DS3153 [DALLAS]

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs; 单/双/三/四路,DS3 / E3 / STS - 1 LIU的
DS3153
型号: DS3153
厂家: DALLAS SEMICONDUCTOR    DALLAS SEMICONDUCTOR
描述:

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
单/双/三/四路,DS3 / E3 / STS - 1 LIU的

电信集成电路 电信电路
文件: 总60页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DEMO KIT AVAILABLE  
DS3151/DS3152/DS3153/DS3154  
Single/Dual/Triple/Quad  
DS3/E3/STS-1 LIUs  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
The DS3151 (single), DS3152 (dual), DS3153  
(triple), and DS3154 (quad) line interface units (LIUs)  
perform the functions necessary for interfacing at the  
physical layer to DS3, E3, or STS-1 lines. Each LIU  
has independent receive and transmit paths and a  
built-in jitter attenuator.  
Cꢀ Single, Dual, Triple, or Quad Integrated  
Transmitter, Receiver, and Jitter Attenuators for  
DS3, E3, and STS-1  
Cꢀ Each Port Independently Configurable  
Cꢀ Perform Receive Clock/Data Recovery and  
Transmit Waveshaping  
Cꢀ Hardware or CPU Bus Configuration Options  
Cꢀ Jitter Attenuators can be Placed in Either the  
Receive or Transmit Paths  
APPLICATIONS  
SONET/SDH and PDH Multiplexers  
Digital Cross-Connects  
Access Concentrators  
ATM and Frame Relay Equipment  
Routers  
Cꢀ Interface to 75Coaxial Cable at Lengths Up to  
380m (DS3), 440m (E3), or 360m (STS-1)  
Cꢀ Use 1:2 Transformers on Tx and Rx  
Cꢀ Require Minimal External Components  
Cꢀ Local and Remote Loopbacks  
PBXs  
Cꢀ Low-Power 3.3V Operation (5V Tolerant I/O)  
Cꢀ Industrial Temperature Range:  
-40°C to +85LC  
DSLAMs  
CSUs/DSUs  
Cꢀ Small Package: 144-Pin, 13mm x 13mm  
Thermally Enhanced CSBGA  
FUNCTIONAL DIAGRAM  
Cꢀ IEEE 1149.1 JTAG Support  
EACH LIU  
Features continued on page 5.  
LINE IN  
RECEIVE  
CLOCK  
ORDERING INFORMATION  
RXP  
RXN  
CLK  
DS3, E3,  
OR STS-1  
DATA  
Dallas  
PART  
LIUs  
TEMP RANGE  
PIN-PACKAGE  
AND DATA  
DS3151  
DS3151N  
DS3152  
DS3152N  
DS3153  
DS3153N  
DS3154  
DS3154N  
1
1
2
2
3
3
4
4
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
144 TE-CSBGA  
Semiconductor  
DS315x  
CONTROL  
STATUS  
LINE OUT  
DS3, E3,  
OR STS-1  
TRANSMIT  
CLOCK  
TXP  
TXN  
CLK  
DATA  
AND DATA  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 60  
REV: 120303  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
TABLE OF CONTENTS  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
DETAILED DESCRIPTION.................................................................................................5  
APPLICATIONS .................................................................................................................7  
HARDWARE MODE AND CPU BUS MODE......................................................................8  
PIN DESCRIPTIONS ........................................................................................................10  
REGISTER DESCRIPTIONS............................................................................................15  
RECEIVER........................................................................................................................22  
TRANSMITTER ................................................................................................................25  
DIAGNOSTICS .................................................................................................................28  
JITTER ATTENUATOR....................................................................................................29  
10. RESET LOGIC..................................................................................................................30  
11. TRANSFORMERS............................................................................................................31  
12. JTAG TEST ACCESS PORT AND BOUNDARY SCAN..................................................32  
13. ELECTRICAL CHARACTERISTICS ................................................................................37  
14. PIN ASSIGNMENTS.........................................................................................................46  
15. PACKAGE INFORMATION..............................................................................................59  
16. THERMAL INFORMATION ..............................................................................................60  
17. REVISION HISTORY........................................................................................................60  
2 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
LIST OF FIGURES  
Figure 1-1. External Connections ............................................................................................................ 7  
Figure 2-1. 4-Port Unchannelized DS3/E3 Card ...................................................................................... 7  
Figure 3-1. Hardware Mode Block Diagram............................................................................................. 8  
Figure 3-2. CPU Bus Mode Block Diagram.............................................................................................. 9  
Figure 5-1. Status Register Logic .......................................................................................................... 16  
Figure 6-1. Receiver Jitter Tolerance..................................................................................................... 24  
Figure 7-1. E3 Waveform Template....................................................................................................... 27  
Figure 7-2. DS3 AIS Structure............................................................................................................... 28  
Figure 8-1. PRBS Output with Normal RCLK Operation ........................................................................ 29  
Figure 8-2. PRBS Output with Inverted RCLK Operation....................................................................... 29  
Figure 9-1. Jitter Attenuation/Jitter Transfer........................................................................................... 30  
Figure 12-1. JTAG Block Diagram......................................................................................................... 32  
Figure 12-2. JTAG TAP Controller State Machine ................................................................................. 33  
Figure 13-1. Transmitter Framer Interface Timing Diagram ................................................................... 38  
Figure 13-2. Receiver Framer Interface Timing Diagram....................................................................... 39  
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)...................................................................... 41  
Figure 13-4. CPU Bus AC Timing Diagram (Multiplexed)....................................................................... 43  
Figure 13-5. JTAG Timing Diagram....................................................................................................... 45  
Figure 14-1. DS3151 Hardware Mode Pin Assignment.......................................................................... 51  
Figure 14-2. DS3151 CPU Bus Mode Pin Assignment .......................................................................... 52  
Figure 14-3. DS3152 Hardware Mode Pin Assignment.......................................................................... 53  
Figure 14-4. DS3152 CPU Bus Mode Pin Assignment .......................................................................... 54  
Figure 14-5. DS3153 Hardware Mode Pin Assignment.......................................................................... 55  
Figure 14-6. DS3153 CPU Bus Mode Pin Assignment .......................................................................... 56  
Figure 14-7. DS3154 Hardware Mode Pin Assignment.......................................................................... 57  
Figure 14-8. DS3154 CPU Bus Mode Pin Assignment .......................................................................... 58  
3 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
LIST OF TABLES  
Table 1-A. Applicable Telecommunications Standards............................................................................ 6  
Table 4-A. Active I/O Pins—Hardware and CPU Bus Modes................................................................. 10  
Table 4-B. Transmitter Pin Descriptions ................................................................................................ 11  
Table 4-C. Receiver Pin Descriptions.................................................................................................... 12  
Table 4-D. Global Pin Descriptions........................................................................................................ 13  
Table 4-E. JTAG and Test Pin Descriptions .......................................................................................... 14  
Table 4-F. Transmitter Data Select Options........................................................................................... 14  
Table 4-G. Receiver PRBS Pattern Select Options................................................................................ 14  
Table 5-A. Register Map........................................................................................................................ 15  
Table 7-A. DS3 Waveform Template..................................................................................................... 26  
Table 7-B. DS3 Waveform Test Parameters and Limits......................................................................... 26  
Table 7-C. STS-1 Waveform Template.................................................................................................. 26  
Table 7-D. STS-1 Waveform Test Parameters and Limits ..................................................................... 27  
Table 7-E. E3 Waveform Test Parameters and Limits ........................................................................... 27  
Table 11-A. Transformer Characteristics ............................................................................................... 31  
Table 11-B. Recommended Transformers............................................................................................. 31  
Table 12-A. JTAG Instruction Codes ..................................................................................................... 35  
Table 12-B. JTAG ID Code.................................................................................................................... 35  
Table 13-A. Recommended DC Operating Conditions........................................................................... 37  
Table 13-B. DC Characteristics ............................................................................................................. 37  
Table 13-C. Framer Interface Timing..................................................................................................... 38  
Table 13-D. Receiver Input Characteristics—DS3 and STS-1 Modes.................................................... 39  
Table 13-E. Receiver Input Characteristics—E3 Mode.......................................................................... 39  
Table 13-F. Transmitter Output Characteristics—DS3 and STS-1 Modes ............................................. 40  
Table 13-G. Transmitter Output Characteristics—E3 Mode................................................................... 40  
Table 13-H. CPU Bus Timing ................................................................................................................ 40  
Table 13-I. JTAG Interface Timing......................................................................................................... 45  
Table 14-A. Pin Assignments Sorted by Signal Name ........................................................................... 46  
Table 14-B. Pin Assignments Sorted by Pin Number............................................................................. 48  
Table 16-A. Thermal Properties, Natural Convection............................................................................. 60  
Table 16-B. Theta-JA () vs. Airflow.................................................................................................... 60  
JA  
4 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
FEATURES (continued)  
Receiver  
Cꢀ AGC/equalizer block handles from 0 to 15dB of cable loss  
Cꢀ Loss-of-lock (LOL) PLL status indication  
Cꢀ Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp  
Cꢀ Digital and analog loss-of-signal (LOS) detectors (ANSI T1.231 and ITU G.775)  
Cꢀ Optional B3ZS/HDB3 decoder  
Cꢀ Line-code violation output pin and counter  
Cꢀ Binary or bipolar framer interface  
Cꢀ On-board 215 - 1 and 223 - 1 PRBS detector  
Cꢀ Clock inversion for glueless interfacing  
Cꢀ Tri-state clock and data outputs support protection switching applications  
Cꢀ Per-channel power-down control  
Transmitter  
Cꢀ Binary or bipolar framer interface  
Cꢀ Gapped clock capable up to 51.84MHz  
Cꢀ Wide 50 M20% transmit clock duty cycle  
Cꢀ Clock inversion for glueless interfacing  
Cꢀ Optional B3ZS/HDB3 encoder  
Cꢀ On-board 215 - 1 and 223 - 1 PRBS generator  
Cꢀ Complete DS3 AIS generator (ANSI T1.107)  
Cꢀ Unframed all-ones generator (E3 AIS)  
Cꢀ Line build-out (LBO) control  
Cꢀ Tri-state line driver outputs support protection switching applications  
Cꢀ Per-channel power-down control  
Cꢀ Output driver monitor  
1. DETAILED DESCRIPTION  
The DS3151 (single), DS3152 (dual), DS3153 (triple), and DS3154 (quad) LIUs perform the functions necessary  
for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit  
paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded  
alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs  
B3ZS/HDB3 decoding and outputs the recovered data in either binary or bipolar format. The transmitter accepts  
data in either binary or bipolar format, optionally performs B3ZS/HDB3 encoding, and drives standard pulse-shape  
waveforms onto 75coaxial cable. The jitter attenuator can be mapped into the receiver data path, mapped into  
the transmitter data path, or be disabled. The DS315x LIUs conform to the telecommunications standards listed in  
Table 1-A. Figure 1-1 shows the external components required for proper operation.  
5 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 1-A. Applicable Telecommunications Standards  
SPECIFICATION  
SPECIFICATION TITLE  
ANSI  
T1.102-1993  
T1.107-1995  
T1.231-1997  
T1.404-1994  
Digital Hierarchy—Electrical Interfaces  
Digital Hierarchy—Formats Specification  
Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring  
Network-to-Customer Installation—DS3 Metallic Interface Specification  
ITU-T  
G.703  
G.751  
Physical/Electrical Characteristics of Hierarchical Digital Interfaces, 1991  
Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the  
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, 1993  
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance  
Criteria, November 1994  
G.775  
G.823  
G.824  
O.151  
The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps  
Hierarchy, 1993  
The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps  
Hierarchy, 1993  
Error Performance Measuring Equipment Operating at the Primary Rate and Above,  
October 1992  
ETSI  
Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U,  
D34S, D140U, and D140S); Network Interface Presentation, 1996  
Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S);  
Connection Characteristics, 1996  
ETS 300 686  
ETS 300 687  
ETS EN 300 689  
TBR 24  
Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal  
equipment interface, July 2001  
Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines;  
Attachment Requirements for Terminal Equipment Interface, 1997  
TELCORDIA  
GR-253-CORE  
GR-499-CORE  
SONET Transport Systems: Common Generic Criteria, Issue 2, December 1995  
Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 1,  
December 1998  
6 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 1-1. External Connections  
TRANSMIT  
EACH LIU  
TXP  
VDD  
0.1F  
0.1F  
0.01F  
0.01F  
1F  
1F  
3.3V  
POWER  
PLANE  
330ꢁ  
VDD  
VDD  
(1%)  
0.05F  
(OPTIONAL)  
TXN  
0.1F  
0.01F  
1F  
1:2ct  
1:2ct  
Dallas  
Semiconductor  
RECEIVE  
DS315x  
VSS  
RXP  
GROUND  
PLANE  
330ꢁ  
VSS  
VSS  
(1%)  
0.05F  
(OPTIONAL)  
RXN  
2. APPLICATIONS  
Figure 2-1. 4-Port Unchannelized DS3/E3 Card  
DS3154  
QUAD  
DS3144  
QUAD  
DS3/E3/STS-1  
LIU  
DS3/E3  
FRAMER  
Shorthand Notations. The notation “DS315x” throughout this data sheet refers to either the DS3151, DS3152,  
DS3153, or DS3154. This data sheet is the specification for all four parts. The LIUs on the DS315x are identical.  
For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in place of  
the LIU port number. For example, on the DS3154 quad LIU, TCLKn is shorthand notation for pins TCLK1, TCLK2,  
TCLK3, and TCLK4 on LIU ports 1, 2, 3, and 4, respectively. This document also uses generic pin and register  
names such as TCLK (without a number suffix) when describing LIU operation. When working with a specific LIU  
on the DS315x devices, generic names like TCLK should be converted to actual pin names, such as TCLK1.  
7 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
3. HARDWARE MODE AND CPU BUS MODE  
The DS315x can operate in either hardware mode or CPU bus mode. In hardware mode, pulling configuration input  
pins high or low does all configuration, and all status information is reported on status output pins. Internal registers  
are not accessible in hardware mode. The device is configured for hardware mode when the HW pin is wired high  
(HW = 1).  
In CPU bus mode, most of the configuration and status pins used in hardware mode are reassigned to be address,  
data, and control lines that provide a glueless interface to an 8-bit microprocessor bus. Through the CPU bus, an  
external processor can access a set of internal registers. Setting configuration register bits high or low can do  
configuration, and status information can be read from status register bits. Events indicated by status register bits  
can also activate the interrupt output pin (INT), if configured to do so by a set of interrupt-enable bits. A few  
configuration and status pins are active in hardware mode and CPU bus mode to support specialized applications,  
such as protection switching. The device is configured for CPU bus mode when the HW pin is wired low (HW = 0).  
With the exception of the HW pin, configuration and status pins available in hardware mode have corresponding  
register bits in the CPU bus mode. The hardware mode pins and the CPU bus mode register bits have identical  
names and functions, with the exception that all register bits are active high. For example, LOS is indicated by the  
receiver on the RLOS pin (active low) in hardware mode and the RLOS register bit (active high) in CPU bus mode.  
The few configuration input pins that are active in CPU bus mode also have corresponding register bits. In these  
cases, the actual configuration is the logical OR of pin assertion and register bit assertion. For example, the  
transmitter output driver is tri-stated if the TTS pin is asserted (i.e., low) or the TTS register bit is asserted (high).  
Figure 3-1 and Figure 3-2 show block diagrams of the DS315x in hardware mode and in CPU bus mode. Table 4-A  
lists the pins that are active in each mode.  
Figure 3-1. Hardware Mode Block Diagram  
RMONn T3MCLK E3MCLK STMCLK  
RJAn  
RLOSn  
RBIN  
VDD  
VSS  
Power  
Supply  
Digital LOS  
Detector  
PRBS  
Clock Mux  
Detector  
PRBSn  
B3ZS/HDB3  
Decoder  
RTSn  
Automatic  
Gain  
RXPn  
RPOSn/RDATn  
RNEGn/RLCVn  
RCLKn  
Control  
+
Output  
Drivers,  
Clock  
Clock &  
Data  
Adaptive  
Equalizer  
Recovery  
RXNn  
Invert  
RCINV  
Remote  
ALOS  
Loopback  
squelch  
Digital  
Analog  
Local  
HIZ  
RST  
Local  
Loopback  
Loopback  
Global  
HW  
Configuration  
E3Mn  
STSn  
TDMn  
Driver  
Monitor  
TPOSn/TDATn  
TNEGn  
TXPn  
TXNn  
TCLKn  
Clock  
Invert  
B3ZS/  
HDB3  
TCINV  
Encoder  
AIS, 100100…,  
PRBS Pattern  
Generation  
Loopback Control  
Dallas  
Semiconductor  
DS315x  
TTSn LLBn RLBn  
TLBOn  
TJAn  
TBIN  
TDSAn,  
TDSBn  
8 of 60  
 
