DEI1090-MES-G [DEIAZ]

LED Driver with Square-Law Dimming Control;
DEI1090-MES-G
型号: DEI1090-MES-G
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

LED Driver with Square-Law Dimming Control

驱动 接口集成电路
文件: 总13页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI1090  
LED Driver with Square-Law  
Dimming Control  
6031 South Maple Ave.  
Tempe, AZ 85283  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
·
·
·
·
·
·
·
Emulates incandescent lamp ‘Square Law’ luminance curve.  
LED dimming controlled by Pulse Width Modulation ranging from 50HZ to 200HZ.  
Maximum LED current adjustable from 10mA to 20mA.  
200:1 Dimming Range at 50Hz. 40:1 Dimming Range at 200Hz  
Drives 8 LED outputs with matched current drive.  
Drivers can be cascaded to synchronously drive additional LEDs.  
Package Options  
o
o
Plastic 16 lead SOIC  
20L QFN 5 X 5  
APPLICATIONS  
·
·
·
LED replacement for dimmable incandescent lamps.  
Avionics instrument and panel lighting.  
Balanced display and keyboard backlighting.  
GENERAL DESCRIPTION  
DEI1090 device is a 16 pin bipolar integrated circuit designed to drive eight LEDs and provide Pulse Width Modulated (PWM)  
dimming control according to the luminance curve of incandescent lamps. All eight LEDx pins are driven with an average current  
proportional to the square of the input dimming voltage to control the LED brightness. Drivers can be cascaded to synchronously  
drive additional LED groups. The dimming control input may be a DC or AC voltage.  
Table 1 – SOIC Terminal Description  
PIN  
1
NAME  
VDD  
DESCRIPTION  
POWER INPUT: +4.5 to +16.5 VDC  
ANALOG INPUT: 0 to 2.5V AC or DC analog input for  
brightness control.  
2
3
VIN  
1
16  
VDD  
VIN  
ENABLE  
PWM  
LED8  
LED7  
LED6  
LED5  
ISET  
ANALOG IO: Optional external filter resistor and capacitor  
used when 400HZ AC control signals are supported. This pin  
must be connected to ground through a resistor even in DC  
FILT  
FILT  
LED1  
LED2  
LED3  
FSET  
GND  
applications.  
LED DRIVE OUTPUT: LED cathode connection. LED  
4-6,9,  
11-14  
LED1-8  
FSET  
average current is proportional to the square of VIN.  
ANALOG INPUT: External capacitor input to set PWM  
frequency.  
7
POWER INPUT: Ground.  
8
GND  
ISET  
LED4  
ANALOG INPUT: External resistor input to set LED current.  
10  
ANALOG OUTPUT: PWM output drives multiple 1090 slave  
devices for synchronous operation.  
15  
16  
PWM  
LOGIC INPUT: HIGH enables operation. LOW sets all LED  
outputs OFF and sets standby state.  
ENABLE  
© 2019 Device Engineering Incorporated  
Page 1 of 13  
DS-MW-01090 Rev J  
10/30/2019  
2
1
3
4
5
20  
19  
18  
17  
6
7
8
9
10  
16  
15 14 13 12 11  
BOTTOM VIEW  
Table 1A – QFN Terminal Description  
PIN  
3
NAME  
VDD  
DESCRIPTION  
POWER INPUT: +4.5 to +16.5 VDC.  
ANALOG INPUT: 0 to 2.5V AC or DC analog input for brightness  
control.  
4
5
VIN  
ANALOG IO: Optional external filter resistor and capacitor used  
when 400HZ AC control signals are supported. This pin must be  
connected to ground through a resistor even in DC applications.  
FILT  
LED DRIVE OUTPUT: LED cathode connection. LED average  
current is proportional to the square of VIN.  
6, 8, 9, 14, 16,  
17, 18, 19  
LED1-8  
FSET  
ANALOG INPUT: External capacitor input to set PWM frequency.  
11  
7, 12, 13, 20  
PAD  
POWER INPUT: Ground.  
GND  
ISET  
ANALOG INPUT: External resistor input to set LED current.  
15  
ANALOG OUTPUT: PWM output drives multiple 1090 slave  
devices for synchronous operation.  
1
2
PWM  
LOGIC INPUT: HIGH enables operation. LOW sets all LED  
outputs OFF and sets standby state.  
ENABLE  
No Connect  
10  
© 2019 Device Engineering Incorporated  
Page 2 of 13  
DS-MW-01090 Rev J  
10/30/2019  
FUNCTIONAL DESCRIPTION  
Top Level  
Figure 1 is the top level diagram of the DEI1090 Square Law LED Dimmer. The input voltage from a dimming bus is scaled at  
the VIN control pin to a range between 0 and 2.5V. The load on the dimming bus is kept to a minimum since the DEI1090 is locally  
powered through the VDD pin.  
A peak detector/filter is provided to allow use of either a DC or AC control input. The optional filter is set by an external resistor  
and capacitor at the FILT pin. A resistor load must be used even in DC applications. (Recommended 100k)  
The ENABLE pin enables the part when high and must be tied to VDD when not used. When the ENABLE pin is low, the part is  
put into a standby state and all LEDs are set to off.  
Eight LED driver outputs are provided. Each is driven with a Pulse Width Modulated (PWM) current waveform that has an average  
current proportional to the square of the voltage at the VIN pin. The PWM frequency is set with an external capacitor at the FSET  
pin. The peak LED current at 100% duty cycle is a multiple of the Iset current which is set with an external resistor at the ISET  
pin.  
The PWM pin is provided to allow cascading multiple DEI1090s to expand the number of synchronously controlled LED driver  
output.  
Figure 1 - DEI1090 Simplified Block Diagram  
Input Filter and Peak Detector  
An external resistor divider is used to scale the voltage applied to the VIN pin providing interface to a variety of standard avionics  
dimming bus formats i.e. 0-5VDC, 0-5VAC, 0-28VDC as showing in Table . The VIN interface contains a peak detector and a  
filter circuit to allow 400HZ AC control input signals. The external filter connections are shown in Figure 1. When an AC input is  
used, Rfilt and Cfilt should be set up to filter 400 Hz into DC. The signal to the FILT pin is limited to an internal 2.5V reference.  
A resistor load (Rfilt in the figure) must be used for the FILT pin even in DC applications.  
© 2019 Device Engineering Incorporated  
Page 3 of 13  
DS-MW-01090 Rev J  
10/30/2019  
Dimming Control  
The DEI1090 VIN control signal ranges from 0V to 2.5V full scale. This controls the PWM duty cycle and the LED current to  
produce an average current proportional to the square of the control voltage. The square-law characteristic equations are shown  
below and the resulting LED average current vs. VIN curve is shown in Figure 2.  
The square-law curve includes a 0.5V typical onset voltage (Vos) where LED illumination begins. When VIN is below Vos, the  
LEDs are off (Iled < Ioff) which emulates the behavior of an incandescent lamp. The current gain (Igain) from the ISET pin to the  
LEDx output pins is typically around 24 for a 5V system.  
ì
ï
ï
ï
í
0
if Vin <Vos  
é(Vin - Vos)ù  
Iled(peak) =  
* Igain if Vin >Vos and < 2.5V  
ê
ú
Rset  
ë
û
ï
ï
(2.5V - Vos)  
é
ù
* Igain  
if Vin > 2.5V  
ê
ú
ï
Rset  
ë
û
î
0 %  
if Vin <Vos  
ifVin >Vos and < 2.5V  
if Vin > 2.5V  
ì
ïï (Vin -Vos)  
Iled(dutycycle) =  
ïí(2.5V -Vos)  
ï
100%  
î
ì
ï
ï
0
if Vin < Vos  
2
é
ù
(
Vin -Vos)  
ï
Iavg =  
* Igain if Vin >Vos and < 2.5V  
í
ëê(2.5V -Vos)* Rset  
ú
û
ï
ï
(2.5V -Vos)  
é
ù
* Igain  
ifVin > 2.5V  
ï
ê
ú
Rset  
ë
û
î
1200  
Imean  
Imean-ideal  
1000  
800  
600  
400  
200  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
-200  
Figure 2 - Square-Law Relationship of VIN vs. Iled Average  
© 2019 Device Engineering Incorporated  
Page 4 of 13  
DS-MW-01090 Rev J  
10/30/2019  
APPLICATION INFORMATION  
Setting PWM Frequency  
The PWM frequency can be set with an external capacitor (Cfset) as shown in Figure 1. The PWM frequency is determined by:  
Ifset  
PWM frequency =  
;
where Cfset is in uF and Ifset is in uA  
2*Cfset  
For example, to set the frequency to 120Hz nominal with a 12 uA charging current, Cfset should be 0.05 mF. The serrodyne  
waveform will be seen at the FSET pin and is buffered to the PWM output. In most cases the actual frequency will be slightly  
lower since the reset of the serrodyne (ramp generator) is not instantaneous.  
Figure 3 - PWM Serrodyne Waveform  
Cascading Multiple Drivers  
Multiple drivers can be cascaded by connecting the PWM pin to the FSET pin of one slave device. If more than two are required,  
daisy chain the next PWM to the next FSET pin. The PWM output waveform is a buffered Serrodyne signal as generated at the  
FSET pin.  
Figure 4 - Cascading Multiple Drivers  
© 2019 Device Engineering Incorporated  
Page 5 of 13  
DS-MW-01090 Rev J  
10/30/2019  
Setting Up Your Input and Filter  
Many dimmer applications use a 400 Hz AC source for the dimming voltage. The brightness of the incandescent lamp is  
proportional to the RMS value of the AC signal. As an added feature, the DEI1090 has an input peak detector and allows for an  
external filter to be added so that AC dimming signals can be used to create a proportional DC voltage. The input is also limited at  
this stage to an on-chip 2.5V reference value.  
All applications require an input divider to bring the signal to a level that is suitable for the DEI1090 device. After the input is half  
wave rectified and peak detected, then it is sent to the FILT pin where a filter should be placed to remove ripple from the signal.  
The input resistors R1 and R2 shown in Figure 5 should be set up as shown in Table 2.  
Input Type  
R1  
1.83 * R  
R
R2  
R
R
Comments  
R should be at least 10K ohms to protect the chip from  
5V AC Dimming Voltage  
5V DC Dimming Voltage  
28V DC Dimming Voltage  
