CYD18S72V-100BBI [CYPRESS]

FLEx72 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM; FLEx72 3.3V 64K / 128K / 256K X 72同步双端口RAM
CYD18S72V-100BBI
型号: CYD18S72V-100BBI
厂家: CYPRESS    CYPRESS
描述:

FLEx72 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
FLEx72 3.3V 64K / 128K / 256K X 72同步双端口RAM

文件: 总26页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
FLEx72™ 3.3V 64K/128K/256K x 72  
Synchronous Dual-Port RAM  
Functional Description  
Features  
• True dual-ported memory cells that allow simultaneous  
The FLEx72 family includes 4-Mbit, 9-Mbit and 18-Mbit  
pipelined, synchronous, true dual-port static RAMs that are  
high-speed, low-power 3.3V CMOS. Two ports are provided,  
permitting independent, simultaneous access to any location  
in memory. The result of writing to the same location by more  
than one port at the same time is undefined. Registers on  
control, address, and data lines allow for minimal set-up and  
hold time.  
During a Read operation, data is registered for decreased  
cycle time. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally (more details to follow). The internal write pulse width is  
independent of the duration of the R/W input signal. The  
internal write pulse is self-timed to allow the shortest possible  
cycle times.  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
access of the same memory location  
• Synchronous pipelined operation  
• Family of 4-Mbit, 9-Mbit and 18-Mbit devices  
• Pipelined output mode allows fast operation  
• 0.18-micron CMOS for optimum speed and power  
• High-speed clock to data access  
• 3.3V low power  
Active as low as 225 mA (typ)  
— Standby as low as 55 mA (typ)  
• Mailbox function for message passing  
• Global master reset  
• Separate byte enables on both ports  
• Commercial and industrial temperature ranges  
• IEEE 1149.1-compatible JTAG boundary scan  
• 484-ball FBGA (1 mm pitch)  
• Counter wrap around control  
— Internal mask register controls counter wrap-around  
— Counter-interrupt flags to indicate wrap-around  
— Memory block retransmit operation  
• Counter readback on address lines  
• Mask register readback on address lines  
• Dual Chip Enables on both ports for easy depth  
expansion  
The CYD18S72V device have limited features. Please see  
“Address Counter and Mask Register Operations[16]” on  
page 6 for details.  
• Seamless Migration to Next Generation Dual Port  
Family  
Seamless Migration to Next Generation Dual Port Family  
Cypress offers a migration path for all devices to the  
next-generation devices in the Dual-Port family with a  
compatible footprint. Please contact Cypress Sales for more  
details  
Table 1. Product Selection Guide  
Density  
4-Mbit  
9-Mbit  
18-Mbit  
(64K x 72)  
CYD04S72V  
167  
(128K x 72)  
(256K x 72)  
Part Number  
Max. Speed (MHz)  
Max. Access Time - clock to Data (ns)  
Typical operating current (mA)  
Package  
CYD09S72V  
CYD18S72V  
167  
4.0  
270  
133  
5.0  
410  
4.0  
225  
484-ball FBGA  
484-ball FBGA  
484-ball FBGA  
23mm x 23mm  
23mm x 23mm  
23mm x 23mm  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-06069 Rev. *D  
Revised June 23, 2004  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
.
Logic Block Diagram[1]  
FTSEL  
L
FTSEL  
R
CONFIG Block  
CONFIG Block  
PORTST[1:0]  
L
PORTST[1:0]  
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
R
BE [7:0]  
L
CE0  
CE0  
R
L
L
IO  
Control  
IO  
Control  
CE1  
CE1  
R
OE  
R
OE  
L
R/W  
R/W  
R
L
Dual Ported Array  
Arbitration Logic  
BUSY  
BUSY  
L
R
A [17:0]  
A [17:0]  
L
L
R
R
CNT/MSK  
CNT/MSK  
ADS  
ADS  
R
L
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
L
RET  
R
CNTINT  
L
CNTINT  
R
C
L
C
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
MRST  
READY  
RESET  
LOGIC  
READY  
L
R
LowSPD  
R
LowSPD  
L
Note:  
1. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
Document #: 38-06069 Rev. *D  
Page 2 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Pin Configuration  
484-ball BGA  
Top View  
CYD04S72V / CYD09S72V / CYD18S72V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
DQ6  
DQ5  
DQ5  
DQ5  
DQ5  
DQ4  
DQ4  
DQ4  
DQ3  
DQ3  
DQ3  
DQ3  
DQ4  
DQ4  
DQ4  
DQ5  
DQ5  
DQ5  
DQ5  
DQ6  
NC  
A
1L  
9L  
7L  
4L  
1L  
8L  
5L  
2L  
9L  
6L  
6R  
9R  
2R  
5R  
8R  
1R  
4R  
7R  
9R  
1R  
DQ6  
3L  
DQ6  
2L  
DQ6  
0L  
DQ5  
8L  
DQ5  
5L  
DQ5  
2L  
DQ4  
9L  
DQ4  
6L  
DQ4  
3L  
DQ4  
0L  
DQ3  
7L  
DQ3  
7R  
DQ4  
0R  
DQ4  
3R  
DQ4  
6R  
DQ4  
9R  
DQ5  
2R  
DQ5  
5R  
DQ5  
8R  
DQ6  
0R  
DQ6  
2R  
DQ6  
3R  
B
C
DQ6  
5L  
DQ6  
4L  
VSS  
VSS  
DQ5  
6L  
DQ5  
3L  
DQ5  
0L  
DQ4  
7L  
DQ4  
4L  
DQ4  
1L  
DQ3  
8L  
DQ3  
8R  
DQ4  
1R  
DQ4  
4R  
DQ4  
7R  
DQ5  
0R  
DQ5  
3R  
DQ5  
6R  
VSS  
VSS  
DQ6  
4R  
DQ6  
5R  
DQ6  
7L  
DQ6  
6L  
VSS  
VSS  
VSS  
NC  
NC  
REV  
LOW  
SPD  
POR  
TST  
NC  
BUS  
[2, 5]  
CNTI  
POR  
TST  
REV  
NC  
NC  
VSS  
VSS  
VSS  
DQ6  
6R  
DQ6  
7R  
[2, 5]  
[2, 5]  
[2,4]  
L
[2, 5]  
[2,4]  
R
[2, 5]  
[2, 5]  
YL  
NTL  
[10]  
[2,4]  
L
D0L  
[2,4]  
D1L  
[2, 5]  
D
DQ6  
9L  
DQ6  
8L  
VDD  
IOL  
VSS  
CE0  
VSS  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDDI VDDI  
VTT  
L
VTT  
L
VTTL VDDI  
OR  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
NC  
VSS  
CE0  
VDD  
IOR  
DQ6  
8R  
DQ6  
9R  
OL  
OL  
E
F
DQ7  
1L  
DQ7  
0L  
CE1  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDDI  
OL  
VCO  
RE  
VCO  
RE  
VCO  
RE  
VCO  
RE  
VDDI  
OR  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
CE1  
DQ7  
0R  
DQ7  
1R  
[8]  
L
[9]  
L
[9]  
R
[8]  
R
A0L  
A1L  
RET  
BE4  
L
VDD  
IOL  
VDD  
IOL  
VRE  
[2, 4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VRE  
[2, 4]  
VDD  
IOR  
VDD  
IOR  
BE4  
R
RET  
A1R  
A0R  
[2,3]  
L
[2,3]  
R
FL  
FR  
G
H
A2L  
A4L  
A3L  
A5L  
WRP  
BE5  
L
VDD  
IOL  
VDD  
IOL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
IOR  
VDD  
IOR  
BE5  
R
WRP  
A3R  
A5R  
A2R  
A4R  
[2,3]  
L
[2,3]  
R
REA  
BE6  
L
VDD  
IOL  
VDD  
IOL  
VDD  
IOR  
VDD  
IOR  
BE6  
R
REA  
DYL  
[2, 5]  
DYR  
[2, 5]  
J
A6L  
A8L  
A7L  
A9L  
NC  
CL  
BE7  
L
VTT  
L
VCO  
RE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCO  
RE  
VDD  
IOR  
BE7  
R
NC  
CR  
A7R  
A9R  
A6R  
A8R  
K
L
OEL  
VTT  
L
VCO  
RE  
VCO  
RE  
VTT  
L
OER  
A10L A11L  
REV  
BE3  
L
VTT  
L
VCO  
RE  
VCO  
RE  
VTT  
L
BE3  
R
REV  
A11  
R
A10  
R
[2,4]  
L
[2,4]  
R
M
N
A12L A13L ADS  
BE2  
L
VDD  
IOL  
VCO  
RE  
VCO  
RE  
VTT  
L
BE2  
R
ADS  
A13  
R
A12  
R
[9]  
L
[9]  
R
A14L A15L CNT/  
MSK  
BE1  
L
VDD  
IOL  
VDD  
IOL  
VDD  
IOR  
VDD  
IOR  
BE1  
R
CNT/  
MSK  
A15  
R
A14  
R
[8]  
L
[8]  
R
P
R
T
A16L A17L  
CNT  
BE0  
L
VDD  
IOL  
VDD  
IOL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
IOR  
VDD  
IOR  
BE0  
R
CNT  
A17  
A16  
[6]  
[7]  
ENL  
[9]  
ENR  
[9]  
R
R
[7]  
[6]  
A18L  
[2,5]  
NC  
CNT  
RST  
INTL  
VDD  
IOL  
VDD  
IOL  
VRE  
VRE  
VDD  
IOR  
VDD INTR CNT  
NC  
A18  
FL  
FR  
IOR  
RST  
R
[8]  
L
[2, 4]  
[2, 4]  
[8]  
[2,5]  
R
DQ3  
5L  
DQ3  
4L  
R/W  
L
REV  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDDI  
OL  
VCO  
RE  
VCO  
RE  
VCO  
RE  
VCO  
RE  
VDDI  
OR  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
REV  
R/W  
R
DQ3  
4R  
DQ3  
5R  
[2,4]  
L
[2,4]  
R
U
V
DQ3  
3L  
DQ3  
2L  
FTS  
VDD  
IOL  
NC  
VDD  
IOL  
VDD  
IOL  
VDD  
IOL  
VDDI VTTL  
OL  
VTT  
L
VTT  
L
VDDI VDDI  
VDD  
IOR  
VDD  
IOR  
VDD  
IOR  
TRS  
VDD  
IOR  
FTS  
DQ3  
2R  
DQ3  
3R  
[2,5]  
T
ELL  
[2,3]  
OR  
OR  
ELR  
[2,3]  
DQ3  
1L  
DQ3  
0L  
VSS  
VSS  
MRS  
T
VSS  
NC  
NC  
REV  
POR  
TST  
CNTI  
BUS  
[2, 5]  
NC  
POR  
TST  
LOW  
SPD  
REV  
NC  
NC  
VSS  
TDI  
TDO  
TCK  
DQ3  
0R  
DQ3  
1R  
[2, 5]  
[2, 5]  
[2,4]  
L
[2, 5]  
[2,4]  
R
[2, 5]  
[2, 5]  
NTR  
[10]  
YR  
[2,4]  
R
D1R  
[2, 5]  
D0R  
[2,4]  
W
Y
DQ2  
9L  
DQ2  
8L  
VSS  
DQ2  
0L  
DQ1  
7L  
DQ1  
4L  
DQ1  
1L  
DQ8  
L
DQ5  
L
DQ2  
L
DQ2  
R
DQ5  
R
DQ8  
R
DQ1  
1R  
DQ1  
4R  
DQ1  
7R  
DQ2  
0R  
TMS  
DQ2  
8R  
DQ2  
9R  
DQ2  
7L  
DQ2  
6L  
DQ2  
4L  
DQ2  
2L  
DQ1  
9L  
DQ1  
6L  
DQ1  
3L  
DQ1  
0L  
DQ7  
L
DQ4  
L
DQ1  
L
DQ1  
R
DQ4  
R
DQ7  
R
DQ1  
0R  
DQ1  
3R  
DQ1  
6R  
DQ1  
9R  
DQ2  
2R  
DQ2  
4R  
DQ2  
6R  
DQ2  
7R  
A
A
NC  
DQ2  
5L  
DQ2  
3L  
DQ2  
1L  
DQ1  
8L  
DQ1  
5L  
DQ1  
2L  
DQ9  
L
DQ6  
L
DQ3  
L
DQ0  
L
DQ0  
R
DQ3  
R
DQ6  
R
DQ9  
R
DQ1  
2R  
DQ1  
5R  
DQ1  
8R  
DQ2  
1R  
DQ2  
3R  
DQ2  
5R  
NC  
A
B
2. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales  
3. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales.  
4. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.  
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
6. Leave this ball unconnected for a 64K x 72 configuration.  
7. Leave this ball unconnected for 128K x 72 and 64K x72 configurations.  
8. These balls are not applicable for CYD18S72V device. They need to be tied to VDDIO.  
9. These balls are not applicable for CYD18S72V device. They need to be tied to VSS.  
10. These balls are not applicable for CYD18S72V device. They need to be no connected.  
Document #: 38-06069 Rev. *D  
Page 3 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Pin Definitions  
Left Port  
Right Port  
Description  
Address Inputs.  
A0L–A17L  
A0R–A17R  
Byte Enable Inputs. Asserting these signals enables Read and Write opera-  
BE0L–BE7L  
BE0R–BE7R  
tions to the corresponding bytes of the memory array.  
[2,5]  
[2,5]  
Port Busy Output. When the collision is detected, a BUSY is asserted.  
BUSYL  
BUSYR  
Input Clock Signal.  
CL  
CR  
[9]  
[9]  
Active Low Chip Enable Input.  
CE0L  
CE0R  
[8]  
[8]  
Active High Chip Enable Input.  
CE1L  
CE1R  
Data Bus Input/Output.  
DQ0L–DQ71L  
OEL  
DQ0R–DQ71R  
OER  
Output Enable Input. This asynchronous signal must be asserted LOW to  
enable the DQ data pins during Read operations.  
Mailbox Interrupt Flag Output. The mailbox permits communications  
between ports. The upper two memory locations can be used for message  
passing. INTL is asserted LOW when the right port writes to the mailbox location  
of the left port, and vice versa. An interrupt to a port is deasserted HIGH when  
it reads the contents of its mailbox.  
INTL  
INTR  
Port Low Speed Select Input. When operating at less than 100 MHz, the  
[2,4]  
[2,4]  
LowSPDL  
LowSPDR  
LowSPD disables the port DLL.  
[2,4,5]  
[2,4,5]  
Port Address/Control/Data I/O Standard Select Input.  
PORTSTD[1:0]L  
R/WL  
PORTSTD[1:0]R  
R/WR  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read  
from the dual port memory array.  
Port Ready Output. This signal will be asserted when a port is ready for normal  
[2,5]  
[2,5]  
READYL  
READYR  
operation.  
[8]  
[8]  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
CNT/MSKL  
CNT/MSKR  
[9]  
[9]  
ADSL  
ADSR  
[9]  
[9]  
CNTENL  
CNTENR  
[8]  
[8]  
CNTRSTL  
CNTRSTR  
Port Counter Interrupt Output. This pin is asserted LOW when the unmasked  
[10]  
[10]  
CNTINTL  
CNTINTR  
portion of the counter is incremented to all “1s”.  
Port Counter Wrap Input. After the burst counter reaches the maximum count,  
if WRP is low, the unmasked counter bits will be set to 0. If high, the counter  
will be loaded with the value stored in the mirror register.  
Port Counter Retransmit Input. Counter control input.  
[2,3]  
[2,3]  
WRPL  
WRPR  
[2,3]  
[2,3]  
RETL  
RETR  
Flow-Through Select. Use this pin to select Flow-Through mode. When is  
[2,3]  
[2,3]  
FTSELL  
FTSELR  
de-asserted, the device is in pipelined mode.  
[2,5]  
[2,5]  
Port External High-Speed IO Reference Input.  
VREFL  
VREFR  
Port IO Power Supply.  
VDDIOL  
VDDIOR  
REV[2,4]  
REV[2,4]  
Reserved pins for future features.  
L
R
Master Reset Input. MRST is an asynchronous input signal and affects both  
MRST  
ports. A master reset operation is required at power-up.  
TRST[2,5]  
TMS  
JTAG Reset Input.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state  
machine. State machine transitions occur on the rising edge of TCK.  
Document #: 38-06069 Rev. *D  
Page 4 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected  
TDI  
registers.  
JTAG Test Clock Input.  
TCK  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK.  
TDO is normally three-stated except when captured data is shifted out of the  
JTAG TAP.  
TDO  
Ground Inputs.  
VSS  
VCORE  
VTTL  
Core Power Supply.  
LVTTL Power Supply.  
Master Reset  
write operation by the left port to address 3FFFF will assert  
INTR LOW. At least one byte has to be active for a write to  
The FLEx72 family devices undergo a complete reset by  
taking the MRST input LOW. MRST input can switch  
asynchronously to the clocks. MRST initializes the internal  
burst counters to zero, and the counter mask registers to all  
ones (completely unmasked). MRST also forces the mailbox  
interrupt (INT) flags and the Counter Interrupt (CNTINT) flags  
HIGH. MRST must be performed on the FLEx72 family  
devices after power-up.  
generate an interrupt. A valid Read of the 3FFFF location by  
the right port will reset INTR HIGH. At least one byte has to be  
active in order for a read to reset the interrupt. When one port  
writes to the other port’s mailbox, the INT of the port that the  
mailbox belongs to is asserted LOW.  
The INT is reset when the owner (port) of the mailbox reads  
the contents of the mailbox. The interrupt flag is set in  
a flow-thru mode (i.e., it follows the clock edge of the writing  
port). Also, the flag is reset in a flow-thru mode (i.e., it follows  
the clock edge of the reading port).  
Each port can read the other port’s mailbox without resetting  
the interrupt. And each port can write to its own mailbox  
without setting the interrupt. If an application does not require  
message passing, INT pins should be left open.  
Mailbox Interrupts  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports using 18Mbit  
device as an example. The highest memory location, 3FFFF  
is the mailbox for the right port and 3FFFE is the mailbox for  
the left port. Table 2.shows that in order to set the INTR flag, a  
Table 2. Interrupt Operation Example [1, 11, 12, 13]  
Left Port  
Right Port  
Function  
R/WL  
CEL  
A0L–17L  
INTL  
R/WR  
CER  
A0R–17R  
INTR  
Set Right INTR Flag  
L
L
3FFFF  
X
X
X
X
L
Reset Right INTR Flag  
Set Left INTL Flag  
X
X
H
X
X
L
X
X
X
L
H
L
L
L
X
3FFFF  
3FFFE  
X
H
X
X
Reset Left INTL Flag  
3FFFE  
H
X
Note:  
11. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of  
0
1
the CLK and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
12. OE is “Don’t Care” for mailbox operation.  
13. At least one of BE0 or BE7 must be LOW.  
Document #: 38-06069 Rev. *D  
Page 5 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Table 3. Address Counter and Counter Mask Register Control Operation (Any Port) [14,15 ]  
CLK  
MRST CNT/MSK CNTRST ADS CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask  
register to all 1s.  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s.  
H
Load counter with external address value  
presented on address lines.  
H
H
H
L
H
Counter Readback Read out counter internal value on address  
lines.  
H
H
H
H
H
H
H
H
L
Counter Increment Internally increment address counter value.  
H
Counter Hold  
Constantly hold the address value for  
multiple clock cycles.  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s.  
H
Load mask register with value presented on  
the address lines.  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address  
lines.  
H
Operation undefined  
Note:  
14. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
15. Counter operation and mask register operation is independent of chip enables.  
Address Counter and Mask Register Operations[16]  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH  
transition of that port’s clock signal. This will Read/Write one  
word from/into each successive address location until CNTEN  
is deasserted. The counter can address the entire memory  
array, and will loop back to the start. Counter reset (CNTRST)  
is used to reset the unmasked portion of the burst counter to  
0s. A counter-mask register is used to control the counter  
wrap.  
This section describes the features only apply to 4Mbit and  
9Mbit devices, not to 18Mbit device. Each port have a  
programmable burst address counter. The burst counter  
contains three registers: a counter register, a mask register,  
and a mirror register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only  
by the Mask Load and Mask Reset operations, and by the  
MRST. The mask register defines the counting range of the  
counter register. It divides the counter register into two  
regions: zero or more “0s” in the most significant bits define  
the masked region, one or more “1s” in the least significant bits  
define the unmasked region. Bit 0 may also be “0,” masking  
the least significant counter bit and causing the counter to  
increment by two instead of one.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset  
to “0.” All masked bits remain unchanged. A Mask Reset  
followed by a Counter Reset will reset the counter and mirror  
registers to 00000, as will master reset (MRST).  
Counter Load Operation  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and Counter Reset opera-  
tions, and by the MRST.  
Table 3 summarizes the operation of these registers and the  
required input control signals. The MRST control signal is  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1)  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Counter Increment Operation  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incre-  
mented. The corresponding bit in the mask register must be  
a “1” for a counter bit to change. The counter register is incre-  
mented by 1 if the least significant bit is unmasked, and by 2  
if it is masked. If all unmasked bits are “1,” the next increment  
Document #: 38-06069 Rev. *D  
Page 6 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
will wrap the counter back to the initially loaded value. If an  
Retransmit  
Increment results in all the unmasked bits of the counter being  
“1s,” a counter interrupt flag (CNTINT) is asserted. The next  
Increment will return the counter register to its initial value,  
which was stored in the mirror register. The counter address  
can instead be forced to loop to 00000 by externally  
connecting CNTINT to CNTRST.[17] An increment that results  
in one or more of the unmasked bits of the counter being “0”  
will de-assert the counter interrupt flag. The example in  
Figure 2 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit “0” as the  
LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 1FFFFh. Setting the mask  
register to this value allows the counter to access the entire  
memory space. The address counter is then loaded with an  
initial value of 8h. The base address bits (in this case, the 6th  
address through the 16th address) are loaded with an address  
value but do not increment once the counter is configured for  
increment operation. The counter address will start at address  
8h. The counter will increment its internal address value till it  
reaches the mask register value of 3Fh. The counter wraps  
around the memory block to location 8h at the next count.  
CNTINT is issued when the counter reaches its maximum  
value.  
Retransmit is a feature that allows the Read of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal “mirror register” is  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it wraps back to the initial value stored in  
this “mirror register.” If the counter is continuously configured  
in increment mode, it increments again to its maximum value  
and wraps back to the value initially stored into the “mirror  
register.” Thus, the repeated access of the same data is  
allowed without the need for any external logic.  
Mask Reset Operation  
The mask register is reset to all “1s,” which unmasks every bit  
of the counter. Master reset (MRST) also resets the mask  
register to all “1s.”  
Mask Load Operation  
The mask register is loaded with the address value presented  
at the address lines. Not all values permit correct increment  
operations. Permitted values are of the form 2n – 1 or 2n – 2.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s,” one or more “1s,” or  
one “0.” Thus 1FFFF, 003FE, and 00001 are permitted values,  
but 1F0FF, 003FC, and 00000 are not.  
Counter Hold Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1  
shows a block diagram of the operation.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset and  
Mask Load operations, and by MRST.  
Counting by Two  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the  
x72 devices as a 144-bit single port SRAM in which the  
counter of one port counts even addresses and the counter of  
the other port counts odd addresses. This even-odd address  
scheme stores one half of the 144-bit data in even memory  
locations, and the other half in odd memory locations.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. Readback is pipelined; the address will be  
valid tCA2 after the next rising edge of the port’s clock. If  
address readback occurs while the port is enabled (CE0 LOW  
and CE1 HIGH), the data lines (DQs) will be three-stated.  
Figure 1 shows a block diagram of the operation.  
Notes:  
16. The CYD04S72V has 16 address bits and a maximum address value of FFFF. The CYD09S72V has 17 address bits and a maximum address value of 1FFFF.  
The CYD18S72V has 18 address bits and a maximum address value of 3FFFF.  
17. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06069 Rev. *D  
Page 7 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
17  
Wrap  
Register  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Wrap  
To  
1
0
Detect  
17  
1
0
Counter  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06069 Rev. *D  
Page 8 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[1, 18]  
IEEE 1149.1 Serial Boundary Scan (JTAG)[19]  
Boundary Scan Hierarchy for FLEx72 Family  
Internally, the CYD04S72V and CYD09S72V have two DIEs  
while CYD18S72V have four DIEs. Each DIE contains all the  
circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below. The scan chain  
of each DIE is connected serially to form the scan chain of the  
FLEx72 family as shown in Figure 3. TMS and TCK are  
connected in parallel to each DIE to drive all 4 TAP controllers  
in unison. In many cases, each DIE will be supplied with the  
same instruction. In other cases, it might be useful to supply  
different instructions to each DIE. One example would be  
testing the device ID of one DIE while bypassing the others.  
Each pin of FLEx72 family is typically connected to multiple  
DIEs. For connectivity testing with the EXTEST instruction, it  
is desirable to check the internal connections between DIEs  
as well as the external connections to the package. This can  
be accomplished by merging the netlist of the devices with the  
netlist of the user’s circuit board. To facilitate boundary scan  
testing of the devices, Cypress provides the BSDL file for each  
DIE, the internal netlist of the device, and a description of the  
device scan chain. The user can use these materials to easily  
integrate the devices into the board’s boundary scan  
environment. Further information can be found in the Cypress  
application note Using JTAG Boundary Scan For System In a  
Package (SIP) Dual-Port SRAMs.  
The FLEx72 incorporates an IEEE 1149.1 serial boundary  
scan test access port (TAP). The TAP controller functions in a  
manner that does not conflict with the operation of other  
devices using 1149.1-compliant TAPs. The TAP operates  
using JEDEC-standard 3.3V I/O logic levels. It is composed of  
three input connections and one output connection required by  
the test logic defined by the standard.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
FLEx72 family and may be performed while the device is  
operating. An MRST must be performed on the FLEx72 after  
power-up.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the  
scan chain will output the next bit in the chain twice. For  
example, if the value expected from the chain is 1010101, the  
device will output a 11010101. This extra bit will cause some  
testers to report an erroneous failure for the FLEx72 in a scan  
test. Therefore the tester should be configured to never enter  
the PAUSE-DR state.  
Notes:  
18. The “X” in this diagram represents the counter upper bits.  
19. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.  
Document #: 38-06069 Rev. *D  
Page 9 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
18 Mbit  
4 Mbit/9 Mbit  
TDO  
TDO  
TDO  
D4  
TDO  
TDO  
D2  
D2  
TDI  
TDI  
TDI  
TDO  
D3  
TDO  
D1  
TDO  
D1  
TDI  
TDI  
TDI  
TDI  
TDI  
Figure 3. Scan Chain  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number(31:28)  
Cypress Device(27:12)  
Value  
0h  
C002h  
Description  
Reserved for version number  
Defines Cypress DIE number for CYD18S72V and  
CYD09S72V.  
C001h  
034h  
1
Defines Cypress DIE number for CYD04S72V  
Allows unique identification of FLEx72 family device vendor  
Indicates the presence of an ID register  
Cypress JDEC ID(11:1)  
ID Register Presence (0)  
Table 5. Scan Registers Sizes  
Register Name  
Instruction  
Bit Size  
4
Bypass  
1
Identification  
Boundary Scan  
32  
n [20]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
BYPASS  
IDCODE  
HIGHZ  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FLEx72 output drivers to a High-Z state.  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
Resets the non-boundary scan logic. Places BYR between TDI and TDO.  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note:  
20. See details in the device BSDL files  
Document #: 38-06069 Rev. *D  
Page 10 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
DC Input Voltage .............................. –0.5V to VDD + 0.5V[22]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage...........................................> 2000V  
(JEDEC JESD22-A114-2000B)  
Maximum Ratings [21]  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature ................................ –65°C to + 150°C  
Latch-up Current.....................................................> 200 mA  
Ambient Temperature with  
Power Applied............................................–55°C to + 125°C  
Operating Range  
Supply Voltage to Ground Potential.............. –0.5V to + 4.6V  
Ambient  
DC Voltage Applied to  
Range  
Temperature  
VDD  
VCORE  
Outputs in High-Z State..........................–0.5V to VDD + 0.5V  
Commercial  
0°C to +70°C  
3.3V  
1.8V  
± 165 mV ± 100 mV  
Industrial  
–40°C to +85°C  
3.3V  
1.8V  
± 165 mV ± 100mV  
Electrical Characteristics Over the Operating Range  
-167  
-133  
-100  
Parameter  
VOH  
Description  
Output HIGH Voltage (VDD = Min., IOH= –4.0  
Part No.  
Min. Typ. Max. Min. Typ. Max. Min.  
Typ  
Max Unit  
2.4  
2.4  
2.0  
2.4  
2.0  
V
mA)  
VOL  
Output LOW Voltage (VDD = Min., IOL= +4.0  
mA)  
Input HIGH Voltage  
Input LOW Voltage  
Output Leakage Current  
Input Leakage Current Except TDI, TMS,  
0.4  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
IIX1  
2.0  
V
V
µA  
µA  
0.8  
10  
10  
0.8  
10  
10  
0.8  
10  
10  
–10  
–10  
–10  
–10  
-10  
-10  
MRST  
IIX2  
ICC  
Input Leakage Current TDI, TMS, MRST  
–0.1  
1.0  
300  
–0.1  
1.0  
300  
-0.1  
1.0  
mA  
mA  
Operating Current  
CYD04S72V  
225  
225  
(VDD = Max.,IOUT = 0 mA),  
Outputs Disabled  
CYD09S72V  
CYD18S72V  
410  
90  
580  
115  
315  
450  
mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
ISB5  
ICORE  
Standby Current  
CYD04S72V  
90  
160  
55  
115  
210  
75  
(Both Ports TTL Level)  
CYD09S72V  
CEL and CER VIH, f = fMAX  
Standby Current  
CYD04S72V  
CYD09S72V  
160  
55  
210  
75  
mA  
mA  
mA  
mA  
mA  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
Standby Current (Both Ports CYD04S72V  
CMOS Level) CEL and CER  
DD – 0.2V, f = 0  
CYD09S72V  
V
Standby Current  
CYD04S72V  
CYD09S72V  
160  
210  
160  
210  
75  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
Operating Current  
CYD18S72V  
75  
0
(VDDIO=Max,Iout=0mA,f=0)  
Outputs Disabled  
Core Operating Current for (VDD = Max.,IOUT  
0
0
0
0
0
= 0 mA), Outputs Disabled  
Capacitance [23]  
Part#  
Parameter  
CIN  
COUT  
CIN  
COUT  
Description  
Input Capacitance  
Output Capacitance  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
20  
Unit  
CYD04S72V  
TA = 25°C, f = 1 MHz,  
pF  
pF  
pF  
pF  
CYD09S72V  
V
DD = 3.3V  
10[24]  
40  
CYD18S72V  
20  
Note:  
21. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
22. Pulse width < 20 ns.  
23.  
C
also references C  
OUT I/O  
Document #: 38-06069 Rev. *D  
Page 11 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
AC Test Load and Waveforms  
3.3V  
Z0 = 50Ω  
R = 50Ω  
OUTPUT  
R1 = 590 Ω  
OUTPUT  
C = 10 pF  
C = 5 pF  
R2 = 435 Ω  
VTH = 1.5V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
-167  
-133  
-100  
CYD04S72V  
CYD04S72V  
CYD09S72V  
CYD09S72V  
CYD18S72V  
CYD18S72V  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max  
Min.  
Max  
Unit  
fMAX2  
Maximum Operating  
167  
133  
133  
100  
MHz  
Frequency  
tCYC2  
tCH2  
tCL2  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Clock Rise Time  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.4  
3.4  
10  
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[25]  
tR  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[25]  
tF  
Clock Fall Time  
tSA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
Address Set-up Time  
Address Hold Time  
Byte Select Set-up Time  
Byte Select Hold Time  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
NA  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
NA  
NA  
NA  
R/W Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
ADS Set-up Time  
tHD  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
Document #: 38-06069 Rev. *D  
Page 12 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)  
-167  
-133  
-100  
CYD04S72V  
CYD04S72V  
CYD09S72V  
CYD09S72V  
CYD18S72V  
CYD18S72V  
Parameter  
tHRST  
tSCM  
Description  
CNTRST Hold Time  
CNT/MSK Set-up Time  
CNT/MSK Hold Time  
Output Enable to Data Valid  
OE to Low Z  
OE to High Z  
Clock to Data Valid  
Clock to Counter Address Valid  
Min.  
0.6  
2.3  
Max.  
Min.  
0.6  
2.5  
Max.  
Min.  
NA  
NA  
Max  
Min.  
NA  
NA  
Max  
Unit  
ns  
ns  
tHCM  
0.6  
0.6  
NA  
NA  
ns  
ns  
ns  
ns  
ns  
tOE  
4.0  
4.4  
5.5  
5.5  
[26, 27]  
tOLZ  
tOHZ  
0
0
0
0
0
0
0
0
[26, 27]  
4.0  
4.0  
4.0  
4.0  
4.4  
4.4  
4.4  
4.4  
5.5  
5.0  
NA  
NA  
5.5  
5.2  
NA  
NA  
tCD2  
tCA2  
tCM2  
ns  
ns  
Clock to Mask Register  
Readback Valid  
tDC  
Data Output Hold After Clock  
HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
1.0  
1.0  
1.0  
1.0  
ns  
[26, 27]  
tCKHZ  
tCKLZ  
tSINT  
tRINT  
tSCINT  
tRCINT  
0
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
0
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
0
4.7  
4.7  
7.5  
7.5  
NA  
NA  
0
5.0  
5.0  
10  
10  
NA  
NA  
ns  
ns  
ns  
ns  
ns  
ns  
[26, 27]  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
5.7  
8.0  
ns  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
Master Reset Set-up Time  
Master Reset Recovery Time  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
8.5  
5.0  
cycles  
ns  
cycles  
ns  
tRSS  
tRSR  
tRSF  
Master Reset to Outputs  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
Inactive  
tRSCNTINT  
Master Reset to Counter  
Interrupt Flag Reset Time  
ns  
Notes:  
24. Except INT and CNTINT which are 20pF  
25. Except JTAG signal (tr and tf < 10ns max)  
26. This parameter is guaranteed by design, but is not production tested  
27. Test conditions used are Load 2  
Document #: 38-06069 Rev. *D  
Page 13 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
JTAG Timing Characteristics  
CYD04S72V  
CYD09S72V  
CYD18S72V  
-167/-133/-100  
Parameter  
Description  
Maximum JTAG TAP Controller Frequency  
Min.  
Max.  
10  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fJTAG  
tTCYC  
tTH  
TCK Clock Cycle Time  
TCK Clock HIGH Time  
TCK Clock LOW Time  
100  
40  
40  
10  
10  
10  
10  
tTL  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
30  
ns  
ns  
0
Switching Waveforms  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Document #: 38-06069 Rev. *D  
Page 14 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Master Reset  
MRST  
tRS  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Read Cycle[11, 28, 29, 30, 31]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE7  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
DATAOUT  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes:  
28. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
29. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
30. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
31. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06069 Rev. *D  
Page 15 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Bank Select Read[32, 33]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Read-to-Write-to-Read (OE = LOW)[31, 34, 35, 36, 37]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+2  
tSD tHD  
Dn+2  
An+3  
ADDRESS  
DATAIN  
tSA  
tHA  
tCD2  
tDC  
tCKHZ  
Qn  
DATAOUT  
WRITE  
NO OPERATION  
READ  
Notes:  
32. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx72 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
33. ADS = CNTEN= BE0 – BE7 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
34. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
35. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
36. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
37. CE = BE0 – BE7 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06069 Rev. *D  
Page 16 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[31, 34, 36, 37]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[36]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06069 Rev. *D  
Page 17 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Write with Address Counter Advance [37]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
ADDRESS  
Document #: 38-06069 Rev. *D  
Page 18 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Counter Reset [38, 39]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
D0  
tSD  
DATAIN  
tCD2  
tCD2  
[51]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
READ  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
READ  
ADDRESS Am  
ADDRESS 0  
ADDRESS 1  
ADDRESS An  
Notes:  
38. CE = BE0 – BE7= LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
39. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
Document #: 38-06069 Rev. *D  
Page 19 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Readback State of Address Counter or Mask Register[40, 41, 42, 43]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A17  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
EXTERNAL  
ADDRESS  
Notes:  
40. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
41. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
42. Address in input mode. Host can drive address bus after t  
.
CKHZ  
43. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06069 Rev. *D  
Page 20 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Left_Port (L_Port) Write to Right_Port (R_Port) Read[44, 45, 46]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
L_PORT  
An  
ADDRESS  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
An  
ADDRESS  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes:  
44. CE = OE = ADS = CNTEN = BE0 – BE7 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
45. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
46. If t  
If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CCS  
CYC2  
CD2  
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CYC2  
CD2  
Document #: 38-06069 Rev. *D  
Page 21 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Switching Waveforms (continued)  
Counter Interrupt and Retransmit[47, 48, 49, 50, 51]  
tCYC2  
tCH2  
tCL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
1FFFE  
tSCINT  
1FFFC  
Last_Loaded  
1FFFD  
1FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Notes:  
47. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
48. CNTINT is always driven.  
49. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
50. The mask register assumed to have the value of 1FFFFh.  
51. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
Document #: 38-06069 Rev. *D  
Page 22 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Mailbox Interrupt Timing[52,53,54,55,56]  
tCYC2  
tCH2  
tCL2  
CLKL  
tSA tHA  
3FFFF  
L_PORT  
An+1  
An  
An+2  
ADDRESS  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
Am+1  
3FFFF  
Am+3  
Am+4  
ADDRESS  
Table 7. Read / Write and Enable Operation (Any Port) [1,14,57,58,59]  
Inputs  
Outputs  
OE  
CLK  
CE0  
CE1  
R/W  
DQ0 DQ71  
Operation  
X
H
X
X
High-Z  
Deselected  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
Deselected  
Write  
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Notes:  
52. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
53. Address “1FFFF” is the mailbox location for R_Port.  
54. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
55. At least one byte enable (B0 – B3) is required to be active during interrupt operations.  
56. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
57. OE is an asynchronous input signal.  
58. When CE changes state, deselection and Read happen after one cycle of latency.  
59. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06069 Rev. *D  
Page 23 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Ordering Information  
256K  
× 72 (18Mb) 3.3V Synchronous CYD18S72V Dual-Port SRAM  
Speed  
Ordering Code  
Package  
Package Type  
Operating Range  
Commercial  
Commercial  
Industrial  
(MHz)  
Name  
133  
100  
CYD18S72V-133BBC  
CYD18S72V-100BBC  
CYD18S72V-100BBI  
BB484  
BB484  
BB484  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
128K  
×
72 (9Mb) 3.3V Synchronous CYD09S72V Dual-Port SRAM  
167  
CYD09S72V-167BBC  
CYD09S72V-133BBC  
CYD09S72V-133BBI  
BB484  
BB484  
BB484  
484-ball Grid Array  
Commercial  
Commercial  
Industrial  
23mm x 23mm with 1.0mm pitch (FBGA)  
133  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
64K x 72 (4Mb) 3.3 Synchronous CYD04S72V Dual-Port SRAM  
167  
CYD04S72V-167BBC  
CYD04S72V-133BBC  
CYD04S72V-133BBI  
BB484  
BB484  
BB484  
484-ball Grid Array  
Commercial  
Commercial  
Industrial  
23mm x 23mm with 1.0mm pitch (FBGA)  
133  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
484-ball Grid Array  
23mm x 23mm with 1.0mm pitch (FBGA)  
Document #: 38-06069 Rev. *D  
Page 24 of 26  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Package Diagram  
484-ball FBGA (23 mm × 23 mm × 1.9 mm) BB484  
51-85124-*D  
FLEx72 is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the  
trademarks of their respective holders.  
Document #: 38-06069 Rev. *D  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CYD04S72V  
CYD09S72V  
CYD18S72V  
PRELIMINARY  
Document History Page  
Document Title: FLEx72™ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM  
Document Number: 38-06069  
Issue  
Date  
06/17/03  
Orig. of  
REV.  
**  
*A  
ECN NO.  
125859  
128707  
Change Description of Change  
SPN  
SPN  
New Data Sheet  
08/01/03  
Added -133 speed bin  
Updated spec values for ICC, tHA, HB, HW, HD  
t
t
t
Added new parameter ICC1  
Added bank select read and read to write to read (OE=low) timing diagrams  
*B  
128997  
09/18/03  
SPN  
Updated spec values for tOE, OHZ, CH2, CL2, HA, HB, HW, HD, CC, SB5, SA,  
tSB, SW, SD, CD2  
Updated read to write (OE=low) timing diagram  
t
t
t
t
t
t
t
I
I
t
t
t
t
Updated Master Reset values for tRS, tRSR, RSF  
t
Updated pinout  
Updated VCORE voltage range  
*C  
*D  
129936  
233830  
09/30/03  
See ECN  
SPN  
Updated Package Diagram  
Updated tCD2 value on first page  
Removed Preliminary Status  
WWZ  
Added 4M and 9M x72 devices into the datasheet with updated pinout, pin  
description table, power table, and timing table.  
Changed the title and Added back Preliminary status to reflect the addition  
of 4M and 9M devices.  
Removed FLEX72-E word from the document.  
Added counter related functions for 4M and 9M.  
Removed standard JTAG description.  
Updated block diagram.  
Updated pinout with FTSEL and one more PORTSTD pins per port.  
Updated tRSF of CYD18S72V value.  
Document #: 38-06069 Rev. *D  
Page 26 of 26  

相关型号:

CYD18S72V-100BBXC

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V-100BBXI

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V-133BBC

FLEx72 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V-133BBI

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V-133BBXC

FLEx72⑩ 3.3V 64K/128K/256K x 72 Synchronous Dual-Port RAM
CYPRESS

CYD18S72V18

FullFlex Synchronous SDR Dual Port SRAM
CYPRESS

CYD18S72V18-167BBC

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXC

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXI

Dual-Port SRAM, 256KX72, 4ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-167BBXI

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGC

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER