ES51919 [CYRUSTEK]

LCR meter chipset; LCR测试仪芯片组
ES51919
型号: ES51919
厂家: Cyrustek corporation    Cyrustek corporation
描述:

LCR meter chipset
LCR测试仪芯片组

测试
文件: 总11页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ES51919/ES51920  
LCR meter chipset  
Features  
Application  
19,999/1,999 counts dual LCD display  
Handheld LCR bridge meter  
Current consumption: Typ. 25mA @ 100kHz  
QFP-100L package for ES51919  
Description  
SSOP-48L package for ES51920  
The chipset of ES51919/ES51920 is suitable  
for LCR bridge application. By using  
ES51919/ES51920 to implement the LCR  
bridge meter, the complicated PCB design is  
not necessary. The ES51920 is the analog frond  
end chip with resistor switches network to  
provide different ranges control. It also  
provides a high performance integrated circuit  
by the signal with different frequency to  
measure the complex impedance of the DUT  
by 5-terminals architecture. The ES51919 is  
the mix-mode processing chip to handle the  
calculation of the D/Q/ESR/θ parameter with  
Ls/Lp/Cs/Cp values. It also provides the user  
interface and LCD drivers to support dual  
display operation. Tolerance mode and relative  
mode are including in the dual display  
operation. A multiple-level battery detection  
and auto power-off scheme are built-in to help  
the improvement of battery life. The high  
performance of 4.5digits ADC circuit design is  
implemented in the ES51919/ES51920 chipset.  
A fully smart measurement for L/C/R is  
possible. User could measure the DUT  
impedance simply without change function key  
at the AUTOLCR smart mode  
4-wire terminal with guarding measurement  
AutoLCR smart check and measurement  
Series/Parallel modes are selectable  
Ls/Lp/Cs/Cp with D/Q/θ/ESR parameters  
Open/Short calibration for AC impedance  
measurement is allowed:  
Open condition requirement: Impedance is  
larger than 9.5M@ 1kHz  
Short condition requirement: Impedance is less  
than 1.1Ω  
Support DCR mode 200.00~200.0MΩ  
Five different test frequency are available:  
100/120/1k/10k/100k Hz  
Test ac signal level: 0.6mVRMS typ.  
6 range resistor range used  
Test range:  
L: 20.000 µH ~ 2000 H  
C: 200.00 pF ~ 20.00 mF  
R: 20.000 ~ 200.0 MΩ  
Multi-level battery voltage detector  
Support Backlight & Buzzer sound driver  
Source resistance depends on range  
Min: 120typical  
Max:1Mtypical  
Ver 2.3  
1
12/03/01  
Introduction  
The ES51919/ES51920 chipset is a total solution for high accuracy LCR meter  
which could measure Inductance/Capacitance/Resistance with secondary parameters  
including dissipation factor(D), quality factor(Q), phase angle(θ), equivalent  
series/parallel resistance(ESR or Rp). The chipset is fully auto ranging operation for AC  
impedance & DC resistance measurement. Because of high integrated circuit design, a  
smart measurement for L/C/R is possible (AUTOLCR mode). It means the user could  
measure the L/C/R components directly at AUTOLCR smart mode without changing the  
function key. User could also select the target test frequencies of  
100Hz/120Hz/1kHz/10kHz/100kHz depending on DUT type. Components could be  
measured in series or parallel mode according to the DUT impedance automatically.  
The LCR chipset built-in a 4.5 digits ADC operates at 1.2/s updating rate nominally  
for L/C/R mode. The chipset operates at 0.5/s updating rate for DCR mode.  
The general DMM could measure DC resistance only, but the LCR meter could  
measure DC resistance and AC impedance. The impedance consists of resistance (real  
part) and reactance (imaginary part). For example, Zs represents the impedance in series  
mode. Zs can be defined a combination of resistance Rs and reactance Xs. It also could  
be defined as a |Z| of magnitude with a phase angle θ.  
Imaginary axis (series mode)  
Zs = Rs + jXs  
Xs  
| Zs |  
θ > 0  
θ
Real axis  
Rs1  
Rs  
θ1  
θ1 < 0  
Xs1  
Zs1 = Rs1 + jXs1  
Zs = Rs + jXs or |Zs|θ  
Ver 2.1  
2
12/03/01  
|Z| = Rs2 + Xs2  
Rs = |Zs| cosθ  
Xs = |Zs| sinθ  
Xs/Rs = tanθ  
θ = tan-1(Xs/Rs)  
If θ > 0, the reactance is inductive. In other words, if θ < 0, the reactance is capacitive.  
There are two types for reactance. The one is the inductive reactance XL and the  
other is the capacitive reactance XC. They could be defined as: (f = signal frequency)  
XL = 2πf L (L = Inductance)  
1
XC =  
(C = Capacitance)  
2π f C  
Measurement mode  
The impedance could be measured in series or parallel mode. The impedance Z in  
parallel mode could be represented as reciprocal of admittance Y. The admittance could  
be defined as Y = G + jB. The G is the conductance and the B is the susceptance.  
Admittance in parallel mode  
Impedance in serial mode  
Rp  
Rs  
jXs  
jXp  
Z = Rs + jXs  
Y = 1/Z = 1/Rp + 1/jXp = G + jB  
Rs: Resistance in series mode  
Xs: Reactance in series mode  
Cs: Capacitance in series mode  
Ls: Inductance in series mode  
Rp: Resistance in parallel mode  
Xp: Reactance in parallel mode  
Cp: Capacitance in parallel mode  
Lp: Inductance in parallel mode  
There are two factors to provide the ratio of real part and imaginary part. Usually  
the quality factor Q is used for inductance measurement and the dissipation factor D is  
used for capacitance measurement. D factor is defined as a reciprocal of Q factor.  
Q = 1 / D = tanθ  
Q = Xs / Rs = 2πf Ls / Rs = 1 / 2πf Cs Rs  
Q = B / G = Rp / | Xp | = Rp / 2πf Lp = 2πf Cp Rp  
Ver 2.1  
3
12/03/01  
Actually, Rs and Rp are existed in the equivalent circuit of capacitor or inductor. If  
the capacitor is small, Rp is more important than Rs. If capacitor is large, the Rs is more  
important also. Therefore, use parallel mode to measure lower value capacitor and use  
series mode to measure higher value capacitor. For inductor, the impedance relationship  
is different from capacitor. If the inductor is small, Rp is almost no effect. If inductor is  
large, the Rs is no effect also. Therefore, use series mode to measure lower value  
inductor and use parallel mode to measure higher value inductor.  
Open/short calibration  
The ES51919/ES51920 chipset provides the open/short calibration process to get the  
better accuracy for high/low impedance measurement. The purpose of open/short  
calibration is to reduce the parasitic effect of the test fixture.  
ZM is defined as total impedance measured to DUT by the special test fixture which  
1
has some parasitic impedance. ZM = (Rs + jωLs) + (  
|| ZDUT)  
Go + jωCo  
ZOUT is the target impedance user wants to realize. It is necessary to use the  
open/short calibration process to cancel the effect of Rs + jωLs and Go+jωCo.  
Ver 2.1  
4
12/03/01  
Equivalent circuit  
ZSHORT  
ZM  
YOPEN  
ZDUT  
ZM – ZSHORT  
ZDUT  
=
1-(ZM-ZSHORT)YOPEN  
Ver 2.1  
5
12/03/01  
Resistance display range  
Function Frequency  
Scale Range  
200.00Ω  
Resolution  
0.01Ω  
0.1Ω  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
1kHz  
2.0000kΩ  
20.000kΩ  
200.00kΩ  
2.0000MΩ  
20.000MΩ  
200.0MΩ  
20.000Ω  
1Ω  
0.01kΩ  
0.1kΩ  
1kΩ  
0.1MΩ  
1mΩ  
1kHz  
1kHz  
1kHz  
1kHz  
1kHz  
1kHz  
1kHz  
10kHz  
0.01Ω  
0.1Ω  
200.00Ω  
2.0000kΩ  
20.000kΩ  
200.00kΩ  
2.0000MΩ  
20.000MΩ  
200.0MΩ  
20.000Ω  
1Ω  
0.01kΩ  
0.1kΩ  
1kΩ  
RS/RP  
0.1MΩ  
1mΩ  
0.01Ω  
0.1Ω  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
200.00Ω  
2.0000kΩ  
20.000kΩ  
200.00kΩ  
2.0000MΩ  
20.00MΩ  
20.000Ω  
1Ω  
0.01kΩ  
0.1kΩ  
0.01MΩ  
1mΩ  
0.01Ω  
0.1Ω  
200.00Ω  
2.0000kΩ  
20.000kΩ  
200.00kΩ  
2.000MΩ  
1Ω  
0.01kΩ  
1kΩ  
Ver 2.1  
6
12/03/01  
DC resistance display range  
Function  
Scale Range  
200.00Ω  
Resolution  
0.01Ω  
0.1Ω  
2.0000kΩ  
20.000kΩ  
200.00kΩ  
2.0000MΩ  
20.000MΩ  
200.0MΩ  
1Ω  
DCR  
0.01kΩ  
0.1kΩ  
1kΩ  
0.1MΩ  
Capacitance display range  
Function  
Frequency  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
1kHz  
Scale Range  
20.000nF1  
200.00nF  
2000.0nF  
20.000uF  
200.00uF  
2000.0uF  
20.00mF  
2000.0pF  
20.000nF  
200.00nF  
2000.0nF  
20.000uF  
200.00uF  
2000uF  
Resolution  
1pF  
0.01nF  
0.1nF  
1nF  
0.01uF  
0.1uF  
0.01mF  
0.1pF  
1pF  
1kHz  
1kHz  
1kHz  
1kHz  
1kHz  
1kHz  
0.01nF  
0.1nF  
1nF  
0.01uF  
1uF  
CS/CP  
0.01pF  
0.1pF  
1pF  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
200.00pF  
2000.0pF  
20.000nF  
200.00nF  
2000.0nF  
20.000uF  
200.0uF  
200.00pF  
2000.0pF  
20.000nF  
200.00nF  
2000.0nF  
20.00uF  
0.01nF  
0.1nF  
1nF  
0.1uF  
0.01pF  
0.1pF  
1pF  
0.01nF  
0.1nF  
0.01uF  
1If the counts of LCD display are less than 2000, the unit will be “pF”.  
Ver 2.1  
7
12/03/01  
Inductance display range  
Function Frequency  
Scale Range  
20.000mH2  
200.00mH  
2000.0mH  
20.000H  
Resolution  
1uH  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
100Hz/120Hz  
1kHz  
0.01mH  
0.1mH  
1mH  
0.01H  
0.1H  
200.00H  
2000.0H  
0.001kH  
0.1uH  
1uH  
20.000kH  
2000.0uH  
20.000mH  
200.00mH  
2000.0mH  
20.000H  
1kHz  
1kHz  
1kHz  
1kHz  
0.01mH  
0.1mH  
1mH  
0.01H  
0.1H  
LS/LP  
1kHz  
1kHz  
200.00H  
2000.0H  
0.01uH  
0.1uH  
1uH  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
10kHz  
200.00uH  
2000.0uH  
20.000mH  
200.00mH  
2000.0mH  
20.000H  
0.01mH  
0.1mH  
1mH  
0.001uH  
0.01uH  
0.1uH  
1uH  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
20.000uH  
200.00uH  
2000.0uH  
20.000mH  
200.00mH  
0.01mH  
2If the counts of LCD display are less than 2000, the unit will be “uH”.  
Ver 2.1  
8
12/03/01  
Accuracy (Ae) vs. Impedance (ZDUT) @ Ta =18 ~ 28   
Remark  
D < 0.1  
0.1- 1Ω  
1.0%+5d  
1.0%+5d  
1.0%+5d  
1.0%+5d  
2.0%+5d  
1 – 10Ω  
0.5%+3d  
0.5%+3d  
0.5%+3d  
0.5%+3d  
1.0%+5d  
10 – 100k100k – 1M1M – 20ΜΩ 20Μ− 200MΩ  
Freq. / Z  
DCR  
100/120Hz  
1kHz  
10kHz  
100kHz  
0.3%+2d  
0.3%+2d  
0.3%+2d  
0.3%+2d  
0.5%+3d  
0.5%+3d  
0.5%+3d  
0.5%+3d  
0.5%+3d  
1.0%+5d  
1.0%+5d  
1.0%+5d  
1.0%+5d  
2.0%+5d  
2.0%+5d  
2.0%+5d  
5.0%+5d  
N/A  
2.0%+5d (1M – 2M)  
Note: All accuracy is guaranteed by proper ratio resistor calibration and open/short  
calibration. All accuracy is guaranteed for 10cm distance from VDUTH/VDUTL pins of  
ES51920.  
If D > 0.1, the accuracy should be multiplied by 1+ D2  
ZC = 1/2πf C if D << 0.1 in capacitance mode  
ZL = 2πf L  
if D << 0.1 in inductance mode  
Sub-display parameters accuracy  
Ae = impedance (Z) accuracy  
1
Definition: Q =  
D
1
Rp = ESR (or Rs) × (1+  
)
D2  
(1+D)  
Ae ()  
1. D value accuracy De = + Ae  
2. ESR accuracy Re= + ZM  
ie., ZM = impedance calculated by  
×
×
1
or 2πf L  
2πfC  
3. Phase angle θ accuracy θe= + (180/π) Ae (deg)  
×
4-terminals measurement with guard shielding  
The DUT test leads are implemented by four terminals measurement. For achieve the  
accuracy shown above, it is necessary to do open/short calibration process before  
measurement. The test leads for DUT should be as short as possible. If long extended  
cable is used, the guard shielding is necessary.  
Ver 2.1  
9
12/03/01  
ES51920 Package information (SSOP-48L)  
Ver 2.1  
10  
12/03/01  
ES51919 Package information (QFP-100L)  
Ver 2.1  
11  
12/03/01  

相关型号:

ES51920

LCR meter chipset
CYRUSTEK

ES51921

22,000 Counts Auto DMM
CYRUSTEK

ES51921_10

22,000 Counts Auto DMM
CYRUSTEK

ES51922

22,000 Counts Auto DMM
CYRUSTEK

ES51925

3000 Counts Smart DMM
CYRUSTEK

ES51925_10

3000 Counts Smart DMM
CYRUSTEK

ES51926

3000 Counts Smart DMM
CYRUSTEK

ES51926_10

3000 Counts Smart DMM
CYRUSTEK

ES51927

6000 Counts Smart DMM
CYRUSTEK

ES51927_10

6000 Counts Smart DMM
CYRUSTEK

ES51928

6000 Counts Smart DMM
CYRUSTEK

ES51928_10

6000 Counts Smart DMM
CYRUSTEK