STK11C88-3WF55I [CYPRESS]

32KX8 NON-VOLATILE SRAM, 55ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28;
STK11C88-3WF55I
型号: STK11C88-3WF55I
厂家: CYPRESS    CYPRESS
描述:

32KX8 NON-VOLATILE SRAM, 55ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

静态存储器 光电二极管 内存集成电路
文件: 总10页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK11C88-3  
32K x 8 nvSRAM  
3.3V QuantumTrap™ CMOS  
Nonvolatile Static RAM  
Obsolete - Not Recommend for new Deisgns  
FEATURES  
DESCRIPTION  
• 35, 45ns and 55ns Access Times  
The Simtek STK11C88-3 is a fast static RAM with a  
nonvolatile element incorporated in each static  
memory cell. The SRAM can be read and written an  
unlimited number of times, while independent non-  
volatile data resides in Nonvolatile Elements. Data  
transfers from the SRAM to the Nonvolatile Elements  
(the STORE operation), or from Nonvolatile Elements  
to SRAM (the RECALL operation) are initiated using a  
software sequence. Data transfers from the Nonvol-  
atile Elements to the SRAM (the RECALL operation)  
also occur upon restoration of power.  
STORE to Nonvolatile Elements Initiated by  
Software  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10 mA Typical Icc at 200 nsec Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments  
• 100-Year Data Retention in Nonvolatile Ele-  
ments  
• Single 3.3V+ 0.3V Operation  
• Commercial and Industrial Temperatures  
• 28-Pin DIP and SOIC Packages  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
1
A
A
A
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
14  
QUANTUM TRAP  
2
12  
512 x 512  
3
A
A
A
A
7
6
5
4
3
2
13  
8
A5  
A6  
A7  
A8  
4
A
5
A
A
A
A
A
A
DQ  
DQ  
DQ  
9
STORE  
6
STORE/  
RECALL  
CONTROL  
11  
7
G
STATIC RAM  
ARRAY  
8
A
E
10  
RECALL  
A9  
9
1
A11  
A12  
A13  
A14  
512 x 512  
10  
11  
12  
13  
14  
DQ  
DQ  
0
7
6
5
28 - 300 PDIP  
28 - 600 PDIP  
28 - 300 SOIC  
28 - 350 SOIC  
0
DQ  
1
2
DQ  
DQ  
4
3
SOFTWARE  
DETECT  
A0 - A13  
V
SS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
PIN NAMES  
COLUMN I/O  
A
- A  
Address Inputs  
Write Enable  
Data In/Out  
COLUMN DEC  
0
14  
W
DQ - DQ  
0
7
A
A0 A1 A2 A3 A4  
10  
G
E
Chip Enable  
Output Enable  
Power (+ 3.3V)  
Ground  
G
E
V
V
CC  
SS  
W
March 2006  
1
Document Control # ML0013 rev 0.2  
STK11C88-3  
a
ABSOLUTE MAXIMUM RATINGS  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 4.5V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7 . . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
DC CHARACTERISTICS  
(V = 3.0V-3.6V)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
50  
42  
37  
52  
44  
39  
mA  
mA  
mA  
t
t
t
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current During STORE  
3
9
3
9
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
3.3V, 25°C, Typical  
All Others Cycling, CMOS Levels  
d
d
I
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
18  
16  
15  
19  
17  
16  
mA  
mA  
mA  
t
t
t
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
2
I
I
I
V
Standby Current  
E (V  
- 0.2V)  
CC  
SB  
CC  
750  
1
750  
1
μA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
1
1
= V to V , E or G V  
IN  
SS  
CC  
IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 is the average current required for the duration of the STORE cycle (tSTORE ).  
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
3.3V  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3.0V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
317 Ohms  
OUTPUT  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
351 Ohms  
e
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
Output Capacitance  
5
7
pF  
IN  
C
pF  
OUT  
Figure 1: AC Output Loading  
Note e: These parameters are guaranteed but not tested.  
March 2006  
2
Document Control # ML0013 rev 0.2  
STK11C88-3  
SRAM READ CYCLES #1 & #2  
(V = 3.0V-3.6V)  
CC  
SYMBOLS  
NO.  
STK11C88-3-35 STK11C88-3-45 STK11C88-3-55  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
Read Cycle Time  
35  
45  
55  
AVAV  
RC  
AA  
g
3
Address Access Time  
35  
15  
45  
20  
55  
25  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
13  
13  
35  
15  
15  
45  
20  
20  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E and G < VIL and W > VIH; device is continuously selected.  
Note h: Measured 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
f
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DATA VALID  
DQ (DATA  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
March 2006  
3
Document Control # ML0013 rev 0.2  
STK11C88-3  
SRAM WRITE CYCLES #1 & #2  
(V = 3.0V-3.6V)  
CC  
SYMBOLS  
NO.  
STK11C88-3-35 STK11C88-3-45 STK11C88-3-55  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
40  
40  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
25  
0
30  
0
40  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
WHAX  
h, i  
EHAX  
WR  
t
t
13  
15  
20  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
j
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
19  
EHAX  
18  
AVEL  
14  
t
ELEH  
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
March 2006  
4
Document Control # ML0013 rev 0.2  
STK11C88-3  
STORE INHIBIT/POWER-UP RECALL  
(V = 3.0V-3.6V)  
CC  
SYMBOLS  
STK11C88-3  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
V
k
RESTORE  
STORE  
g
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
2.7  
2.95  
2.4  
SWITCH  
RESET  
V
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE INHIBIT/POWER-UP RECALL  
V
CC  
3.3V  
24  
V
SWITCH  
25  
RESET  
V
STORE INHIBIT  
POWER-UP RECALL  
22  
RESTORE  
t
DQ (DATA OUT)  
POWER-UP  
BROWN OUT  
BROWN OUT  
BROWN OUT  
RECALL  
STORE INHIBIT  
STORE INHIBIT  
STORE INHIBIT  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
March 2006  
5
Document Control # ML0013 rev 0.2  