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 3-2. CPU Bus Mode Block Diagram  
RLOSn  
T3MCLK E3MCLK STMCLK  
Clock Mux  
VDD  
VSS  
Digital LOS  
Detector  
PRBS  
Power  
Supply  
Dallas  
Semiconductor  
DS315x  
Detector  
PRBSn  
B3ZS/HDB3  
Decoder  
RTSn  
Automatic  
Gain  
RXPn  
RXNn  
RPOSn/RDATn  
RNEGn/RLCVn  
RCLKn  
Control  
Clock &  
Output  
Drivers,  
Clock  
+
Data  
Adaptive  
Recovery  
Equalizer  
Invert  
Remote  
ALOS  
Loopback  
HIZ  
squelch  
RST  
Digital  
Analog  
Local  
Loopback  
HW  
Local  
CPU Bus  
MOT  
ALE  
Loopback  
Interface  
and  
CS  
Global  
WR/R/W  
RD/DS  
A[5:0]  
D[7:0]  
INT  
Configuration  
TDMn  
Driver  
Monitor  
TPOSn/TDATn  
TNEGn  
TCLKn  
TXPn  
TXNn  
Clock  
Invert  
B3ZS/  
HDB3  
Encoder  
AIS, 100100…,  
PRBS Pattern  
Generation  
Loopback Control  
TTSn  
9 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
4. PIN DESCRIPTIONS  
Table 4-A. Active I/O Pins—Hardware and CPU Bus Modes  
HARDWARE  
MODE  
CPU BUS  
MODE  
NAME  
TYPE  
FUNCTION  
TRANSMITTER  
TCLKn  
TPOSn/TDATn  
TNEGn  
I
I
Transmitter Clock  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Transmitter Positive AMI/Transmitter Data  
Transmitter Negative AMI  
Transmitter Analog Outputs  
Transmitter Tri-State Enable  
Transmitter Driver Monitor Output  
Transmitter Data Select  
I
TXPn, TXNn  
TTSn  
O
I
O
I
TDMn  
TDSAn, TDSBn  
TLBOn  
I
Transmitter Line Build-Out Enable  
Transmitter Jitter Attenuator Enable  
RECEIVER  
TJAn  
I
RXPn, RXNn  
RCLKn  
I
O
O
O
I
Receiver Analog Inputs  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Receiver Clock  
RPOSn/RDATn  
RNEGn/RLCVn  
RTSn  
Receiver Positive AMI/Receiver Data  
Receiver Negative AMI/Line-Code Violation  
Receiver Tri-State Enable  
Receiver LOS Output  
Receiver Monitor Enable  
Receiver Jitter Attenuator Enable  
GLOBAL  
O
I
RLOSn  
RMONn  
RJAn  
I
I
High-Z Enable  
Reset Enable  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
HIZ  
RST  
HW  
I
I
Hardwired Mode Enable  
T3MCLK  
E3MCLK  
STMCLK  
PRBSn  
LLBn, RLBn  
E3Mn, STSn  
RBIN  
I
T3 Master Clock (44.736MHz ±20ppm)  
E3 Master Clock (34.368MHz ±20ppm)  
STS-1 Master Clock (51.840MHz ±20ppm)  
PRBS Detector Output  
I
I
O
I
Local Loopback, Remote Loopback Select  
E3 Mode Enable, STS-1 Mode Enable  
Receiver Binary Interface Enable  
Transmitter Binary Interface Enable  
Receiver Clock Invert  
I
I
TBIN  
I
RCINV  
TCINV  
MOT  
I
I
Transmitter Clock Invert  
I
Motorola CPU Bus Enable  
Address Latch Enable  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
ALE  
CS  
I
I
I
Chip Select  
Write Enable / Read/Write Select  
Read Enable/Data Strobe  
Address Bus  
WR / R/W  
RD/DS  
A[5:0]  
I
I
D[7:0]  
INT  
I/O  
O
Data Bus  
Interrupt Output  
Note: In CPU bus mode, status/control pins are replaced by register bits. See Register Map in Section 5. For pin names of the form PINn,  
n = LIU# = 1, 2, 3, or 4. PIN1 is on LIU 1, PIN2 is on LIU 2, etc.  
10 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 4-B. Transmitter Pin Descriptions  
NAME  
I/O  
FUNCTION  
Transmitter Clock. A DS3 (44.736MHz M20ppm), E3 (34.368MHz M20ppm), or STS-1 (51.840MHz  
M20ppm) clock should be applied at this signal. Data to be transmitted is clocked into the device at  
TPOS/TDAT and TNEG either on the rising edge of TCLK (TCINV = 0) or the falling edge of TCLK  
(TCINV = 1). See Section 7 for additional details.  
TCLKn  
I
Transmitter Positive AMI/Transmitter Data. When the transmitter is configured to have a bipolar  
interface (TBIN = 0), a positive pulse is transmitted on the line when TPOS is high. When the  
transmitter is configured to have a binary interface (TBIN = 1), the data on TDAT is transmitted after  
B3ZS or HDB3 encoding. TPOS/TDAT is sampled either on the rising edge of TCLK (TCINV = 0) or  
on the falling edge of TCLK (TCINV = 1).  
TPOSn/  
TDATn  
I
Transmitter Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN = 0), a  
negative pulse is transmitted on the line when TNEG is high. When the transmitter is configured to  
have a binary interface (TBIN = 1), TNEG is ignored and should be wired either high or low. TNEG is  
sampled either on the rising edge of TCLK (TCINV = 0) or on the falling edge of TCLK (TCINV = 1).  
Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75coaxial  
cable through a 2:1 step-down transformer (Figure 1-1). These outputs can be tri-stated using the TTS  
pin or the TTS or TPS configuration bits.  
TNEGn  
I
TXPn,  
TXNn  
O3  
Transmitter Tri-State Enable (Active Low). TTS tri-states the transmitter outputs (TXP and TXN). This  
feature supports applications requiring LIU redundancy. Transmitter outputs from multiple LIUs can be  
wire-ORed together, eliminating external switches. The transmitter continues to operate internally  
when TTS is active.  
TTSn  
I
0 = tri-state the transmitter output driver  
1 = enable the transmitter output driver  
Transmitter Driver Monitor (Active Low, Open Drain). TDM reports the status of the transmit driver  
monitor. When the transmit driver monitor detects a faulty transmitter, TDM is driven low. TDM  
O
I
TDMn  
requires an external pullup to VDD  
.
TDSAn,  
TDSBn  
Transmitter Data Select. These inputs select the source of the transmit data. See Table 4-F for details.  
Transmitter Line Build-Out Enable. TLBO indicates cable length for waveform shaping in DS3 and  
STS-1 modes. TLBO is ignored for E3 mode and should be wired high or low.  
0 = cable length O 225ft  
TLBOn  
I
I
1 = cable length < 225ft  
Transmitter Jitter Attenuator Enable  
0 = remove jitter attenuator from the transmitter path  
1 = insert jitter attenuator into the transmitter path  
(Note that TJA = 1 takes precedence over RJA = 1.)  
TJAn  
11 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 4-C. Receiver Pin Descriptions  
NAME  
I/O  
FUNCTION  
RXPn,  
Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75coaxial cable  
I
RXNn  
through a 1:2 step-up transformer (Figure 1-1).  
Receiver Clock. The recovered clock is output on the RCLK pin. Recovered data is output on the  
RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK (RCINV = 0) or the rising edge of  
RCLK (RCINV = 1). During a loss of signal (RLOS = 0), the RCLK output signal is derived from the  
LIU’s master clock.  
RCLKn  
O3  
O3  
Receiver Positive AMI/Receiver Data. When the receiver is configured to have a bipolar interface  
(RBIN = 0), RPOS pulses high for each positive AMI pulse received. When the receiver is  
configured to have a binary interface (RBIN = 1), RDAT outputs decoded binary data. RPOS/RDAT  
is updated either on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).  
Receiver Negative AMI/Line-Code Violation. When the receiver is configured to have a bipolar  
interface (RBIN = 0), RNEG pulses high for each negative AMI pulse received. When the receiver is  
configured to have a binary interface (RBIN = 1), RLCV pulses high to flag code violations. See  
Section 6 for further details on code violations. RNEG/RLCV is updated either on the falling edge of  
RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).  
RPOSn/  
RDATn  
RNEGn/  
RLCVn  
O3  
I
Receiver Tri-State Enable (Active Low). RTS tri-states the RPOS/RDAT, RNEG/RLCV, and RCLK  
receiver outputs. This feature supports applications requiring LIU redundancy. Receiver outputs  
from multiple LIUs can be wire-ORed together, eliminating the need for external switches or muxes.  
The receiver continues to operate internally when RTS is low.  
RTSn  
0 = tri-state the receiver outputs  
1 = enable the receiver outputs  
Receiver Loss of Signal (Active Low, Open Drain). RLOS is asserted upon detection of 175 M75  
consecutive zeros in the receive data stream. RLOS is deasserted when there are no excessive  
zero occurrences over a span of 175 M75 clock periods. An excessive zero occurrence is defined as  
three or more consecutive zeros in the DS3 and STS-1 modes or four or more zeros in the E3  
mode. See Section 6 for additional details.  
RLOSn  
O
Receive Monitor-Preamp Enable. RMON determines whether or not the receiver’s preamp is  
enabled to provide flat gain to the incoming signal before the AGC/equalizer block processes it. This  
feature should be enabled when the device is being used to monitor signals that have been  
resistively attenuated by a monitor jack.  
RMONn  
RJAn  
I
I
0 = disable the monitor preamp  
1 = enable the monitor preamp  
Receiver Jitter Attenuator Enable  
0 = remove jitter attenuator from the receiver path  
1 = insert jitter attenuator into the receiver path  
(Note that TJA = 1 takes precedence over RJA = 1.)  
12 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 4-D. Global Pin Descriptions  
NAME  
I/O  
FUNCTION  
High-Z Enable Input (Active Low, Open Drain)  
HIZ  
IPU  
0 = tri-state all output pins (Note that the JTRST pin must be low.)  
1 = normal operation  
Reset Input (Active Low, Open Drain, Internal 10kPullup to VDD). When this global asynchronous  
reset is pulled low, the internal circuitry is reset and the internal registers (CPU bus mode) are forced  
RST  
IPU  
to their default values. The device is held in reset as long as RST is low. RST should be held low for  
at least two master clock cycles.  
Hardwired Mode Select  
0 = CPU bus mode  
HW  
I
1 = hardwired mode  
See Section 3 for details.  
T3 Master Clock. A transmission-quality DS3 (44.736MHz M20ppm, low jitter) clock should be applied  
at this pin. Wiring T3MCLK high forces LIUs in DS3 mode to use TCLK for receiver clock and data  
recovery.  
T3MCLK  
E3MCLK  
I
I
E3 Master Clock. A transmission-quality E3 (34.368MHz M20ppm, low jitter) clock should be applied  
at this pin. Wiring E3MCLK high forces LIUs in E3 mode to use TCLK for receiver clock and data  
recovery.  
STS-1 Master Clock. A transmission-quality STS-1 (51.840MHz M20ppm, low jitter) clock should be  
applied at this pin. Wiring STMCLK high forces LIUs in STS-1 mode to use TCLK for receiver clock  
and data recovery.  
STMCLK  
PRBSn  
I
PRBS Detector Output. This signal reports the status of the PRBS detector. See Section 8 for further  
details.  
O
Local Loopback Select, Remote Loopback Select  
{LLB, RLB} =  
00 = no loopback  
LLBn,  
RLBn  
I
I
I
01 = remote loopback  
10 = analog local loopback  
11 = digital local loopback  
E3 Mode Enable  
0 = DS3 operation  
E3Mn  
STSn  
1 = E3 or STS-1 operation  
STS-1 Mode Enable  
When E3M = 1,  
0 = E3 operation  
1 = STS-1 operation  
When E3M = 0, STS selects the DS3 AIS pattern.  
Receiver Binary Framer-Interface Enable  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is  
disabled.  
RBIN  
TBIN  
I
I
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code  
violations. The B3ZS/HDB3 encoder is enabled.  
Transmitter Binary Framer-Interface Enable  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is  
disabled.  
1 = Transmitter framer interface is binary on the TDAT pin. (TNEG is ignored and should be wired  
low.) The B3ZS/HDB3 encoder is enabled.  
Receiver Clock Invert  
RCINV  
TCINV  
MOT  
I
I
I
I
0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK.  
Transmitter Clock Invert  
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Motorola Bus Mode Enable  
0 = Intel bus mode  
1 = Motorola bus mode  
Address Latch Enable. This signal controls a latch on the A[5:0] inputs. In nonmultiplexed bus  
applications, ALE should be wired high to make the latch transparent. In multiplexed bus  
applications, A[5:0] should be wired to D[5:0]. The falling edge of ALE latches the address.  
ALE  
I
I
CS  
Chip Select (Active Low). CS must be asserted in order to read or write internal registers.  
Write Enable (Active Low) or Read/Write Select. In Intel bus mode (MOT = 0), WR is asserted to  
WR / R/W  
write internal registers. In Motorola bus mode (MOT = 1), R/W determines the type of bus  
13 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
NAME  
I/O  
FUNCTION  
transaction, with R/W = 1 indicating a read and R/W = 0 indicating a write.  
Read Enable (Active Low) or Data Strobe (Active Low). In Intel bus mode (MOT = 0), RD is asserted  
to read internal registers. In Motorola bus mode (MOT = 1), the rising edge of DS writes data to  
internal registers.  
I
RD/DS  
Address Bus. These inputs specify the address of the internal register to be accessed. A5 is not  
present on the DS3152. A5 and A4 are not present on the DS3151.  
Data Bus. These bidirectional lines are inputs during writes to internal registers. They are outputs  
during reads from internal registers.  
A[5:0]  
D[7:0]  
I
I/O  
Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more  
unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or  
masked.  
INT  
O
VDD  
VSS  
P
P
Positive Supply. 3.3V M5%. All VDD signals should be wired together.  
Ground Reference. All VSS signals should be wired together.  
Table 4-E. JTAG and Test Pin Descriptions  
NAME  
I/O  
FUNCTION  
JTAG IEEE 1149.1 Test Serial Clock. JTCLK shifts data into JTDI on the rising edge and out of  
JTDO on the falling edge. If boundary scan is not used, JTCLK should be pulled high.  
JTAG IEEE 1149.1 Test Serial-Data Input (Internal 10kPullup). Test instructions and data are  
clocked in on this pin on the rising edge of JTCLK. If boundary scan is not used, JTDI should be left  
unconnected or pulled high.  
JTCLK  
I
JTDI  
IPU  
JTAG IEEE 1149.1 Test Serial-Data Output. Test instructions and data are clocked out on this pin on  
the falling edge of JTCLK.  
JTDO  
O
JTAG IEEE 1149.1 Test Reset (Internal 10kPullup). This pin is used to asynchronously reset the  
test access port (TAP) controller. If boundary scan is not used, JTRST can be held low or high.  
JTAG IEEE 1149.1 Test Mode Select (Internal 10kPullup). This pin is sampled on the rising edge  
of JTCLK and is used to place the port into the various defined IEEE 1149.1 states. If boundary scan  
is not used, JTMS should be left unconnected or pulled high.  
IPU  
JTRST  
JTMS  
IPU  
IPU  
Factory Test Pin. Leave unconnected or wire high for normal operation.  
TEST  
Note 1: Pin type I = input pin. Pin type O = output pin. Pin type P = power-supply pin.  
Note 2: Pin type O3 is an output that can be tri-stated.  
Note 3: Pin type IPU is an input with an internal 10kpullup.  
Note 4: For pin names of the form PINn, n = LIU# = 1, 2, 3, or 4. PIN1 is on LIU 1, PIN2 is on LIU 2, etc.  
Note 5: Section 14 shows hardware mode and CPU bus mode pin assignments.  
Table 4-F. Transmitter Data Select Options  
TDSA  
TDSB  
E3M  
X
0
STS  
X
0
Tx MODE  
Any  
TRANSMIT DATA SELECTED  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
Normal data as input at TPOS and TNEG  
DS3  
Unframed all ones  
1
0
E3  
1
1
STS-1  
DS3  
0
1
DS3 AIS per ANSI T1.107 (Figure 7-2)  
Unframed 100100… pattern  
X
1
X
0
Any  
E3  
223 - 1 PRBS pattern per ITU O.151  
0
X
1
DS3  
215 - 1 PRBS pattern per ITU O.151  
1
STS-1  
Note 1: This coding of the TDSA, TDSB, E3M, and STS bits allows AIS generation to be enabled by holding TDSA = 0 and changing TDSB  
from 0 to 1. The type of DS3 AIS signal is selected by the STS bit with E3M = 0.  
Note 2: If E3M and/or STS are changed when {TDSA,TDSB} U 00, TDSA and TDSB must both be cleared to 0. After they are cleared, TDSA  
and TDSB can be configured to transmit a pattern in the new operating mode.  
Table 4-G. Receiver PRBS Pattern Select Options  
E3M  
STS  
Rx MODE  
RECEIVER PRBS PATTERN SELECTED  
1
0
1
0
X
1
E3  
223 - 1 PRBS pattern per ITU O.151  
DS3  
215 - 1 PRBS pattern per ITU O.151  
STS-1  
14 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
5. REGISTER DESCRIPTIONS  
When the DS315x is configured in CPU bus mode (HW = 0), the registers shown in Table 5-A are accessible  
through the CPU bus interface. All registers for the LIU ports are forced to their default values during an internal  
power-on reset or when the RST pin is driven low. Setting an LIU’s RST bit high forces all registers for that LIU to  
their default values. All register bits marked “—” must be written 0 and ignored when read. The TEST registers  
