CYW20730A2KFBGT [CYPRESS]

Single-Chip Bluetooth Transceiver for Wireless Input Devices;
CYW20730A2KFBGT
型号: CYW20730A2KFBGT
厂家: CYPRESS    CYPRESS
描述:

Single-Chip Bluetooth Transceiver for Wireless Input Devices

无线
文件: 总50页 (文件大小:979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW20730  
Single-Chip Bluetooth Transceiver for  
Wireless Input Devices  
The Cypress CYW20730 is a Bluetooth 3.0-compliant, stand-alone baseband processor with an integrated 2.4 GHz transceiver. It is  
ideal for wireless input device applications including game controllers, keyboards, 3D glasses, remote controls, gestural input devices,  
and sensor devices. Built-in firmware adheres to the Bluetooth Human Interface Device (HID) profile and Bluetooth Device ID profile  
specifications.  
The CYW20730 radio has been designed to provide low power, low cost, and robust communications for applications operating in the  
globally available 2.4 GHz unlicensed ISM band. It is fully compliant with Bluetooth Radio Specification 3.0.  
The single-chip Bluetooth transceiver is a monolithic component implemented in a standard digital CMOS process and requires  
minimal external components to make a fully compliant Bluetooth device. The CYW20730 is available in three package options: a 32-  
pin, 5 mm × 5 mm QFN, a 40-pin, 6 mm × 6 mm QFN, and a 64-pin, 7 mm × 7 mm BGA.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM20730  
CYW20730  
BCM20730A2KML2GT  
BCM20730A1KML2G  
BCM20730A1KMLG  
BCM20730A1KFBGT  
BCM20730A2KFBG  
BCM20730A1KFBG  
BCM20730A1KML2GT  
BCM20730A2KML2G  
BCM20730A1KMLGT  
BCM20730A2KFBGT  
CYW20730A2KML2GT  
CYW20730A1KML2G  
CYW20730A1KMLG  
CYW20730A1KFBGT  
CYW20730A2KFBG  
CYW20730A1KFBG  
CYW20730A1KML2GT  
CYW20730A2KML2G  
CYW20730A1KMLGT  
CYW20730A2KFBGT  
Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined on first use.  
For a comprehensive list of acronyms and other terms used in Cypress documents, go to http://www.cypress.com/glossary.  
Applications  
Wireless pointing devices: mice, trackballs, gestural controls  
Point-of-sale (POS) input devices  
Remote sensors  
Wireless keyboards  
3D glasses  
Home automation  
Remote controls  
Game controllers  
Personal health and fitness monitoring  
Cypress Semiconductor Corporation  
Document Number: 002-14824 Rev. *J  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 25, 2017  
CYW20730  
Features  
On-chip support for common keyboard and mouse interfaces  
10-bit auxiliary ADC with 28 analog channels  
eliminates external processor  
On-chip support for serial peripheral interface (master and  
Programmable keyscan matrix interface, up to 8 × 20 key-  
slave modes)  
scanning matrix  
BroadcomSerialCommunications(BSC)interface(compatible  
3-axis quadrature signal decoder  
Shutter control for 3D glasses  
Infrared modulator  
with Philips® (now NXP) I2C slaves)  
Programmable output power control meets Class 2 or Class 3  
requirements  
Class 1 operation supported with external PA and T/R switch  
Integrated ARM Cortex™-M3 based microprocessor core  
On-chip power-on reset (POR)  
IR learning  
Triac control  
Triggered Broadcom Fast Connect  
Supports Adaptive Frequency Hopping  
Excellent receiver sensitivity  
Support for EEPROM and serial flash interfaces  
Integrated low-dropout regulator (LDO)  
On-chip software controlled power management unit  
Bluetooth specification 3.0 compatible, including enhanced  
power control (Unicast Connectionless Data)  
Three package types are available:  
32-pin QFN package (5 mm × 5 mm)  
40-pin QFN package (6 mm × 6 mm)  
64-pin BGA package (7 mm × 7 mm)  
Bluetooth HID profile version 1.0 compliant  
Bluetooth Device ID profile version 1.3 compliant  
Bluetooth AVRCP-CT profile version 1.3 compliant  
RoHS compliant  
Document Number: 002-14824 Rev. *J  
Page 2 of 50  
CYW20730  
Figure 1. Functional Block Diagram  
Muxed on GPIO  
Tx RTS_N  
1.2V  
UART_TXD  
UART_RXD  
SDA/  
SCL/  
Rx  
CTS_N  
VDD_CORE  
1.2V  
SCK  
MOSI  
MISO  
1.2V VDD_CORE  
Domain  
WDT  
28 ADC  
Inputs  
VSS,  
VDDO,  
VDDC  
BSC/SPI  
Master  
Interface  
(BSC is I2C -  
compaƟble)  
1.2V  
POR  
Test  
UART  
Periph 320K  
UART ROM  
Processing  
Unit  
(ARM -CM3)  
60K  
RAM  
CT ɇ ѐ  
ADC  
1.2V  
LDO  
1.425V to 3.6V  
1.62V to 3.6V  
MIA  
POR  
System Bus  
32 kHz  
LPCLK  
Peripheral  
Interface  
Block  
I/O Ring  
Control  
Registers  
Volt. Trans  
hclk  
VDD_IO  
Domain  
(24 MHz to 1 MHz)  
RF Control  
and Data  
I/O Ring Bus  
Bluetooth  
2.4 GHz  
Radio  
Baseband  
Core  
3-D Glasses  
and Triac  
GPIO  
Control/  
Status  
Keyboard  
Matrix  
3 -Axis  
Mouse  
IR  
Mod.  
and  
SPI  
PMU  
Scanner  
w/FIFO  
Signal  
24  
M/S  
Learning  
Registers  
MHz  
Controller  
Power  
RF I/O  
T/R  
Switch  
Frequency  
Synthesizer  
32 kHz  
LPCLK  
WAKE  
128 kHz  
LPO  
6 Quadrature  
Inputs (3 pair) +  
High Current  
IR  
I/O  
8 x 20  
Scan  
Matrix  
40 GPIO  
AutoCal  
128 kHz  
LPCLK  
Driver Controls  
1.2V VDD_RF  
Domain  
28 ADC  
Inputs  
÷ 4  
PWM  
40 GPIO on the 64-pin BGA  
(22 GPIO on the 40-pin QFN)  
(14 GPIO on the 32-pin QFN)  
24 MHz  
Ref Xtal  
32 kHzꢀyƚĂůꢀ;ŽƉƟŽŶĂůͿꢀ  
1.62V to 3.6V  
VDD_IO  
IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website  
(http://community.cypress.com/).  
Document Number: 002-14824 Rev. *J  
Page 3 of 50  
CYW20730  
Contents  
1. Functional Description .................................................5  
1.1 Keyboard Scanner .................................................5  
1.2 Mouse Quadrature Signal Decoder .......................6  
1.3 Shutter Control for 3D Glasses .............................6  
1.4 Infrared Modulator .................................................7  
1.5 Infrared Learning ...................................................7  
1.6 Triac Control ..........................................................8  
1.7 Broadcom Proprietary Control Signaling and  
1.16 PWM ..................................................................18  
1.17 Power Management Unit ...................................19  
2. Pin Assignments ........................................................20  
2.1 Pin Descriptions ..................................................20  
2.2 Ball Maps .............................................................28  
3. Specifications .............................................................31  
3.1 Electrical Characteristics .....................................31  
3.2 RF Specifications ................................................34  
3.3 Timing and AC Characteristics ............................36  
4. Mechanical Information .............................................41  
4.1 Tape Reel and Packaging Specifications ............44  
5. Ordering Information ..................................................45  
A. Appendix: Acronyms and Abbreviations ................46  
A.1 References ..........................................................47  
Document History ..........................................................48  
Sales, Solutions, and Legal Information ......................50  
Triggered Broadcom Fast Connect ......................8  
1.8 Bluetooth Baseband Core .....................................8  
1.9 ADC Port ...............................................................9  
1.10 Serial Peripheral Interface .................................10  
1.11 Microprocessor Unit ..........................................12  
1.12 Integrated Radio Transceiver ............................14  
1.13 Peripheral Transport Unit ..................................15  
1.14 Clock Frequencies .............................................15  
1.15 GPIO Port ..........................................................17  
Document Number: 002-14824 Rev. *J  
Page 4 of 50  
CYW20730  
1. Functional Description  
1.1 Keyboard Scanner  
The keyboard scanner is designed to autonomously sample keys and store them into buffer registers without the need for the host  
microcontroller to intervene. The scanner has the following features:  
Ability to turn off its clock if no keys pressed.  
Sequential scanning of up to 160 keys in an 8 x 20 matrix.  
Programmable number of columns from 1 to 20.  
Programmable number of rows from 1 to 8.  
16-byte key-code buffer (can be augmented by firmware).  
128 kHz clock – allows scanning of full 160-key matrix in about 1.2 ms.  
N-key rollover with selective 2-key lockout if ghost is detected.  
Keys are buffered until host microcontroller has a chance to read it, or until overflow occurs.  
Hardware debouncing and noise/glitch filtering.  
Low-power consumption. Single-digit µA-level sleep current.  
1.1.1 Theory of Operation  
The key scan block is controlled by a state machine with the following states:  
Idle  
The state machine begins in the idle state. In this state, all column outputs are driven high. If any key is pressed, a transition occurs  
on one of the row inputs. This transition causes the 128 kHz clock to be enabled (if it is not already enabled by another peripheral)  
and the state machine to enter the scan state. Also in this state, an 8-bit row-hit register and an 8-bit key-index counter is reset to 0.  
Scan  
In the scan state, a row counter counts from 0 up to a programmable number of rows minus 1. Once the last row is reached, the row  
counter is reset and the column counter is incremented. This cycle repeats until the row and column counters are both at their  
respective terminal count values. At that point, the state machine moves into the Scan-End state.  
As the keys are being scanned, the key-index counter is incremented. This counter is the value compared to the modifier key codes  
stored, or in the key-code buffer if the key is not a modifier key. It can be used by the microprocessor as an index into a lookup table  
of usage codes.  
Also, as the n-th row is scanned, the row-hit register is ORed with the current 8-bit row input values if the current column contains two  
or more row hits. During the scan of any column, if a key is detected at the current row, and the row-hit register indicates that a hit  
was detected in that same row on a previous column, then a ghost condition may have occurred, and a bit in the status register is set  
to indicate this.  
Scan End  
This state determines whether any keys were detected while in the scan state. If yes, the state machine returns to the scan state. If  
no, the state machine returns to the idle state, and the 128 kHz clock request signal is made inactive.  
The microcontroller can poll the key status register.  
Document Number: 002-14824 Rev. *J  
Page 5 of 50  
CYW20730  
1.2 Mouse Quadrature Signal Decoder  
The mouse signal decoder is designed to autonomously sample two quadrature signals commonly generated by optomechanical  
mouse apparatus. The decoder has the following features:  
Three pairs of inputs for X, Y, and Z (typical scroll wheel) axis signals. Each axis has two options:  
For the X axis, choose P2 or P32 as X0 and P3 or P33 as X1.  
For the Y axis, choose P4 or P34 as Y0 and P5 or P35 as Y1.  
For the Z axis, choose P6 or P36 as Z0 and P7 or P37 as Z1.  
Control of up to four external high current GPIOs to power external optoelectronics:  
Turn-on and turn-off time can be staggered for each HC-GPIO to avoid simultaneous switching of high currents and having multiple  
high-current devices on at the same time.  
Sample time can be staggered for each axis.  
Sense of the control signal can be active high or active low.  
Control signal can be tristated for off condition or driven high or low, as appropriate.  
1.2.1 Theory of Operation  
The mouse decoder block has four 16-bit PWMs for controlling external quadrature devices and sampling the quadrature inputs at its  
core.  
The GPIO signals may be used to control such items as LEDs, external ICs that may emulate quadrature signals, photodiodes, and  
photodetectors.  
1.3 Shutter Control for 3D Glasses  
The CYW20730, combined with the CYW20702, provides full system support for 3D glasses on televisions. The CYW20702 gets  
frame synchronization signals from the TV, converts them into proprietary timing control messages, then passes these messages to  
the CYW20730. The CYW20730 uses these messages to synchronize the shutter control for the 3D glasses with the television frames.  
The CYW20730 can provide up to four synchronized control signals for left and right eye shutter control. These four lines can output  
pulses with microsecond resolution for on and off timing. The total cycle time can be set for any period up to 65535 msec. The pulses  
are synchronized to each other for left and right eye shutters.  
The CYW20730 seamlessly adjusts the timing of the control signals based on control messages from the CYW20702, ensuring that  
the 3D glasses remain synchronized to the TV display frame.  
3D hardware control on the CYW20730 works independently of the rest of the system. The CYW20730 negotiates sniff with the  
CYW20702 and, except for sniff resynchronization periods, most of the CYW20730 circuitry remains in a low power state while the  
3D glasses subsystem continues to provide shutter timing and control pulses. This significantly reduces total system power  
consumption.  
The CYW20730A2 has the new BT SIG 3DG profile, as well as legacy mode 3DG, included in ROM. This allows it to support a smaller  
and lower cost external memory of 4 KB.  
Document Number: 002-14824 Rev. *J  
Page 6 of 50  
CYW20730  
1.4 Infrared Modulator  
The CYW20730 includes hardware support for infrared TX. The hardware can transmit both modulated and unmodulated waveforms.  
For modulated waveforms, hardware inserts the desired carrier frequency into all IR transmissions. IR TX can be sourced from  
firmware-supplied descriptors, a programmable bit, or the peripheral UART transmitter.  
If descriptors are used, they include IR on/off state and the duration between 1–32767 µsec. The CYW20730 IR TX firmware driver  
inserts this information in a hardware FIFO and makes sure that all descriptors are played out without a glitch due to underrun. See  
Figure 2.  
Figure 2. Infrared TX  
1.5 Infrared Learning  
The CYW20730 includes hardware support for infrared learning. The hardware can detect both modulated and unmodulated signals.  
For modulated signals, the CYW20730 can detect carrier frequencies between 10 kHz and 500 kHz and the duration that the signal  
is present or absent. The CYW20730 firmware driver supports further analysis and compression of learned signal. The learned signal  
can then be played back through the CYW20730 IR TX subsystem. See Figure 3.  
Figure 3. Infrared RX  
Document Number: 002-14824 Rev. *J  
Page 7 of 50  
CYW20730  
1.6 Triac Control  
The CYW20730 includes hardware support for zero-crossing detection and trigger control for up to four triacs. The CYW20730 detects  
zero-crossing on the AC zero detection line and uses that to provide a pulse that is offset from the zero-crossing. This allows the  
CYW20730 to be used in dimmer applications, as well as any other applications that require a control signal that is offset from an  
input event.  
1.7 Broadcom Proprietary Control Signaling and Triggered Broadcom Fast Connect  
Broadcom Proprietary Control Signaling (BPCS) and Triggered Broadcom Fast Connect (TBFC) are Broadcom-proprietary baseband  
(ACL) suspension and low latency reconnection mechanisms that reestablish the baseband connection with the peer controller that  
also supports BPCS/TBFC.  
The CYW20730 uses BPCS primitives to allow a Human Interface Device (HID) to suspend all RF traffic after a configurable idle  
period with no reportable activity. To conserve power, it can then enter one of its low power states while still logically remaining  
connected at the L2CAP and HID layers with the peer device. When an event requires the HID to deliver a report to the peer device,  
the CYW20730 uses the TBFC and BPCS mechanisms to reestablish the baseband connection and can immediately resume L2CAP  
traffic, greatly reducing latency between the event and delivery of the report to the peer device.  
Certain applications may make use of the CYW20730 Baseband Fast Connect (BFC) mechanism for power savings and lower  
latencies not achievable by using even long sniff intervals by completely eliminating the need to maintain an RF link, while still being  
able to establish ACL and L2CAP connections much faster than regular methods.  
1.8 Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and data routing for all connections. It also buffers data that passes through it, handles  
data flow control, schedules ACL TX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages data into  
baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these functions, it  
independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase TX/RX data reliability and security  
before sending over the air:  
Receive Functions: symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data dewhitening.  
Transmit Functions: data framing, FEC generation, HEC generation, CRC generation, link key generation, data encryption, and  
data whitening.  
1.8.1 Frequency Hopping Generator  
The frequency hopping sequence generator selects the correct hopping channel number depending on the link controller state,  
Bluetooth clock, and device address.  
1.8.2 E0 Encryption  
The encryption key and the encryption engine are implemented using dedicated hardware to reduce software complexity and provide  
minimal processor intervention.  
1.8.3 Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the Link Control Unit  
(LCU). This layer consists of the Command Controller, which takes software commands, and other controllers that are activated or  
configured by the Command Controller to perform the link control tasks. Each task performs a different Bluetooth link controller state.  
STANDBY and CONNECTION are the two major states. In addition, there are five substates: page, page scan, inquiry, inquiry scan,  
and sniff.  
1.8.4 Adaptive Frequency Hopping  
The CYW20730 gathers link quality statistics on a channel-by-channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined by using both RF and baseband signal processing to provide a more accurate frequency hop  
map.  
Document Number: 002-14824 Rev. *J  
Page 8 of 50  
CYW20730  
1.8.5 Bluetooth Version 3.0 Features  
The CYW20730 supports Bluetooth 3.0, including the following options:  
Enhanced Power Control  
Unicast Connectionless Data  
HCI Read Encryption Key Size command  
The CYW20730 also supports the following Bluetooth version 2.1 features:  
Extended Inquiry Response  
Sniff Subrating  
Encryption Pause and Resume  
Secure Simple Pairing  
Link Supervision Timeout Changed Event  
Erroneous Data Reporting  
Non-Automatically-Flushable Packet Boundary Flag  
Security Mode 4  
1.8.6 Test Mode Support  
The CYW20730 fully supports Bluetooth Test mode, as described in Part 1 of the Bluetooth 3.0 specification. This includes the  
transmitter tests, normal and delayed loopback tests, and the reduced hopping sequence.  
In addition to the standard Bluetooth Test mode, the device supports enhanced testing features to simplify RF debugging and quali-  
fication as well as type-approval testing.  
1.9 ADC Port  
The CYW20730 contains a 16-bit ADC (effective number of bits is 10).  
Additionally:  
There are 28 analog input channels in the 64-pin package, 12 analog input channels in the 40-pin package, and 9 analog input  
channels in the 32-pin package. All channels are multiplexed on various GPIOs.  
The conversion time is 10 s.  
There is a built-in reference with supply- or band-gap based reference modes.  
The maximum conversion rate is 187 kHz.  
There is a rail-to-rail input swing.  
The ADC consists of an analog ADC core that performs the actual analog-to-digital conversion and digital hardware that processes  
the output of the ADC core into valid ADC output samples. Directed by the firmware, the digital hardware also controls the input  
multiplexers that select the ADC input signal Vinp and the ADC reference signals Vref  
.
Table 2. ADC Modes  
Mode  
ENOB (Typical)  
Maximum Sampling Rate (kHz)  
Latencya (s)  
0
1
2
3
4
13  
12.6  
12  
5.859  
11.7  
171  
85  
21  
11  
5
46.875  
93.75  
187  
11.5  
10  
a. Settling time after switching channels.  
Document Number: 002-14824 Rev. *J  
Page 9 of 50  
CYW20730  
1.10 Serial Peripheral Interface  
The CYW20730 has two independent SPI interfaces. One is a master-only interface and the other can be either a master or a slave.  
Each interface has a 16-byte transmit buffer and a 16-byte receive buffer. To support more flexibility for user applications, the  
CYW20730 has optional I/O ports that can be configured individually and separately for each functional pin, as shown in Table 3. The  
CYW20730 acts as an SPI master device that supports 1.8V or 3.3V SPI slaves, as shown in Table 3. The CYW20730 can also act  
as an SPI slave device that supports a 1.8V or 3.3V SPI master, as shown in Table 3.  
Table 3. CYW20730 First SPI Set (Master Mode)  
Pin Name  
Configuration set 1  
Configuration set 2  
SPI_CLK  
SCL  
SPI_MOSI  
SDA  
SPI_MISO  
P24  
SPI_CSa  
SCL  
SDA  
P26  
Configuration set 3  
(Default for serial flash)  
SCL  
SCL  
SDA  
SDA  
P32  
P39  
P33  
Configuration set 4  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
Table 4. CYW20730 Second SPI Set (Master Mode)  
Pin Name  
SPI_CLK  
P3  
SPI_MOSI  
P0  
SPI_MISO  
P1  
SPI_CSa  
Configuration set 1  
Configuration set 2  
Configuration set 3  
Configuration set 4  
Configuration set 5  
Configuration set 6  
Configuration set 7  
Configuration set 8  
Configuration set 9  
Configuration set 10  
Configuration set 11  
Configuration set 12  
Configuration set 13  
Configuration set 14  
Configuration set 15  
Configuration set 16  
Configuration set 17  
Configuration set 18  
Configuration set 19  
Configuration set 20  
Configuration set 21  
Configuration set 22  
Configuration set 23  
Configuration set 24  
P3  
P0  
P5  
P3  
P2  
P1  
P3  
P2  
P5  
P3  
P4  
P1  
P3  
P4  
P5  
P3  
P27  
P27  
P38  
P38  
P0  
P1  
P3  
P5  
P3  
P1  
P3  
P5  
P7  
P1  
P7  
P0  
P5  
P7  
P2  
P1  
P7  
P2  
P5  
P7  
P4  
P1  
P7  
P4  
P5  
P7  
P27  
P27  
P38  
P38  
P0  
P1  
P7  
P5  
P7  
P1  
P7  
P5  
P24  
P24  
P24  
P24  
P25  
P25  
P25  
P25  
P2  
P4  
P27  
Document Number: 002-14824 Rev. *J  
Page 10 of 50  
CYW20730  
Table 4. CYW20730 Second SPI Set (Master Mode) (Cont.)  
Pin Name  
SPI_CLK  
P24  
SPI_MOSI  
P38  
SPI_MISO  
P25  
SPI_CSa  
Configuration set 25  
Configuration set 26  
Configuration set 27  
Configuration set 28  
Configuration set 29  
Configuration set 30  
P36  
P0  
P25  
P36  
P2  
P25  
P36  
P4  
P25  
P36  
P27  
P25  
P36  
P38  
P25  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
Table 5. CYW20730 Second SPI Set (Slave Mode)a  
Pin Name  
SPI_CLK  
P3  
SPI_MOSI  
P0  
SPI_MISO  
P1  
SPI_CS  
P2  
Configuration set 1  
Configuration set 2  
Configuration set 3  
Configuration set 4  
Configuration set 5  
Configuration set 6  
Configuration set 7  
Configuration set 8  
Configuration set 9  
Configuration set 10  
Configuration set 11  
Configuration set 12  
Configuration set 13  
Configuration set 14  
Configuration set 15  
Configuration set 16  
Configuration set 17  
Configuration set 18  
Configuration set 19  
Configuration set 20  
Configuration set 21  
Configuration set 22  
Configuration set 23  
Configuration set 24  
Configuration set 25  
Configuration set 26  
Configuration set 27  
Configuration set 28  
P3  
P0  
P5  
P2  
P3  
P4  
P1  
P2  
P3  
P4  
P5  
P2  
P7  
P0  
P1  
P2  
P7  
P0  
P5  
P2  
P7  
P4  
P1  
P2  
P7  
P4  
P5  
P2  
P3  
P0  
P1  
P6  
P3  
P0  
P5  
P6  
P3  
P4  
P1  
P6  
P3  
P4  
P5  
P6  
P7  
P0  
P1  
P6  
P7  
P0  
P5  
P6  
P7  
P4  
P1  
P6  
P7  
P4  
P5  
P6  
P24  
P24  
P24  
P36  
P36  
P36  
P24  
P24  
P24  
P36  
P36  
P36  
P27  
P33  
P38  
P27  
P33  
P38  
P27  
P33  
P38  
P27  
P33  
P38  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P25  
P26  
P26  
P26  
P26  
P26  
P26  
P32  
P32  
P32  
P32  
P32  
P32  
Document Number: 002-14824 Rev. *J  
Page 11 of 50  
CYW20730  
Table 5. CYW20730 Second SPI Set (Slave Mode)a  
Pin Name  
SPI_CLK  
P24  
SPI_MOSI  
P27  
SPI_MISO  
P25  
SPI_CS  
P39  
Configuration set 29  
Configuration set 30  
Configuration set 31  
Configuration set 32  
Configuration set 33  
Configuration set 34  
P24  
P33  
P25  
P39  
P24  
P38  
P25  
P39  
P36  
P27  
P25  
P39  
P36  
P33  
P25  
P39  
P36  
P38  
P25  
P39  
a. Additional configuration sets are available upon request.  
1.11 Microprocessor Unit  
The CYW20730 microprocessor unit (µPU) executes software from the link control (LC) layer up to the application layer components  
that ensure adherence to the Bluetooth Human Interface Device (HID) profile and Audio/Video Remote Control Profile (AVRCP). The  
microprocessor is based on an ARM Cortex™-M3, 32-bit RISC processor with embedded ICE-RT debug and JTAG interface units.  
The µPU has 320 KB of ROM for program storage and boot-up, 60 KB of RAM for scratch-pad data, and patch RAM code.  
The internal boot ROM provides power-on reset flexibility, which enables the same device to be used in different HID applications with  
an external serial EEPROM or with an external serial flash memory. At power-up, the lowest layer of the protocol stack is executed  
from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes and feature additions. The device can  
also support the integration of user applications.  
1.11.1 EEPROM Interface  
The CYW20730 provides a Broadcom Serial Control (BSC) master interface. The BSC is programmed by the CPU to generate four  
types of BSC bus transfers: read-only, write-only, combined read/write, and combined write/read. BSC supports both low-speed and  
fast mode devices. The BSC is compatible with a Philips® (now NXP) I2C slave device, except that master arbitration (multiple I2C  
masters contending for the bus) is not supported.  
The EEPROM can contain customer application configuration information including: application code, configuration data, patches,  
pairing information, BD_ADDR, baud rate, SDP service record, and file system information used for code.  
Native support for the Microchip® 24LC128, Microchip 24AA128, and ST Micro® M24128-BR is included.  
1.11.2 Serial Flash Interface  
The CYW20730 includes an SPI master controller that can be used to access serial flash memory. The SPI master contains an AHB  
slave interface, transmit and receive FIFOs, and the SPI core PHY logic.  
Devices natively supported include the following:  
Atmel® AT25BCM512B  
MXIC® MX25V512ZUI-20G  
Document Number: 002-14824 Rev. *J  
Page 12 of 50  
CYW20730  
1.11.3 Internal Reset  
Figure 4. Internal Reset Timing  
VDDO POR delay  
~ 2 ms  
VDDO  
VDDO POR threshold  
VDDC POR threshold  
VDDO POR  
VDDC  
VDDC POR delay  
~ 2 ms  
VDDC POR  
Crystal  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and  
firmware boot  
Crystal Enable  
1.11.4 External Reset  
The CYW20730 has an integrated power-on reset circuit that completely resets all circuits to a known power-on state. An external  
active low reset signal, RESET_N, can be used to put the CYW20730 in the reset state. The RESET_N pin has an internal pull-up  
resistor and, in most applications, it does not require that anything be connected to it. RESET_N should only be released after the  
VDDO supply voltage level has been stabilized.  
Figure 5. External Reset Timing  
Pulse width  
>50 µs  
RESET_N  
Crystal  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and  
firmware boot  
Crystal Enable  
Document Number: 002-14824 Rev. *J  
Page 13 of 50  
CYW20730  
1.12 Integrated Radio Transceiver  
The CYW20730 has an integrated radio transceiver that is optimized for 2.4 GHz Bluetooth® wireless systems. It has been designed  
to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz unlicensed  
ISM band. It is fully compliant with Bluetooth Radio Specification 3.0 and meets or exceeds the requirements to provide the highest  
communication link quality of service.  
1.12.1 Transmitter Path  
The CYW20730 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes  
any frequency drift or anomalies in the modulation characteristics of the transmitted signal.  
Power Amplifier  
The CYW20730 has an integrated power amplifier (PA) that can transmit up to +4 dBm for class 2 operation.  
1.12.2 Receiver Path  
The receiver path uses a low IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order, on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation,  
enables the CYW20730 to be used in most applications without off-chip filtering.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the CYW20730 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller  
to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
1.12.3 Local Oscillator  
The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels. The  
CYW20730 uses an internal loop filter.  
1.12.4 Calibration  
The CYW20730 radio transceiver features a self-contained automated calibration scheme. No user interaction is required during  
normal operation or during manufacturing to provide optimal performance. Calibration compensates for filter, matching network, and  
amplifier gain and phase characteristics to yield radio performance within 2% of what is optimal. Calibration takes process and  
temperature variations into account, and it takes place transparently during normal operation and hop setting times.  
1.12.5 Internal LDO Regulator  
The CYW20730 has an integrated 1.2V LDO regulator that provides power to the digital and RF circuits. The 1.2V LDO regulator  
operates from a 1.425V to 3.63V input supply with a 30 mA maximum load current.  
Note: Always place the decoupling capacitors near the pins as closely together as possible.  
Document Number: 002-14824 Rev. *J  
Page 14 of 50  
CYW20730  
1.13 Peripheral Transport Unit  
1.13.1 Broadcom Serial Communications Interface  
The CYW20730 provides a 2-pin master BSC interface, which can be used to retrieve configuration information from an external  
EEPROM or to communicate with peripherals such as track-ball or touch-pad modules, and motion tracking ICs used in mouse  
devices. The BSC interface is compatible with I2C slave devices. The BSC does not support multimaster capability or flexible wait-  
state insertion by either master or slave devices.  
The following transfer clock rates are supported by the BSC:  
100 kHz  
400 kHz  
800 kHz (Not a standard I2C-compatible speed.)  
1 MHz (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
The following transfer types are supported by the BSC:  
Read (Up to 16 bytes can be read.)  
Write (Up to 16 bytes can be written.)  
Read-then-Write (Up to 16 bytes can be read and up to 16 bytes can be written.)  
Write-then-Read (Up to 16 bytes can be written and up to 16 bytes can be read.)  
Hardware controls the transfers, requiring minimal firmware setup and supervision.  
The clock pin (SCL) and data pin (SDA) are both open-drain I/O pins. Pull-up resistors external to the CYW20730 are required on  
both the SCL and SDA pins for proper operation.  
1.13.2 UART Interface  
The UART is a standard 2-wire interface (RX and TX) and has adjustable baud rates from 9600 bps to 1.5 Mbps. The baud rate can  
be selected via a vendor-specific UART HCI command. The interface supports the Bluetooth 3.0 UART HCI (H5) specification. The  
default baud rate for H5 is 115.2 kbaud.  
Both high and low baud rates can be supported by running the UART clock at 24 MHz.  
The CYW20730 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%.  
1.14 Clock Frequencies  
The CYW20730 is set with crystal frequency of 24 MHz.  
1.14.1 Crystal Oscillator  
The crystal oscillator requires a crystal with an accuracy of ±20 ppm as defined by the Bluetooth specification. Two external load  
capacitors in the range of 5 pF to 30 pF are required to work with the crystal oscillator. The selection of the load capacitors is crystal  
dependent. Table 6 on page 16 shows the recommended crystal specification.  
Figure 6. Recommended Oscillator Configuration—12 pF Load Crystal  
22 pF  
XIN  
Crystal  
XOUT  
20 pF  
Document Number: 002-14824 Rev. *J  
Page 15 of 50  
CYW20730  
Table 6. Reference Crystal Electrical Specifications  
Parameter  
Nominal frequency  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
MHz  
24.000  
Oscillation mode  
Fundamental  
Frequency tolerance  
Tolerance stability over temp  
Equivalent series resistance  
Load capacitance  
@25°C  
±10  
±10  
ppm  
ppm  
W
@0°C to +70°C  
50  
12  
pF  
Operating temperature range  
Storage temperature range  
Drive level  
0
+70  
+125  
200  
±10  
2
°C  
–40  
°C  
W  
Aging  
ppm/year  
pF  
Shunt capacitance  
HID Peripheral Block  
The peripheral blocks of the CYW20730 all run from a single 128 kHz low-power RC oscillator. The oscillator can be turned on at the  
request of any of the peripherals. If the peripheral is not enabled, it shall not assert its clock request line.  
The keyboard scanner is a special case in that it may drop its clock request line even when enabled and then reassert the clock  
request line if a keypress is detected.  
32 kHz Crystal Oscillator  
Figure 7 shows the 32 kHz crystal (XTAL) oscillator with external components and Table 7 on page 17 lists the oscillator’s character-  
istics. It is a standard Pierce oscillator using a comparator with hysteresis on the output to create a single-ended digital output. The  
hysteresis was added to eliminate any chatter when the input is around the threshold of the comparator and is ~100 mV. This circuit  
can be operated with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar frequency. The default  
component values are: R1 = 10 M, C1 = C2 = ~10 pF. The values of C1 and C2 are used to fine-tune the oscillator.  
Figure 7. 32 kHz Oscillator Block Diagram  
C2  
32.768 kHz  
R1  
XTAL  
C1  
Document Number: 002-14824 Rev. *J  
Page 16 of 50  
CYW20730  
Table 7. XTAL Oscillator Characteristics  
Parameter  
Symbol  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Output frequency  
Foscout  
32.768  
kHz  
Frequency  
tolerance  
Crystal dependent  
100  
ppm  
Start-up time  
Tstartup  
Pdrv  
500  
ms  
XTAL drive level  
For crystal selection  
0.5  
W  
XTAL series  
resistance  
Rseries  
Cshunt  
For crystal selection  
For crystal selection  
70  
k  
XTAL shunt  
capacitance  
1.3  
pF  
1.15 GPIO Port  
The CYW20730 has 14 general-purpose I/Os (GPIOs) in the 32-pin package, 22 GPIOs in the 40-pin package, and 40 GPIOs in the  
64-pin package. All GPIOs support programmable pull-up and pull-down resistors, and all support a 2 mA drive strength except P26,  
P27, P28, and P29, which provide a 16 mA drive strength at 3.3V supply.  
1.15.1 Port 0–Port 1, Port 8–Port 23, and Port 28–Port 38  
All of these pins can be programmed as ADC inputs.  
1.15.2 Port 26–Port 29  
P[26:29] consists of four pins. All pins are capable of sinking up to 16 mA for LED. These pins also have the PWM function, which  
can be used for LED dimming.  
Document Number: 002-14824 Rev. *J  
Page 17 of 50  
CYW20730  
1.16 PWM  
The CYW20730 has four internal PWM channels. The PWM module consists of the following:  
PWM1–4  
Each of the four PWM channels, PWM1–4, contains the following registers:  
10-bit initial value register (read/write)  
10-bit toggle register (read/write)  
10-bit PWM counter value register (read)  
The PWM configuration register is shared among PWM1–4 (read/write). This 12-bit register is used:  
To configure each PWM channel.  
To select the clock of each PWM channel  
To change the phase of each PWM channel  
Figure 8 shows the structure of one PWM channel.  
Figure 8. PWM Channel Block Diagram  
pwm_cfg_adr register  
pwm#_init_val_adr register  
10  
pwm#_togg_val_adr register  
10  
pwm#_cntr_adr  
10  
cntr value is CM3 readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
10'H3FF  
pwm_togg_val_adr  
10'Hx  
10'H000  
pwm_out  
Document Number: 002-14824 Rev. *J  
Page 18 of 50  
CYW20730  
1.17 Power Management Unit  
The Power Management Unit (PMU) provides power management features that can be invoked by software through power  
management registers or packet-handling in the baseband core.  
1.17.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver, which then processes the power-down functions accordingly.  
1.17.2 Host Controller Power Management  
Power is automatically managed by the firmware based on input device activity. As a power-saving task, the firmware controls the  
disabling of the on-chip regulator when in deep Sleep mode.  
1.17.3 BBC Power Management  
There are several low-power operations for the BBC:  
Physical layer packet handling turns RF on and off dynamically within packet TX and RX.  
Bluetooth-specified low-power connection sniff mode. While in these low-power connection modes, the CYW20730 runs on the  
Low Power Oscillator and wakes up after a predefined time period.  
The CYW20730 automatically adjusts its power dissipation based on user activity. The following power modes are supported:  
Active mode  
Idle mode  
Sleep mode  
HIDOFF mode  
The CYW20730 transitions to the next lower state after a programmable period of user inactivity. Busy mode is immediately entered  
when user activity resumes.  
In HIDOFF mode, the CYW20730 baseband and core are powered off by disabling power to LDOOUT. The VDDO domain remains  
powered up and will turn the remainder of the chip on when it detects user events. This mode minimizes chip power consumption and  
is intended for long periods of inactivity.  
Document Number: 002-14824 Rev. *J  
Page 19 of 50  
CYW20730  
2. Pin Assignments  
2.1 Pin Descriptions  
Table 8. Pin Descriptions  
Pin Number  
Pin Name  
I/O  
Power Domain  
Description  
32-Pin QFN 40-pin QFN 64-pin BGA  
Radio I/O  
6
8
F1  
RF  
I/O  
VDD_RF  
RF antenna port  
RF Power Supplies  
4
5
7
8
6
7
D1  
E1  
H1  
H2  
VDDIF  
I
VDD_RF  
VDD_RF  
VDD_RF  
VDD_RF  
IFPLL power supply  
RF front-end supply  
VCO, LOGEN supply  
VDDFE  
VDDVCO  
VDDPLL  
I
9
I
10  
I
RFPLL and crystal oscillator supply  
Power Supplies  
11  
13  
H6  
VDDC  
VSS  
I
N/A  
N/A  
Baseband core supply  
Ground  
D4, E2, E5,  
F2, G1, G2  
I
28  
14  
34  
16  
A6, D7  
VDDO  
VDDM  
I
I
VDDO  
VDDM  
I/O pad and core supply  
I/O pad supply  
Clock Generator and Crystal Interface  
Crystal oscillator input. See “Crystal  
Oscillator” on page 15 for options.  
9
11  
12  
H3  
G3  
XTALI  
I
VDD_RF  
VDD_RF  
10  
XTALO  
O
Crystal oscillator output.  
Low-power oscillator (LPO) input is  
used.  
Alternative Function:  
1
40  
39  
A3  
B3  
XTALI32K  
I
VDDO  
VDDO  
P11 and P27 in 32-QFN only  
P11 in 40-QFN only  
P39 in 64-BGA only  
Low-power oscillator (LPO) output.  
Alternative Function:  
P12 and P26 in 32-QFN only  
P12 in 40-QFN only  
32  
XTALO32K  
O
P38 in 64-BGA only  
Core  
Active-low system reset with open-drain  
output & internal pull-up resistor  
18  
17  
20  
19  
G8  
G7  
RESET_N  
TMC  
I/O PU  
VDDO  
VDDO  
Test mode control  
High: test mode  
I
Connect to GND if not used.  
Document Number: 002-14824 Rev. *J  
Page 20 of 50  
CYW20730  
Table 8. Pin Descriptions (Cont.)  
Pin Number  
Pin Name  
UART_RXD  
UART_TXD  
I/O  
Power Domain  
Description  
32-Pin QFN 40-pin QFN 64-pin BGA  
UART  
UART serial input – Serial data input for  
the HCI UART interface. Leave uncon-  
nected if not used.  
12  
13  
14  
15  
H5  
G5  
I
VDDMa  
Alternative function:  
GPIO3  
UART serial output – Serial data output  
for the HCI UART interface. Leave  
unconnected if not used.  
O, PU  
VDDMa  
Alternative Function:  
GPIO2  
BSC  
Data signal for an external I2C device.  
Alternative function:  
VDDMa  
VDDMa  
SPI_1: MOSI (master only)  
15  
16  
17  
18  
F7  
E8  
SDA  
SCL  
I/O, PU  
I/O, PU  
GPIO0  
CTS  
Clock signal for an external I2C device.  
Alternative function:  
SPI_1: SPI_CLK (master only)  
GPIO1  
RTS  
LDO Regulator Power Supplies  
2
3
4
5
B1  
C1  
LDOIN  
I
LDO  
LDO  
Battery input supply for the LDO  
LDO output  
LDOOUT  
O
a. VDDO for 64-pin package.  
Document Number: 002-14824 Rev. *J  
Page 21 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P0  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
Keyboard scan input (row): KSI0  
A/D converter input  
Peripheral UART: puart_tx  
SPI_2: MOSI (master and slave)  
IR_RX  
19  
21  
F6  
P0  
Input  
Floating  
VDDO  
60 Hz_main  
Not available during TMC=1  
GPIO: P1  
Keyboard scan input (row): KSI1  
A/D converter input  
20  
22  
G6  
P1  
Input  
Floating  
VDDO  
Peripheral UART: puart_rts  
SPI_2: MISO (master and slave)  
IR_TX  
GPIO: P2  
Keyboard scan input (row): KSI2  
Quadrature: QDX0  
22  
24  
H8  
P2  
Input  
Floating  
VDDO  
Peripheral UART: puart_rx  
Triac control 2  
SPI_2: SPI_CS (slave only)  
SPI_2: SPI_MOSI (master only)  
GPIO: P3  
Keyboard scan input (row): KSI3  
Quadrature: QDX1  
21  
23  
23  
25  
F8  
P3  
P4  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P4  
Keyboard scan input (row): KSI4  
Quadrature: QDY0  
H7  
Peripheral UART: puart_rx  
SPI_2: MOSI (master and slave)  
IR_TX  
Document Number: 002-14824 Rev. *J  
Page 22 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P5  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
Keyboard scan input (row): KSI5  
Quadrature: QDY1  
26  
E6  
P5  
Input  
Floating  
VDDO  
Peripheral UART: puart_tx  
SPI_2: MISO (master and slave)  
GPIO: P6  
Keyboard scan input (row): KSI6  
Quadrature: QDZ0  
P6  
PWM2  
27  
F5  
Input  
Floating  
VDDO  
Peripheral UART: puart_rts  
SPI_2: SPI_CS (slave only)  
60Hz_main  
Triac control 1  
GPIO: P7  
Keyboard scan input (row): KSI7  
Quadrature: QDZ1  
28  
29  
C5  
F4  
P7  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P8  
Keyboard scan output (column): KSO0  
A/D converter input  
24  
P8  
P9  
External T/R switch control: ~tx_pd  
Alternative Function:  
P33 in 32-QFN only  
GPIO: P9  
Keyboard scan output (column): KSO1  
A/D converter input  
3
2
A1  
D2  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
External T/R switch control: tx_pd  
GPIO: P10  
P10  
PWM3  
Keyboard scan output (column): KSO2  
A/D converter input  
GPIO: P11  
Keyboard scan output (column): KSO3  
A/D converter input  
1
40  
C2  
P11  
Input  
Floating  
VDDO  
XTALI32K (32-QFN and 40-QFN only)  
Alternative Function:  
P27 in 32-QFN only  
Document Number: 002-14824 Rev. *J  
Page 23 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P12  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
Keyboard scan output (column): KSO4  
A/D converter input  
32  
29  
39  
35  
B2  
P12  
Input  
Input  
Floating  
VDDO  
VDDO  
XTALO32K (32-QFN and 40-QFN only)  
Alternative Function:  
P26 in 32-QFN only  
GPIO: P13  
Keyboard scan output (column): KSO5  
A/D converter input  
P13  
PWM3  
F3  
Floating  
Triac control 3  
Alternative Function:  
P28 in 32-QFN only  
GPIO: P14  
Keyboard scan output (column): KSO6  
A/D converter input  
P14  
PWM2  
30  
31  
36  
37  
D3  
A2  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Triac control 4  
Alternative Function:  
P38 in 32-QFN only  
GPIO: P15  
Keyboard scan output (column): KSO7  
A/D converter input  
IR_RX  
P15  
60Hz_main  
GPIO: P16  
C8  
H4  
P16  
P17  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Keyboard scan output (column): KSO8  
GPIO: P17  
Keyboard scan output (column): KSO9  
A/D converter input  
GPIO: P18  
C7  
B8  
A8  
P18  
P19  
P20  
Input  
Input  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
Keyboard scan output (column): KSO10  
A/D converter input  
GPIO: P19  
Keyboard scan output (column): KSO11  
A/D converter input  
GPIO: P20  
Keyboard scan output (column): KSO12  
A/D converter input  
Document Number: 002-14824 Rev. *J  
Page 24 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P21  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
Keyboard scan output (column): KSO13  
A/D converter input  
C6  
P21  
Input  
Floating  
VDDO  
Triac control 3  
GPIO: P22  
Keyboard scan output (column): KSO14  
A/D converter input  
G4  
E3  
P22  
P23  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Triac control 4  
GPIO: P23  
Keyboard scan output (column): KSO15  
A/D converter input  
GPIO: P24  
Keyboard scan output (column): KSO16  
SPI_2: SPI_CLK (master and slave)  
SPI_1: MISO (master only)  
Peripheral UART: puart_tx  
GPIO: P25  
27  
26  
33  
32  
A7  
B7  
P24  
P25  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Keyboard scan output (column): KSO17  
SPI_2: MISO (master and slave)  
Peripheral UART: puart_rx  
GPIO: P26  
Keyboard scan output (column): KSO18  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Optical control output: QOC0  
P26  
PWM0  
32  
38  
A4  
Input  
Floating  
VDDO  
Triac control 1  
Alternative Function:  
P12 in 32-QFN only  
Current: 16 mA  
GPIO: P27  
Keyboard scan output (column): KSO19  
SPI_2: MOSI (master and slave)  
Optical control output: QOC1  
P27  
PWM1  
1
1
B4  
Input  
Floating  
VDDO  
Triac control 2  
Alternative Function:  
P11 in 32-QFN only  
Current: 16 mA  
Document Number: 002-14824 Rev. *J  
Page 25 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P28  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
Optical control output: QOC2  
A/D converter input  
LED1  
P28  
PWM2  
29  
B5  
Input  
Floating  
VDDO  
IR_TX  
Alternative Function:  
P13 in 32-QFN only  
Current: 16 mA  
GPIO: P29  
Optical control output: QOC3  
A/D converter input  
LED2  
P29  
PWM3  
A5  
Input  
Floating  
VDDO  
IR_RX  
Current: 16 mA  
GPIO: P30  
A/D converter input  
E4  
E7  
P30  
P31  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Pairing button pin in default FW  
Peripheral UART: puart_rts  
GPIO: P31  
A/D converter input  
EEPROM WP pin in default FW  
Peripheral UART: puart_tx  
GPIO: P32  
A/D converter input  
Quadrature: QDX0  
25  
31  
D6  
P32  
Input  
Floating  
VDDO  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Auxiliary clock output: ACLK0  
Peripheral UART: puart_tx  
GPIO: P33  
A/D converter input  
Quadrature: QDX1  
SPI_2: MOSI (slave only)  
Auxiliary clock output: ACLK1  
24  
30  
D8  
P33  
Input  
Floating  
VDDO  
Peripheral UART: puart_rx  
Alternative Function:  
P8 in 32-QFN only  
Document Number: 002-14824 Rev. *J  
Page 26 of 50  
CYW20730  
Table 9. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
Power  
Domain  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P34  
32-Pin  
QFN  
40-pin  
QFN  
64-pin  
BGA  
A/D converter input  
B6  
D5  
P34  
Input  
Input  
Floating  
VDDO  
VDDO  
Quadrature: QDY0  
Peripheral UART: puart_rx  
External T/R switch control: tx_pd  
GPIO: P35  
A/D converter input  
P35  
P36  
Floating  
Floating  
Quadrature: QDY1  
Peripheral UART: puart_cts  
GPIO: P36  
A/D converter input  
Quadrature: QDZ0  
C4  
Input  
VDDO  
SPI_2: SPI_CLK (master and slave)  
Auxiliary Clock Output: ACLK0  
Battery detect pin in default FW  
External T/R switch control: ~tx_pd  
GPIO: P37  
A/D converter input  
C3  
P37  
Input  
Floating  
VDDO  
Quadrature: QDZ1  
SPI_2: MISO (slave only)  
Auxiliary clock output: ACLK1  
GPIO: P38  
A/D converter input  
SPI_2: MOSI (master and slave)  
IR_TX  
30  
B3  
P38  
Input  
Floating  
VDDO  
XTALO32K (64-BGA only)  
Alternative Function:  
P14 in 32-QFN only  
GPIO: P39  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Infrared control: IR_RX  
External PA ramp control: PA_Ramp  
XTALI32K (64-BGA only)  
60Hz_main  
A3  
P39  
Input  
Floating  
VDDO  
a. During Power-On Reset, all inputs are disabled.  
Document Number: 002-14824 Rev. *J  
Page 27 of 50  
CYW20730  
2.2 Ball Maps  
Figure 9. 32-Pin QFN Ball Map  
32 31 30 29 28 27 26 25  
P11/P27/XTALI32K  
P8/P33  
P4  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
LDO_IN  
LDO_OUT  
VDDIF  
P2  
P3  
VDDFE  
RF  
P1  
P0  
VDDVCO  
VDDPLL  
RST_N  
TMC  
9 10 11 12 13 14 15 16  
Document Number: 002-14824 Rev. *J  
Page 28 of 50  
CYW20730  
Figure 10. 40-pin QFN Ball Map  
40 39 38 37 36 35 34 33 32 31  
P27/PWM1  
P10  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P33  
P8  
P7  
P6  
P5  
P4  
P2  
P3  
P1  
P0  
P9  
3
LDOIN  
LDOOUT  
VDDIF  
VDDFE  
RF  
4
5
6
7
8
VDDVCO  
VDDPLL  
9
10  
11 12 13 14 15 16 17 18 19 20  
Document Number: 002-14824 Rev. *J  
Page 29 of 50  
CYW20730  
Figure 11. 64-pin BGA Ball Map  
1
2
3
4
5
6
7
8
P26/  
PWM0  
P29/  
PWM3  
P39/  
XTALI32K  
P9  
P15  
VDDO  
P24  
P20  
P19  
P16  
P33  
SCL  
P3  
A
B
C
D
E
A
B
C
D
E
P27/  
PWM1  
P28/  
PWM2  
P38/  
XTALO32K  
LDOIN  
LDOOUT  
VDDIF  
VDDFE  
RF  
P12  
P11  
P10  
VSS  
VSS  
VSS  
P34  
P21  
P32  
P5  
P25  
P18  
P37  
P14  
P36  
VSS  
P30  
P8  
P7  
P35  
VSS  
P6  
VDDO  
P31  
P23  
P13  
P0  
SDA  
F
F
UART_  
TXD  
RESET  
_N  
VSS  
XTALO  
P22  
P1  
TMC  
G
H
G
H
UART_  
RXD  
VDDVCO  
VDDPLL  
XTALI  
P17  
VDDC  
P4  
P2  
1
2
3
4
5
6
7
8
Document Number: 002-14824 Rev. *J  
Page 30 of 50  
CYW20730  
3. Specifications  
3.1 Electrical Characteristics  
Table 10 shows the maximum electrical rating for voltages referenced to VDD pin.  
Table 10. Maximum Electrical Rating  
Rating  
Symbol  
Value  
Unit  
V
DC supply voltage for RF domain  
DC supply voltage for core domain  
DC supply voltage for VDDM domain (UART/I2C)  
DC supply voltage for VDDO domain  
DC supply voltage for VR3V  
1.4  
1.4  
V
3.8  
V
3.8  
3.8  
V
V
DC supply voltage for VDDFE  
1.4  
V
Voltage on input or output pin  
VSS – 0.3 to VDD + 0.3  
0 to +70  
V
Operating ambient temperature range  
Storage temperature range  
Topr  
Tstg  
°C  
°C  
–40 to +125  
Table 11 shows the power supply characteristics for the range TJ = 0 to 125°C.  
Table 11. Power Supply  
Parameter  
DC supply voltage for RF  
Minimuma  
1.14  
1.14  
1.62  
1.62  
1.425  
1.14  
Typical  
Maximuma  
1.26  
Unit  
V
1.2  
1.2  
DC supply voltage for Core  
DC supply voltage for VDDM (UART/I2C)  
1.26  
V
3.63  
V
DC supply voltage for VDDO  
3.63  
V
DC supply voltage for LDOIN  
1.2b  
3.63  
V
DC supply voltage for VDDFE  
1.26  
V
Supply noise for VDDO (peak-to-peak)  
Supply noise for LDOIN (peak-to-peak)  
100  
mV  
mV  
100  
a. Overall performance degrades beyond minimum and maximum supply voltages.  
b. 1.2V for Class 2 output with internal VREG.  
Document Number: 002-14824 Rev. *J  
Page 31 of 50  
CYW20730  
Table 13 shows the digital level characteristics for (VSS = 0V).  
Table 12. LDO Regulator Electrical Specifications  
Parameter  
Input voltage range  
Default output voltage  
Conditions  
Min  
1.425  
Typ  
Max  
3.63  
Unit  
V
1.2  
V
Range  
0.8  
1.4  
V
Output voltage  
Step size  
40 or 80  
mV  
%
Accuracy at any step  
–5  
+5  
30  
Load current  
mA  
%VO/V  
Line regulation  
Vin from 1.425 to 3.63V, Iload = 30 mA  
–0.2  
0.2  
Iload from 1 µAto 30 mA, Vin = 3.3V, Bonding  
R = 0.3  
Load regulation  
0.1  
0.2  
%VO/mA  
No load @Vin = 3.3V  
*Current limit enabled  
Quiescent current  
6
5
µA  
nA  
Power-down current  
Vin = 3.3V, worst@70°C  
200  
Table 13. ADC Specifications  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
ADC Characteristics  
Number of Input  
channels  
28  
Channel switching rate  
Input signal range  
Reference settling time  
Input resistance  
fch  
Vinp  
0
133.33  
kch/s  
V
3.63  
Changing refsel  
7.5  
s  
Rinp  
Cinp  
fC  
Effective, single-ended  
500  
k  
pF  
Input capacitance  
Conversion rate  
5
5.859  
5.35  
187  
170.7  
kHz  
s  
Conversion time  
Resolution  
TC  
R
16  
bits  
See Table 2  
on page 9  
Effective number of bits  
Absolute voltage  
measurement error  
Using on-chip ADC firmware driver  
±2  
%
Current  
I
P
Iavdd1p2 + Iavdd3p3  
1.5  
1
mA  
mW  
nA  
Power  
Leakage current  
Power-up time  
Integral nonlinearity3  
Differential nonlinearitya  
Ileakage  
Tpowerup  
INL  
T = 25°C  
100  
200  
1
s  
LSBa  
LSBa  
–1  
–1  
DNL  
1
a. LSBs are expressed at the 10-bit level.  
Document Number: 002-14824 Rev. *J  
Page 32 of 50  
CYW20730  
Table 14. Digital Levela  
Characteristics  
Symbol  
VIL  
Min  
Typ  
Max  
0.4  
Unit  
V
Input low voltage  
Input high voltage  
VIH  
0.75 × VDDO  
V
Input low voltage (VDDO = 1.62V)  
Input high voltage (VDDO = 1.62V)  
Output low voltageb  
VIL  
0.4  
V
VIH  
1.2  
V
VOL  
VOH  
CIN  
0.4  
V
Output high voltageb  
VDDO – 0.4  
V
Input capacitance (VDDMEM domain)  
0.12  
pF  
a. This table is also applicable to VDDMEM domain.  
b. At the specified drive current for the pad.  
Table 15. Current Consumption a  
Operational Mode  
Conditions  
Typ  
Max  
26.6  
Unit  
Receive  
Receiver and baseband are both operating, 100% ON.  
mA  
24 at 2 dBm, 19 at  
0 dBm  
Transmit  
Transmitter and baseband are both operating, 100% ON.  
mA  
mA  
mA  
Average current when the device is in the transmit state,  
100% utilization of available slots.  
DM1  
DH1  
15.2  
16.67  
Average current when the device is in the receive state,  
100% utilization of available slots.  
Sleep  
Internal LPO is in use.  
28.4  
1.5  
A  
A  
mA  
mA  
A  
A  
A  
HIDOFF  
Sniff mode, 11.25 ms  
Sniff mode, 22.5 ms  
Sniff mode, 60 ms  
Sniff mode, 100 ms  
Sniff mode, 495 ms  
Slave  
Slave  
Slave  
Slave  
Slave  
2.8  
1.27  
750  
500  
125  
a. Current consumption measurements are taken at VBAT with the assumption that VBAT is connected to VDDIO and LDOIN.  
Caution: This device is susceptible to permanent damage from electrostatic discharge (ESD). Proper precautions are required during  
handling and mounting to avoid excessive ESD.  
Table 16. ESD Tolerance  
Model  
Tolerance  
± 2000V  
± 400V  
Human Body Model (HBM)  
Charged Device Model (CDM)  
Machine Model (MM)  
± 150V  
Document Number: 002-14824 Rev. *J  
Page 33 of 50  
CYW20730  
3.2 RF Specifications  
Table 17. Receiver RF Specifications  
Parameter  
Mode and Conditions  
Min  
Typ  
Max  
Unit  
Receiver Section  
Frequency range  
RX sensitivity (standard)  
RX sensitivity (low current)  
Input IP3  
2402  
–88.0  
–84.0  
2480  
MHz  
dBm  
dBm  
dBm  
dBm  
–84.0  
GFSK, 0.1%BER, 1 Mbps  
–16  
–10  
Maximum input  
Interference Performance  
C/I cochannel  
GFSK, 0.1%BERa  
11.0  
0.0  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
GFSK, 0.1%BERa  
GFSK, 0.1%BERa  
GFSK, 0.1%BERb  
GFSK, 0.1%BERa  
–30.0  
–40.0  
–9.0  
C/I 1 MHz adjacent to image channel GFSK, 0.1%BERa  
–20.0  
Out-of-Band Blocking Performance (CW)b  
30 MHz to 2000 MHz  
2000 MHz to 2399 MHz  
2498 MHz to 3000 MHz  
3000 MHz to 12.75 GHz  
0.1%BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
0.1%BER  
0.1%BER  
0.1%BER  
–27  
–10.0  
Spurious Emissions  
30 MHz to 1 GHz  
–57.0  
–55.0  
dBm  
dBm  
1 GHz to 12.75 GHz  
a. Desired signal is 10 dB above the reference sensitivity level (defined as –70 dBm).  
b. Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
Document Number: 002-14824 Rev. *J  
Page 34 of 50  
CYW20730  
Table 18. Transmitter RF Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Transmitter Section  
Frequency range  
2402  
–6.0  
2480  
4.0  
MHz  
dBm  
dBm  
dB  
Output power adjustment range  
Default output power  
Output power variation  
20 dB bandwidth  
4.0  
2.0  
900  
1000  
kHz  
Adjacent Channel Power  
|M – N| = 2  
–20  
–40  
dBm  
dBm  
|M – N| 3  
Out-of-Band Spurious Emission  
30 MHz to 1 GHz  
–36.0  
–30.0  
–47.0  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
LO Performance  
Frequency Drift  
Initial carrier frequency tolerance  
±75  
kHz  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
Average deviation in payload  
(sequence used is 00001111)  
140  
175  
kHz  
Maximum deviation in payload  
(sequence used is 10101010)  
115  
1
kHz  
Channel spacing  
MHz  
Document Number: 002-14824 Rev. *J  
Page 35 of 50  
CYW20730  
3.3 Timing and AC Characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the following timing diagrams.  
3.3.1 UART Timing  
Table 19. UART Timing Specifications  
Reference  
Characteristics  
Min  
Max  
24  
10  
2
Unit  
Baud out  
cycles  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N high  
ns  
Baud out  
cycles  
Figure 12. UART Timing  
Document Number: 002-14824 Rev. *J  
Page 36 of 50  
CYW20730  
3.3.2 SPI Timing  
The SPI interface supports clock speeds up to 12 MHz with VDDIO 2.2V. The supported clock speed is 6 MHz when 2.2V VDDIO  
1.62V.  
Figure 13 shows the timing diagram. SPI timing values for different values of SCLK and VDDM are shown in Table 20, Table 21 on  
page 38, Table 22 on page 38, Table 23 on page 39.  
Figure 13. SPI Timing Diagram  
5
6
CS  
SCLK  
Mode 1  
SCLK  
Mode 3  
2
4
1
MSB  
MSB  
LSB  
LSB  
MOSI  
MISO  
3
Invalid bit  
Table 20. SPI1 Timing Values—SCLK = 12 MHz and VDDM = 3.2Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max  
Unit  
Output setup time, from MOSI   
data valid to sample edge of SCLK  
1
Tds_mo  
20  
ns  
Output hold time, from sample  
2
3
Tdh_mo  
Tds_mi  
Tdh_mi  
63  
ns  
ns  
edge of SCLK to MOSI data update  
Input setup time, from MISO data valid  
to sample edge of SCLK  
TBD  
Input hold time, from sample   
edge of SCLK to MISO data update  
4
TBD  
ns  
ns  
ns  
5c  
6c  
Time from CS assert to first SCLK edge Tsu_cs  
½ SCLK period – 1  
½ SCLK period  
Time from first SCLK edge to CS  
deassert  
Thd_cs  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 12 MHz. The speed can be adjusted to as low as 400 Hz by  
configuring the firmware.  
b. Typical timing based on 20 pF/1 Mload and SCLK = 12 MHz.  
c. CS timing is firmware controlled.  
Document Number: 002-14824 Rev. *J  
Page 37 of 50  
CYW20730  
Table 21. SPI1 Timing Values—SCLK = 6 MHz and VDDM = 1.62Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max  
Unit  
Output setup time, from MOSI data valid  
to sample edge of SCLK  
1
Tds_mo  
41  
ns  
Output hold time, from sample   
2
3
Tdh_mo  
Tds_mi  
120  
ns  
ns  
edge of SCLK to MOSI data update  
Input setup time, from MISO   
data valid to sample edge of SCLK  
TBD  
Input hold time, from sample   
4
Tdh_mi  
Tsu_cs  
Thd_cs  
TBD  
ns  
ns  
ns  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
½ SCLK period – 1  
½ SCLK period  
Time from first SCLK edge to CS  
deassert  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 6 MHz. The speed can be adjusted to as low as 400 Hz by  
configuring the firmware.  
b. Typical timing based on 20 pF/1 Mload and SCLK = 6 MHz.  
c. CS timing is firmware controlled.  
Table 22. SPI2 Timing Values—SCLK = 12 MHz and VDDM = 3.2Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max  
Unit  
Output setup time, from MOSI   
data valid to sample edge of SCLK  
1
Tds_mo  
26  
ns  
Output hold time, from sample   
2
3
Tdh_mo  
Tds_mi  
56  
ns  
ns  
edge of SCLK to MOSI data update  
Input setup time, from MISO   
data valid to sample edge of SCLK  
TBD  
Input hold time, from sample   
4
Tdh_mi  
Tsu_cs  
Thd_cs  
TBD  
ns  
ns  
ns  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
½ SCLK period – 1  
½ SCLK period  
Time from first SCLK edge to CS  
deassert  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 12 MHz. The speed can be adjusted to as low as 400 Hz by  
configuring the firmware.  
b. Typical timing based on 20 pF//1 Mload and SCLK = 12 MHz.  
c. CS timing is firmware controlled in master mode and can be adjusted as required in slave mode.  
Document Number: 002-14824 Rev. *J  
Page 38 of 50  
CYW20730  
Table 23. SPI2 Timing Values—SCLK = 6 MHz and VDDM = 1.62Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max  
Unit  
Output setup time, from MOSI   
1
Tds_mo  
50  
ns  
data valid to sample edge of SCLK  
Output hold time, from sample   
edge of SCLK to MOSI data update  
2
3
Tdh_mo  
Tds_mi  
120  
ns  
ns  
Input setup time, from MISO   
data valid to sample edge of SCLK  
TBD  
Input hold time, from sample   
4
Tdh_mi  
Tsu_cs  
Thd_cs  
TBD  
ns  
ns  
ns  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
½ SCLK period – 1  
½ SCLK period  
Time from first SCLK edge to CS  
deassert  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 6 MHz. The speed can be adjusted to as low as 400 Hz by  
configuring the firmware.  
b. Typical timing based on 20 pF//1 Mload and SCLK = 6 MHz.  
c. CS timing is firmware controlled in master mode and can be adjusted as required in slave mode.  
Document Number: 002-14824 Rev. *J  
Page 39 of 50  
CYW20730  
3.3.3 BSC Interface Timing  
Table 24. BSC Interface Timing Specifications  
Reference  
Characteristics  
Min  
Max  
Unit  
100  
400  
800  
1000  
1
Clock frequency  
kHz  
2
3
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
5
Clock high time  
6
Data input hold timea  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free timeb  
7
100  
280  
8
9
400  
10  
650  
a. As a transmitter, 300 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
b. Time that the cbus must be free before a new transaction can start.  
Figure 14. BSC Interface Timing Diagram  
Document Number: 002-14824 Rev. *J  
Page 40 of 50  
CYW20730  
4. Mechanical Information  
Figure 15. 32-Pin QFN Package  
Document Number: 002-14824 Rev. *J  
Page 41 of 50  
CYW20730  
Figure 16. 40-pin QFN Package  
Document Number: 002-14824 Rev. *J  
Page 42 of 50  
CYW20730  
Figure 17. 64-pin FBGA Package  
Document Number: 002-14824 Rev. *J  
Page 43 of 50  
CYW20730  
4.1 Tape Reel and Packaging Specifications  
Table 25. CYW20730 5 × 5 × 1 mm QFN, 32-Pin Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
2500 pieces  
13 inches  
7 inches  
12 mm  
Hub diameter  
Tape width  
Tape pitch  
8 mm  
Table 26. CYW20730 6 × 6 × 1 mm QFN, 40-Pin Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
4000 pieces  
13 inches  
4 inches  
16 mm  
Hub diameter  
Tape width  
Tape pitch  
12 mm  
Table 27. CYW20730 7 × 7 × 0.8 mm WFBGA, 64-Pin Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
2500 pieces  
13 inches  
4 inches  
16 mm  
Hub diameter  
Tape width  
Tape pitch  
12 mm  
The top left corner of the CYW20730 package is situated near the sprocket holes, as shown in Figure 18.  
Figure 18. Pin 1 Orientation  
Pin 1: Top left corner of package toward sprocket holes  
Document Number: 002-14824 Rev. *J  
Page 44 of 50  
CYW20730  
5. Ordering Information  
Table 28. Ordering Information  
Part Number  
CYW20730A2KML2G  
CYW20730A2KMLG  
CYW20730A2KFBG  
CYW20730A1KML2G  
CYW20730A1KMLG  
CYW20730A1KFBG  
Package  
Ambient Operating Temperature  
32-pin QFN  
40-pin QFN  
64-pin BGA  
32-pin QFN  
40-pin QFN  
64-pin BGA  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
Document Number: 002-14824 Rev. *J  
Page 45 of 50  
CYW20730  
A. Appendix: Acronyms and Abbreviations  
The following list of acronyms and abbreviations may appear in this document.  
Term  
Description  
ADC  
AFH  
AHB  
APB  
APU  
analog-to-digital converter  
adaptive frequency hopping  
advanced high-performance bus  
advanced peripheral bus  
audio processing unit  
Acorn RISC Machine 7 Thumb instruction, Debugger, Multiplier, Ice, Synthesizable  
Broadcom Serial Control  
Bluetooth controller  
ARM7TDMI-S™  
BSC  
BTC  
COEX  
DFU  
DMA  
EBI  
coexistence  
device firmware update  
direct memory access  
external bus interface  
Host Control Interface  
high voltage  
HCI  
HV  
IDC  
initial digital calibration  
intermediate frequency  
interrupt request  
IF  
IRQ  
JTAG  
LCU  
LDO  
LHL  
Joint Test Action Group  
link control unit  
low drop-out  
lean high land  
LPO  
LV  
low power oscillator  
LogicVision™  
MIA  
multiple interface agent  
pulse code modulation  
phase locked loop  
PCM  
PLL  
PMU  
POR  
PWM  
QD  
power management unit  
power-on reset  
pulse width modulation  
quadrature decoder  
RAM  
RF  
random access memory  
radio frequency  
ROM  
RX/TX  
SPI  
read-only memory  
receive, transmit  
serial peripheral interface  
software  
SW  
UART  
UPI  
universal asynchronous receiver/transmitter  
µ-processor interface  
Document Number: 002-14824 Rev. *J  
Page 46 of 50  
CYW20730  
Term  
Description  
WD  
watchdog  
A.1 References  
The references in this section may be used in conjunction with this document.  
Note: Cypress provides customer access to technical documentation and software through its Customer Support Portal (CSP) and  
Downloads & Support site (see IoT Resources on page 3).  
For documents, replace the “x” in the document number with the largest number available in the repository to ensure that you have  
the most current version of the document.  
Document Name  
Broadcom Number  
Cypress Number  
Items  
[1] Single-Chip Bluetooth® Transceiver and Baseband Processor  
20702-DS10x-R  
002-14772  
Document Number: 002-14824 Rev. *J  
Page 47 of 50  
CYW20730  
Document History  
Document Title: CYW20730 Single-Chip Bluetooth Transceiver for Wireless Input Devices  
Document Number: 002-14824  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
20730-DS100-RI:  
Initial release  
**  
04/27/2010  
20730-DS101-R:  
Added:  
“Shutter Control for 3D Glasses” on page 10.  
“Infrared Modulator” on page 10.  
“Infrared Learning” on page 11.  
“Triac Control” on page 12.  
“Broadcom Proprietary Control Signalling and Triggered Baseband Fast Connect” on  
page 12.  
Figure 5: “Internal Reset Timing,” on page 17.  
Figure 6: “External Reset Timing,” on page 17.  
Figure 10: “40-pin QFN Ball Map,” on page 33.  
Figure 11: “64-pin BGA Ball Map,” on page 34.  
“SPI Timing” on page 41.  
Figure 16: “40-pin QFN,” on page 44.  
Figure 17: “64-pin FBGA,” on page 45.  
Revised:  
*A  
06/25/2010  
“Microprocessor Unit” on page 16.  
Table 6: “Pin Descriptions,” on page 25.  
Table 11: “ADC Specifications,” on page 36.  
Table 14: “Receiver RF Specifications,” on page 38.  
Table 15: “Transmitter RF Specifications,” on page 39.  
Table 21: “Ordering Information,” on page 50.  
20730-DS102-R:  
Added:  
Table 1: “ADC Modes,” on page 18  
Revised:  
Figure 1: “Functional Block Diagram,” on page 2  
“ADC Port” on page 17  
“Internal LDO Regulator” on page 22  
“UART Interface” on page 23  
Table 6: “XTAL Oscillator Characteristics,” on page 25  
Table 8: “GPIO Pin Descriptions,” on page 30  
Table 10: “Power Supply,” on page 39  
Table 11: “LDO Regulator Electrical Specifications,” on page 40  
Table 12: “ADC Specifications,” on page 41  
Table 14: “Current Consumption,” on page 42  
Table 15: “Receiver RF Specifications,” on page 43  
Table 16: “Transmitter RF Specifications,” on page 44  
Table 18: “SPI Interface Timing Specifications,” on page 46  
Table 21: “BCM20730 6 × 6 × 1 mm QFN, 40-Pin Tape Reel Specifications,” on  
page 52  
*B  
03/23/2011  
Table 22: “BCM20730 7 × 7 × .8 mm WFBGA, 64-Pin Tape Reel Specifications,” on  
page 52  
Deleted:  
Placeholder for Figure 4: Triac Control  
Placeholder for Figure 18: BCM20730, 6 x 6 QFN Package Tray  
Placeholder for Figure 19: BCM20730, 7 x 7 FBGA Package Tray  
20730-DS103-R:  
Revised:  
*C  
*D  
04/06/2011  
05/09/2011  
Table 14: “Current Consumption,” on page 42  
Table 23: “Ordering Information,” on page 54  
20730-DS104-R:  
Revised:  
Figure 1: “Functional Block Diagram,” on page 2  
“ADC Port” on page 17  
Table 10: “Power Supply,” on page 39  
Document Number: 002-14824 Rev. *J  
Page 48 of 50  
CYW20730  
Document Title: CYW20730 Single-Chip Bluetooth Transceiver for Wireless Input Devices  
Document Number: 002-14824  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
20730-DS105-R:  
Added:  
Figure 9: “32-Pin QFN Ball Map,” on page 39  
Figure 16: “32-Pin QFN Package,” on page 52  
Table 20: “BCM20730 5 × 5 × 1 mm QFN, 32-Pin Tape Reel Specifications,” on  
page 55  
Revised:  
General Description and Features on Cover  
Figure 1: “Functional Block Diagram,” on page 2  
“ADC Port” on page 17  
Table 2: “BCM20730 First SPI Set (Master Mode),” on page 18  
Table 2: “BCM20730 First SPI Set (Master Mode),” on page 18  
Table 2: “BCM20730 First SPI Set (Master Mode),” on page 18  
Figure 5: “External Reset Timing,” on page 22  
“GPIO Port” on page 27  
“BBC Power Management” on page 29  
Table 7: “Pin Descriptions,” on page 30  
Table 8: “GPIO Pin Descriptions,” on page 32  
Table 12: “ADC Specifications,” on page 44  
*E  
06/29/2011  
20730-DS106-R:  
Changed from a Preliminary Data Sheet to a Data Sheet.  
*F  
09/20/2011  
10/10/2012  
20730-DS107-R:  
Revised:  
*G  
“SPI Timing” on page 49  
20730-DS108-R:  
Revised:  
<Cross-Ref>Section 1.3: “Shutter Control for 3D Glasses,” on page 6  
Table 28, “Ordering Information,” on page 45  
*H  
09/09/2013  
Added:  
Table 16, “ESD Tolerance,” on page 33  
*I  
5522944  
5700376  
UTSV  
11/16/2016 Updated to Cypress template  
*J  
AESATMP7  
04/25/2017 Updated Cypress Logo and Copyright.  
Document Number: 002-14824 Rev. *J  
Page 49 of 50  
CYW20730  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
50  
© Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-14824 Rev. *J  
Revised April 25, 2017  
Page 50 of 50  

相关型号:

CYW20730A2KML2G

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A2KML2GT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20732

Bluetooth Low-Energy (BLE)-compliant
CYPRESS

CYW20732A0

Bluetooth Low-Energy (BLE)-compliant
CYPRESS

CYW20732A0KML2G

Bluetooth Low-Energy (BLE)-compliant
CYPRESS

CYW20733

Single-Chip Bluetooth Transceiver Wireless Input Devices
CYPRESS

CYW20733A3KFB1G

Telecom Circuit, 1-Func, CMOS, PBGA81, FBGA-81
CYPRESS

CYW20733A3KFB2G

Single-Chip Bluetooth Transceiver Wireless Input Devices
CYPRESS

CYW20733A3KML1G

Telecom Circuit, 1-Func, CMOS, QFN-56
CYPRESS

CYW20734

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20734UA1KFFB3G

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20736A1KML2G

Power Supply Management Circuit,
CYPRESS