STK11C88-3  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note m: While there are 15 addresses on the STK11C88-3, only the lower 14 are used to control software modes.  
n, o  
SOFTWARE STORE/RECALL CYCLE  
(V = 3.0V-3.6V)  
CC  
STK11C88-3-35  
STK11C88-3-45  
STK11C88-3-55  
UNITS  
NO.  
SYMBOLS  
PARAMETER  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
MIN  
55  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
μs  
AVAV  
AVEL  
n
n
25  
20  
30  
20  
45  
20  
ELEH  
n
Address Hold Time  
ELAX  
n
RECALL Duration  
20  
20  
20  
RECALL  
Note n: The software sequence is clocked with E controlled READs.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
o
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
23  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
March 2006  
6
Document Control # ML0013 rev 0.2  
STK11C88-3  
DEVICE OPERATION  
The STK11C88-3 is a versatile 3.3V VCC memory  
SOFTWARE NONVOLATILE STORE  
chip that provides several modes of operation. The  
STK11C88-3 can operate as a standard 32K x 8  
SRAM. It has a 32K x 8 Nonvolatile Elements  
shadow to which the SRAM information can be cop-  
ied or from which the SRAM can be updated in non-  
volatile mode.  
The STK11C88-3 software STORE cycle is initiated  
by executing sequential READ cycles from six spe-  
cific address locations. During the STORE cycle an  
erase of the previous nonvolatile data is first per-  
formed, followed by a program of the nonvolatile  
elements. The program operation copies the SRAM  
data into nonvolatile memory. Once a STORE cycle  
is initiated, further input and output are disabled until  
the cycle is completed.  
NOISE CONSIDERATIONS  
Note that the STK11C88-3 is a high-speed memory  
and so must have a high frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
Because a sequence of reads from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence, or the sequence will be  
aborted and no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
SRAM READ  
The STK11C88-3 performs a READ cycle whenever  
E and G are low and W is high. The address speci-  
fied on pins A0-14 determines which of the 32,768  
data bytes will be accessed. When the READ is initi-  
ated by an address transition, the outputs will be  
valid after a delay of tAVQV (READ cycle #1). If the  
READ is initiated by E or G, the outputs will be valid  
at tELQV or at tGLQV, whichever is later (READ cycle #2).  
The data outputs will repeatedly respond to address  
changes within the tAVQV access time without the need  
for transitions on any control input pins, and will  
remain valid until another address change or until E  
or G is brought high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence is clocked with E controlled  
READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of READ operations must be  
performed:  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
March 2006  
7
Document Control # ML0013 rev 0.2  
STK11C88-3  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
Nonvolatile Elements. The nonvolatile data can be  
recalled an unlimited number of times.  
HARDWARE PROTECT  
The STK11C88-3 offers hardware protection  
against inadvertent STORE operation during low-  
voltage conditions. When VCC < VSWITCH, all software  
STORE operations are inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK11C88-3 draws significantly less current  
when it is cycled at times longer than 55ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 3.6V, 100% duty cycle on  
chip enable). Figure 3 shows the same relationship  
for WRITE cycles.If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK11C88-3 depends on the following  
items: 1) CMOS vs. TTL input levels; 2) the duty  
cycle of chip enable; 3) the overall cycle rate for  
accesses; 4) the ratio of READs to WRITEs; 5) the  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET ), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK11C88-3 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
operating temperature; 6) the V level; and 7) I/O  
CC  
loading.  
50  
40  
30  
20  
50  
40  
30  
TTL  
CMOS  
20  
TTL  
10  
0
10  
CMOS  
150 200  
0
50  
100  
Cycle Time (ns)  
50  
100  
150  
200  
Cycle Time (ns)  
Figure 2: I (max) Reads  
Figure 3: I (max) Writes  
CC  
CC  
March 2006  
8
Document Control # ML0013 rev 0.2  
STK11C88-3  
ORDERING INFORMATION  
W F 25 I  
STK11C88-3  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
35 = 35ns  
45 = 45ns  
55 = 55ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W=Plastic 28-pin 600 mil DIP  
P=Plastic 28-pin 300 mil DIP  
S=Plastic 28-pin 350 mil SOIC  
N=Plastic 28-pin 300 mil SOIC  
March 2006  
9
Document Control # ML0013 rev 0.2  
STK11C88-3  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
Added 35 nsec device; changed Vcc min. to 3.0 volts  
Added lead free lead finish  
0.1  
0.2  
Marked as Obsolete, Not recommended for new design.  
March 2006  
10  
Document Control # ML0013 rev 0.2  

相关型号:

STK11C88-N20

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
ETC

STK11C88-N20I

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
ETC

STK11C88-N25

32KX8 NON-VOLATILE SRAM, 25ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-N25I

32KX8 NON-VOLATILE SRAM, 25ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-N35

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-N35I

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-N45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-N45I

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
CYPRESS

STK11C88-NF25

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-NF25

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-NF25I

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-NF25I

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS