: Four OSCON 6.3V/680µF (ESR 13mΩ max each)  
Full load  
Ex: Three OSCON 16V/270µF (ESR 18mΩ max each)  
10  
30  
2720  
810  
8160  
Vo=0.9V  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
Vin=12V, Io=60A  
83  
86  
88  
90  
92  
93  
95  
%
%
%
%
%
%
%
Vo=1.2V  
Vo=1.5V  
Vo=1.8V  
Vo=2.5V  
Vo=3.3V  
Vo=5.0V  
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control  
Logic High  
300  
KHz  
Positive logic (internally pulled high)  
Module On (or leave the pin open)  
Module Off  
2.4  
0
5.5  
0.8  
V
V
Logic Low  
Remote Sense Range  
GENERAL SPECIFICATIONS  
Calculated MTBF  
Weight  
400  
mV  
Telcordia SR-332 Issue1 Method1 Case3 at 50℃  
1.29  
37  
130  
M hours  
grams  
°C  
Over-Temperature Shutdown  
Refer to Figure 36 for the measuring point  
DS_NC12S60A_02072007  
2
ELECTRICAL CHARACTERISTICS CURVES  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 11.04V  
Vin = 11.04V  
Vin = 12.0V  
Vin = 12.6V  
40  
30  
20  
10  
0
Vin = 12.0V  
Vin = 12.6V  
0
10  
20  
30  
40  
50  
60  
60  
60  
0
10  
20  
30  
40  
50  
60  
60  
60  
Output Current (A)  
Output Current (A)  
Figure 1: Converter efficiency vs. output current  
Figure 2: Converter efficiency vs. output current  
(0.9V output voltage)  
(1.2V output voltage)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 11.04V  
Vin = 12.0V  
Vin = 12.6V  
Vin = 11.04V  
Vin = 12.0V  
Vin = 12.6V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Output Current (A)  
Output Current (A)  
Figure 3: Converter efficiency vs. output current  
Figure 4: Converter efficiency vs. output current  
(1.5V output voltage)  
(1.8V output voltage)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 11.04V  
Vin = 12.0V  
Vin = 12.6V  
Vin = 11.04V  
Vin = 12.0V  
Vin = 12.6V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Output Current (A)  
Output Current (A)  
Figure 5: Converter efficiency vs. output current  
Figure 6: Converter efficiency vs. output current  
(2.5V output voltage)  
(3.3V output voltage)  
DS_NC12S60A_02072007  
3
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
100  
90  
80  
70  
60  
50  
Vin = 11.04V  
40  
30  
20  
10  
0
Vin = 12.0V  
Vin = 12.6V  
0
10  
20  
30  
40  
50  
60  
Output Current (A)  
Figure 7: Converter efficiency vs. output current  
Figure 8: Output ripple & noise at 12Vin, 0.9V/60A out  
Figure 10: Output ripple & noise at 12Vin, 1.5V/60A out  
Figure 12: Output ripple & noise at 12Vin, 2.5V/60A out  
(5V output voltage)  
Figure 9: Output ripple & noise at 12Vin, 1.2V/60A out  
Figure 11: Output ripple & noise at 12Vin, 1.8V/60A out  
DS_NC12S60A_02072007  
4
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 13: Output ripple & noise at 12Vin, 3.3V/60A out  
Figure 14: Output ripple & noise at 12Vin, 5V/60A out  
Figure 15: Turn on delay time at 12Vin, 0.9V/60A out  
Figure 16: Turn on delay time Remote On/Off, 1.2V/60A out  
Ch1:OUTEN Ch2:Vout Ch3:PWRGD  
Ch1:OUTEN Ch2:Vout Ch3:PWRGD  
Figure 17: Turn on delay time at 12Vin, 3.3V/60A out  
Figure 18: Turn on delay time Remote On/Off, 5V/60A out  
Ch1:OUTEN Ch2:Vout Ch3:PWRGD  
Ch1:OUTEN Ch2:Vout Ch3:PWRGD  
DS_NC12S60A_02072007  
5
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 19: Typical transient response to step load change at  
Figure 20: Typical transient response to step load change at  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin, 1.2V  
out  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin,  
1.5V out  
Figure 21: Typical transient response to step load change at  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin, 1.8V  
out  
Figure 22: Typical transient response to step load change at  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin,  
2.5V out  
Figure 23: Typical transient response to step load change at  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin, 3.3V  
out  
Figure 24: Typical transient response to step load change at  
10A/µS from 50% to 75% and 75% to 50% of Io, max at 12Vin,  
5.0V out  
DS_NC12S60A_02072007  
6
FEATURES DESCRIPTIONS  
DESIGN CONSIDERATIONS  
Remote On/Off  
The NC60A is designed using three-phase synchronous  
buck topology. Block diagram of the converter is shown in  
Figure 25. The output can be trimmed in the range of 0.9V  
to 5.0V by a resistor from trim pin to ground. The remote  
sense is able to compensate for a drop from the output of  
converter to point of load.  
The remote ON/OFF input allows external circuitry to put  
the NC converter into a sleep mode. Active-high remote  
on/off is available as standard.  
Active-high units of the NC series are turned on if the  
remote ON/OFF pin is high (or floating). Pulling the pin low  
will turn off the unit. To guarantee turn-on the enable  
voltage must be above 2.4V and to turn off the enable  
voltage must be pulled below 0.8V  
The converter can be turned on/off by remote control.  
Positive OUTEN logic implies that the converter DC  
output is enabled when this signal is driven high (greater  
than 2.4V) or floating and disabled when low (below  
0.8V). Negative OUTEN logic is an option.  
The remote ON/OFF input can be driven in a variety of  
ways as shown in Figures 26, 27, and 28. If the remote  
ON/OFF signal originates on the primary side, the remote  
ON/OFF input can be driven through a discrete device  
(e.g. a bipolar signal transistor) or directly from a logic  
gate output. The output of the logic gate may be an  
open-collector (or open-drain) device. If the drive signal  
originates from the opposite of an isolated side, the  
remote ON/OFF input can be isolated and driven through  
a
The converter provides an open collector signal, Power  
Good. The power good signal is pulled low when output is  
not within ±10% of Vout or when Enable is off.  
The converter can protect itself into hiccup mode against  
over current and short circuit condition. Also, the  
converter will shut down due to over voltage protection is  
detected.  
The converter has an over temperature protection which  
can protect itself by shutting down for an over  
temperature event. There is a thermal hysteresis of  
typically 25℃  
VIN  
Vo  
TRIM  
o
o
o
o
o
GROUND  
OUTEN  
GROUND  
Safety Considerations  
It is recommended to add a fuse at input line. As to  
current rating of the fuse, it depends on the output voltage  
and current setting.  
Figure26: Remote ON/OFF Input Drive Circuit for Non-Isolated  
Bipolar  
5V  
VIN  
Vo  
TRIM  
o
o
o
o
o
GROUND  
OUTEN  
GROUND  
Figure 27: Remote ON/OFF Input Drive Circuit for Logic Driver  
Figure 25: Block Diagram  
DS_NC12S60A_02072007  
7
FEATURES DESCRIPTIONS (CON.)  
Under Voltage Lockout  
VIN  
Vo  
TRIM  
o
o
o
o
o
The undervoltage lockout prevents the converter from  
operating when the input voltage is too low. The lockout  
occurs between 8.3V to 9.4V. This allows more flexibility  
in designing and ensures operation on supply lines with  
large tolerances  
GROUND  
OUTEN  
GROUND  
Over Current and Short-Circuit Protection  
When over current condition occurs, the converter enters  
hiccup mode. Ambient temperature influences the current  
limit inception point since resistance of MOSFET rises  
with temperature. The unit will not be damaged in an over  
current condition because it will be protected by the over  
temperature protection.  
Figure 28: Remote ON/OFF Input Drive Circuit  
Remote Sense  
Remote sense compensates for voltage drops on the  
output by sensing the actual output voltage at the point  
of load. The module will compensate for a maximum  
drop of 400mV. The remote sense connects as shown  
in Figures 29.  
Over Temperature Protection (OTP)  
The over temperature protection is non-latching and a  
temperature sensor monitors the temperature of the PCB  
near one the main MOSFETS. If temperature exceeds a  
threshold of 130(typ.) the converter will shut down.  
When the substrate temperature has decreased by 25℃  
This limit includes any increase in voltage due to  
remote sense compensation and output voltage set  
point adjustment (trim).  
the converter will automatically restart.  
VIN  
Vo  
o
o
+SENSE  
Over Voltage Protection (OVP)  
GROUND  
The converter will shut down when an output over voltage  
is detected. Once the OVP condition is detected, the  
controller will stop all PWM outputs and will turn on  
low-side MOSFET driver to prevent any damage to load.  
-SENSE  
GROUND  
Contact and Distribution  
Losses  
Current Sharing (optional)  
Figure 29: Effective circuit configuration for remote sense  
The parallel operation of multiple converters is available  
with the NC60 (option code B). The converter will share to  
be within +/ - 10% of load. Note the remote sense lines of  
the parallel units must be connected at the same point for  
proper operation in addition to the current share pins  
being connected. Also, units are intended to be turned  
on/enabled at the same time. Hot plugging is not  
recommended. The current share diagram show in Figure  
30.  
operation  
DS_NC12S60A_02072007  
8
FEATURES DESCRIPTIONS (CON.)  
The resistor trim equation for the NC is as follows:  
12.69 Vout  
Vout 0.9  
Rset (kΩ) =  
NC60A  
Vout  
Where,  
Vout is the required voltage setpoint  
Rest is the resistance required between TRIM and  
Ground  
Cout  
+SENSE  
-SENSE  
GROUND  
Rest values should not be less than 1.8 kΩ  
I-SHARE  
LOAD  
TRIM  
Rs(Ω) tol  
OPEN  
38.3K  
18.7K  
12.1K  
6.34K  
3.92K  
1.87K  
Output Voltage  
+0.9 V  
NC60A  
0
Cout  
+1.2 V  
Vout  
+SENSE  
+1.5 V  
-SENSE  
GROUND  
I-SHARE  
TRIM  
+1.8 V  
+2.5 V  
+3.3 V  
+5 V  
Figure 30: NC60A Current Share Diagram  
Figure 32: Typical Trim Resistor Values  
The voltage trim equation with example is as follows:  
Output Voltage Programming  
The output on the module is trimmable by connecting an  
external resistor between the TRIM pin (PIN1) and  
ground as per Figure31 and the typical trim values are  
shown in Figure 32.  
Example:  
Set Vt = 1.25V  
Vt = 1.25V  
Vout = 2.5V  
Rs = 1 kΩ  
Rs (13 .1Vt + Vout 12 .69  
0.9 Rs VoutRs Vout + 12 .69  
Rt =  
The NC60A module has a trim range of 0.9V to 5.0V. A  
plot of trim behavior is shown in Figure 33  
Rt = 0.72 k  
Ω
+SENSE  
Vout  
+SENSE  
Vout  
Cout  
Cout  
GROUND  
-SENSE  
GROUND  
-SENSE  
Rs  
Rt  
TRIM  
Vt  
Rs  
TRIM  
Figure 33: Trim Output Voltage – with Voltage Source  
Figure 31: Trimming Output Voltage  
DS_NC12S60A_02072007  
9
Voltage Margin Adjusting  
THERMAL CONSIDERATION  
Output voltage margin adjusting can be implemented in  
the NC60A modules by connecting a resistor, R margin-up,  
from the Trim pin to the ground pin for adjusting voltage  
a little bit higher. Also, the output voltage can be  
adjusted lower by connecting a resistor, Rmargin-down, from  
the Trim pin to the output pin. Figure 34 shows the  
circuit configuration for output voltage margin adjusting.  
The electrical operating conditions of the NC, namely:  
Input voltage, Vin  
Output voltage, V  
o
Output current, I  
o
Determine how much power is dissipated within the  
converter. The following parameters further influence the  
thermal stresses experienced by the converter:  
Vt  
+SENSE  
Rmargin-down  
Vout  
Cout  
Ambient temperature  
Air velocity  
Thermal efficiency of the end system application  
Parts mounted on system PCB that may block airflow  
Real airflow characteristics at the converter location  
GROUND  
-SENSE  
Rs  
TRIM  
Rmargin-up  
In order to simplify the thermal design, a number of thermal  
de-rating plots are provided. These de-rating graphs show  
the load current of the NC versus the ambient air  
temperature and air flow. However, since the thermal  
performance is heavily dependent upon the final system  
application, the user needs to ensure the thermal reference  
point temperatures are kept within the recommended  
temperature rating. It is recommended that the thermal  
reference point temperatures are measured using a  
thermocouple or an IR camera. In order to comply with  
stringent Delta de-rating criteria, the ambient temperature  
should never exceed 85. Please contact Delta for further  
support..  
0
Figure 34: Circuit configuration for output voltage margining  
Output Capacitance  
An external output capacitor is required for stable  
operation.  
Reflected Ripple Current and Output Ripple  
and Noise Measurement  
The maximum acceptable temperature measured at the  
thermal reference point is 127. This is shown in Figure  
36.  
The measurement set-up outlined in Test Configuration  
Figure 35 have been used for both input  
reflected/terminal ripple current and output voltage  
ripple and noise measurements on NC series  
converters.  
PWB  
FACING PWB  
Input reflected current measurement point  
Ltest  
Vin+  
1
2
LOAD  
DC-DC Converter  
MODULE  
100nF  
10uF  
Cs  
Cin  
Cout  
Ceramic  
Tantalum  
Output voltage ripple noise measurement point  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
MEASURED BELOW  
THE MODULE  
Cs=270uF*1 Ltest=1.4uH Cin=270uF*3 Cout=680uF*4  
50.8 (2.0”)  
Figure 35:Input Reflected Ripple/Capacitor Ripple Current  
and Output Voltage Ripple and Noise Measurement Set-Up for  
NC60A  
AIR FLOW  
19 (0.75”)  
38 (1.5”)  
Note: Wind Tunnel Test Setup  
DS_NC12S60A_02072007  
10  
THERMAL CURVES (NC12S0A0V60)  
NC12S0A0V60 (Standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@ Vout =1.8V (Either Orientation)  
60  
50  
40  
30  
20  
10  
0
Natural  
Convection  
100LFM  
200LFM  
300LFM  
400LFM  
500LFM  
600LFM  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 39: Output current vs. ambient temperature and air  
Figure 36: Temperature measurement location  
* The allowed maximum hot spot temperature is defined at 127℃  
velocity@ Vout=1.8V(Either Orientation)  
NC12S0A0V60 (Standard) Output Current vs. Ambient Temperature and Air Velocity  
NC12S0A0V60 (Standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@ Vout =0.9V (Either Orientation)  
Output Current (A)  
@ Vout =5V (Either Orientation)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
Natural  
Convection  
Natural  
Convection  
100LFM  
200LFM  
300LFM  
100LFM  
200LFM  
300LFM  
400LFM  
500LFM  
400LFM  
500LFM  
600LFM  
25  
35  
45  
55  
65  
75  
85  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Ambient Temperature ()  
Figure 40: Output current vs. ambient temperature and air  
Figure 37: Output current vs. ambient temperature and air  
velocity@ Vout=0.9V(Either Orientation)  
velocity@ Vout=5V(Either Orientation)  
NC12S0A0V60 (Standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@ Vout =3.3V (Either Orientation)  
60  
50  
40  
30  
20  
10  
0
Natural  
Convection  
100LFM  
200LFM  
300LFM  
400LFM  
500LFM  
600LFM  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 38: Output current vs. ambient temperature and air  
hvelocity@ Vout=3.3V(Either Orientation)  
DS_NC12S60A_02072007  
11  
MECHANICAL DRAWING  
VERTICAL  
DS_NC12S60A_02072007  
12  
PART NUMBERING SYSTEM  
NC  
12  
S
0A0  
V
60  
P
N
F
A
Product  
Series  
Input  
Voltage  
Number of  
outputs  
S- Single  
output  
Output  
Voltage  
Output  
Current  
ON/OFF  
Logic  
Pin  
Length  
Mounting  
Option Code  
NC-  
12-  
0A0-  
programmable  
V- Vertical  
60- 60A P- Positive R- 0.118” F- RoHS 6/6 A- Standard  
Non-isolated 11.04~12.6V  
Converter  
N- Negative N- 0.140” (Lead Free)  
Functions  
MODEL LIST  
Efficiency  
12Vin @ 100% load  
Model Name  
Packaging  
Input Voltage  
Output Voltage Output Current  
NC12S0A0V60PNFA  
Vertical  
11.04~12.6Vdc  
0.9 V~ 5.0Vdc  
60A  
95% (5.0V)  
CONTACT: www.delta.com.tw/dcdc  
USA:  
Telephone:  
East Coast: (888) 335 8201  
West Coast: (888) 335 8208  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Europe:  
Telephone: +41 31 998 53 11  
Fax: +41 31 998 53 53  
Asia & the rest of world:  
Telephone: +886 3 4526107 x6220  
Fax: +886 3 4513485  
Email: DCDC@delta-es.tw  
Email: DCDC@delta.com.tw  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_NC12S60A_02072007  
13  

相关型号:

NC12S0A0V60NNFB

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60NRFA

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60NRFB

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60PNFA

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60PNFA_08

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60PNFB

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60PRFA

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC12S0A0V60PRFB

Delphi NC Series Non-Isolated Point of Load DC/DC Power Modules: 12Vin, 0.9V-5Vout, 60A
DELTA

NC13

NTC SMD Thermistors
KYOCERA AVX

NC13-266-18

Analog IC
ETC

NC13713100J0G

Strip Terminal Block
AMPHENOL

NC13714100J0G

Strip Terminal Block
AMPHENOL