clamp current when an AC signal is used.  
10.2 * R  
R
Table 2 - Resistor Ratios for Scaling Dimmer Voltages  
Example of Rset Determination  
Rset  
Iset max  
417 uA  
500 uA  
583 uA  
667 uA  
749 uA  
833 uA  
Iled max *  
10 mA  
12 mA  
14 mA  
16 mA  
18 mA  
20 mA  
Rset is selected to set the peak current value at 100% duty  
cycle. A fixed resistor or trimmer may be used to set the LED  
current for the required luminance at full scale Vin. The peak  
LED current range is from 10 mA and 20 mA. Resistor values  
should be set as shown in Table 3.  
4.80 kΩ  
4.00 kΩ  
3.43 kΩ  
3.00 kΩ  
2.67 kΩ  
2.40 kΩ  
Note: To measure or adjust the peak current, drive Vin > 2.5V  
and < VDD.  
* - Iled max in the table assumes a gain of 24.  
Table 3 - Rset versus LED Maximum Current  
Creating a Dual Range Dimmer  
To create a dual range dimmer with two dimming curves, the  
circuit can be set up to switch a second Rset resistor in parallel  
with the primary Rset resistor.  
An example is shown in Figure 5. This uses Rset = 4.8 kΩ  
resistor in parallel with Rset2 = 4.8 kΩ resistor and a switch.  
When the switch is open, Rset = 4.8 kΩ and the maximum LED  
current is ~ 10 mA. When the switch is closed, the equivalent  
resistance of 2.4 kΩ creates a maximum peak current of ~ 20 mA.  
Note: To measure the peak current, drive Vin > 2.5V and < VDD.  
Figure 5 - Dual Range LED Dimmer Example  
© 2019 Device Engineering Incorporated  
Page 6 of 13  
DS-MW-01090 Rev J  
10/30/2019  
LED Output Compliance Voltage and Power Consumption  
The DEI1090 regulates current through eight LED outputs. Each LEDx output can regulate LED current over a wide compliance  
voltage range. The voltage at the LED pin should be designed to be as low as possible to minimize power dissipation in the IC.  
Figure 6 shows typical LED output I-V characteristics for various Iset values.  
0.025  
Iset  
Current  
0.02  
(uA)  
0.015  
833u  
729u  
625u  
521u  
417u  
0.01  
0.005  
0
0
1
2
3
4
5
LEDx Output Voltage (V)  
Figure 6 – Output I-V Characteristics  
As is shown in Figure 6, an output voltage above 0.7V will regulate the output current.  
Example calculation of IC power dissipation. Use Figure 1:  
Given that the voltage across the LED is 2V and the current through each LED is 20 mA and there is 1 LED per output, Vdd supply  
is +12V, V+ is +5v and Iq (VDD quiescent current, see Table 6) is 3.5ma and the optional RLED resistors aren’t being used, the  
average IC power dissipation due to the LED drive is:  
Pd = Pq + Pld = Iq * Vdd + 8 * Iout * Vout = 3.5mA * 12v + 8 * 20 mA * (5v-2v) = 42mw + 480mw = 522mw  
Pd must be kept below the maximum power listed in Table 4 to keep the junction temperature < Tjmax. Pd should be minimized  
for optimum IC reliability.  
Assuming a Theta-ja (junction to ambient rise with power) of 74C/W, the junction temperature is .522 x 74 = 38.6C above  
ambient temperature.  
One way to control the IC power dissipation is to place a resistor in  
series with the LED as shown in Figure 1. This will drop the  
24.5  
excess V+ voltage in the resistor rather than in the IC.  
24  
Voltage Dependency of Igain  
23.5  
23  
The gain from Iset to Iled is nominally about 24. This gain has a  
supply voltage dependency so that the gain at VDD = 15V is higher  
than the gain when VDD = 5V. The minimum and maximum gain  
values for some common operating voltages are listed in Table 6.  
An example waveform of the linear voltage dependency is shown  
in Figure 7. Note: All LED outputs of the IC should be loaded.  
The part will still work with outputs unloaded but the current  
calculation may be skewed. For example, if four LED’s are to be  
run at 20ma each, the Iset should be set to 10ma and the LED’s  
paralleled in groups of two in order to use up all eight outputs.  
22.5  
6
8
10  
12  
14  
16  
VDD/V  
2V/div  
Figure 7 - Voltage Dependency Curve  
© 2019 Device Engineering Incorporated  
Page 7 of 13  
DS-MW-01090 Rev J  
10/30/2019  
Adjusting Onset Voltage and Gain Curve  
The LED onset voltage (Vos) is used to match the turn-on voltage of an  
incandescent lamp. If an application requires a Vos lower than the 0.5V  
Vos of the IC, an offset voltage may be added to the Vin input making  
the apparent turn-on voltage lower. As shown in Figure 8, the VDD is  
added in through Ros which is a much higher value than R1 and R2.  
As an example :  
Vos is typically 0.5V  
Choose R1 = R2 = 10 kΩ (5V DC Dimming Voltage)  
If an onset voltage of 0.25 V is desired then, using the equation:  
Figure 8 – Vos reduction example  
R2 Ros  
R1 R2  
Vin =V dim mer*  
+VDD*  
R1+ (R2 Ros)  
Ros + (R1 R2)  
1
Use Ros = 100 kΩ, then Vin @ V dim mer * +VDD*0.05.  
2
This results in about an extra 0.25 V for a 5V supply and an apparent 0.25V onset voltage from the dimming bus. This onset  
voltage will vary with VDD.  
Some applications might require a higher onset voltage. For example, the circuit in Figure 9 works with an input range of 9v  
through 28v to produce an equivalent .5v to 2.5v range at Vin of the IC. The zener diode in this example is 4.7v. The break point  
is set by D1 while the slope is set by the resistors.  
Figure 9 Vos elevation example  
© 2019 Device Engineering Incorporated  
Page 8 of 13  
DS-MW-01090 Rev J  
10/30/2019  
The schematic in Figure 10 provides two break points using diodes D1 and D2 that allow manipulating the curve to something  
other than the square law curve. Zener diode D1 is 4.7v and D2 is 20v. Input voltage range is 9v to 28v for a Vin on the IC of  
.5v to 2.5v.  
Figure 10 Piecewise transfer curve modification example  
Slew Rate Control  
The current through the LED can be limited when required. A 10us rise and fall time would require a minimum 50 mH inductor  
in series with the set resistor on the ground side. Place a diode in parallel with the inductor from ground to the top pin in order to  
clamp negative going pulses to one diode drop below ground.  
ELECTRICAL DESCRIPTION  
Table 4 - Absolute Maximum Ratings  
PARAMETER (Voltages referenced to Ground)  
VDD Supply Voltage  
MIN  
MAX  
+20  
UNITS  
V
Storage Temperature  
Input Voltage  
-65  
+150  
°C  
FSET, ISET, ENABLE, PWM pins  
VIN pin (during AC dimmer operation, keep absolute current below 1 mA)  
LED1-8 pins  
– 0.3  
– 0.6  
– 0.3  
VDD+0.3  
VDD+0.3  
20  
V
V
Input Current: Any pin  
-20  
20  
mA  
Power Dissipation @ 85 °C: (> 10 Sec)  
16 Lead SOIC  
ESD per JEDEC A114-A Human Body Model  
700  
2000  
mW  
V
°C  
Peak Body Temperature,  
Non-G Package  
-
240  
260  
- G Package  
Notes: Stresses above absolute maximum ratings may cause permanent damage to the device.  
© 2019 Device Engineering Incorporated  
Page 9 of 13  
DS-MW-01090 Rev J  
10/30/2019  
Table 5 - Recommended Operating Conditions  
PARAMETER (Voltages referenced to Ground)  
VDD Supply Voltage  
MIN  
MAX  
UNITS  
+4.5  
+16.5  
V
Operating Temperature  
Plastic Package  
Junction Temperature:  
-55  
+85  
°C  
°C  
+125  
Tjmax, Plastic Packages (Limited by molding compound Tg)  
Table 6 - Electrical Characteristics  
Conditions: Temperature: -55°C to +85°C for plastic, VDD = 4.5 to 16.5V Unless otherwise noted.  
25°C (4)  
-55°C (4)  
85°C (4)  
(or over temp range)  
PARAMETER  
CONDITIONS  
SYMBOL  
UNITS (1)  
MIN NOM MAX MIN NOM MAX MIN NOM MAX  
SUPPLY CURRENT  
ENABLE = 0.0 V,  
VDD=16.5V  
ENABLE=VDD=  
16.5V;  
VIN = 0.0 V;  
All LEDs off  
VDD Standby Current  
VDD Quiescent Current  
Istdby  
8
50  
6
15  
5
30 100  
uA  
Iq  
2.5  
5
3.25  
3.5  
5
mA  
PULSE WIDTH MODULATOR  
VIN at 100% PWM Duty  
Cycle  
VIN at PWM Onset  
Voltage  
VAPWM  
Vos1  
2.4 2.45 2.5  
0.4 0.5 0.6  
V
V
FSET charge current  
FSET = 0V  
IFSET  
11 13.3 15 13 15 16 13 14.2 16  
mA  
PWM Output Voltage  
Accuracy from FSET  
Voltage (5)  
Cascaded  
DEI1090  
PWMacc  
-3 0.3  
3
%
VIN BUFFER/PEAK DETECTOR/ FILTER  
VIN Input Voltage Range  
VIN Input Current  
VIN  
Iin  
0
2.5  
V
VIN = 0V to 2.5V  
-10 -5  
uA  
Input Buffer Accuracy  
(DC)  
VIN/Vfilt  
VIN = 1.0v  
BufAcc  
VFILT  
-3 0.5  
0
3
%
V
FILT Output Voltage  
VIN = 0 to 2.5V  
2.5  
LOGIC INPUT  
ENABLE Input Low  
ENABLE Input High  
Vil  
Vih  
Iil  
0.4  
0.4  
0.4  
V
V
2.4  
2.4  
2.4  
ENABLE Input Current  
Low  
ENABLE Input Current  
Hi  
ENABLE =  
Vilmax  
ENABLE =  
Vihmin  
-5 -1.8  
-5 -1.75  
uA  
Iih  
uA  
LED DRIVER  
VSET  
ISET Bias Voltage @  
100% Duty Cycle  
LED Output Minimum  
Compliance Voltage (2)  
VIN = 2.5V  
ILED = 20mA  
2.0  
0.7  
V
V
VCOMP  
© 2019 Device Engineering Incorporated  
Page 10 of 13  
DS-MW-01090 Rev J  
10/30/2019  
Conditions: Temperature: -55°C to +85°C for plastic, VDD = 4.5 to 16.5V Unless otherwise noted.  
25°C (4)  
-55°C (4)  
85°C (4)  
(or over temp range)  
PARAMETER  
CONDITIONS  
SYMBOL  
UNITS (1)  
MIN NOM MAX MIN NOM MAX MIN NOM MAX  
LED Output Off State  
Leakage Current  
VIN = 0V, LEDx  
= 5V  
0.01  
0.05  
0
IOFF  
mA  
Pin-to-PIN LED Output  
current matching, relative  
to median  
VDD = 5V, 12V,  
15V (3)  
IMATCH  
±6  
14  
±5  
±4  
%
VDD = 5V (3)  
VDD = 12V (3)  
VDD = 15V (3)  
VDD = 5V (3)  
VDD = 12V (3)  
VDD = 15V (3)  
ILED5L  
ILED12L  
ILED15L  
ILED5H  
ILED12H  
ILED15H  
9
9
13  
16  
16  
7
8
8
11  
11  
12  
18  
20  
20  
mA  
mA  
mA  
mA  
mA  
mA  
Current Gain: Iset =  
400uA  
12  
12  
15  
19  
20  
17 11  
17 12  
21 16  
26 17  
27 17  
20 14  
23 16  
23 16  
Current Gain: Iset =  
800uA  
Notes:  
1. Currents flowing into the device are positive. Currents flowing out of the device are negative. Voltages are referenced to  
ground.  
2. Guaranteed by design.  
3. LEDx = 1V, VIN = 2.5V, FSET = 0.5V  
4. If no -55C or 85C limits are stated, 25C limits apply at all temperatures.  
5. Applies to SES part only. MES part TBD.  
PACKAGE DESCRIPTION  
Table 7 – Package Characteristics  
PACKAGE TYPE  
20 QFN 5X5 G  
16 Lead WB SOIC - G  
REFERENCE  
20 QFN 5X5 G  
16 Lead WB SOIC - G  
THERMAL RESISTANCE:  
qJA (4 layer PCB with Power Planes)  
~ 37 °C/W (see note)  
74 °C/W  
24 °C/W  
~ 7 °C/W  
qJC  
JEDEC MOISTURE  
SENSITIVITY LEVEL  
MSL 1 / 260°C  
MSL 1 / 260°C  
(MSL)  
LEAD FINISH MATERIAL /  
JEDEC Pb-free CODE  
NiPdAu  
NiPdAu  
e4  
Pb-Free DESIGNATION  
RoHS Compliant  
RoHS Compliant  
JEDEC REFERENCE  
MO-153-AC  
Note: Exposed pad soldered to PCB land with thermal vias to internal ground plane.  
© 2019 Device Engineering Incorporated  
Page 11 of 13  
DS-MW-01090 Rev J  
10/30/2019  
16 Lead WB SOIC, -G Package  
DIMENSION IN INCHES  
SYM  
A
A1  
A2  
b
c
D
E1  
E
MIN  
0.098  
0.005  
0.089  
0.012  
0.008  
0.402  
0.291  
0.400  
NOM  
0.101  
0.009  
0.092  
0.016  
0.010  
MAX  
0.104  
0.012  
0.095  
0.020  
0.013  
0.410  
0.299  
0.414  
0.406  
0.295  
0.404  
e
L
L1  
θ
0.050 Typical  
--  
0.016  
0.051  
0°  
0.050  
0.059  
8°  
0.055  
--  
h
0.010  
0.015  
0.020  
© 2019 Device Engineering Incorporated  
Page 12 of 13  
DS-MW-01090 Rev J  
10/30/2019  
20 Lead QFN 5X5, -G Package  
Dimension  
mm  
mils  
Symbol  
A
Min  
0.85  
0
0.175  
4.9  
4.9  
3.15  
3.15  
Max  
0.95  
0.05  
0.225  
5.1  
5.1  
3.25  
3.25  
Min  
33.46  
0
Max  
37.40  
1.97  
A1  
A3  
D
E
D2  
E2  
6.89  
8.86  
192.91  
192.91  
124.02  
124.02  
200.79  
200.79  
127.95  
127.95  
e
0.65BSC  
0.25  
0.35  
0°  
25.59BSC  
NX b  
NX L  
0.35  
0.45  
4°  
9.84  
13.78  
17.72  
4°  
13.78  
0°  
θ°  
ORDERING INFORMATION  
Part Number  
DEI1090-MES-G  
Marking  
DEI1090  
MES  
Package  
20 QFN 5X5 G  
Temperature  
-55 ºC to +85 ºC  
DEI1090-SES-G  
DEI1090  
E4  
16 WB SOIC  
-55 ºC to +85 ºC  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or  
guarantee regarding suitability of its products for any particular purpose.  
© 2019 Device Engineering Incorporated  
Page 13 of 13  
DS-MW-01090 Rev J  
10/30/2019  

相关型号:

DEI1090-SES-G

LED Driver with Square-Law Dimming Control
DEIAZ

DEI1116

Transceiver Family
DEIAZ

DEI1116-PES-G

Transceiver Family
DEIAZ

DEI1116-PMS-G

Transceiver Family
DEIAZ

DEI1116-QES-G

Transceiver Family
DEIAZ

DEI1116-QMS-G

Transceiver Family
DEIAZ

DEI1117-PES-G

Transceiver Family
DEIAZ

DEI1117-PMS-G

Transceiver Family
DEIAZ

DEI1117-QES-G

Transceiver Family
DEIAZ

DEI1117-QMS-G

Transceiver Family
DEIAZ

DEI1148

OCTAL ARINC 429 LINE RECEIVER
DEIAZ

DEI1148-QES-G

OCTAL ARINC 429 LINE RECEIVER
DEIAZ