must be left at their reset value of 00h for normal operation.  
On the DS3153, only registers for LIUs 1, 2, and 3 are available. Writes into LIU 4 address space are ignored.  
Reads from LIU 4 address space return all zeros. On the DS3152, address line A5 is not present, limiting the  
address space to the LIU 1 and 2 registers. On the DS3151, address lines A5 and A4 are not present, limiting the  
address space to the LIU 1 registers.  
Table 5-A. Register Map  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LIU 1  
00h  
01h  
GCR1  
TCR1  
RCR1  
SR1  
E3M  
STS  
TBIN  
RBIN  
LLB  
RLB  
TJA  
RJA  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
TDSA  
TPD  
TDSB  
TTS  
RST  
TCINV  
RCINV  
TDM  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
02h  
ITU  
RPD  
RTS  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
03h  
04h  
SRL1  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
05h  
SRIE1  
RCVL1  
RCVH1  
TEST  
06h  
RCV[7]  
RCV[15]  
RCV[6]  
RCV[14]  
07h  
08h–0Fh  
LIU 2  
LLB  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
10h  
11h  
GCR2  
TCR2  
RCR2  
SR2  
E3M  
STS  
TBIN  
RBIN  
RCV[6]  
RCV[14]  
RLB  
TJA  
RJA  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
TDSA  
TPD  
TDSB  
TTS  
--  
RST  
--  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
12h  
ITU  
RPD  
RTS  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
13h  
14h  
SRL2  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
15h  
SRIE2  
RCVL2  
RCVH2  
TEST  
16h  
RCV[7]  
RCV[15]  
17h  
18h–1Fh  
LIU 3  
LLB  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
20h  
21h  
GCR3  
TCR3  
RCR3  
SR3  
E3M  
STS  
TBIN  
RBIN  
RCV[6]  
RCV[14]  
RLB  
TJA  
RJA  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
TDSA  
TPD  
TDSB  
TTS  
RST  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
22h  
ITU  
RPD  
RTS  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
23h  
24h  
SRL3  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
25h  
SRIE3  
RCVL3  
RCVH3  
TEST  
26h  
RCV[7]  
RCV[15]  
27h  
28h–2Fh  
LIU 4  
LLB  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
30h  
31h  
GCR4  
TCR4  
RCR4  
SR4  
E3M  
STS  
TBIN  
RBIN  
RCV[6]  
RCV[14]  
RLB  
TJA  
RJA  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
TDSA  
TPD  
TDSB  
TTS  
RST  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
32h  
ITU  
RPD  
RTS  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
33h  
34h  
SRL4  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
35h  
SRIE4  
RCVL4  
RCVH4  
TEST  
36h  
RCV[7]  
RCV[15]  
37h  
38h–3Fh  
Note 1: Underlined bits are read-only; all other bits are read-write.  
Note 2: The registers are named REGn, where n = the LIU number (1, 2, 3, or 4).  
Note 3: The bit names are the same for each LIU register set.  
15 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Status Register Description  
The status registers have two types of status bits. Real-time status bits—located in the SRn registers—indicate the  
state of a signal at the time it was read. Latched status bits—located in the SRLn registers—are set when a signal  
changes state (low-to-high, high-to-low, or both, depending on the bit) and cleared when written with a logic 1  
value. After clearing, latched status bits remain cleared until the signal changes state again. Interrupt-enable bits—  
located in the SRIEn registers—control whether or not the INT pin is driven low when latched register bits are set.  
Figure 5-1. Status Register Logic  
REAL-TIME STATUS  
EVENT  
SR  
LATCHED STATUS  
LATCHED STATUS REGISTER  
SET ON EVENT DETECT CLEAR  
ON WRITE LOGIC 1  
SRL  
WR  
INT  
INT ENABLE  
REGISTER  
WR  
OTHER INT  
SOURCE  
Register Name:  
GCRn  
Register Description:  
Register Address:  
Global Configuration Register  
00h, 10h, 20h, 30h  
Bit  
7
E3M  
0
6
STS  
0
5
LLB  
0
4
RLB  
0
3
TDSA  
0
2
TDSB  
0
1
0
Name  
Default  
RST  
0
Bit 7: E3 Mode Enable (E3M)  
0 = DS3 operation  
1 = E3 or STS-1 operation  
Bit 6: STS-1 Mode Enable (STS)  
When E3M = 1,  
0 = E3 operation  
1 = STS-1 operation  
When E3M = 0, STS selects the DS3 AIS pattern (Table 4-F).  
Bits 5, 4: Local Loopback, Remote Loopback Select (LLB, RLB)  
00 = no loopback  
01 = remote loopback  
10 = analog local loopback  
11 = digital local loopback  
Bits 3, 2: Transmitter Data Select (TDSA, TDSB). See Table 4-F for details.  
Bit 0: Reset (RST). When this bit is high, the digital logic of the LIU is held in reset and all registers for that LIU  
(except the RST bit) are forced to their default values. RST is cleared to 0 at power-up and when the RST pin is  
activated.  
0 = normal operation  
1 = reset LIU  
16 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Register Name:  
TCRn  
Register Description:  
Register Address:  
Transmitter Configuration Register  
01h, 11h, 21h, 31h  
Bit  
7
0
6
TBIN  
0
5
TCINV  
0
4
TJA  
0
3
TPD  
0
2
TTS  
1
1
TLBO  
0
0
Name  
Default  
Bit 6: Transmitter Binary Interface Enable (TBIN)  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is  
disabled.  
1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled.  
Bit 5: Transmitter Clock Invert (TCINV)  
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Bit 4: Transmitter Jitter Attenuator Enable (TJA)  
0 = Remove jitter attenuator from the transmitter path.  
1 = Insert jitter attenuator into the transmitter path.  
Bit 3: Transmitter Power-Down Enable (TPD)  
0 = enable the transmitter  
1 = power-down the transmitter (output driver tri-stated)  
Bit 2: Transmitter Tri-State Enable (TTS). This bit is set to 1 on reset, which tri-states the transmitter TXP and  
TXN pins. The transmitter circuitry is left powered up in this mode. The TTS input pin is inverted and logically ORed  
with this bit.  
0 = enable the transmitter output driver  
1 = tri-state the transmitter output driver  
Bit 1: Transmitter Line Build-Out (TLBO). TLBO indicates cable length for waveform shaping in DS3 and STS-1  
modes. TLBO is ignored in E3 mode.  
0 = cable length O 225ft  
1 = cable length < 225ft  
17 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Register Name:  
RCRn  
Register Description:  
Register Address:  
Receiver Configuration Register  
02h, 12h, 22h, 32h  
Bit  
7
ITU  
0
6
RBIN  
0
5
RCINV  
0
4
RJA  
0
3
RPD  
0
2
RTS  
1
1
RMON  
0
0
RCVUD  
0
Name  
Default  
Bit 7: ITU CV Mode (ITU). This bit controls what types of bipolar violations (BPVs) are flagged as code violations  
on the RLCV pin and counted in the RCV register. It also controls whether or not excessive zero (EXZ) events are  
flagged and counted. An EXZ event is the occurrence of a third consecutive zero (DS3 or STS-1 modes) or fourth  
consecutive zero (E3 mode) in a sequence of zeros.  
0 = In all three modes (DS3, E3, and STS-1) BPVs that are not part of a valid codeword are flagged and  
counted. EXZ events are also flagged and counted.  
1 = In DS3 and STS-1 modes, BPVs that are not part of valid codewords are flagged and counted. In E3  
mode, BPVs that are the same polarity as the last BPV are flagged and counted. EXZ events are not  
flagged and counted in any mode.  
Bit 6: Receiver Binary Interface Enable (RBIN)  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is  
disabled.  
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations.  
The B3ZS/HDB3 encoder is enabled.  
Bit 5: Receiver Clock Invert (RCINV)  
0 = RPOS/RDAT and RNEG/RLCV are sampled on the rising edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV are sampled on the falling edge of RCLK.  
Bit 4: Receiver Jitter Attenuator Enable (RJA). (Note that TJA = 1 takes precedence over RJA = 1.)  
0 = remove jitter attenuator from the receiver path  
1 = insert jitter attenuator into the receiver path  
Bit 3: Receiver Power-Down Enable (RPD)  
0 = enable the receiver  
1 = power-down the receiver (RPOS/RDAT, RNEG/RLCV, and RCLK tri-stated)  
Bit 2: Receiver Tri-State Enable (RTS). This signal is set to 1 on reset, which tri-states the receiver RPOS/RDAT,  
RNEG/RLCV, and RCLK pins. The receiver is left powered up in this mode. The RTS pin is inverted and logically  
ORed with this bit.  
0 = enable the receiver outputs  
1 = tri-state the receiver outputs (RPOS/RDAT, RNEG/RLCV, and RCLK)  
Bit 1: Receiver Monitor Preamp Enable (RMON)  
0 = disable the monitor preamp  
1 = enable the monitor preamp  
Bit 0: Receive Code-Violation Counter Update (RCVUD). When this control bit transitions from low to high, the  
RCVLn and RCVHn registers are loaded with the current code-violation count, and the internal code-violation  
counter is cleared.  
0J1 = Update RCV registers and clear internal code-violation counter  
18 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Register Name:  
SRn  
Register Description:  
Register Address:  
Status Register  
03h, 13h, 23h, 33h  
Bit  
7
6
5
TDM  
0
4
PRBS  
0
3
2
1
RLOL  
1
0
RLOS  
1
Name  
Default  
Bit 5: Transmitter Driver Monitor (TDM). This read-only status bit indicates the current state of the transmit driver  
monitor.  
0 = the transmitter is operating normally  
1 = the transmitter has a fault condition  
Bit 4: PRBS Detector Output (PRBS). This read-only status bit indicates the current state of the receiver’s PRBS  
detector. See Table 4-G for the expected PRBS pattern.  
0 = in sync with expected pattern  
1 = out of sync, expected pattern not detected  
Bit 1: Receiver Loss of Lock (RLOL). This read-only status bit indicates the current state of the receiver clock  
recovery PLL.  
0 = the receiver PLL is locked onto the incoming signal  
1 = the receiver PLL is not locked onto the incoming signal  
Bit 0: Receiver Loss of Signal (RLOS). This read-only status bit indicates the current state of the receiver loss-of-  
signal detector.  
0 = signal present  
1 = loss of signal  
19 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Register Name:  
SRLn  
Register Description:  
Register Address:  
Status Register Latched  
04h, 14h, 24h, 34h  
Bit  
7
6
5
TDML  
0
4
PRBSL  
0
3
PBERL  
0
2
RCVL  
0
1
RLOLL  
0
0
RLOSL  
0
Name  
Default  
Bit 5: Transmitter Driver Monitor Latched (TDML). This latched status bit is set to one when the TDM status bit  
changes state (low to high or high to low). TDML is cleared when the host processor writes a one to it and is not set  
again until TDM changes state again. When TDML is set, it can cause a hardware interrupt to occur if the TDMIE  
interrupt-enable bit is set to one. The interrupt is cleared when TDML is cleared or TDMIE is set to zero.  
Bit 4: PRBS Detector Output Latched (PRBSL). This latched status bit is set to one when the PRBS status bit  
changes state (low to high or high to low). PRBSL is cleared when the host processor writes a one to it and is not  
set again until PRBS changes state again. When PRBSL is set, it can cause a hardware interrupt to occur if the  
PRBSIE interrupt-enable bit is set to one. The interrupt is cleared when PRBSL is cleared or PRBSIE is set to zero.  
Bit 3: PRBS Detector Bit Error Latched (PBERL). This latched status bit is set to one when the PRBS detector is  
in sync and a bit error has been detected. PBERL is cleared when the host processor writes a one to it and is not  
set again until another bit error is detected. When PBERL is set, it can cause a hardware interrupt to occur if the  
PBERIE interrupt-enable bit is set to one. The interrupt is cleared when PBERL is cleared or PBERIE is set to zero.  
Bit 2: Receiver Code Violation Latched (RCVL). This latched status bit is set to one when the RCV status bit  
goes high. RCVL is cleared when the host processor writes a one to it and is not set again until RCV goes high  
again. When RCVL is set, it can cause a hardware interrupt to occur if the RCVIE interrupt-enable bit is set to one.  
The interrupt is cleared when RCVL is cleared or RCVIE is set to zero.  
Bit 1: Receiver Loss-of-Clock Lock Latched (RLOLL). This latched status bit is set to one when the RLOL status  
bit changes state (low to high or high to low). RLOLL is cleared when the host processor writes a one to it and is  
not set again until RLOL changes state again. When RLOLL is set, it can cause a hardware interrupt to occur if the  
RLOLIE interrupt-enable bit is set to one. The interrupt is cleared when RLOLL is cleared or RLOLIE is set to zero.  
Bit 0: Receiver Loss-of-Signal Latched (RLOSL). This latched status bit is set to one when the RLOS status bit  
changes state (low to high or high to low). RLOSL is cleared when the host processor writes a one to it and is not  
set again until RLOS changes state again. When RLOSL is set, it can cause a hardware interrupt to occur if the  
RLOSIE interrupt-enable bit is set to one. The interrupt is cleared when RLOSL is cleared or RLOSIE is set to zero.  
20 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Register Name:  
SRIEn  
Register Description:  
Register Address:  
Status Register Interrupt Enable  
05h, 15h, 25h, 35h  
Bit  
7
6
5
TDMIE  
0
4
PRBSIE  
0
3
PBERIE  
0
2
RCVIE  
0
1
RLOLIE  
0
0
RLOSIE  
0
Name  
Default  
Bit 5: Transmitter Driver Monitor Interrupt Enable (TDMIE)  
0 = mask TDML interrupt  
1 = enable TDML interrupt  
Bit 4: PRBS Detector Interrupt Enable (PRBSIE)  
0 = mask PRBSL interrupt  
1 = enable PRBSL interrupt  
Bit 3: PRBS Detector Bit-Error Interrupt Enable (PBERIE)  
0 = mask PBERL interrupt  
1 = enable PBERL interrupt  
Bit 2: Receiver Line-Code Violation Interrupt Enable (RCVIE)  
0 = mask RCVL interrupt  
1 = enable RCVL interrupt  
Bit 1: Receiver Loss-of-Clock Lock Interrupt Enable (RLOLIE)  
0 = mask RLOLL interrupt  
1 = enable RLOLL interrupt  
Bit 0: Receiver Loss-of-Signal Interrupt Enable (RLOSIE)  
0 = mask RLOSL interrupt  
1 = enable RLOSL interrupt  
Register Name:  
RCVLn  
Register Description:  
Register Address:  
Receiver Code-Violation Count Register (Low Byte)  
06h, 16h, 26h, 36h  
Bit  
7
RCV[7]  
0
6
RCV[6]  
0
5
RCV[5]  
0
4
RCV[4]  
0
3
RCV[3]  
0
2
RCV[2]  
0
1
RCV[1]  
0
0
RCV[0]  
0
Name  
Default  
Register Name:  
RCVHn  
Register Description:  
Register Address:  
Receiver Code-Violation Count Register (High Byte)  
07h, 17h, 27h, 37h  
Bit  
7
RCV[15]  
0
6
RCV[14]  
0
5
RCV[13]  
0
4
RCV[12]  
0
3
RCV[11]  
0
2
RCV[10]  
0
1
RCV[9]  
0
0
RCV[8]  
0
Name  
Default  
Bits 15 to 0: Receiver Code-Violation Counter Register (RCV[15:0]). The RCV registers form a 16-bit register  
for reading the line-code violation counter value. The registers are updated with the line-code violation counter  
value when the RCVUD control bit is toggled low to high. After the RCV registers are updated, the line-code  
violation counter is cleared. The counter operates in two modes, depending on the setting of the ITU bit in the RCR  
register. See the RCR register description for details about the ITU control bit.  
21 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
6. RECEIVER  
Interfacing to the Line. The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the  
receiver interfaces to the incoming coaxial cable (75) through a 1:2 step-up transformer. Figure 1-1 shows the  
arrangement of the transformer and other recommended interface components. Table 11-A specifies the required  
characteristics of the transformer. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI  
format.  
Optional Preamp. The receiver can be used in monitoring applications, which typically have series resistors with a  
resistive loss of approximately 20dB. When the RMON input pin is high, the receiver compensates for this resistive  
loss by applying approximately 14dB of flat gain to the incoming signal before sending the signal to the  
AGC/equalizer block where additional flat gain is applied as needed.  
Automatic Gain Control (AGC) and Adaptive Equalizer. The AGC circuitry applies flat (frequency independent)  
gain to the incoming signal to compensate for flat losses in the transmission channel and variations in transmission  
power. Since the incoming signal also experiences frequency-dependent losses as it passes through the coaxial  
cable, the adaptive equalizer circuitry applies frequency-dependent gain to offset line losses and restore the signal.  
The AGC/equalizer circuitry automatically adapts to coaxial cable losses from 0 to 15dB, which translates into 0 to  
380 meters (DS3), 0 to 440 meters (E3), or 0 to 360 meters (STS-1) of coaxial cable (AT&T 734A or equivalent).  
The AGC and the equalizer work simultaneously but independently to supply a signal of nominal amplitude and  
pulse shape to the clock and data recovery block. The AGC/equalizer block automatically handles direct (0 meters)  
monitoring of the transmitter output signal.  
Clock and Data Recovery (CDR). The CDR block takes the amplified, equalized signal from the AGC/equalizer  
block and produces separate clock, positive data, and negative data signals. The CDR requires a master clock. If  
the signal on the appropriate MCLK pin is toggling, the LIU selects the MCLK signal as its master clock. If the  
appropriate MCLK pin is wired high, the LIU uses the signal on the TCLK pin as the master clock. The appropriate  
MCLK is selected based on the settings of the E3M and STS mode pins or register bits.  
The receiver locks onto the incoming signal using a clock recovery PLL. The status of the PLL lock is indicated in  
the RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and MCLK  
frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state of the  
RLOL status bit can cause an interrupt on the INT pin if enabled to do so by the RLOLIE interrupt-enable bit. Note  
that if MCLK is not present, or MCLK is high and TCLK is not present, RLOL is not set.  
Loss-of-Signal (LOS) Detector. The receiver contains analog and digital LOS detectors. The analog LOS detector  
resides in the AGC/equalizer block. If the incoming signal level is less than a signal level approximately 24dB below  
nominal, analog LOS (ALOS) is declared. The ALOS signal cannot be directly examined, but when ALOS occurs  
the AGC/equalizer mutes the recovered data, forcing all zeros out of the data recovery circuitry and causing digital  
LOS (DLOS), which is indicated by the RLOS pin and the RLOS status bit. ALOS clears when the incoming signal  
level is greater than or equal to a signal level approximately 18dB below nominal.  
The digital LOS detector declares DLOS when it detects 175 M75 consecutive zeros in the recovered data stream.  
When DLOS occurs, the receiver asserts the RLOS pin (hardware mode) or the RLOS status bit (CPU bus mode).  
DLOS is cleared when there are no EXZ occurrences over a span of 175 M75 clock periods. An EXZ occurrence is  
defined as three or more consecutive zeros in the DS3 and STS-1 modes and four or more consecutive zeros in  
the E3 mode. The RLOS pin goes inactive (high) when the DLOS condition is cleared. In CPU bus mode, a change  
of the RLOS status bit can cause an interrupt on the INT pin if enabled to do so by the RLOSIE interrupt-enable bit.  
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which  
asserts RLOS when it counts 175 M75 consecutive zeros coming out of the CDR block and clears RLOS when it  
counts 175 M75 consecutive pulse intervals without excessive zero occurrences.  
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the  
DLOS detector, as follows:  
22 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
For E3 RLOS Assertion:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal  
level approximately 24dB below nominal, and mutes the data coming out of the clock and data recovery block.  
(24dB below nominal in the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 175 M75 consecutive zeros coming out of the CDR block and asserts RLOS. (175  
M75 meets the 10 ? N ? 255 pulse-interval duration requirement of G.775.)  
For E3 RLOS Clear:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a  
signal level approximately 18dB below nominal, and enables data to come out of the CDR block. (18dB is in  
the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 175 M75 consecutive pulse intervals without EXZ occurrences and deasserts  
RLOS. (175 M75 meets the 10 ? N ? 255 pulse-interval duration requirement of G.775.)  
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At STS-1 rates, the time  
required for the DLOS detector to count 175 M75 consecutive zeros falls in the range of 2.3? T? 100s required by  
ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 175 M75  
consecutive pulse intervals with no excessive zeros is less than the 125s–250s period required by ANSI T1.231  
for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.  
During LOS, the RCLK output pin is derived from the LIU’s master clock. The ALOS detector has a longer time  
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first  
(asserting the RLOS pin or bit), followed by the ALOS detector. When a signal is restored, the DLOS detector does  
not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the signal rise  
above a signal level approximately 18dB below nominal.  
Framer Interface Format and the B3ZS/HDB3 Decoder. The recovered data can be output in either binary or  
bipolar format. To select the bipolar interface format, pull the RBIN pin low (hardware mode) or clear the RBIN  
configuration bit (CPU bus mode). In bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is  
buffered and output on the RPOS and RNEG outputs. Received positive-polarity pulses are indicated by RPOS =  
1, while negative-polarity pulses are indicated by RNEG = 1. In bipolar interface format, the receiver simply passes  
on the received data and does not check it for BPV or EXZ occurrences.  
To select the binary interface format, pull the RBIN pin high (hardware mode) or set the RBIN configuration bit  
(CPU bus mode). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and  
output as a binary value on the RDAT pin. Code violations are flagged on the RLCV pin. In the discussion that  
follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates the AMI rule is  
denoted as V.  
In DS3 and STS-1 modes, B3ZS decoding is performed. RLCV is asserted during any RCLK cycle where the data  
on RDAT causes ones of the following code violations:  
CꢀHardware mode or ITU bit set to 0  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
The third zero in an EXZ occurrence.  
CꢀITU bit set to 1  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
In E3 mode, HDB3 decoding is performed. RLCV is asserted during any RCLK cycle where the data on RDAT  
causes one of the following code violations:  
CꢀHardware mode or ITU bit set to 0  
A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).  
A BPV with the same polarity as the last BPV.  
The fourth zero in an EXZ occurrence (only in hardware mode or when ITU = 0).  
23 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
CꢀITU bit set to 1  
A BPV with the same polarity as the last BPV.  
When RLCV is asserted to flag a BPV, the RDAT pin outputs a one. The state bit that tracks the polarity of the last  
BPV is toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.  
To support a glueless interface to a variety of neighboring components, the polarity of RCLK can be inverted.  
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on  
these pins on the rising edge of RCLK, pull the RCINV pin high (hardware mode) or set the RCINV configuration bit  
(CPU bus mode).  
The RCLK, RPOS/RDAT, and RNEG/RLCV pins can be tri-stated to support protection switching and redundant-  
LIU applications. This tri-stating capability supports system configurations where two or more LIUs are wire-ORed  
together and a system processor selects one to be active. To tri-state RCLK, RPOS/RDAT, and RNEG/RLCV,  
assert the RTS pin or the RTS configuration bit.  
Receive Line-Code Violation Counter. The line-code violation counter is always enabled regardless of the  
settings of the RBIN pin or the RBIN configuration bit. The receiver has an internal 16-bit saturating counter and a  
16-bit latch, which the CPU can read as registers RCVH and RCVL. The value of the internal counter is latched into  
the RCVH/RCVL register and cleared when the receive code-violation counter update bit, RCVUD, is changed from  
a zero to a one. The RCVUD bit must be cleared back to a zero before a new update can occur. If there is an LCV  
increment pulse and an update pulse in the same clock period, the counter is preset to a one rather than cleared  
so that the LCV is not missed. The counter is incremented when the RLCV pin flags a code violation as described  
in the Framer Interface Format and the B3ZS/HDB3 Decoder section. The counter saturates at 65,535 (0FFFFh)  
and does not roll over.  
Receiver Power-Down. To minimize power consumption when the receiver is not being used, assert the RPD  
configuration bit (CPU bus mode). When the receiver is powered down, the RCLK, RPOS/RDAT, and RNEG/RLCV  
pins are tri-stated. In addition, the RXP and RXN pins become high impedance.  
Receiver Jitter Tolerance. The receiver exceeds the input jitter tolerance requirements of all applicable  
telecommunication standards in Table 1-A. See Figure 6-1.  
Figure 6-1. Receiver Jitter Tolerance  
15  
STS-1 GR253  
DS3 GR-499 Cat II  
DS3 GR-499 Cat I  
10  
5
10  
DS315x JITTER TOLERANCE  
1.5  
E3 G.823  
1.0  
0.1  
0.3  
0.15  
0.1  
30  
300  
669  
2.3k  
22.3k  
60k  
300k 800k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
24 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
7. TRANSMITTER  
Transmit Clock. The clock applied at the TCLK input clocks in data on the TPOS/TDAT and TNEG pins. If the jitter  
attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be  
transmission quality (i.e., M20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the  
transmit path, the signal on TCLK can be jittery and/or periodically gapped (not exceeding 8UI), but must still have  
an average frequency within M20ppm of the nominal line rate. When enabled in the transmit path, the jitter  
attenuator generates the transmit line clock from the signal applied on the appropriate MCLK pin. The signal on the  
MCLK pin must, therefore, be a transmission-quality clock (M20ppm frequency accuracy and low jitter).  
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.  
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample data on the  
falling edge of TCLK, pull the TCINV pin high (hardware mode) or set the TCINV configuration bit (CPU bus mode).  
Framer Interface Format and the B3ZS/HDB3 Encoder. Data to be transmitted can be input in either binary or  
bipolar format. To select the binary interface format, pull the TBIN pin high (hardware mode) or set the TBIN  
configuration bit (CPU bus mode). In binary format, the B3ZS/HBD3 encoder is enabled, and the data to be  
transmitted is sampled on the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired  
low. In DS3 and STS-1 modes, the B3ZS/HDB3 encoder operates in the B3ZS mode. In E3 mode the encoder  
operates in HDB3 mode.  
To select the bipolar interface format, pull the TBIN pin low (hardware mode) or clear the TBIN configuration bit  
(CPU bus mode). In bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled  
on the TPOS and TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses  
are indicated by TNEG = 1.  
Pattern Generation. The transmitter can generate several patterns internally, including unframed all ones (E3  
AIS), 100100…, and DS3 AIS. See Figure 7-2 for the structure of the DS3 AIS signal. The TDSA and TDSB input  
pins (hardware mode) or the TDSA and TDSB control bits (CPU bus mode) are used to select these patterns.  
Table 4-F indicates the possible selections.  
Waveshaping, Line Build-Out, Line Driver. The waveshaping block converts the transmit clock, positive data,  
and negative data signals into a single AMI signal with the waveshape required for interfacing to DS3/E3/STS-1  
lines. Table 7-A through Table 7-E and Figure 7-1 show the waveform template specifications and test parameters.  
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length  
from 0 to 450ft, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225ft or greater,  
the TLBO pin (hardware mode) or the TLBO configuration bit (CPU bus mode) should be low. When TLBO is low,  
output pulses are driven onto the coaxial cable without any preattenuation. For cable lengths less than 225ft, TLBO  
should be high to enable the LBO circuitry. When TLBO is high, pulses are preattenuated by the LBO circuitry  
before being driven onto the coaxial cable. The LBO circuitry provides attenuation that mimics the attenuation of  
225ft of coaxial cable.  
The transmitter line driver can be disabled and the TXP and TXN outputs tri-stated by asserting the TTS input or  
the TTS configuration bit. Powering down the transmitter through the TPD configuration bit (CPU bus mode) also  
tri-states the TXP and TXN outputs.  
Interfacing to the Line. The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75) through a  
2:1 step-down transformer connected to the TXP and TXN pins. Figure 1-1 shows the arrangement of the  
transformer and other recommended interface components. Table 11-A specifies the required characteristics of the  
transformer.  
Transmit Driver Monitor. If the transmit driver monitor detects a faulty transmitter, it activates the TDM output  
(hardware mode or CPU bus mode) or sets the TDM status bit and optionally activates the INT output (CPU bus  
mode). When the transmitter is tri-stated, the transmit driver monitor is also disabled. The transmitter is declared to  
be faulty when the transmitter outputs see a load of less than ~25.  
25 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Transmitter Power-Down. To minimize power consumption when the transmitter is not being used, assert the  
TPD configuration bit (CPU bus mode only). When the transmitter is powered down, the TXP and TXN pins are put  
in a high-impedance state and the transmit amplifiers are powered down.  
Transmitter Jitter Generation (Intrinsic). The transmitter meets the jitter generation requirements of all  
applicable standards, with or without the jitter attenuator enabled.  
Transmitter Jitter Transfer. Without the jitter attenuator enabled in the transmit side, the transmitter passes jitter  
through unchanged. With the jitter attenuator enabled in the transmit side, the transmitter meets the jitter transfer  
requirements of all applicable telecommunication standards in Table 1-A. See Figure 9-1.  
Table 7-A. DS3 Waveform Template  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATION  
UPPER CURVE  
0.03  
-0.85 ? T ? -0.68  
-0.68 ? T ? +0.36  
0.36 ? T ? 1.4  
0.5 {1 + sin[(/ 2)(1 + T / 0.34)]} + 0.03  
0.08 + 0.407e-1.84(T - 0.36)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(/ 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 ? T ? -0.36  
-0.36 ? T ? +0.36  
0.36 ? T ? 1.4  
Governing Specifications: ANSI T1.102 and Bellcore GR-499.  
Table 7-B. DS3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
44.736Mbps (M20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75(M1%) resistive  
Pulse Amplitude  
Between 0.36V and 0.85V  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
curves listed in Table 7-A.  
Pulse Shape  
Unframed All-Ones Power Level at  
22.368MHz  
Between -1.8dBm and +5.7dBm  
Unframed All-Ones Power Level at  
44.736MHz  
At least 20dB less than the power measured at  
22.368MHz  
Ratio of positive and negative pulses must be  
between 0.90 and 1.10.  
Pulse Imbalance of Isolated Pulses  
Table 7-C. STS-1 Waveform Template  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATIONS  
UPPER CURVE  
0.03  
-0.85 ? T ? -0.68  
-0.68 ? T ? +0.26  
0.26 ? T ? 1.4  
0.5 {1 + sin[(/ 2)(1 + T / 0.34)]} + 0.03  
0.1 + 0.61e-2.4(T - 0.26)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(/ 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 ? T ? -0.36  
-0.36 ? T ? +0.36  
0.36 ? T ? 1.4  
Governing Specifications: Bellcore GR-253 and Bellcore GR-499 and ANSI T1.102.  
26 of 60  
 
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 7-D. STS-1 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
51.840Mbps (M20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75(M1%) resistive  
Pulse Amplitude  
0.800V nominal (not covered in specs)  
An isolated pulse (preceded by two zeros and followed by one  
or more zeros) falls within the curved listed in Table 7-C.  
Between -1.8dBm and +5.7dBm  
Pulse Shape  
Unframed All-Ones Power Level at 25.92MHz  
Unframed All-Ones Power Level at 51.84MHz  
At least 20dB less than the power measured at 25.92MHz.  
Table 7-E. E3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
34.368Mbps (M20ppm)  
Line Code  
HDB3  
Transmission Medium  
Test Measurement Point  
Test Termination  
Pulse Amplitude  
Coaxial cable (AT&T 734A or equivalent)  
At the transmitter  
75(M1%) resistive  
1.0V (nominal)  
An isolated pulse (preceded by two zeros and followed by one  
or more zeros) falls within the template shown in Figure 7-1.  
Pulse Shape  
Ratio of the Amplitudes of Positive and Negative  
Pulses at the Center of the Pulse Interval  
Ratio of the Widths of Positive and Negative  
Pulses at the Nominal Half Amplitude  
0.95 to 1.05  
0.95 to 1.05  
Figure 7-1. E3 Waveform Template  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
17  
8.65  
G.703  
E3  
TEMPLATE  
12.1  
24.5  
29.1  
-0.1  
-0.2  
TIME (ns)  
27 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 7-2. DS3 AIS Structure  
M1 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
X1  
(1)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M2 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
X2  
(1)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M3 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
P1  
(0)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M4 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
P2  
(0)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M5 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M1  
(0)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M6 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M2  
(1)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
M7 Subframe  
84  
84  
Info C1 Info F2  
Bits (1) Bits  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M3  
(0)  
Info F1  
Info  
F3  
Info C3 Info F4  
Info  
(0) Bits (0) Bits  
(0) Bits  
(0) Bits (1) Bits  
Note 1: X1 is transmitted first.  
Note 2: The 84 info bits contain the repetitive sequence 1010…, where the first 1 in the sequence immediately follows each X, P, F, C, or M bit.  
8. DIAGNOSTICS  
PRBS Generator and Detector. Each LIU has built-in pseudorandom bit sequence (PRBS) generator and detector  
circuitry for physical layer testing. The device generates and detects unframed 215 - 1 (DS3 or STS-1) or 223 - 1  
PRBS, according to the ITU O.151 specification. To transmit a PRBS pattern, pull the TDSA and TDSB pins high  
(hardware mode) or set configuration bits TDSA and TDSB (CPU bus mode). As Table 4-F shows, the PRBS  
generator automatically generates 215 - 1 for DS3 and STS-1 modes and 223 - 1 for E3 mode.  
The PRBS detector, which is always enabled (Table 4-G), reports its status through the PRBS output pin (hardware  
and CPU bus modes) or through the PRBS and PBER status bits (CPU bus mode). When the PRBS detector is out  
of synchronization, the PRBS pin is forced high. When the detector syncs to an incoming PRBS pattern, the PRBS  
pin is driven low, then pulses high, synchronous with RCLK, for each bit error detected. See Figure 8-1 and Figure  
8-2 for details. In CPU bus mode, the PRBS status bit is set to one when the detector is out of synchronization and  
set to zero when the detector syncs to an incoming PRBS pattern. A change of state of the PRBS bit can cause an  
interrupt on the INT pin if the PRBSIE interrupt-enable bit is set to one. A pattern bit error can also cause an  
interrupt if the PBERIE interrupt-enable bit is set to one. The PRBS detector also declares sync in the presence of  
an incoming all-ones pattern.  
28 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Loopbacks. Each LIU has three internal loopbacks. See Figure 3-1 and Figure 3-2. The LLB and RLB pins  
(hardware mode) or LLB and RLB control bits (CPU bus mode) enable these loopbacks. When LLB = RLB = 0,  
loopbacks are disabled. Setting RLB = 1 with LLB = 0 enables remote loopback, which loops recovered clock and  
data back through the LIU transmitter. During remote loopback, recovered clock and data are output on RCLK,  
RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored. Setting LLB = 1 with RLB = 0  
enables analog local loopback, which loops the outgoing transmit signal back to the receiver’s analog front end.  
Setting LLB = RLB = 1 enables digital local loopback, which loops digital transmit clock and data back to the  
receiver’s digital circuitry, including the LOS detector, the B3ZS/HDB3 decoder, and the PRBS detector. When  
either of the local loopbacks is enabled, the transmit signal is output normally on TXP/TXN, but the received signal  
on RXP/RXN is ignored.  
Figure 8-1. PRBS Output with Normal RCLK Operation  
RCINV = 0  
RCLK  
PRBS  
PRBS DETECTOR IS IN SYNC; THE  
PRBS PIN PULSES HIGH FOR EACH BIT  
ERROR DETECTED  
PRBS DETECTOR  
IS NOT IN SYNC  
Figure 8-2. PRBS Output with Inverted RCLK Operation  
RCINV = 1  
RCLK  
PRBS  
PRBS DETECTOR  
IS NOT IN SYNC  
PRBS DETECTOR IS IN SYNC; THE  
PRBS PIN PULSES HIGH FOR EACH BIT  
ERROR DETECTED  
9. JITTER ATTENUATOR  
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can  
be disabled. The TJA and RJA pins (hardware mode) or the TJA and RJA control bits (CPU bus mode) specify how  
the jitter attenuator is used. Setting TJA = RJA = 0 disables the jitter attenuator. To use the jitter attenuator in the  
receive path, set RJA = 1 (with TJA = 0). To use it in the transmit path, set TJA = 1. Figure 9-1 shows the minimum  
jitter attenuation for the device when the jitter attenuator is enabled. Figure 9-1 also shows the receive jitter transfer  
when the jitter attenuator is disabled.  
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a 16 x 2-bit FIFO to buffer the  
associated data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very  
large jitter amplitudes.  
The jitter attenuator requires a transmission-quality master clock (i.e., M20ppm frequency accuracy and low jitter).  
When enabled in the receive path, the JA can obtain its master clock from the appropriate MCLK pin or the TCLK  
pin. If the signal on the MCLK pin is toggling, the JA uses the signal on the MCLK pin as its master clock. If the  
MCLK pin is high, the JA uses the signal on the TCLK pin as its master clock. When enabled in the transmit path,  
29 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
the JA must take its master clock from the MCLK pin. The clock and data recovery block also uses the selected  
master clock.  
The JA has a loop bandwidth of master_clock / 2,058,874 (see corner frequencies in Figure 9-1). The JA  
attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower  
frequencies to pass through relatively unaffected.  
Figure 9-1. Jitter Attenuation/Jitter Transfer  
21.7Hz (DS3)  
16.7Hz (E3)  
27Hz  
40Hz  
25.2Hz (STS-1)  
1k  
>150k  
40k 59.6k  
0
DS3 [GR-499 (1995)]  
CATEGORY I  
DS3 [GR-253 (1999)]  
CATEGORY I  
DS315x TYPICAL RECEIVER  
JITTER TRANSFER WITH JITTER  
ATTENUATOR DISABLED  
STS-1 [GR-253  
(1999)]  
CATEGORY II  
-10  
-20  
E3 [TBR24 (1997)]  
DS315x  
DS3/E3/STS-1  
MINIMUM  
DS3 [GR-499 (1999)]  
CATEGORY II  
JITTER  
ATTENUATION  
WITH JITTER  
ATTENUATOR  
ENABLED  
-30  
10k  
10  
100  
1k  
100k  
1M  
FREQUENCY (Hz)  
10. RESET LOGIC  
There are four sources for reset: an internal power-on reset (POR) circuit, the reset pin RST, the JTAG reset pin  
JTRST, and the RST bit in each LIU’s global configuration register (GCR). The chip is divided into three zones for  
reset: the digital logic, the analog circuits, and the JTAG logic. The digital logic includes the status and control  
registers, the B3ZS/HDB3 encoder and decoder, the PRBS generator and detector, and the LOS detect logic. The  
analog circuits include clock and data recovery, jitter attenuator, and transmit waveform generation. The JTAG  
logic consists of the common boundary scan controller and the boundary scan cells at each pin.  
The POR circuit resets the digital logic, analog circuits, and JTAG logic zones. The RST pin resets the digital logic  
and the analog circuits but not the JTAG logic. The JTRST pin resets only the JTAG logic. Each LIU’s RST register  
bit resets the digital logic for that LIU, including resetting the LIU’s registers to the default state (except for the RST  
bit).  
The POR signal and RST pin require an active master clock source for the LIU to properly reset.  
30 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
11. TRANSFORMERS  
Table 11-A. Transformer Characteristics  
PARAMETER  
VALUE  
Turns Ratio  
1:2ct M2%  
0.250MHz to 500MHz (typ)  
19H (min)  
Bandwidth 75ꢀ  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
Isolation Voltage  
0.150H (max)  
10pF (max)  
1500VRMS (min)  
Table 11-B. Recommended Transformers  
NO. OF  
PIN-PACKAGE/  
SCHEMATIC  
MANUFACTURER  
PART  
TEMP RANGE  
TRANSFORMERS  
6 SMT  
LS-1/C  
6 Thru-Hole  
LC-1/C  
32 SMT  
YB/1  
1
PE-65968  
PE-65969  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Pulse Engineering  
1
8
1
1
T3049  
6 SMT  
TG07-0206NS  
TD07-0206NE  
SMD/B  
6 DIP  
Halo Electronics  
DIP/B  
Note: Table subject to change. Industrial temperature range and other multiples (dual, quad) are also available. Contact the manufacturers for  
details at www.pulseeng.com and www.haloelectronics.com.  
31 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
12. JTAG TEST ACCESS PORT AND BOUNDARY SCAN  
12.1 JTAG Description  
The DS315x LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional  
public instructions included are HIGHZ, CLAMP, and IDCODE. Figure 12-1 features a block diagram. The LIUs  
contain the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and  
Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
Instruction Register  
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins  
can be found in Section 4. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.1-  
1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
Figure 12-1. JTAG Block Diagram  
BOUNDARY  
SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
SELECT  
TEST ACCESS PORT  
TRI-STATE  
CONTROLLER  
10k  
10k  
10k  
JTDI  
JTMS  
JTCLK  
JTDO  
JTRST  
32 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
12.2 JTAG TAP Controller State Machine Description  
This section discusses the operation of the TAP controller state machine. The TAP controller is a finite state  
machine that responds to the logic level at JTMS on the rising edge of JTCLK. Each of the states denoted in Figure  
12-2 are described in the following pages.  
Figure 12-2. JTAG TAP Controller State Machine  
Test-Logic-Reset  
1
0
1
1
Select  
Select  
1
Run-Test/Idle  
DR-Scan  
IR-Scan  
0
0
0
1
1
Capture-DR  
0
Capture-IR  
0
Shift-DR  
1
Shift-IR  
1
0
1
0
1
Exit1- DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The instruction  
register contains the IDCODE instruction. All system logic on the device operates normally.  
Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The instruction and test  
registers remain idle.  
Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the  
controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the Select-  
IR-SCAN state.  
Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the  
instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register  
remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or  
to the Exit1-DR state if JTMS is high.  
33 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO and shifts  
data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it maintains its previous state.  
Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state,  
which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR  
state.  
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current  
instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on  
JTCLK with JTMS high puts the controller in the Exit2-DR state.  
Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state  
and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR  
state.  
Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of  
the test registers into the data output latches. This prevents changes at the parallel output because of changes in  
the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS  
high, the controller enters the Select-DR-Scan state.  
Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this  
state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan  
sequence for the instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the  
Test-Logic-Reset state.  
Capture-IR. The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This  
value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the  
Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state.  
Shift-IR. In this state, the instruction register’s shift register is connected between JTDI and JTDO and shifts data  
one stage for every rising edge of JTCLK toward the serial output. The parallel register and the test registers  
remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-IR state.  
A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state, while moving data one stage  
through the instruction shift register.  
Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the  
rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.  
Pause-IR. Shifting of the instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts  
the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge  
on JTCLK.  
Exit2-IR. A rising edge on JTCLK with JTMS high puts the controller in the Update-IR state. The controller loops  
back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state.  
Update-IR. The instruction shifted into the instruction shift register is latched into the parallel output on the falling  
edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A  
rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller  
enters the Select-DR-Scan state.  
34 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
12.3 JTAG Instruction Register and Instructions  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in  
the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage toward the serial output at JTDO. A  
rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the Update-  
IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction  
parallel output. Table 12-A shows the instructions supported by the DS315x and their respective operational binary  
codes.  
Table 12-A. JTAG Instruction Codes  
INSTRUCTIONS  
SAMPLE/PRELOAD  
BYPASS  
SELECTED REGISTER  
Boundary Scan  
Bypass  
INSTRUCTION CODES  
010  
111  
000  
011  
100  
001  
EXTEST  
Boundary Scan  
Bypass  
CLAMP  
HIGHZ  
Bypass  
IDCODE  
Device Identification  
SAMPLE/PRELOAD. SAMPLE/RELOAD is a mandatory instruction for the IEEE 1149.1 specification. This  
instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register  
without interfering with the device’s normal operation by using the Capture-DR state. SAMPLE/PRELOAD also  
allows the DS315x to shift data into the boundary scan register through JTDI using the Shift-DR state.  
EXTEST. EXTEST allows testing of the interconnections to the device. When the EXTEST instruction is latched in  
the instruction register, the following actions occur. Once enabled through the Update-IR state, the parallel outputs  
of the digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The  
Capture-DR samples all digital inputs into the boundary scan register.  
BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO  
through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s  
normal operation.  
IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the identification test  
register is selected. The device identification code is loaded into the identification register on the rising edge of  
JTCLK, following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially  
through JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel  
output.  
HIGHZ. All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI  
and JTDO.  
CLAMP. All digital output pins output data from the boundary scan parallel output while connecting the bypass  
register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.  
Table 12-B. JTAG ID Code  
PART  
REVISION  
DEVICE CODE  
MANUFACTURER CODE  
REQUIRED  
DS3154  
DS3153  
DS3152  
DS3151  
Consult factory  
Consult factory  
Consult factory  
Consult factory  
0000000000110011  
0000000000110010  
0000000000110000  
0000000000100000  
00010100001  
00010100001  
00010100001  
00010100001  
1
1
1
1
35 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
12.4 JTAG Test Registers  
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. An  
optional test register, the identification register, has been included in the device design. It is used with the IDCODE  
instruction and the Test-Logic-Reset state of the TAP controller.  
Bypass Register. This single 1-bit shift register, used with the BYPASS, CLAMP, and HIGHZ instructions,  
provides a short path between JTDI and JTDO.  
Boundary Scan Register. This register contains a shift register path and a latched parallel output for control cells  
and digital I/O cells. DS315x BSDL files are available at www.maxim-ic.com/TechSupport/telecom/bsdl.htm.  
Identification Register. This register contains a 32-bit shift register and a 32-bit latched parallel output. It is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.  
36 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
13. ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)  
Supply Voltage Range (VDD) with Respect to VSS  
Ambient Operating Temperature Range  
Junction Operating Temperature Range  
Storage Temperature Range  
-0.3V to +5.5V  
-0.3V to +3.63V  
-40°C to +85°C  
-40°C to +125°C  
-55°C to +125°C  
Soldering Temperature  
See IPC/JEDEC J-STD-020A Specification  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device. Ambient operating temperature range  
when device is mounted on a four-layer JEDEC test board with no airflow.  
Note: The typical values listed in Tables 13-A through 13-I are not production tested.  
Table 13-A. Recommended DC Operating Conditions  
(TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
VIH  
CONDITIONS  
MIN  
2.0  
TYP  
MAX  
5.5  
UNITS  
Logic 1  
Logic 0  
V
V
V
VIL  
-0.3  
+0.8  
3.465  
Supply Voltage  
VDD  
3.135  
3.3  
Table 13-B. DC Characteristics  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DS3151  
DS3152  
DS3153  
DS3154  
DS3151  
DS3152  
DS3153  
DS3154  
100  
200  
300  
400  
80  
150  
225  
300  
Supply Current (Note 1)  
IDD  
mA  
Supply Current, Transmitters Tri-Stated  
IDDTTS  
mA  
(All TTSn Low) (Note 2)  
Power-Down Current (All TPD, RPD  
Control Bits High)  
IDDPD  
DS315x (Note 2)  
55  
7
70  
mA  
pF  
Lead Capacitance  
CIO  
IIL  
Input Leakage  
(Note 3)  
(Note 3)  
-50  
-10  
2.4  
0
+10  
+10  
VDD  
0.4  
A  
A  
V
Output Leakage (when High-Z)  
Output Voltage (IO = -4.0mA)  
Output Voltage (IO = +4.0mA)  
ILO  
VOH  
VOL  
V
Note 1: TCLKn = STMCLK = 51.84MHz; TXPn/TXNn driving all ones into 75resistive loads; analog loopback enabled; all other inputs at VDD  
or grounded; all other outputs open.  
Note 2: TCLKn = STMCLK = 51.84MHz; other inputs at VDD or grounded; digital outputs left open circuited.  
Note 3: 0V < VIN < VDD  
.
37 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 13-C. Framer Interface Timing  
(VDD = 3.3V M5%, TA = -40°C to +85°C.) (Figure 13-1 and Figure 13-2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
22.4  
29.1  
19.3  
50  
MAX  
UNITS  
(Note 4)  
(Note 5)  
(Note 6)  
RCLK/TCLK Clock Period  
t1  
ns  
RCLK Duty Cycle  
TCLK Duty Cycle  
MCLK Duty Cycle  
t2/t1, t3/t1  
t2/t1, t3/t1  
t2/t1, t3/t1  
(Notes 7, 8)  
45  
30  
30  
55  
70  
70  
%
%
%
(Note 8)  
(Note 8)  
TPOS/TDAT, TNEG to TCLK Setup  
Time  
t4  
t5  
t6  
(Notes 8, 9)  
2
2
2
ns  
ns  
ns  
TPOS/TDAT, TNEG Hold Time  
(Notes 8, 9)  
RCLK to RPOS/RDAT, RNEG/RLCV,  
and PRBS Value Change  
(Notes 7, 8, 10)  
6
5
RCLK Rise and Fall Time  
TCLK Rise and Fall Time  
t7  
t8  
(Notes 8, 11)  
(Notes 8, 12)  
5
ns  
ns  
Note 4: DS3 mode.  
Note 5: E3 mode.  
Note 6: STS-1 mode.  
Note 7: Outputs loaded with 25pF, measured at 50% threshold.  
Note 8: Not tested during production test.  
Note 9: When TCINV = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCINV = 1, TPOS/TDAT and TNEG are  
sampled on the falling edge of TCLK.  
Note 10: When RCINV = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCINV = 1, RPOS/RDAT and  
RNEG/RLCV are updated on the rising edge of RCLK.  
Note 11: Outputs loaded with 25pF, measured between VOL (max) and VOH (min).  
Note 12: Measured between VIL (max) and VIH (min).  
Figure 13-1. Transmitter Framer Interface Timing Diagram  
t1  
t2  
t3  
TCLK (NORMAL)  
TCLK (INVERTED)  
t8  
t4  
t5  
TPOS/TDAT,  
TNEG  
38 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 13-2. Receiver Framer Interface Timing Diagram  
t1  
t2  
t3  
RCLK (NORMAL)  
RCLK (INVERTED)  
t6  
t7  
RPOS/RDAT,  
RNEG/RLCV  
Table 13-D. Receiver Input Characteristics—DS3 and STS-1 Modes  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
1200  
10  
MAX  
UNITS  
Receive Sensitivity (Length of Cable)  
900  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 13, 14)  
Input Pulse Amplitude, RMON = 0 (Notes 14, 15)  
Input Pulse Amplitude, RMON = 1 (Note 14, 15)  
Analog LOS Declare, RMON = 0 (Note 16)  
Analog LOS Clear, RMON = 0 (Note 16)  
1000  
200  
-24  
mVpk  
mVpk  
dB  
-17  
-29  
dB  
Analog LOS Declare, RMON = 1 (Note 16)  
Analog LOS Clear, RMON = 1 (Note 16)  
-38  
dB  
dB  
Intrinsic Jitter Generation (Note 14)  
0.03  
UIP-P  
Table 13-E. Receiver Input Characteristics—E3 Mode  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
1200  
12  
MAX  
UNITS  
Receive Sensitivity (Length of Cable)  
900  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 13, 14)  
Input Pulse Amplitude, RMON = 0 (Notes 14, 15)  
Input Pulse Amplitude, RMON = 1 (Notes 14, 15)  
Analog LOS Declare, RMON = 0 (Note 16)  
Analog LOS Clear, RMON = 0 (Note 16)  
Analog LOS Declare, RMON = 1 (Note 16)  
Analog LOS Clear, RMON = 1 (Note 16)  
Intrinsic Jitter Generation (Note 14)  
1300  
260  
-24  
mVpk  
mVpk  
dB  
-17  
-29  
dB  
-38  
dB  
dB  
0.03  
UIP-P  
Note 13: An interfering signal (215 - 1 PRBS for DS3/STS-1, 223 - 1 PRBS for E3, B3ZS/HDB3 encoded, compliant waveshape, nominal bit rate)  
is added to the wanted signal. The combined signal is passed through 0 to 900ft of coaxial cable and presented to the DS3154  
receiver. This spec indicates the lowest signal-to-noise ratio that results in a bit error ratio <10-9.  
Note 14: Not tested during production test.  
Note 15: Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Figure 1-1). During measurement, incoming  
data traffic is unframed 215 - 1 PRBS for DS3/STS-1 and unframed 223 - 1 PRBS for E3.  
Note 16: With respect to nominal 800mVpk signal for DS3/STS-1 and nominal 1000mVpk signal for E3.  
39 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 13-F. Transmitter Output Characteristics—DS3 and STS-1 Modes  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
700  
520  
700  
520  
0.9  
TYP  
800  
700  
800  
700  
MAX  
900  
800  
1100  
850  
1.1  
UNITS  
mVpk  
mVpk  
mVpk  
mVpk  
DS3 Output Pulse Amplitude, TLBO = 0 (Note 17)  
DS3 Output Pulse Amplitude, TLBO = 1 (Note 17)  
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 17)  
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 17)  
Ratio of Positive and Negative Pulse-Peak Amplitudes  
DS3 Unframed All-Ones Power Level at 22.368MHz, 3kHz Bandwidth  
-1.8  
+5.7  
dBm  
DS3 Unframed All-Ones Power Level at 44.736MHz vs. Power Level at  
-20  
dB  
22.368MHz, 3kHz Bandwidth  
Intrinsic Jitter Generation (Note 18)  
0.02  
0.05  
UIP-P  
Table 13-G. Transmitter Output Characteristics—E3 Mode  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
mVpk  
ns  
Output Pulse Amplitude (Note 17)  
900  
1000 1100  
14.55  
Pulse Width  
Ratio of Positive and Negative Pulse Amplitudes (at Centers of Pulses)  
Ratio of Positive and Negative Pulse Widths (at Nominal Half Amplitude)  
Intrinsic Jitter Generation (Note 18)  
0.95  
0.95  
1.05  
1.05  
0.02  
0.05  
UIP-P  
Note 17: Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 1-1).  
Note 18: Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested during  
production test.  
Table 13-H. CPU Bus Timing  
(VDD = 3.3V M5%, TA = -40°C to +85°C.) (Figure 13-3 and Figure 13-4)  
PARAMETER  
SYMBOL  
MIN  
0
TYP  
MAX  
UNITS  
ns  
t1  
t2  
t3  
t4  
Setup Time for A[5:0] Valid to CS Active (Notes 19, 20)  
Setup Time for CS Active to RD, WR, or DS Active  
Delay Time from RD or DS Active to D[7:0] Valid  
Hold Time from RD or WR or DS Inactive to CS Inactive  
Delay from CS or RD or DS Inactive to D[7:0] Invalid or Tri-State  
(Note 21)  
0
ns  
65  
20  
ns  
ns  
0
2
t5  
ns  
t6  
t7  
65  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wait Time from WR or DS Active to Latch D[7:0]  
D[7:0] Setup Time to WR or DS Inactive  
D[7:0] Hold Time from WR or DS Inactive  
A[5:0] Hold Time from WR or RD or DS Inactive  
RD, WR, or DS Inactive Time  
t8  
t9  
5
t10  
t11  
t12  
t13  
75  
10  
10  
30  
Muxed Address Valid to ALE Falling (Note 22)  
Muxed Address Hold Time (Note 22)  
ALE Pulse Width (Note 22)  
Setup Time for ALE High or Muxed Address Valid to CS Active  
t14  
0
ns  
(Note 22)  
Note 19: D[7:0] loaded with 50pF when tested as outputs.  
Note 20: If a gapped clock is applied on TCLK and diagnostic loopback is enabled, read cycle time must be extended by the length of the  
largest TCLK gap.  
Note 21: Not tested during production test.  
Note 22: In nonmultiplexed bus applications (Figure 13-3), ALE should be wired high. In multiplexed bus applications (Figure 13-4), A[5:0]  
should be wired to D[5:0] and the falling edge of ALE latches the address.  
40 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)  
INTEL READ CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
WR  
DATA VALID  
t5  
t1  
CS  
RD  
t2  
t3  
t4  
t10  
INTEL WRITE CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
t7  
t8  
RD  
t1  
CS  
t2  
t6  
t4  
t10  
WR  
41 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)(continued)  
MOTOROLA READ CYCLE  
t9  
A[5:0]  
D[7:0]  
ADDRESS VALID  
DATA VALID  
t5  
R/W  
t1  
CS  
DS  
t2  
t3  
t4  
t10  
MOTOROLA WRITE CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
t7  
t8  
R/W  
t1  
CS  
DS  
t2  
t6  
t4  
t10  
42 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 13-4. CPU Bus Timing Diagram (Multiplexed)  
INTEL READ CYCLE  
t13  
t12  
ALE  
t11  
ADDRESS  
VALID  
A[5:0]  
D[7:0]  
t14  
t14  
DATA VALID  
t5  
WR  
CS  
RD  
t2  
t3  
t4  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
INTEL WRITE CYCLE  
t13  
t12  
ALE  
A[5:0]  
D[7:0]  
t11  
ADDRESS  
VALID  
t14  
t14  
t7  
t8  
RD  
CS  
t6  
t4  
t2  
t10  
WR  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
43 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 13-4. CPU Bus Timing Diagram (Multiplexed) (continued)  
MOTOROLA READ CYCLE  
t13  
t12  
ALE  
t11  
ADDRESS  
A[5:0]  
VALID  
t14  
D[7:0]  
DATA VALID  
t14  
t5  
R/W  
CS  
DS  
t2  
t3  
t4  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
MOTOROLA WRITE CYCLE  
t13  
ALE  
t12  
t11  
ADDRESS  
VALID  
A[5:0]  
t14  
t14  
D[7:0]  
t7  
t8  
R/W  
CS  
DS  
t6  
t2  
t4  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
44 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 13-I. JTAG Interface Timing  
(VDD = 3.3V M5%, TA = -40°C to +85°C.) (Figure 13-5)  
PARAMETER  
JTCLK Clock Period  
SYMBOL  
MIN  
TYP  
1000  
500  
MAX  
UNITS  
ns  
t1  
t2/t3  
t4  
JTCLK Clock High/Low Time (Note 23)  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
50  
50  
50  
2
ns  
ns  
t5  
ns  
t6  
50  
50  
ns  
JTCLK to JTDO High-Z Delay (Note 24)  
JTRST Width Low Time  
t7  
2
ns  
t8  
100  
ns  
Note 23: Clock can be stopped high or low.  
Note 24: Not tested during production test.  
Figure 13-5. JTAG Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI, JTMS, JTRST  
t6  
t7  
JTDO  
t8  
JTRST  
45 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
14. PIN ASSIGNMENTS  
Table 14-A lists pin assignments sorted by signal name. Table 14-B lists pin assignments sorted by pin number.  
DS3154 has all four LIUs. DS3153 has only LIUs 1, 2, and 3. DS3152 has only LIUs 1 and 2. DS3151 has only LIU  
1. Figure 14-1 through Figure 14-8 show pinouts for the four devices in both hardware and CPU bus modes.  
Table 14-A. Pin Assignments Sorted by Signal Name  
PIN  
HARDWARE  
CPU BUS  
NAME  
MODE  
MODE  
LIU 1  
LIU 2  
LIU 3  
LIU 4  
A[0]  
A[1]  
A[2]  
A[3]  
A[4]  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
Y
K6  
L6  
K7  
L7  
K8  
L8  
C7  
B7  
E3  
F2  
F3  
G2  
G3  
H2  
H3  
J3  
A[5]  
ALE  
CS  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
E3MCLK  
E3Mn  
HIZ  
E12  
F3  
G10  
C7  
K6  
J8  
E9  
C5  
E4  
H4  
J4  
HW  
INT  
JTCLK  
JTDI  
JTDO  
JTMS  
JTRST  
LLBn  
MOT  
PRBSn  
RBIN  
RCINV  
RCLKn  
RD  
D5  
D4  
B5  
B1  
L8  
E11  
A11  
H2  
M2  
C6  
L12  
D9  
J9  
C1  
K12  
A10  
M3  
B6  
RJAn  
RLBn  
RLOSn  
B4  
C5  
A1  
L9  
K8  
M12  
D11  
E10  
A12  
J2  
H3  
M1  
46 of 60  
 
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 14-A. Pin Assignments Sorted by Signal Name (continued)  
PIN  
HARDWARE  
CPU  
NAME  
MODE  
MODE  
LIU 1  
C3  
C2  
LIU 2  
K10  
K11  
LIU 3  
C10  
B10  
LIU 4  
K3  
L3  
RNEGn  
RPOSn  
RST  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
Y
Y
N
N
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
H1  
B2  
A2  
A3  
L11  
M11  
M10  
B11  
B12  
C12  
L2  
L1  
K1  
RTSn  
RXNn  
RXPn  
STMCLK  
STSn  
T3MCLK  
TBIN  
TCINV  
TCLKn  
TDMn  
TDSAn  
TDSBn  
TEST  
M8  
F2  
G11  
B7  
L6  
A5  
D8  
H9  
E1  
D3  
G2  
G3  
H12  
J10  
F11  
F10  
A8  
C9  
B6  
C6  
M5  
K4  
L7  
K7  
J5  
TJAn  
C4  
E3  
D2  
D1  
E2  
G1  
F1  
K9  
D10  
C8  
B9  
A9  
B8  
A6  
A7  
J3  
K5  
L4  
M4  
L5  
TLBOn  
TNEGn  
TPOSn  
TTSn  
H10  
J11  
J12  
H11  
F12  
G12  
TXNn  
TXPn  
VDD  
M7  
M6  
D6, E5, E6, F4, F5, F6, G7, G8, G9, H7, H8, J7  
D7, E7, E8, F7, F8, F9, G4, G5, G6, H5, H6, J6  
B5  
VSS  
WR  
47 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Table 14-B. Pin Assignments Sorted by Pin Number  
DS3154  
DS3153  
DS3152  
DS3151  
PIN  
HARDWARE CPU BUS HARDWARE  
CPU BUS HARDWARE CPU BUS HARDWARE CPU BUS  
MODE  
RLOS1  
RXN1  
RXP1  
RMON1  
T3MCLK  
TXN3  
TXP3  
MODE  
RLOS1  
RXN1  
RXP1  
N.C.  
MODE  
RLOS1  
RXN1  
RXP1  
RMON1  
T3MCLK  
TXN3  
TXP3  
MODE  
RLOS1  
RXN1  
RXP1  
N.C.  
MODE  
RLOS1  
RXN1  
RXP1  
RMON1  
T3MCLK  
N.C.  
MODE  
RLOS1  
RXN1  
RXP1  
N.C.  
MODE  
RLOS1  
RXN1  
RXP1  
RMON1  
T3MCLK  
N.C.  
MODE  
RLOS1  
RXN1  
RXP1  
N.C.  
A1  
A2  
A3  
A4  
A5  
T3MCLK  
TXN3  
TXP3  
TCLK3  
TPOS3  
RCLK3  
PRBS3  
RLOS3  
PRBS1  
RTS1  
N.C.  
T3MCLK  
TXN3  
TXP3  
TCLK3  
TPOS3  
RCLK3  
PRBS3  
RLOS3  
PRBS1  
RTS1  
N.C.  
T3MCLK  
N.C.  
T3MCLK  
N.C.  
A6  
A7  
N.C.  
N.C.  
N.C.  
N.C.  
A8  
TCLK3  
TPOS3  
RCLK3  
PRBS3  
RLOS3  
PRBS1  
RTS1  
TCLK3  
TPOS3  
RCLK3  
PRBS3  
RLOS3  
PRBS1  
RTS1  
N.C.  
N.C.  
N.C.  
N.C.  
A9  
N.C.  
N.C.  
N.C.  
N.C.  
A10  
A11  
A12  
B1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
PRBS1  
RTS1  
N.C.  
PRBS1  
RTS1  
N.C.  
PRBS1  
RTS1  
N.C.  
PRBS1  
RTS1  
N.C.  
B2  
B3  
N.C.  
N.C.  
B4  
RJA1  
N.C.  
RJA1  
N.C.  
RJA1  
LLB1  
N.C.  
N.C.  
WR  
RD  
CS  
RJA1  
LLB1  
N.C.  
N.C.  
WR  
RD  
CS  
B5  
LLB1  
LLB1  
WR  
RD  
CS  
WR  
B6  
TDSA3  
STS3  
TTS3  
TDSA3  
STS3  
TTS3  
RD  
CS  
B7  
N.C.  
N.C.  
B8  
N.C.  
N.C.  
N.C.  
N.C.  
TTS3  
TNEG3  
RPOS3  
RTS3  
RXN3  
RCLK1  
RPOS1  
RNEG1  
N.C.  
TTS3  
TNEG3  
RPOS3  
RTS3  
RXN3  
RCLK1  
RPOS1  
RNEG1  
N.C.  
B9  
TNEG3  
RPOS3  
RTS3  
RXN3  
RCLK1  
RPOS1  
RNEG1  
TJA1  
TNEG3  
RPOS3  
RTS3  
RXN3  
RCLK1  
RPOS1  
RNEG1  
TJA1  
N.C.  
N.C.  
N.C.  
N.C.  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RCLK1  
RPOS1  
RNEG1  
TJA1  
RLB1  
N.C.  
RCLK1  
RPOS1  
RNEG1  
N.C.  
RCLK1  
RPOS1  
RNEG1  
TJA1  
RLB1  
N.C.  
RCLK1  
RPOS1  
RNEG1  
N.C.  
RLB1  
TDSB3  
E3M3  
TLBO3  
TDM3  
RNEG3  
N.C.  
RLB1  
TDSB3  
E3M3  
TLBO3  
TDM3  
RNEG3  
N.C.  
INT  
INT  
INT  
INT  
MOT  
MOT  
MOT  
MOT  
ALE  
ALE  
N.C.  
ALE  
N.C.  
ALE  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TDM3  
RNEG3  
N.C.  
TDM3  
RNEG3  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RXP3  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
RXP3  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
RXP3  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
RXP3  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
N.C.  
N.C.  
N.C.  
N.C.  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
TPOS1  
TNEG1  
TDM1  
JTRST  
JTMS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TBIN  
N.C.  
TBIN  
N.C.  
TBIN  
RBIN  
N.C.  
N.C.  
TBIN  
RBIN  
N.C.  
N.C.  
RBIN  
N.C.  
RBIN  
N.C.  
N.C.  
N.C.  
TJA3  
N.C.  
TJA3  
N.C.  
N.C.  
N.C.  
RJA3  
N.C.  
RJA3  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
RMON3  
TCLK1  
TTS1  
N.C.  
RMON3  
TCLK1  
TTS1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TCLK1  
TTS1  
D0  
TCLK1  
TTS1  
D0  
TCLK1  
TTS1  
TLBO1  
JTCLK  
VDD  
TCLK1  
TTS1  
D0  
TCLK1  
TTS1  
TLBO1  
JTCLK  
VDD  
TCLK1  
TTS1  
D0  
E2  
E3  
TLBO1  
JTCLK  
VDD  
TLBO1  
JTCLK  
VDD  
E4  
JTCLK  
VDD  
JTCLK  
VDD  
JTCLK  
VDD  
JTCLK  
VDD  
E5  
E6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
E7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
48 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
DS3153 DS3152 DS3151  
DS3154  
PIN  
HARDWARE CPU BUS HARDWARE  
CPU BUS HARDWARE CPU BUS HARDWARE CPU BUS  
MODE  
HW  
MODE  
HW  
MODE  
HW  
MODE  
HW  
MODE  
HW  
MODE  
HW  
MODE  
HW  
MODE  
HW  
E9  
E10  
E11  
E12  
F1  
RLB3  
LLB3  
E3MCLK  
TXP1  
STS1  
E3M1  
VDD  
N.C.  
N.C.  
E3MCLK  
TXP1  
D1  
RLB3  
LLB3  
E3MCLK  
TXP1  
STS1  
E3M1  
VDD  
N.C.  
N.C.  
E3MCLK  
TXP1  
D1  
N.C.  
N.C.  
N.C.  
E3MCLK  
TXP1  
D1  
N.C.  
N.C.  
E3MCLK  
TXP1  
STS1  
E3M1  
VDD  
N.C.  
N.C.  
E3MCLK  
TXP1  
D1  
N.C.  
E3MCLK  
TXP1  
STS1  
E3M1  
VDD  
F2  
F3  
D2  
D2  
D2  
D2  
F4  
VDD  
VDD  
VDD  
VDD  
F5  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
F6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
F7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
TDSB2  
TDSA2  
TXN2  
TXN1  
TDSA1  
TDSB1  
VSS  
N.C.  
N.C.  
TXN2  
TxN1  
D3  
TDSB2  
TDSA2  
TXN2  
TXN1  
TDSA1  
TDSB1  
VSS  
N.C.  
N.C.  
TXN2  
TXN1  
D3  
TDSB2  
TDSA2  
TXN2  
TXN1  
TDSA1  
TDSB1  
VSS  
N.C.  
N.C.  
TXN2  
TXN1  
D3  
N.C.  
N.C.  
N.C.  
TXN1  
TDSA1  
TDSB1  
VSS  
N.C.  
N.C.  
N.C.  
TXN1  
D3  
D4  
D4  
D4  
D4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
E3M2  
STS2  
TXP2  
RST  
N.C.  
N.C.  
TXP2  
RST  
D5  
E3M2  
STS2  
TXP2  
RST  
N.C.  
N.C.  
TXP2  
RST  
D5  
E3M2  
STS2  
TXP2  
RST  
N.C.  
N.C.  
TXP2  
RST  
D5  
N.C.  
N.C.  
N.C.  
RST  
N.C.  
N.C.  
N.C.  
RST  
D5  
LLB4  
RLB4  
JTDI  
N.C.  
N.C.  
N.C.  
N.C.  
JTDI  
VSS  
D6  
N.C.  
D6  
N.C.  
D6  
D6  
JTDI  
VSS  
JTDI  
VSS  
JTDI  
VSS  
JTDI  
VSS  
JTDI  
VSS  
JTDI  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
TCINV  
TLBO2  
TTS2  
TCLK2  
RMON4  
RJA4  
TJA4  
JTDO  
TEST  
VSS  
N.C.  
N.C.  
TTS2  
TCLK2  
N.C.  
N.C.  
D7  
TCINV  
TLBO2  
TTS2  
TCLK2  
N.C.  
N.C.  
N.C.  
TTS2  
TCLK2  
N.C.  
N.C.  
D7  
TCINV  
TLBO2  
TTS2  
TCLK2  
N.C.  
N.C.  
N.C.  
TTS2  
TCLK2  
N.C.  
N.C.  
D7  
TCINV  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
JTDO  
TEST  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
D7  
J2  
N.C.  
N.C.  
J3  
N.C.  
N.C.  
J4  
JTDO  
TEST  
VSS  
JTDO  
TEST  
VSS  
JTDO  
TEST  
VSS  
JTDO  
TEST  
VSS  
JTDO  
TEST  
VSS  
JTDO  
TEST  
VSS  
J5  
J6  
J7  
VDD  
HIZ  
VDD  
HIZ  
N.C  
VDD  
HIZ  
VDD  
HIZ  
N.C  
VDD  
HIZ  
VDD  
HIZ  
N.C  
VDD  
HIZ  
VDD  
HIZ  
J8  
J9  
RCINV  
TDM2  
TNEG2  
TPOS2  
RXP4  
N.C.  
RCINV  
TDM2  
TNEG2  
TPOS2  
N.C.  
RCINV  
TDM2  
TNEG2  
TPOS2  
N.C.  
RCINV  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A0  
J10  
J11  
J12  
K1  
TDM2  
TNEG2  
TPOS2  
RXP4  
N.C.  
RNEG4  
TDM4  
N.C.  
A0  
TDM2  
TNEG2  
TPOS2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A0  
TDM2  
TNEG2  
TPOS2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A0  
K2  
N.C.  
N.C.  
K3  
RNEG4  
TDM4  
TLBO4  
E3M4  
N.C.  
N.C.  
K4  
N.C.  
N.C.  
K5  
N.C.  
N.C.  
K6  
N.C.  
N.C.  
49 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
DS3153 DS3152 DS3151  
DS3154  
PIN  
HARDWARE CPU BUS HARDWARE  
CPU BUS HARDWARE CPU BUS HARDWARE CPU BUS  
MODE  
TDSB4  
RLB2  
MODE  
A2  
MODE  
N.C.  
MODE  
A2  
MODE  
N.C.  
MODE  
A2  
MODE  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
MODE  
A2  
K7  
K8  
A4  
RLB2  
TJA2  
RNEG2  
RPOS2  
RCLK2  
N.C.  
A4  
RLB2  
TJA2  
RNEG2  
RPOS2  
RCLK2  
N.C.  
A4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A1  
K9  
TJA2  
N.C.  
N.C.  
N.C.  
K10  
K11  
K12  
L1  
RNEG2  
RPOS2  
RCLK2  
RXN4  
RNEG2  
RPOS2  
RCLK2  
RXN4  
RTS4  
RPOS4  
TNEG4  
TTS4  
RNEG2  
RPOS2  
RCLK2  
N.C.  
RNEG2  
RPOS2  
RCLK2  
N.C.  
L2  
N.C.  
N.C.  
N.C.  
N.C.  
RTS4  
L3  
RPOS4  
TNEG4  
TTS4  
N.C.  
N.C.  
N.C.  
N.C.  
L4  
N.C.  
N.C.  
N.C.  
N.C.  
L5  
N.C.  
N.C.  
N.C.  
N.C.  
L6  
STS4  
A1  
N.C.  
A1  
N.C.  
A1  
L7  
TDSA4  
LLB2  
A3  
N.C.  
A3  
N.C.  
A3  
A3  
L8  
A5  
LLB2  
RJA2  
N.C.  
A5  
LLB2  
RJA2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
L9  
RJA2  
N.C.  
N.C.  
N.C.  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
N.C.  
N.C.  
N.C.  
N.C.  
RTS2  
RTS2  
PRBS2  
RLOS4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4  
STMCLK  
N.C.  
RTS2  
PRBS2  
N.C.  
RTS2  
PRBS2  
N.C.  
RTS2  
PRBS2  
N.C.  
RTS2  
PRBS2  
N.C.  
PRBS2  
RLOS4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TXN4  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
RMON2  
RXP2  
STMCLK  
RMON2  
RXP2  
RXN2  
RLOS2  
STMCLK  
N.C.  
STMCLK  
RMON2  
RXP2  
RXN2  
RLOS2  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
RXP2  
RXN2  
RLOS2  
RXP2  
RXN2  
RLOS2  
RXN2  
RLOS2  
50 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-1. DS3151 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
N.C.  
C6  
N.C.  
C7  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
N.C.  
D6  
N.C.  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
D1  
D2  
D3  
VDD  
E6  
TPOS1 TNEG1  
JTMS  
E5  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
N.C.  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
N.C.  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
N.C.  
J10  
N.C.  
J11  
N.C.  
J12  
RST  
J1  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
N.C.  
K10  
N.C.  
K11  
N.C.  
K12  
TEST  
K5  
HIZ  
K8  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
N.C.  
L10  
N.C.  
L11  
N.C.  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
N.C.  
M11  
N.C.  
M12  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
51 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-2. DS3151 CPU Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
D0  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
N.C.  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
N.C.  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
N.C.  
J11  
N.C.  
J12  
RST  
J1  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
N.C.  
K10  
N.C.  
K11  
N.C.  
K12  
TEST  
K5  
HIZ  
K8  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
N.C.  
L8  
N.C.  
L9  
N.C.  
L10  
N.C.  
L11  
N.C.  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
A3  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
N.C.  
M11  
N.C.  
M12  
M6  
M7  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
52 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-3. DS3152 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
N.C.  
C6  
N.C.  
C7  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
N.C.  
D6  
N.C.  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK RMON2  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
53 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-4. DS3152 CPU Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1  
D1  
RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D2  
D3  
TPOS1  
E1  
TNEG1  
E2  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
TCLK1  
F1  
D0  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2  
K11  
TPOS2  
K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2  
RCLK2  
L12  
L10  
L11  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
M6  
A3  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
54 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-5. DS3153 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
TDSA3  
C6  
STS3  
C7  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
TDSB3  
D6  
E3M3  
D7  
TLBO3  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
TJA3  
E10  
RJA3  
E11  
RMON3  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
RLB3  
F10  
LLB3  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK RMON2  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
55 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-6. DS3153 CPU Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
D0  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
M6  
A3  
M7  
A5  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
56 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-7. DS3154 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
TDSA3  
C6  
STS3  
C7  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
TDSB3  
D6  
E3M3  
D7  
TLBO3  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
TJA3  
E10  
RJA3  
E11  
RMON3  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
RLB3  
F10  
LLB3  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
LLB4  
J2  
RLB4  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
RMON4  
K1  
RJA4  
K2  
TJA4  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
RXP4  
L1  
N.C.  
L2  
RNEG4  
L3  
TLBO4  
L5  
E3M4  
L6  
TDSB4  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
TDM4  
L4  
L10  
L11  
L12  
RXN4  
M1  
RPOS4 TNEG4  
STS4  
M6  
TDSA4  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS4  
M2  
TTS4  
M5  
RTS2  
M11  
M3  
M4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4 STMCLK RMON2  
RXP2  
RXN2  
RLOS4  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
57 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
Figure 14-8. DS3154 CPU Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
D0  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
RXP4  
L1  
N.C.  
L2  
RNEG4  
L3  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
TDM4  
L4  
L10  
L11  
L12  
RXN4  
M1  
RPOS4 TNEG4  
A1  
M6  
A3  
M7  
A5  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS4  
M2  
TTS4  
M5  
RTS2  
M11  
M3  
M4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4 STMCLK  
N.C.  
RXP2  
RXN2  
RLOS4  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
58 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
15. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to  
www.maxim-ic.com/DallasPackInfo.)  
Note: All dimensions in millimeters.  
A1 BALL PAD CORNER  
13.00  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
1.00  
C
D
E
F
G
H
13.00  
J
K
(1.00)  
L
M
(1.00)  
1.00  
BOTTOM VIEW  
59 of 60  
DS3151/DS3152/DS3153/DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs  
16. THERMAL INFORMATION  
Table 16-A. Thermal Properties, Natural Convection  
PARAMETER  
MIN  
TYP  
MAX  
+85  
+125  
UNITS  
LC  
Ambient Temperature (Note 1)  
-40  
-40  
Junction Temperature  
LC  
22.4  
9.2  
1.6  
Theta-JA (), Still Air (Note 2)  
LC/W  
LC/W  
LC/W  
JA  
Psi-JB  
Psi-JT  
Note 1: The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.  
Note 2: Theta-JA () is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board  
with no airflJoAw and dissipating maximum power.  
Table 16-B. Theta-JA () vs. Airflow  
JA  
FORCED AIR (m/s)  
THETA-JA ()  
JA  
0
1
22.4LC/W  
19.0LC/W  
17.2LC/W  
2.5  
17. REVISION HISTORY  
REVISION  
DESCRIPTION  
012103  
DS3154 new product release  
DS3151/DS3152/DS3153 new product releases.  
Electrical Characteristics section, Notes 1 and 2: Changed 44.73MHz to 51.84MHz; added indication that  
specs are lower for rev A2; “all ones driven into RXPn/RXNn (1.0V square wave)” changed to “analog  
loopback enabled” to match production test methodology.  
040403  
Table 13-B, Input leakage, IIL: -10A min changed to -50A min.  
Table 13-B: Replaced TBD values for IDD, IDDTS, and IDDPD (DS3151/DS3152/DS3153); changed IDDPD  
spec from 38 typ and 50 max to 45 typ and 70 max.  
Table 14-A and Table 14-B: Changed pins RBIN, RCINV, TBIN, and TCINV to “N.C.” to reflect they are  
not available in CPU bus mode.  
Figure 1-1: Labeled capacitors connected to transformer center taps as “(optional)”.  
Section 6, Optional Pre-Amp Paragraph: Clarified that the pre-amp contributes +14dB of flat gain.  
Table 11-A: Changed leakage inductance to 0.150H max.  
Table 11-B: Reformatted table and added row for Pulse Engineering’s T3049 octal transformer.  
Table 13-H: Reworded Note 20.  
072303  
120303  
GCR Register Definition (page 16): Clarified that RST bit holds the digital logic of the LIU in reset rather  
than the whole LIU.  
Table 13-B: Changed DS3151 IDD from 130mA (max) to 100mA (max). Changed DS3151 IDDTTS from  
105mA (max) to 80mA (max). Removed sentences in Notes 1 and 2 that labeled IDD and IDDTTS specs for  
rev A1 devices.  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products S Printed USA  
60 of 60  

相关型号:

DS3153+

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, CSBGA-144
MAXIM

DS3153DK

Triple DS3/E3/STS-1 LIU Demo Kit
MAXIM

DS3153N

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
DALLAS

DS3153N

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
MAXIM

DS3154

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
DALLAS

DS3154

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
MAXIM

DS3154DK

Quad DS3/E3/STS-1 LIU Demo Kit
MAXIM

DS3154N

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
DALLAS

DS3154N

Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
MAXIM

DS3154N+

Framer DS3/E3/STS-1 3.3V 144-Pin TE-CSBGA, Rail / Tube
MAXIM

DS3154NA2

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, CSBGA-144
MAXIM

DS3160

Framer, CMOS, PQFP100, LQFP-100
MAXIM