CYD18S36V18-200BBAC [CYPRESS]

Dual-Port SRAM, 512KX36, 3.3ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256;
CYD18S36V18-200BBAC
型号: CYD18S36V18-200BBAC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 512KX36, 3.3ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256

时钟 静态存储器 内存集成电路
文件: 总52页 (文件大小:1093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FullFlex  
FullFlex™ Synchronous SDR Dual Port SRAM  
Features  
Functional Description  
True dual port memory enables simultaneous access to the  
shared array from each port  
The FullFlex™ dual port SRAM families consist of 2 Mbit, 4 Mbit,  
9 Mbit, 18 Mbit, and 36 Mbit synchronous, true dual port static  
RAMs that are high speed, low power 1.8V or 1.5V CMOS. Two  
ports are provided, enabling simultaneous access to the array.  
Simultaneous access to a location triggers deterministic access  
control. For FullFlex72 these ports operate independently with  
72-bit bus widths and each port is independently configured for  
two pipelined stages. Each port is also configured to operate in  
pipelined or flow through mode.  
Synchronous pipelined operation with Single Data Rate (SDR)  
operation on each port  
SDR interface at 200 MHz  
Up to 28.8 Gb/s bandwidth (200 MHz x 72 bit x 2 ports)  
Selectable pipelined or flow-through mode  
1.5V or 1.8V core power supply  
The advanced features include the following:  
Commercial and Industrial temperature  
IEEE 1149.1 JTAG boundary scan  
Built in deterministic access control to manage address colli-  
sions during simultaneous access tothesamememorylocation  
Variable Impedance Matching (VIM) to improve data trans-  
mission by matching the output driver impedance to the line  
impedance  
Available in 484-Ball PBGA (x72) and 256-Ball FBGA (x36 and  
x18) packages  
FullFlex72 family  
Echo clocks to improve data transfer  
36 Mbit: 512K x 72 (CYD36S72V18)  
18 Mbit: 256K x 72 (CYD18S72V18)  
9 Mbit: 128K x 72 (CYD09S72V18)  
4 Mbit: 64K x 72 (CYD04S72V18)  
To reduce the static power consumption, chip enables power  
down the internal circuitry. The number of latency cycles before  
a change in CE0 or CE1 enables or disables the databus  
matches the number of cycles of read latency selected for the  
device. For a valid write or read to occur, activate both chip  
enable inputs on a port.  
FullFlex36 family  
36 Mbit: 1M x 36 (CYD36S36V18)  
18 Mbit: 512K x 36 (CYD18S36V18)  
9 Mbit: 256K x 36 (CYD09S36V18)  
4 Mbit: 128K x 36 (CYD04S36V18)  
2 Mbit: 64K x 36 (CYD02S36V18)  
Each port contains an optional burst counter on the input address  
register. After externally loading the counter with the initial  
address, the counter increments the address internally.  
Additional device features include a mask register and a mirror  
register to control counter increments and wrap around. The  
counter interrupt (CNTINT) flags notify the host that the counter  
reaches maximum count value on the next clock cycle. The host  
reads the burst counter internal address, mask register address,  
and busy address on the address lines. The host also loads the  
counter with the address stored in the mirror register by using the  
retransmit functionality. Mailbox interrupt flags are used for  
message passing, and JTAG boundary scan and asynchronous  
Master Reset (MRST) are also available. The Logic Block  
Diagram on page 2 shows these features.  
FullFlex18 family  
36 Mbit: 2M x 18 (CYD36S18V18)  
18 Mbit: 1M x 18 (CYD18S18V18)  
9 Mbit: 512K x 18 (CYD09S18V18)  
4 Mbit: 256K x 18 (CYD04S18V18)  
Built in deterministic access control to manage address colli-  
sions  
Deterministic flag output upon collision detection  
Collision detection on back-to-back clock cycles  
First Busy Address readback  
The FullFlex72 is offered in a 484-Ball plastic BGA package. The  
FullFlex36 and FullFlex18 are available in 256-Ball fine pitch  
BGA package.  
Advanced features for improved high speed data transfer and  
flexibility  
Variable Impedance Matching (VIM)  
Echo clocks  
Selectable LVTTL (3.3V), Extended HSTL (1.4V–1.9V), 1.8V  
LVCMOS, or 2.5V LVCMOS IO on each port  
Burst counters for sequential memory access  
Mailbox with interrupt flags for message passing  
Dual Chip Enables for easy depth expansion  
Cypress Semiconductor Corporation  
Document Number: 38-06082 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 15, 2008  
[+] Feedback  
FullFlex  
Logic Block Diagram  
The Logic Block Diagram for FullFlex72, FullFlex36, and FullFlex18 family follows: [1, 2, 3]  
FTSEL  
L
FTSEL  
CQEN  
R
CQEN  
L
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
PORTSTD[1:0]  
L
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
0
R
BE [7:0]  
R
L
CE  
CE  
0
L
CE1  
OE  
IO  
Control  
IO  
Control  
CE1  
R
L
OE  
R
L
R/  
W
R/  
W
L
R
CQ1  
L
CQ1  
CQ1  
CQ0  
R
CQ1  
CQ0  
L
R
R
L
CQ0  
CQ0  
L
R
Dual Port Array  
BUSY  
Collision Detection Logic  
BUSY  
L
R
A [20:0]  
A [20:0]  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
L
R
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
RET  
R
L
CNTINT  
L
CNTINT  
R
C
C
L
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
ZQ0  
ZQ0  
ZQ1  
R
L
ZQ1  
R
L
RESET  
LOGIC  
MRST  
READY  
READY  
L
R
LowSPD  
LowSPD  
R
L
Notes  
1. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and  
CYD09S18V18 devices have 19 address bits. The CYD18S72V18, CYD09S36V18, and CYD04S18V18 devices have 18 address bits. The CYD09S72V18 and  
CYD04S36V18 devices have 17 address bits. The CYD04S72V18 and CYD02S36V18 have 16 address bits.  
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.  
Document Number: 38-06082 Rev. *H  
Page 2 of 52  
[+] Feedback  
FullFlex  
Figure 1. FullFlex72 SDR 484-Ball BGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20 21 22  
DNU DQ61L DQ59L DQ57L DQ54L DQ51L DQ48L DQ45L DQ42L DQ39L DQ36L DQ36R DQ39R DQ42R DQ45R DQ48R DQ51R DQ54R DQ57R DQ59R DQ61R DNU  
DQ63L DQ62L DQ60L DQ58L DQ55L DQ52L DQ49L DQ46L DQ43L DQ40L DQ37L DQ37R DQ40R DQ43R DQ46R DQ49R DQ52R DQ55R DQ58R DQ60R DQ62R DQ63R  
A
B
C
DQ65L DQ64L VSS  
DQ67L DQ66L VSS  
VSS DQ56L DQ53L DQ50L DQ47L DQ44L DQ41L DQ38L DQ38R DQ41R DQ44R DQ47R DQ50R DQ53R DQ56R VSS  
VSS DQ64R DQ65R  
VSS DQ66R DQ67R  
VSS VSS CQ1L CQ1L VSS LOWS PORTS ZQ0L BUSYL CNTIN PORTS DNU CQ1R CQ1R VSS VSS  
D
E
F
[4]  
PDL  
TD0L  
TL  
TD1L  
DQ69L DQ68L VDDIO VSS  
L
VSS VDDIO VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO DNU  
VSS VDDIO DQ68R DQ69R  
R
L
L
L
L
L
R
R
R
R
DQ71L DQ70L CE1L CE0L VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CE0R CE1R DQ70R DQ71R  
L
L
L
L
L
E
E
E
E
R
R
R
R
R
A0L  
A2L  
A4L  
A6L  
A8L  
A10L  
A1L  
RETL BE4L VDDIO VDDIO VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIO VDDIO BE4R RETR A1R  
A0R  
A2R  
A4R  
A6R  
A8R  
G
H
J
L
L
R
R
A3L WRPL BE5L VDDIO VDDIO VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIO VDDIO BE5R WRPR A3R  
L
L
R
R
A5L READY BE6L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE6R READY A5R  
L
L
L
R
R
R
A7L  
A9L  
ZQ1L BE7L VTTL VCOR VSS  
VSS VCOR VDDIO BE7R ZQ1R A7R  
[4, 5]  
K
L
[4, 5]  
E
E
R
CL  
OEL  
VTTL VCOR VSS  
E
VSS VCOR VTTL OER  
E
CR  
A9R  
A11L  
VSS  
BE3L VTTL VCOR VSS  
E
VSS VCOR VTTL BE3R VSS  
E
A11R A10R  
M
N
P
R
T
A12L A13L ADSL BE2L VDDIO VCOR VSS  
VSS VCOR VTTL BE2R ADSR A13R A12R  
E
L
E
A14L A15L CNT/M BE1L VDDIO VDDIO VSS  
SKL  
VSS VDDIO VDDIO BE1R CNT/M A15R A14R  
L
L
R
R
SKR  
A16L A17L CNTEN BE0L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE0R CNTEN A17R A16R  
[7] [8]  
[8]  
[7]  
L
L
L
R
R
R
A18L  
[6]  
DNU CNTRS INTL VDDIO VDDIO VREFL VSS  
TL  
VSS VREFR VDDIO VDDIO INTR CNTRS DNU A18R  
[6]  
L
L
R
R
TR  
DQ35L DQ34L R/WL CQENL VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CQEN R/WR DQ34R DQ35R  
U
V
W
L
L
L
L
L
E
E
E
E
R
R
R
R
R
R
DQ33L DQ32L FTSEL VDDIO DNU VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO VDDIO TRST VDDIO FTSEL DQ32R DQ33R  
L
L
L
L
L
L
R
R
R
R
R
R
R
DQ31L DQ30L VSS MRST VSS CQ0L CQ0L DNU PORTS CNTIN BUSYR ZQ0R PORTS LOWS VSS CQ0R CQ0R VSS  
TDI  
TDO DQ30R DQ31R  
[4]  
TD1R  
TR  
TD0R PDR  
DQ29L DQ28L VSS  
VSS DQ20L DQ17L DQ14L DQ11L DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11R DQ14R DQ17R DQ20R TMS  
TCK DQ28R DQ29R  
Y
DQ27L DQ26L DQ24L DQ22L DQ19L DQ16L DQ13L DQ10L DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10R DQ13R DQ16R DQ19R DQ22R DQ24R DQ26R DQ27R  
DNU DQ25L DQ23L DQ21L DQ18L DQ15L DQ12L DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12R DQ15R DQ18R DQ21R DQ23R DQ25R DNU  
AA  
AB  
Notes  
4. Leave this ball unconnected to disable VIM.  
5. This ball is applicable only for 36 Mbit and DNU for 18 Mbit and lower densities.  
6. Leave this Ball unconnected for CYD18S72V18, CYD09S72V18, and CYD04S72V18.  
7. Leave this Ball unconnected for CYD09S72V18 and CYD04S72V18.  
8. Leave this Ball unconnected for CYD04S72V18.  
Document Number: 38-06082 Rev. *H  
Page 3 of 52  
[+] Feedback  
FullFlex  
Figure 2. FullFlex36 SDR 484-Ball BGA Pinout (Top View)[9]  
10 11 12 13 14 15 16 17 18 19 20 21 22  
1
2
3
4
5
6
7
8
9
DNU  
DNU  
DNU  
DNU  
DNU DQ33L DQ30L DQ27L DQ24L DQ21L DQ18L DQ18R DQ21R DQ24R DQ27R DQ30R DQ33R DNU  
DNU DQ34L DQ31L DQ28L DQ25L DQ22L DQ19L DQ19R DQ22R DQ25R DQ28R DQ31R DQ34R DNU  
DNU DQ35L DQ32L DQ29L DQ26L DQ23L DQ20L DQ20R DQ23R DQ26R DQ29R DQ32R DQ35R DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
A
B
C
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
VSS  
VSS  
VSS CQ1L CQ1L VSS LOWS PORTS ZQ0L BUSYL CNTIN PORTS DNU CQ1R CQ1R VSS  
[4]  
D
E
F
PDL  
TD0L  
TL  
TD1L  
DNU  
DNU  
A0L  
A2L  
A4L  
A6L  
A8L  
DNU VDDIO VSS  
L
VSS VDDIO VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO DNU  
VSS VDDIO DNU  
R
DNU  
DNU  
A0R  
A2R  
A4R  
A6R  
A8R  
L
R
R
R
R
L
L
L
L
DNU CE1L CE0L VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CE0R CE1R DNU  
L
L
R
R
R
E
E
E
E
L
L
L
R
R
A1L  
RETL BE2L VDDIO VDDIO VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIO VDDIO BE2R RETR A1R  
G
H
J
L
L
R
R
A3L WRPL BE3L VDDIO VDDIO VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIO VDDIO BE3R WRPR A3R  
L
L
R
R
A5L READY DNU VDDIO VDDIO VSS  
VSS VDDIO VDDIO DNU READY A5R  
L
L
L
R
R
R
A7L  
A9L  
ZQ1L DNU VTTL VCOR VSS  
VSS VCOR VDDIO DNU ZQ1R A7R  
[4]  
K
L
[4]  
E
E
R
CL  
OEL  
VTTL VCOR VSS  
E
VSS VCOR VTTL OER  
E
CR  
A9R  
A10L  
A11L  
VSS  
DNU VTTL VCOR VSS  
E
VSS VCOR VTTL DNU  
E
VSS  
A11R A10R  
M
N
P
R
T
A12L A13L ADSL DNU VDDIO VCOR VSS  
VSS VCOR VTTL DNU ADSR A13R A12R  
E
L
E
A14L A15L CNT/M BE1L VDDIO VDDIO VSS  
SKL  
VSS VDDIO VDDIO BE1R CNT/M A15R A14R  
L
L
R
R
SKR  
A16L A17L CNTEN BE0L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE0R CNTEN A17R A16R  
L
L
L
R
R
R
A18L A19L CNTRS INTL VDDIO VDDIO VREFL VSS  
TL  
VSS VREFR VDDIO VDDIO INTR CNTRS A19R A18R  
TR  
L
L
R
R
DNU  
DNU  
DNU  
DNU R/WL CQENL VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CQEN R/WR DNU  
DNU  
DNU  
DNU  
U
V
W
L
L
R
R
R
E
E
E
E
L
L
L
R
R
R
DNU FTSEL VDDIO DNU VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO VDDIO TRST VDDIO FTSEL DNU  
L
L
R
R
R
R
L
L
L
L
R
R
R
DNU  
VSS MRST VSS CQ0L CQ0L DNU PORTS CNTIN BUSYR ZQ0R PORTS LOWS VSS CQ0R CQ0R VSS  
TDI  
TDO  
DNU  
[4]  
TD1R  
TR  
TD0R PDR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU DQ17L DQ14L DQ11L DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11R DQ14R DQ17R DNU  
DNU DQ16L DQ13L DQ10L DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10R DQ13R DQ16R DNU  
DNU DQ15L DQ12L DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12R DQ15R DNU  
TMS  
DNU  
DNU  
TCK  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
Y
AA  
AB  
Note  
9. Use this pinout only for device CYD36S36V18 of the FullFlex36 family.  
Document Number: 38-06082 Rev. *H  
Page 4 of 52  
[+] Feedback  
FullFlex  
Figure 3. FullFlex18 SDR 484-Ball BGA Pinout (Top View)[10]  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU DQ15L DQ12L DQ9L DQ9R DQ12R DQ15R DNU  
DNU DQ16L DQ13L DQ10L DQ10R DQ13R DQ16R DNU  
DNU DQ17L DQ14L DQ11L DQ11R DQ14R DQ17R DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
VSS  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
A
B
C
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
VSS  
DNU  
VSS  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS CQ1L CQ1L VSS  
LOWS PORTS ZQ0L BUSYL CNTIN PORTS DNU CQ1R CQ1R VSS  
[4]  
D
E
F
PDL  
TD0L  
TL  
TD1L  
DNU  
DNU  
A0L  
A2L  
A4L  
A6L  
A8L  
DNU VDDIO VSS  
L
VSS VDDIO VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO DNU  
VSS VDDIO DNU  
R
DNU  
DNU  
A0R  
A2R  
A4R  
A6R  
A8R  
L
R
R
R
R
L
L
L
L
DNU CE1L CE0L VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CE0R CE1R DNU  
L
L
R
R
R
E
E
E
E
L
L
L
R
R
A1L  
RETL BE1L VDDIO VDDIO VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIO VDDIO BE1R RETR A1R  
G
H
J
L
L
R
R
A3L WRPL DNU VDDIO VDDIO VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIO VDDIO DNU WRPR A3R  
L
L
R
R
A5L READY DNU VDDIO VDDIO VSS  
VSS VDDIO VDDIO DNU READY A5R  
L
L
L
R
R
R
A7L  
A9L  
ZQ1L DNU VTTL VCOR VSS  
VSS VCOR VDDIO DNU ZQ1R A7R  
[4]  
K
L
[4]  
E
E
R
CL  
OEL  
VTTL VCOR VSS  
E
VSS VCOR VTTL OER  
E
CR  
A9R  
A10L  
A11L  
VSS  
DNU VTTL VCOR VSS  
E
VSS VCOR VTTL DNU  
E
VSS  
A11R A10R  
M
N
P
R
T
A12L A13L ADSL DNU VDDIO VCOR VSS  
VSS VCOR VTTL DNU ADSR A13R A12R  
E
L
E
A14L A15L CNT/M DNU VDDIO VDDIO VSS  
SKL  
VSS VDDIO VDDIO DNU CNT/M A15R A14R  
L
L
R
R
SKR  
A16L A17L CNTEN BE0L VDDIO VDDIO VSS  
VSS VDDIO VDDIO BE0R CNTEN A17R A16R  
L
L
L
R
R
R
A18L A19L CNTRS INTL VDDIO VDDIO VREFL VSS  
TL  
VSS VREFR VDDIO VDDIO INTR CNTRS A19R A18R  
TR  
L
L
R
R
A20L  
DNU  
DNU  
DNU R/WL CQENL VDDIO VDDIO VDDIO VDDIO VDDIO VCOR VCOR VCOR VCOR VDDIO VDDIO VDDIO VDDIO VDDIO CQEN R/WR DNU A20R  
U
V
W
L
L
R
R
R
E
E
E
E
L
L
L
R
R
R
DNU FTSEL VDDIO DNU VDDIO VDDIO VDDIO VDDIO VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO VDDIO TRST VDDIO FTSEL DNU  
DNU  
DNU  
L
L
R
R
R
R
L
L
L
L
R
R
R
DNU  
VSS MRST VSS CQ0L CQ0L DNU PORTS CNTIN BUSYR ZQ0R PORTS LOWS VSS CQ0R CQ0R VSS  
TDI  
TDO  
DNU  
[4]  
TD1R  
TR  
TD0R PDR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DNU  
DNU DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DNU  
DNU DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
TMS  
DNU  
DNU  
TCK  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
Y
AA  
AB  
Note  
10. Use this pinout only for device CYD36S18V18 of the FullFlex18 family.  
Document Number: 38-06082 Rev. *H  
Page 5 of 52  
[+] Feedback  
FullFlex  
Figure 4. FullFlex36 SDR 256-Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ32L  
DQ30L  
DQ28L  
DQ26L  
DQ24L  
DQ22L  
DQ20L  
DQ18L  
DQ18R  
DQ20R  
DQ22R  
DQ24R  
DQ26R  
DQ28R  
DQ30R  
DQ32R  
A
B
C
D
E
F
DQ33L  
DQ34L  
A0L  
DQ31L  
DQ35L  
A1L  
DQ29L  
RETL  
WRPL  
CE0L  
CNTINTL  
BUSYL  
CL  
DQ27L  
INTL  
DQ25L  
CQ1L  
DQ23L  
CQ1L  
DQ21L  
DNU  
DQ19L  
TRST  
VTTL  
VCORE  
VSS  
DQ19R  
MRST  
VTTL  
VCORE  
VSS  
DQ21R  
DQ23R  
CQ1R  
DQ25R  
CQ1R  
DQ27R  
INTR  
DQ29R  
RETR  
WRPR  
CE0R  
CNTINTR  
BUSYR  
CR  
DQ31R  
DQ35R  
A1R  
DQ33R  
DQ34R  
A0R  
[4]  
ZQ0R  
VREFL  
CE1L  
BE3L  
BE2L  
VTTL  
FTSELL LOWSPDL  
VSS  
VSS  
LOWSPD FTSELR  
R
VREFR  
CE1R  
BE3R  
BE2R  
VTTL  
A2L  
A3L  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VDDIOL  
VSS  
VDDIOR VDDIOR VDDIOR  
A3R  
A2R  
A4L  
A5L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIOR  
VDDIOR  
VCORE  
A5R  
A4R  
[4]  
A6L  
A7L  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
A7R  
A6R  
G
H
J
A8L  
A9L  
VCORE  
VSS  
VSS  
VSS  
VSS  
A9R  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
VSS  
PORTSTD VCORE  
1L  
VSS  
VSS  
VSS  
VSS  
VCORE PORTSTD  
1R  
VSS  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
OEL  
BE1L  
BE0L  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VSS  
VSS  
VSS  
VDDIOR  
VDDIOR  
BE1R  
BE0R  
OER  
K
L
ADSL  
R/WL  
VSS  
VSS  
VSS  
VSS  
ADSR  
R/WR  
[13]  
[12]  
[12]  
[13]  
A16L  
A17L  
CQENL  
VDDIOL  
VDDIOL  
DNU  
VCORE  
VTTL  
TMS  
VCORE  
VTTL  
TDO  
VDDIOR VDDIOR VDDIOR  
CQENR  
A17R  
A16R  
M
N
P
R
T
[11]  
[11]  
A18L  
DNU  
CNT/MSK VREFL PORTSTD READYL  
DNU  
TDI  
READYR PORTSTD VREFR CNT/MSK  
DNU  
A18R  
L
0L  
0R  
R
DQ16L  
DQ15L  
DQ14L  
DQ17L  
DQ13L  
DQ12L  
CNTENL CNTRSTL  
CQ0L  
CQ0L  
DQ5L  
DQ4L  
TCK  
CQ0R  
DQ5R  
DQ4R  
CQ0R  
CNTRSTR CNTENR  
DQ17R  
DQ13R  
DQ12R  
DQ16R  
DQ15R  
DQ14R  
DQ11L  
DQ10L  
DQ9L  
DQ8L  
DQ7L  
DQ6L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ1R  
DQ0R  
DQ3R  
DQ2R  
DQ7R  
DQ6R  
DQ9R  
DQ8R  
DQ11R  
DQ10R  
Notes  
11. Leave this ball unconnected for CYD09S36V18, CYD04S36V18, and CYD02S36V18.  
12. Leave this ball unconnected for CYD04S36V18 and CYD02S36V18.  
13. Leave this ball unconnected for CYD02S36V18.  
Document Number: 38-06082 Rev. *H  
Page 6 of 52  
[+] Feedback  
FullFlex  
Figure 5. FullFlex18 SDR 256-Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DNU  
DNU  
DNU  
DQ17L  
DQ16L  
DQ13L  
DQ12L  
DQ9L  
DQ9R  
DQ12R  
DQ13R  
DQ16R  
DQ17R  
DNU  
DNU  
DNU  
A
B
C
D
E
F
DNU  
DNU  
A0L  
DNU  
DNU  
A1L  
DNU  
RETL  
WRPL  
CE0L  
CNTINTL  
BUSYL  
CL  
DNU  
INTL  
DQ15L  
CQ1L  
DQ14L  
CQ1L  
DQ11L  
DNU  
DQ10L  
TRST  
VTTL  
VCORE  
VSS  
DQ10R  
MRST  
VTTL  
VCORE  
VSS  
DQ11R  
DQ14R  
CQ1R  
DQ15R  
CQ1R  
DNU  
INTR  
VREFR  
CE1R  
DNU  
DNU  
RETR  
WRPR  
CE0R  
CNTINTR  
BUSYR  
CR  
DNU  
DNU  
A1R  
DNU  
DNU  
A0R  
[4]  
ZQ0R  
VREFL  
CE1L  
DNU  
FTSELL LOWSPDL  
VSS  
VSS  
LOWSPD FTSELR  
R
A2L  
A3L  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VDDIOL  
VSS  
VDDIOR VDDIOR VDDIOR  
A3R  
A2R  
A4L  
A5L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIOR  
VDDIOR  
VCORE  
A5R  
A4R  
[4]  
A6L  
A7L  
DNU  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
DNU  
A7R  
A6R  
G
H
J
A8L  
A9L  
VTTL  
VCORE  
VSS  
VSS  
VSS  
VSS  
VTTL  
A9R  
A8R  
A10L  
A12L  
A14L  
A16L  
A11L  
A13L  
A15L  
A17L  
VSS  
PORTSTD VCORE  
1L  
VSS  
VSS  
VSS  
VSS  
VCORE PORTSTD  
1R  
VSS  
A11R  
A13R  
A15R  
A17R  
A10R  
A12R  
A14R  
A16R  
OEL  
BE1L  
BE0L  
VDDIOL  
VDDIOL  
VDDIOL  
VSS  
VSS  
VSS  
VSS  
VDDIOR  
VDDIOR  
BE1R  
BE0R  
OER  
K
L
ADSL  
R/WL  
VSS  
VSS  
VSS  
VSS  
ADSR  
R/WR  
CQENL  
VDDIOL  
VDDIOL  
DNU  
VCORE  
VTTL  
TMS  
VCORE  
VTTL  
TDO  
VDDIOR VDDIOR VDDIOR  
CQENR  
M
N
P
R
T
[15]  
[14]  
[14]  
[15]  
A18L  
A19L  
CNT/MSK VREFL PORTSTD READYL  
DNU  
TDI  
READYR PORTSTD VREFR CNT/MSK A19R  
A18R  
L
0L  
0R  
R
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
CNTENL CNTRSTL  
CQ0L  
CQ0L  
DQ5L  
DQ4L  
TCK  
CQ0R  
DQ5R  
DQ4R  
CQ0R  
CNTRSTR CNTENR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ6L  
DQ7L  
DQ2L  
DQ3L  
DQ1L  
DQ0L  
DQ1R  
DQ0R  
DQ2R  
DQ3R  
DQ6R  
DQ7R  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ8L  
DQ8R  
Notes  
14. Leave this ball unconnected for CYD09S18V18 and CYD04S18V18.  
15. Leave this ball unconnected for CYD04S18V18.  
Document Number: 38-06082 Rev. *H  
Page 7 of 52  
[+] Feedback  
FullFlex  
Selection Guide  
Parameter  
–200  
200  
–167  
167  
Unit  
MHz  
ns  
[17]  
fMAX  
Maximum Access Time (Clock to Data)  
Typical Operating Current ICC  
3.3  
4.0  
800[16]  
210[16]  
700[16]  
210[16]  
mA  
mA  
Typical Standby Current for ISB3 (Both Ports CMOS Level)  
Pin Definitions  
Left Port  
A[20:0]L  
Right Port  
A[20:0]R  
Description  
Address Inputs.[1]  
DQ[71:0]L  
BE[7:0]L  
DQ[71:0]R  
BE[7:0]R  
Data Bus Input and Output.[2]  
Byte Select Inputs.[3] Asserting these signals enables read and write operations to the corresponding  
bytes of the memory array.  
BUSYL  
BUSYR  
Port Busy Output. When there is an address match and both chip enables are active for both ports,  
an external BUSY signal is asserted on the fifth clock cycles from when the collision occurs.  
CL  
CR  
Clock Signal. Maximum clock input rate is fMAX  
.
CE0L  
CE1L  
CQENL  
CQ0L  
CE0R  
CE1R  
CQENR  
CQ0R  
Active LOW Chip Enable Input.  
Active HIGH Chip Enable Input.  
Echo Clock Enable Input. Assert HIGH to enable echo clocking on respective port.  
Echo Clock Signal Output for DQ[35:0] for FullFlex72 Devices. Echo Clock Signal Output for  
DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18 devices.  
CQ0L  
CQ0R  
Inverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 Devices. Inverted Echo Clock  
Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock Signal Output for DQ[8:0] for  
FullFlex18 devices.  
CQ1L  
CQ1L  
CQ1R  
CQ1R  
Echo Clock Signal Output for DQ[71:36] for FullFlex72 Devices. Echo Clock Signal Output for  
DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for FullFlex18 devices.  
Inverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 Devices. Inverted Echo Clock  
Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock Signal Output for DQ[17:9]  
forFullFlex18 devices.  
ZQ[1:0]L  
ZQ[1:0]R  
VIM Output Impedance Matching Input.[18] To use, connect a calibrating resistor between ZQ and  
ground. The resistor must be five times larger than the intended line impedance driven by the dual  
port. Assert HIGH or leave DNU to disable VIM.  
OEL  
INTL  
OER  
INTR  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data pins  
during read operations.  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The upper two  
memory locations are used for message passing. INTL is asserted LOW when the right port writes to  
the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted HIGH when  
it reads the contents of its mailbox.  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less than  
100 MHz, assert this pin LOW.  
Notes  
16. For 18 Mbit x72 commercial configuration only, refer to Electrical Characteristics on page 18 for complete information.  
17. SDR mode with two pipelined stages.  
18. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.  
Document Number: 38-06082 Rev. *H  
Page 8 of 52  
[+] Feedback  
FullFlex  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
PORTSTD[1:0] PORTSTD[1:0] Port Clock/Address/Control/Data/Echo Clock/I/O Standard Select Input. Assert these pins  
[19]  
[19]  
LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and HIGH/HIGH for 1.8V  
LVCMOS, respectively. These pins are driven by VTTL referenced levels.  
L
R
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to read from the dual port memory  
array.  
READYL  
READYR  
Port DLL Ready Output. This signal is asserted LOW when the DLL and Variable Impedance  
Matching circuits complete calibration. This is a wired OR capable output.  
CNT/MSKL  
ADSL  
CNT/MSKR  
ADSR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
CNTENL  
CNTRSTL  
CNTINTL  
CNTENR  
CNTRSTR  
CNTINTR  
Port Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked portion  
of the counter is incremented to all “1s”.  
WRPL  
RETL  
WRPR  
RETR  
Port Counter Wrap Input. When the burst counter reaches the maximum count, on the next counter  
increment WRP is set LOW to load the unmasked counter bits to 0. It is set HIGH to load the counter  
with the value stored in the mirror register.  
Port Counter Retransmit Input. Assert this pin LOW to reload the initial address for repeated access  
to the same segment of memory.  
VREFL  
VREFR  
VDDIOR  
FTSELR  
Port External HSTL IO Reference Input. This pin is left DNU when HSTL is not used.  
Port Data IO Power Supply.  
VDDIOL  
FTSELL  
Port Flow through Mode Select Input. Assert this pin LOW to select Flow through mode. Assert  
this pin HIGH to select Pipelined mode.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting MRST  
LOW performs all of the reset functions as described in the text. A MRST operation is required at  
power up. This pin is driven by a VDDIOL referenced signal.  
TMS  
TDI  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State machine  
transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Data Input. Data on the TDI input is shifted serially into selected registers. Operation for  
LVTTL or 2.5V LVCMOS.  
TRST  
TCK  
JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.  
TDO  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally tri-stated  
except when captured data is shifted out of the JTAG TAP. Operation for LVTTL or 2.5V LVCMOS.  
VSS  
Ground Inputs.  
VCORE  
VTTL  
Device Core Power Supply.  
LVTTL Power Supply.  
Note  
19. PORTSTD[1:0] and PORTSTD[1:0] have internal pull down resistors.  
L
R
Document Number: 38-06082 Rev. *H  
Page 9 of 52  
[+] Feedback  
FullFlex  
LowSPD pins are used to reset the DLLs for a single port  
independent of all other circuitry. MRST is used to reset all DLLs  
on the chip. For more information on DLL lock and reset time,  
see Master Reset on page 17.  
Selectable IO Standard  
The FullFlex device families offer the option to choose one of the  
four port standards for the device. Each port independently  
selects standards from single ended HSTL class I, single ended  
LVTTL, 2.5V LVCMOS, or 1.8V LVCMOS. The selection of the  
standard is determined by the PORTSTD pins for each port.  
These pins must be connected to an LVTTL power suppy. This  
determines the input clock, address, control, data, and Echo  
clock standard for each port as shown in Table 1.  
Echo Clocking  
As the speed of data increases, on-board delays caused by  
parasitics make it extremely difficult to provide accurate clock  
trees. To counter this problem, the FullFlex families incorporate  
Echo Clocks. Echo Clocks are enabled on a per port basis. The  
dual port receives input clocks that are used to clock in the  
address and control signals for a read operation. The dual port  
retransmits the input clocks relative to the data output. The  
buffered clocks are provided on the CQ1/CQ1 and CQ0/CQ0  
outputs. Each port has a pair of Echo clocks. Each clock is  
associated with half the data bits. The output clock matches the  
corresponding ports IO configuration.  
Table 1. Port Standard Selection  
PORTSTD1  
VSS  
PORTSTD0  
VSS  
I/O Standard  
LVTTL  
VSS  
VTTL  
HSTL  
VTTL  
VSS  
2.5V LVCMOS  
1.8V LVCMOS  
VTTL  
VTTL  
To enable echo clock outputs, tie CQEN HIGH. To disable echo  
clock outputs, tie CQEN LOW.  
Clocking  
Figure 6. SDR Echo Clock Delay  
Separate clocks synchronize the operations on each port. Each  
port has one clock input C. In this mode, all the transactions on  
the address, control, and data are on the C rising edge. All trans-  
actions on the address, control, data input, output, and byte  
enables occur on the C rising edge.  
Input Clock  
Data Out  
Echo Clock  
Echo Clock  
Table 2. Data Pin Assignment  
BE Pin Name  
BE[7]  
Data Pin Name  
DQ[71:63]  
DQ[62:54]  
DQ[53:45]  
DQ[44:36]  
DQ[35:27]  
DQ[26:18]  
DQ[17:9]  
Deterministic Access Control  
BE[6]  
Deterministic Access Control is provided for ease of design. The  
circuitry detects when both ports access the same location and  
provides an external BUSY flag to the port on which data is  
corrupted. The collision detection logic saves the address in  
conflict (Busy Address) to a readable register. In the case of  
multiple collisions, the first busy address is written to the busy  
address register.  
BE[5]  
BE[4]  
BE[3]  
BE[2]  
BE[1]  
If both ports access the same location at the same time and only  
one port is doing a write, if tCCS is met, then the data written to  
and read from the address is valid data. For example, if the right  
port is reading and the left port is writing and the left ports clock  
meets tCCS, then the data read from the address by the right port  
is the old data. In the same case, if the right ports clock meets  
BE[0]  
DQ[8:0]  
Selectable Pipelined or Flow through Mode  
To meet data rate and throughput requirements, the FullFlex  
families offer selectable pipelined or flow through mode. Echo  
clocks are not supported in flow through mode and the DLL must  
be disabled.  
t
CCS, then the data read out of the address from the right port is  
the new data. In the above case, if tCCS is violated by the either  
ports clock with respect to the other port and the right port gets  
the external BUSY flag, the data from the right port is corrupted.  
Table 3 on page 11 shows the tCCS timing that must be met to  
guarantee the data.  
Flow through mode is selected by the FTSEL pin. Strapping this  
pin HIGH selects pipelined mode. Strapping this pin LOW selects  
flow through mode.  
Table 4 on page 11 shows that, in the case of the left port writing  
and the right port reading, when an external BUSY flag is  
asserted on the right port, the data read out of the device is not  
guaranteed.  
DLL  
The FullFlex familes of devices have an on-chip DLL. Enabling  
the DLL reduces the clock to data valid (tCD) time enabling more  
setup time for the receiving device. For operation below  
100 MHz, the DLL must be disabled. This is selectable by  
strapping LowSPD low.  
The value in the busy address register is read back to the  
address lines. The required input control signals for this function  
are shown in Table 7 on page 13. The value in the busy address  
register is read out to the address lines tCA after the same  
amount of latency as a data read operation. After an initial  
address match, the BUSY flag is asserted and the address under  
contention is saved in the busy address register. All the following  
Whenever the operating frequency is altered beyond the Clock  
Input Cycle to Cycle Jitter specification, reset the DLL, followed  
by 1024 clocks before any valid operation.  
Document Number: 38-06082 Rev. *H  
Page 10 of 52  
[+] Feedback  
FullFlex  
address matches enable to generate the BUSY flag. However,  
none of the addresses are saved into the busy address register.  
When a busy readback is performed, the address of the first  
match that happens at least two clocks cycles after the busy  
readback is saved into the busy address register.  
Table 3. tCCS Timing for All Operating Modes  
Port A—Early Arriving Port Port B—Late Arriving Port  
tCCS  
Unit  
Mode  
Active Edge  
Mode  
Active Edge  
C Rise to Opposite C Rise Setup Time for Non Corrupt Data  
SDR  
C
SDR  
C
tCYC(min) – 0.5  
ns  
Table 4. Deterministic Access Control Logic  
Left Port  
Read  
Right Port Left Clock  
Right Clock  
BUSYL  
BUSYR  
Description  
Read  
Read  
X
X
0
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
No Collision  
Write  
>tCCS  
0
Read OLD Data  
>tCCS  
0
Read NEW Data  
<tCCS  
Read OLD Data  
Data Not Guaranteed  
Read NEW Data  
0
<tCCS  
H
L
Data Not Guaranteed  
Read NEW Data  
Read  
Write  
Write  
>tCCS  
0
0
>tCCS  
0
H
H
H
H
H
H
L
Read OLD Data  
<tCCS  
Read NEW Data  
Data Not Guaranteed  
Read OLD Data  
0
<tCCS  
H
L
Data Not Guaranteed  
Array Data Corrupted  
Array Stores Right Port Data  
Array Stores Left Port Data  
Write  
0
0
>–tCCS & <tCCS  
L
>tCCS  
0
L
H
L
>tCCS  
H
Table 5. Variable Impedance Matching Parameters  
Variable Impedance Matching  
Parameter  
RQ Value  
Min Max  
Unit  
Ω
Tolerance  
± 2%  
Each port contains a Variable Impedance Matching circuit to set  
the impedance of the IO driver to match the impedance of the  
on-board traces. The impedance is set for all outputs except  
JTAG and is done by port. To take advantage of the VIM feature,  
connect a calibrating resistor (RQ) that is five times the value of  
the intended line impedance from the ZQ[1:0][18] pin to VSS. The  
output impedance is then adjusted to account for drifts in supply  
voltage and temperature every 1024 clock cycles. If a port’s clock  
is suspended, the VIM circuit retains its last setting until the clock  
is restarted. On restart, it then resumes periodic adjustment. In  
the case of a significant change in device temperature or supply  
voltage, recalibration happens every 1024 clock cycles. A Master  
Reset initializes the VIM circuitry. Table 5 shows the VIM param-  
eters and Table 6 describes the VIM operation modes.  
100 275  
Output Impedance  
Reset Time  
20  
55  
Ω
± 15%  
N/A  
N/A 1024 Cycles  
N/A 1024 Cycles  
Update Time  
N/A  
Table 6. Variable Impedance Matching Operation  
RQ Connection Output Configuration  
100Ω - 275Ω to VSS Output Driver Impedance = RQ/5 ± 15%  
at Vout = VDDIO/2  
ZQ to VDDIO  
VIM Disabled. Rout < 20Ω at Vout =  
VDDIO/2  
To disable VIM, connect the ZQ pin to VDDIO of the relative  
supply for the IOs before a Master Reset.  
Document Number: 38-06082 Rev. *H  
Page 11 of 52  
[+] Feedback  
FullFlex  
Address Counter and Mask Register Operations [1]  
Counter Load Operation [1]  
Each port of the FullFlex family contains a programmable burst  
address counter. The burst counter contains four registers: a  
counter register, a mask register, a mirror register, and a busy  
address register.  
The address counter and mirror registers are loaded with the  
address value presented on the address lines. This value ranges  
from 0 to 1FFFFF.  
Mask Load Operation [1]  
The counter register contains the address used to access the  
RAM array. It is changed only by the Master Reset (MRST),  
Counter Reset, Counter Load, Retransmit, and Counter  
Increment operations.  
The mask register is loaded with the address value presented on  
the address bus. This value ranges from 0 to 1FFFFF though not  
all values permit correct increment operations. Permitted values  
are in the form of 2n–1, 2n–2, or 2n–4. The counter register is only  
segmented up to three regions. From the most significant bit to  
the least significant bit, permitted values have zero or more 0s,  
one or more 1s, and the least significant two bits are 11, 10, or  
00. Thus 1FFFFE, 07FFFF, and 003FFC are permitted values  
but 02FFFF, 003FFA, and 07FFE4 are not.  
The mask register value affects the Counter Increment and  
Counter Reset operations by preventing the corresponding bits  
of the counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is only changed by  
Mask Reset, Mask Load, and MRST. The Mask Load operation  
loads the value of the address bus into the mask register. The  
mask register defines the counting range of the counter register.  
The mask register is divided into two or three consecutive  
regions. Zero or more 0s define the masked region and one or  
more 1s define the unmasked portion of the counter register. The  
counter register may be divided up to three regions. The region  
containing the least significant bits must be no more than two 0s.  
Bits one and zero may be 10 respectively, masking the least  
significant counter bit and causing the counter to increment by  
two instead of one. If bits one and zero are 00, the two least  
significant bits are masked and the counter increments by four  
instead of one. For example, in the case of a 256Kx72 configu-  
ration, a mask register value of 003FC divides the mask register  
into three regions. With bit 0 being the least significant bit and bit  
17 being the most significant bit, the two least significant bits are  
masked, the next eight bits are unmasked, and the remaining bits  
are masked.  
Counter Readback Operation  
The internal value of the counter register is read out on the  
address lines. The address is valid tCA after the selected number  
of latency cycles configured by FTSEL. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 7 on page 15 shows a block diagram of this  
logic.  
Mask Readback Operation  
The internal value of the mask register is read out on the address  
lines. The address is valid tCA after the selected number of  
latency cycles configured by FTSEL. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 7 on page 15 shows a block diagram of the  
operation.  
The mirror register reloads a counter register on retransmit  
operations (see Retransmit on page 14) and wrap functions (see  
Counter Interrupt on page 14 below). The last value loaded into  
the counter register is stored in the mirror register. The mirror  
register is only changed by master reset (MRST), counter reset,  
and counter load.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset to  
‘0’. All masked bits remain unchanged. A mask reset followed by  
a counter reset resets the counter and mirror registers to 00000.  
Mask Reset Operation  
Table 7 on page 13 summarizes the operations of these registers  
and the required input control signals. All signals except MRST  
are synchronized to the ports clock.  
The mask register is reset to all 1s, that unmasks every bit of the  
burst counter.  
Document Number: 38-06082 Rev. *H  
Page 12 of 52  
[+] Feedback  
FullFlex  
Table 7. Burst Counter and Mask Register Control Operations  
[20, 21]  
The burst counter and mask register control operation for any port follows.  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
X
L
X
X
X
X
X
Master Reset  
Reset address counter to all 0s, mask register to all  
1s, and busy address to all 0s.  
H
H
H
L
L
H
L
X
X
L
X
X
L
X
X
X
Counter Reset  
Mask Reset  
Reset counter and mirror unmasked portion to all 0s.  
Reset mask register to all 1s.  
H
H
Counter Load  
Load burst counter and mirror with external address  
value presented on address lines.  
H
H
L
L
L
X
Mask Load  
Retransmit  
Load mask register with value presented on the  
address lines.  
H
H
H
H
H
H
L
L
H
H
L
Load counter with value in the mirror register.  
Internally increment address counter value.  
H
Counter  
Increment  
H
H
H
H
H
H
H
H
H
L
H
H
Counter Hold  
Constantly hold the address value for multiple clock  
cycles.  
Counter  
Readback  
Read out counter internal value on address lines.  
H
H
H
H
L
L
H
H
L
H
L
Mask Readback Read out mask register value on address lines.  
H
Busy Address  
Readback  
Read out first busy address after last busy address  
readback.  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
X
L
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
H
H
H
H
L
H
L
H
L
H
H
H
L
Notes  
20. “X” = Don’t Care, “H” = HIGH, “L” = LOW.  
21. Counter operation and mask register operation is independent of chip enables.  
Document Number: 38-06082 Rev. *H  
Page 13 of 52  
[+] Feedback  
FullFlex  
Increment Operation[1]  
Retransmit  
After the address counter is initially loaded with an external  
address, the counter can internally increment the address value  
and address the entire memory array. Only the unmasked bits of  
the counter register are incremented. For a counter bit to  
change, the corresponding bit in the mask register must be 1. If  
the two least significant bits of the mask register are 11, the burst  
counter increments by one. If the two least significant bits are 10,  
the burst counter increments by two, and if they are 00, the burst  
counter increments by four. If all unmasked counter bits are  
incremented to 1 and WRP is deasserted, the next increment l  
wraps the counter back to the initially loaded value. The cycle  
before the increment that results in all unmasked counter bits to  
become 1s, a counter interrupt flag (CNTINT) is asserted if the  
counter is incremented again. This increment causes the counter  
to reach its maximum value and the next increment returns the  
counter register to its initial value that was stored in the mirror  
register if WRP is deasserted. If WRP is asserted, the unmasked  
portion of the counter is filled with 0 instead. The example shown  
in Figure 8 on page 16 shows an example of the  
CYDD36S18V18 device with the mask register loaded with a  
mask value of 00007F unmasking the seven least significant bits.  
Setting the mask register to this value enables the counter to  
access the entire memory space. The address counter is then  
loaded with an initial value of 000005 assuming WRP is  
deasserted. The masked bits, the seventh address through the  
twenty-first address, do not increment in an increment operation.  
The counter address starts at address 000005 and increments  
its internal address value until it reaches the mask register value  
of 00007F. The counter wraps around the memory block to  
location 000005 at the next count. CNTINT is issued when the  
counter reaches the maximum –1 count.  
Retransmit enables repeated access to the same block of  
memory without the need to reload the initial address. An internal  
mirror register stores the address counter value last loaded.  
While RET is asserted low, the counter continues to wrap back  
to the value in the mirror register independent of the state of  
WRP.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW one clock cycle  
before an increment operation that results in the unmasked  
portion of the counter register being all 1s. It is deasserted by  
counter reset, counter load, mask reset, mask load, and MRST.  
Counting by Two  
When the two least significant bits of the mask register are 10,  
the counter increments by two.  
Counting by Four  
When the two least significant bits of the mask register are 00,  
the counter increments by four.  
Mailbox Interrupts  
Use the upper two memory locations for message passing and  
permit communications between ports. Table 8 on page 16  
shows the interrupt operation for both ports. The highest memory  
location is the mailbox for the right port and the maximum  
address – 1 is the mailbox for the left port.  
When one port writes to the other port’s mailbox, the INT flag of  
the port that the mailbox belongs to is asserted LOW. The INT  
flag remains asserted until the mailbox location is read by the  
other port. When a port reads its mailbox, the INT flag is  
deasserted high after one cycle of latency with respect to the  
input clock of the port to which the mailbox belongs and is  
independent of OE.  
Hold Operation  
The value of all three registers is constantly maintained  
unchanged for an unlimited number of clock cycles. This  
operation is useful in applications where wait states are needed  
or when address is available a few cycles ahead of data in a  
shared bus interface.  
As shown in Table 8 on page 16, to set the INTR flag, a write  
operation by the left port to address 1FFFFF asserts INTR LOW.  
A valid read of the 1FFFFF location by the right port resets INTR  
HIGH after one cycle of latency with respect to the right port’s  
clock. You must activate at least one byte enable to set or reset  
the mailbox interrupt.  
Document Number: 38-06082 Rev. *H  
Page 14 of 52  
[+] Feedback  
FullFlex  
Figure 7. Counter, Mask, and Mirror Logic Block Diagram  
Figure 7 shows the counter, mask, and mirror logic block diagram. [1]  
CNT/MSK  
CNTEN  
A
Decode  
Logic  
CNTRST  
RET  
MRST  
A
C
Mask  
Register  
Counter/  
Address  
Register  
RAM  
Array  
Address  
Decode  
Load/Increment  
20  
20  
From  
Address  
Lines  
Counter  
Mirror  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
Register  
20  
Wrap  
20  
20  
20  
From  
Mask  
Bit 0  
and 1  
From  
Counter  
+1  
Wrap  
Detect  
Wrap  
To  
1
0
+2  
+4  
20  
1
0
Counter  
Document Number: 38-06082 Rev. *H  
Page 15 of 52  
[+] Feedback  
FullFlex  
Figure 8. Programmable Counter-Mask Register Operation with WRP deasserted  
Figure 8 shows the programmable counter-mask operation with WRP deasserted. [1, 25]  
CNTINT  
Example:  
Load  
Counter-Mask  
Register = 00007F  
H
0
0
0s  
1
1
1
1
1
1
1
0
220 219  
Masked Address  
26 25 24 23 22 21 20  
27  
Mask  
Register  
LSB  
Unmasked Address  
Load  
Address  
Counter = 000005  
H
L
X
X
Xs  
Xs  
Xs  
0
0
0
0
1
0
1
X
X
220 219  
26 25 24 23 22 21 20  
Address  
Counter  
LSB  
27  
27  
27  
Max  
Address  
Value  
X
X
1
1
1
1
1 1  
1
220 219  
26 25 24 23 22 21 20  
Max + 1  
Address  
Value  
H
X
X
0
0
0
0
1
0
1
X
220 219  
26 25 24 23 22 21 20  
Table 8. Interrupt Operation Example  
Table 8 shows the interrupt operation example. [1, 20, 22, 23, 24]  
Left Port  
Function  
Right Port  
A0R–20R  
X
R/WL  
CEL  
L
A0L–20L  
INTL  
X
R/WR  
CER  
X
INTR  
L
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
L
X
X
H
Max Address  
X
H
L
X
X
X
L
Max Address  
H
X
X
L
L
Max Address–1  
X
X
X
Reset Left INTL Flag  
L
Max Address–1  
H
X
X
Notes  
22. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single read operation, CE only needs to be asserted once at the rising edge of the C and is  
0
1
deasserted after that. Data is out after the following C edge and is tri-stated after the next C edge.  
23. OE is “Don’t Care” for mailbox operation.  
24. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.  
25. The “X” in this diagram represents the counter’s upper bits.  
Document Number: 38-06082 Rev. *H  
Page 16 of 52  
[+] Feedback  
FullFlex  
Master Reset  
Table 9. JTAG IDCODE Register Definitions  
The FullFlex family of Dual Ports undergoes a complete reset  
when MRST is asserted. MRST must be driven by VDDIOL refer-  
enced levels. The MRST is asserted asynchronously to the  
clocks and must remain asserted for at least tRS. When asserted  
MRST deasserts READY, initializes the internal burst counters,  
internal mirror registers, and internal busy addresses to zero. It  
also initializes the internal mask register to all 1s. All mailbox  
interrupts (INT), busy address outputs (BUSY), and burst  
counter interrupts (CNTINT) are deasserted upon master reset.  
Additionally, do not release MRST until all power supplies  
including VREF are fully ramped and all port clocks and mode  
select inputs (LOWSPD, ZQ, CQEN, FTSEL, and PORTSTD)  
are valid and stable. This begins calibration of the DLL and VIM  
circuits. READY is asserted within 1024 clock cycles. READY is  
a wired OR capable output with a strong pull up and weak pull  
down. Up to four outputs may be connected together. For faster  
pull down of the signal, connect a 250 Ohm resistor to VSS. If  
the DLL and VIM circuits are disabled for a port, the port is opera-  
tional within five clock cycles. However, the READY is asserted  
within 160 clock cycles.  
Part Number  
CYD36S72V18  
CYD36S36V18  
CYD36S18V18  
CYD18S72V18  
CYD18S36V18  
CYD18S18V18  
CYD09S72V18  
CYD09S36V18  
CYD09S18V18  
CYD04S72V18  
CYD04S36V18  
CYD04S18V18  
CYD02S36V18  
Configuration  
512Kx72  
1024Kx36  
2048Kx36  
256Kx72  
512Kx36  
1024Kx18  
128Kx72  
256Kx36  
512Kx18  
64Kx72  
Value  
0C026069h (x2)  
0C023069h  
0C024069h  
0C025069h  
0C026069h  
0C027069h  
0C028069h  
0C029069h  
0C02A069h  
0C02B069h  
0C02C069h  
0C02D069h  
0C030069h  
128Kx36  
256Kx18  
64Kx36  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Table 10.Scan Registers Sizes  
The FullFlex families incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP operates using  
JEDEC-standard 3.3V or 2.5V IO logic levels depending on the  
VTTL power supply. It is composed of four input connections and  
one output connection required by the test logic defined by the  
standard.  
Register Name  
Instruction  
Bit Size  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[26]  
Table 11.Instruction Identification Codes  
Instruction  
EXTEST  
Code  
0000  
1111  
1011  
0111  
Description  
Captures the input and output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers to a  
High-Z state.  
CLAMP  
0100  
1000  
Controls boundary to 1 or 0. Places BYR between TDI and TDO.  
SAMPLE/PRELOAD  
RESERVED  
Captures the input and output ring contents. Places BSR between TDI and TDO.  
All other Other combinations are reserved. Do not use other than the mentioned combinations.  
codes  
Note  
26. Details of the boundary scan length is found in the BSDL file for the device.  
Document Number: 38-06082 Rev. *H  
Page 17 of 52  
[+] Feedback  
FullFlex  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding maximum ratings may impair the useful life of the  
device. User guidelines are not tested.  
Range  
VCORE  
Commercial  
0°C to +70°C  
1.8V ± 100 mV  
1.5V ± 80 mV  
Storage Temperature................................ –65°C to + 150°C  
Ambient Temperature with  
Power Applied ........................................... –55°C to + 125°C  
Industrial  
–40°C to +85°C  
1.8V ± 100 mV  
1.5V ± 80 mV  
Supply Voltage to Ground Potential...............–0.5V to + 4.1V  
DC Voltage Applied to  
Outputs in High-Z State ...................... –0.5V to VDDIO + 0.5V  
Power Supply Requirements  
Min  
Typ  
3.3V  
2.5V  
1.5V  
1.8V  
3.3V  
2.5V  
Max  
3.6V  
2.7V  
1.9V  
1.9V  
3.6V  
2.7V  
DC Input Voltage ................................ –0.5V to VDDIO + 0.5V  
Output Current into Outputs (LOW)............................ 20 mA  
Static Discharge Voltage........................................... > 2200V  
(JEDEC JESD8-6, JESD8-B)  
LVTTL VDDIO  
2.5V LVCMOS VDDIO  
HSTL VDDIO  
3.0V  
2.3V  
1.4V  
1.7V  
3.0V  
2.3V  
1.8V LVCMOS VDDIO  
3.3V VTTL  
Latch-up Current..................................................... > 200 mA  
2.5V VTTL  
HSTL VREF  
0.68V 0.75V 0.95V  
Electrical Characteristics  
Over the Operating Range  
All Speed Bins  
Typ  
Unit  
Parameter  
Description  
Configuration  
Min  
Max  
VOH  
Output HIGH Voltage  
(VDDIO = Min, IOH = –8 mA)  
LVTTL  
2.4[27]  
V
(VDDIO = Min, IOH = –4 mA)  
(VDDIO = Min, IOH = –4 mA)  
(VDDIO = Min, IOH = –6 mA)  
(VDDIO = Min, IOH = –4 mA)  
HSTL (DC)[28]  
HSTL (AC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[27]  
VDDIO – 0.5[27]  
1.7[27]  
V
V
V
V
V
VDDIO – 0.45[27]  
VOL  
Output HIGH Voltage  
0.4[27]  
(VDDIO = Min, IOL = 8 mA)  
(VDDIO = Min, IOL = 4 mA)  
(VDDIO = Min, IOL = 4 mA)  
(VDDIO = Min, IOL = 6 mA)  
(VDDIO = Min, IOL = 4 mA)  
Input HIGH Voltage  
HSTL(DC)[28]  
HSTL (AC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
HSTL(DC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
0.4[27]  
0.5[27]  
0.7[27]  
V
V
V
V
V
V
V
V
V
V
V
V
0.45[27]  
VIH  
2
VREF + 0.1  
1.7  
VDDIO + 0.3  
VDDIO + 0.3  
0.65 x VDDIO  
–0.3  
VIL  
Input LOW Voltage  
0.8  
VREF – 0.1  
0.7  
HSTL(DC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
–0.3  
0.35 x VDDIO  
Notes  
27. These parameters are met with VIM disabled.  
28. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC VIH/VIL in HSTL mode are  
measured with 1V/ns input edge rates  
Document Number: 38-06082 Rev. *H  
Page 18 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range (continued)  
All Speed Bins  
Typ  
Unit  
Parameter  
Description  
Configuration  
Min  
Max  
Output HIGH Voltage  
(VDDIO = Min, IOH = –24 mA)  
LVTTL  
2.7[27]  
V
READY  
VOH  
(VDDIO = Min, IOH = –12 mA)  
(VDDIO = Min, IOH = –12 mA)  
(VDDIO = Min, IOH = –15 mA)  
(VDDIO = Min, IOH = –12 mA)  
Output HIGH Voltage  
HSTL(DC)[28]  
HSTL (AC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[27]  
VDDIO – 0.5[27]  
2.0[27]  
V
V
V
V
VDDIO – 0.45[27]  
0.4[27]  
V
READY VOL (VDDIO = Min, IO = 0.12 mA)  
(VDDIO = Min, IOL = 0.12 mA)  
(VDDIO = Min, IOL = 0.12 mA)  
(VDDIO = Min, IOL = 0.15 mA)  
(VDDIO = Min, IOL = 0.08 mA)  
HSTL(DC)[28]  
HSTL (AC)[28]  
2.5V LVCMOS  
1.8V LVCMOS  
0.4[27]  
0.5[27]  
0.7[27]  
0.45[27]  
10  
V
V
V
V
IOZ  
IIX1  
Output Leakage Current  
–10  
–10  
μA  
μA  
Input Leakage Current Except  
TDI, TMS, MRST, PORTSTD  
10  
IIX2  
IIX3  
Input Leakage Current TDI,  
TMS, MRST  
–300  
–10  
10  
μA  
μA  
Input Leakage Current  
PORTSTD  
300  
Document Number: 38-06082 Rev. *H  
Page 19 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range  
–200  
Typ  
512Kx72 Com. 1440  
Ind. N/A  
1024Kx36 Com. 1180  
Ind. N/A  
2048Kx18 Com. 1130  
–167  
Typ  
–133  
Parameter  
ICC  
Description  
Operating Current  
(VCORE = Max,IOUT = 0 mA)  
Outputs Disabled  
Configuration  
Unit  
Max  
1800  
N/A  
1500  
N/A  
1430  
N/A  
980  
1030  
800  
860  
770  
830  
790  
830  
640  
670  
660  
690  
740  
770  
590  
600  
610  
620  
Max  
1620  
1730  
1350  
1470  
1290  
1410  
880  
930  
720  
780  
690  
750  
700  
740  
570  
600  
580  
610  
650  
680  
520  
530  
530  
550  
Typ  
1120  
1170  
930  
980  
890  
940  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Max  
1430  
1550  
1220  
1330  
1160  
1280  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1280  
1330  
1050  
1110  
1000  
1060  
700  
730  
570  
590  
540  
570  
560  
580  
470  
490  
480  
500  
540  
550  
450  
460  
460  
470  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Ind.  
256Kx72 Com.  
Ind.  
N/A  
800  
820  
640  
670  
610  
640  
640  
660  
540  
550  
550  
570  
620  
630  
510  
520  
530  
540  
512Kx36 Com.  
Ind.  
1024Kx18 Com.  
Ind.  
128Kx72 Com.  
Ind.  
256Kx36 Com.  
Ind.  
512Kx18 Com.  
Ind.  
64Kx72  
Com.  
Ind.  
128Kx36 Com.  
Ind.  
256Kx18 Com.  
Ind.  
64Kx36  
Com.  
Ind.  
Document Number: 38-06082 Rev. *H  
Page 20 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range (continued)  
–200  
Typ  
512Kx72 Com. 1000  
–167  
Max  
–133  
Parameter  
ISB1  
Description  
Standby Current  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
Configuration  
Unit  
Max  
1250  
N/A  
1140  
N/A  
1110  
N/A  
630  
680  
570  
630  
560  
610  
490  
540  
440  
470  
460  
480  
450  
480  
400  
410  
410  
420  
Typ  
920  
970  
820  
880  
810  
860  
460  
490  
410  
440  
410  
430  
360  
380  
340  
360  
350  
370  
340  
350  
320  
330  
320  
330  
Typ  
830  
880  
740  
790  
730  
780  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Max  
1060  
1170  
960  
1080  
940  
1050  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1160  
1260  
1050  
1160  
1030  
1140  
580  
630  
530  
580  
520  
570  
450  
490  
400  
430  
410  
440  
400  
430  
360  
370  
370  
380  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Ind.  
1024Kx36 Com.  
Ind.  
N/A  
910  
N/A  
890  
N/A  
500  
530  
460  
480  
450  
470  
400  
420  
380  
390  
390  
410  
380  
390  
360  
360  
370  
370  
2048Kx18 Com.  
Ind.  
256Kx72 Com.  
Ind.  
512Kx36 Com.  
Ind.  
1024Kx18 Com.  
Ind.  
128Kx72 Com.  
Ind.  
256Kx36 Com.  
Ind.  
512Kx18 Com.  
Ind.  
64Kx72  
Com.  
Ind.  
128Kx36 Com.  
Ind.  
256Kx18 Com.  
Ind.  
64Kx36  
Com.  
Ind.  
Document Number: 38-06082 Rev. *H  
Page 21 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range (continued)  
–200  
Typ  
512Kx72 Com. 1300  
Ind. N/A  
1024Kx36 Com. 1090  
Ind. N/A  
2048Kx18 Com. 1040  
–167  
Typ  
–133  
Parameter  
ISB2  
Description  
Standby Current  
(One Port TTL or CMOS Level)  
CEL | CER VIH, f = fMAX  
Configuration  
Unit  
Max  
1570  
N/A  
1330  
N/A  
1270  
N/A  
790  
840  
670  
730  
640  
690  
630  
670  
530  
560  
530  
560  
580  
610  
480  
500  
490  
500  
Max  
1410  
1520  
1210  
1330  
1160  
1270  
710  
760  
610  
670  
580  
640  
560  
610  
470  
500  
480  
510  
510  
550  
420  
440  
430  
450  
Typ  
1020  
1070  
870  
920  
830  
880  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Max  
1260  
1370  
1100  
1210  
1050  
1160  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1160  
1210  
980  
1030  
930  
980  
580  
610  
490  
520  
470  
490  
460  
480  
400  
430  
410  
430  
440  
450  
380  
390  
390  
400  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Ind.  
256Kx72 Com.  
Ind.  
N/A  
650  
680  
550  
570  
520  
550  
520  
550  
460  
480  
460  
480  
500  
510  
440  
450  
440  
450  
512Kx36 Com.  
Ind.  
1024Kx18 Com.  
Ind.  
128Kx72 Com.  
Ind.  
256Kx36 Com.  
Ind.  
512Kx18 Com.  
Ind.  
64Kx72  
Com.  
Ind.  
128Kx36 Com.  
Ind.  
256Kx18 Com.  
Ind.  
64Kx36  
Com.  
Ind.  
Document Number: 38-06082 Rev. *H  
Page 22 of 52  
[+] Feedback  
FullFlex  
Electrical Characteristics  
Over the Operating Range (continued)  
All Speed Bins  
Typ Max  
Parameter  
ISB3  
Description  
Configuration  
Com.  
Unit  
Standby Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024Kx18  
128Kx72  
256Kx36  
512Kx18  
64Kx72  
410  
460  
410  
460  
410  
460  
210  
230  
210  
230  
210  
230  
150  
170  
150  
170  
150  
170  
130  
140  
130  
140  
130  
140  
590  
700  
590  
700  
590  
700  
300  
350  
300  
350  
300  
350  
200  
220  
200  
220  
200  
220  
150  
170  
150  
170  
150  
170  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(Both Ports CMOS Level)  
CEL and CER VCORE – 0.2V, f = 0  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
Com.  
Ind.  
128Kx36  
256Kx18  
Com.  
Ind.  
Com.  
Ind.  
Table 12.Capacitance  
Signals  
Packages  
CYD18S72V18  
CYD09S72V18  
CYD04S72V18  
CYD18S36V18  
CYD09S36V18  
CYD04S36V18  
CYD02S36V18  
CYD18S18V18  
CYD09S18V18  
CYD04S18V18  
CYD36S72V18  
CYD36S36V18  
CYD36S18V18  
OE  
12 pF  
10 pF  
10 pF  
12 pF  
18 pF  
10 pF  
20 pF  
16 pF  
16 pF  
20 pF  
30 pF  
16 pF  
BE, DQ  
All other signals  
Document Number: 38-06082 Rev. *H  
Page 23 of 52  
[+] Feedback  
FullFlex  
AC Test Load and Waveforms  
Figure 9. Output Test Load for LVTTL/CMOS  
V T H = 1 .5 V fo r L V T T L  
V T H = 5 0 % V D D IO fo r 2 . 5 V C M O S  
V T H = 5 0 % V D D IO fo r 1 . 8 V C M O S  
V
= N C  
R E F  
V
R E F  
5 0 O h m  
5 0 O h m  
O u tp u t  
T e s t P o in t  
R = 2 5 0 O h m  
V T H  
R E A D Y  
Z Q  
D e v ic e u n d e r  
te s t  
C
= 1 0 p F  
R Q = 2 5 0 O h m  
Figure 10. Output Test Load for HSTL  
V T H  
=
5 0 % V D D I O  
V
=
E F  
0 . 7 5 V  
R
V
R
E F  
5 0 O h m  
5 0 O h m  
O u t p u t  
R E A D Y Z Q  
R = 2 5 0 O h m  
T e s t P o i n t  
V T H  
C = 1 0 p F f o r S D R  
D e v i c e u n d e r  
t e s t  
R Q = 2 5 0 O h m  
Figure 11. HSTL Input Waveform  
Document Number: 38-06082 Rev. *H  
Page 24 of 52  
[+] Feedback  
FullFlex  
Switching Characteristics Over the Operating Range  
Table 13.SDR Mode, Signals Affected by DLL  
DLL ON (LOWSPD=1)[31]  
DLL OFF  
(LOWSPD=0)  
Description  
[31]  
Parameter  
–200  
–167  
–133  
Max  
Unit  
Min  
Max  
Min  
Max  
Min  
Min  
Max  
[34]  
[34]  
tCD2  
C Rise to DQ Valid for Pipelined  
Mode  
3.30  
4.00  
4.50  
6.00  
ns  
[30, 33]  
[30, 33]  
[30, 33]  
[30, 33]  
tCCQ  
C Rise to CQ Rise  
1.00  
3.30[33]  
1.00  
1.00  
4.00[33]  
1.00  
1.00  
4.50[33]  
1.00  
1.00  
6.00[33]  
ns  
ns  
[29, 34]  
tCKHZ2  
C Rise to DQ Output High Z in 1.00  
Pipelined Mode  
3.30  
4.00  
4.50  
6.00  
[30, 33]  
[30, 33]  
[30, 33]  
[30, 33]  
[29, 34]  
tCKLZ2  
C Rise to DQ Output Low Z in  
Pipelined Mode  
1.00  
1.00  
1.00  
1.00  
ns  
Table 14.SDR Mode  
Parameter  
–200  
–167  
–133  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
fMAX  
Maximum Operating Frequency for Pipelined Mode 100  
200  
100  
167  
100  
133  
MHz  
(PIPELINED)  
f
MAX (FLOW  
Maximum Operating Frequency for Flow Through  
Mode  
77  
66.7  
55.6  
MHz  
ns  
THROUGH)  
tCYC  
(PIPELINED)  
C Clock Cycle Time for Pipelined Mode  
5.00  
10.00  
6.00  
10.00  
7.00  
10.00  
[33]  
[33]  
[33]  
tCYC (FLOW X C Clock Cycle Time for Flow Through Mode  
THROUGH)  
13.00  
15.00  
18.00  
ns  
[33]  
[33]  
[33]  
tCKD  
tSD  
C Clock Duty Time  
45  
55  
45  
55  
45  
55  
%
Data Input Setup Time HSTL  
to C Rise  
1.50  
1.70  
1.80  
ns  
[30, 33]  
[30, 33]  
[30, 33]  
1.8V LVCMOS  
2.5V LVCMOS 3.3V  
LVTTL  
1.75  
1.95  
2.05  
ns  
[30, 33]  
[30, 33]  
[30, 33]  
[32]  
tHD  
Data Input Hold Time after C Rise  
0.5  
0.5  
0.5  
ns  
ns  
tSAC  
Address and Control HSTL  
Input Setup Time to C 1.8V LVCMOS  
Rise  
1.50  
1.70  
1.80  
[30, 32,  
[30, 32,  
[30, 32,  
33]  
33]  
33]  
2.5V LVCMOS 3.3V  
LVTTL  
1.75  
1.95  
2.05  
ns  
[30, 32,  
[30, 32,  
[30, 32,  
33]  
33]  
33]  
[32]  
tHAC  
tOE  
Address and Control Input Hold Time after C Rise 0.50  
Output Enable to Data Valid  
0.60  
0.70  
ns  
ns  
4.40  
5.00  
5.50  
[30,33]  
[30,33]  
[30,33]  
[29]  
tOLZ  
OE to Low Z  
1.00  
1.00  
1.00  
ns  
Notes  
29. Parameters specified with the load capacitance in Figure 9 and Figure 10.  
30. For the x18 devices, add 200 ps to this parameter in Table 14.  
31. Test conditions assume a signal transition time of 2 V/ns.  
32. Add 300 ps to this timing for 36M devices.  
33. Add 15% to this parameter if a VCORE of 1.5V is used.  
34. This parameter assumes input clock cycle to cycle jitter of ± 0ps.  
Document Number: 38-06082 Rev. *H  
Page 25 of 52  
[+] Feedback  
FullFlex  
Table 14.SDR Mode (continued)  
–200  
Max  
–167  
Max  
–133  
Parameter  
Description  
Unit  
Min  
Min  
Min  
Max  
[29]  
tOHZ  
tCD1  
tCA1  
tCA2  
OE to High Z  
1.00  
4.40  
1.00  
5.00  
1.00  
5.50  
ns  
ns  
ns  
ns  
[30, 33]  
[30, 33]  
[30, 33]  
C Rise to DQ Valid for Flow Through Mode  
(LowSPD = 1)  
9.00  
11.00  
13.00  
[30, 33]  
[30, 33]  
[30, 33]  
CRisetoAddressReadbackValidforFlowThrough  
Mode  
9.00[33]  
5.00[33]  
11.00[33]  
6.00[33]  
13.00  
[33]  
C Rise to Address Readback Valid for Pipelined  
Mode  
7.50[33]  
[34]  
tDC  
DQ Output Hold after C Rise  
Clock Input Cycle to Cycle Jitter  
Echo Clock (CQ) High HSTL  
1.00  
1.00  
1.00  
ns  
ps  
ns  
tJIT  
+/- 200  
0.70[30]  
+/- 200  
0.80[30]  
+/- 200  
0.90[30]  
[34]  
[34]  
tCQHQV  
to Output Valid  
1.8V LVCMOS  
2.5V LVCMOS 3.3V  
LVTTL  
0.80[30]  
0.90[30]  
1.00[30]  
ns  
ns  
ns  
ns  
tCQHQX  
Echo Clock (CQ) High HSTL  
to Output Hold 1.8V LVCMOS  
–0.70  
–0.85  
–0.80  
–0.95  
1.00  
–0.90  
–1.05  
1.00  
2.5V LVCMOS 3.3V  
LVTTL  
[29]  
tCKHZ1  
C Rise to DQ Output High Z in Flow Through Mode 1.00  
9.00  
11.00  
13.00  
[30, 33]  
[30, 33]  
[30, 33]  
[29]  
tCKLZ1  
tAC  
tCKHZA1  
C Rise to DQ Output Low Z in Flow Through Mode 1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
ns  
Address Output Hold after C Rise  
1.00  
[29]  
[29]  
C Rise to Address Output High Z for Flow Through 1.00  
Mode  
9.00[33]  
5.00[33]  
11.00  
13.00  
[33]  
[33]  
tCKHZA2  
C Rise to Address Output High Z for Pipelined Mode 1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
6.00[33]  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
7.50[33]  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[29]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
C Rise to CNTINT High  
C Rise to INT Low  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
3.30[33]  
3.30[33]  
7.00[33]  
7.00[33]  
3.30[33]  
4.00[33]  
4.00[33]  
8.00[33]  
8.00[33]  
4.00[33]  
4.50[33]  
4.50[33]  
8.50[33]  
8.50[33]  
4.50[33]  
tRINT  
C Rise to INT High  
tBSY  
C Rise to BUSY Valid  
Document Number: 38-06082 Rev. *H  
Page 26 of 52  
[+] Feedback  
FullFlex  
Table 15.Master Reset Timing  
Parameter  
–200  
–167  
–133  
Description  
Unit  
Min  
1
Max  
Min  
1
Max  
Min  
1
Max  
tPUP  
tRS  
Power Up Time  
ms  
cycles  
cycles  
ns  
Master Reset Pulse Width  
5
5
5
tRSR  
tRSF  
tRDY  
Master Reset Recovery Time  
Master Reset to Outputs Inactive/Hi Z  
Master Reset Release to Port Ready  
C Rise to Port Ready  
5
5
5
15  
18  
22.50  
[35]  
[36]  
1024  
9.5[33]  
1024  
11[33]  
1024  
13[33]  
cycles  
ns  
tCORDY  
Table 16.JTAG Timing  
Parameter  
–200  
–167  
–133  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
fJTAG  
tTCYC  
tTH  
JTAG TAP Controller Frequency  
TCK Cycle Time  
20  
20  
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
TCK High Time  
tTL  
TCK Low Time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tJXZ  
TMS Setup to TCK Rise  
TMS Hold to TCK Rise  
TDI Setup to TCK Rise  
TDI Hold to TCK Rise  
TCK Low to TDO Valid  
TCK Low to TDO Invalid  
TCK Low to TDO High Z  
TCK Low to TDO Active  
TCK Low to TDO Active  
10  
10  
10  
0
0
0
15  
15  
15  
15  
15  
15  
15  
15  
15  
tJZX  
tJZX  
.
Notes  
35. READY is a wired OR capable output with a weak pull down. For a decreased falling delay, connect a 250-Ω resistor to VSS.  
36. Add this propagation delay after t for all Master Reset Operations  
RDY  
Document Number: 38-06082 Rev. *H  
Page 27 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms  
Figure 12. JTAG Timing  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Figure 13. Master Reset [35]  
~
V
CORE  
t
t
RS  
PUP  
~
~
MRST  
C
t
t
RDY  
CORDY  
~
~
READY  
t
RSF  
All Address  
& Data  
t
RSR  
All Other  
Inputs  
~
Document Number: 38-06082 Rev. *H  
Page 28 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 14. READ Cycle for Pipelined Mode  
t
CYC  
C
CE  
OE  
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
n+6  
A
n
n+1  
x
n+2  
n
n+3  
n+4  
n+5  
2 Pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
x-1  
n+1  
n+2  
n+3  
DQ  
t
DC  
t
CD2  
Figure 15. WRITE Cycle for Pipelined and Flow Through Modes  
t
CYC  
C
CE  
R/W  
A
A
A
A
A
A
A
n+6  
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
2 Pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
tSD tHD  
Document Number: 38-06082 Rev. *H  
Page 29 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 16. READ with Address Counter Advance for Pipelined Mode  
t
CYC  
C
A
A
n
Internal  
Address  
A
A
n+1  
A
A
n
n+2  
n+3  
ADS  
CNTEN  
DQ  
DQ  
DQ  
DQ  
DQ  
n+1  
x-1  
x
n
DQ  
DQ  
n+2  
n+3  
Figure 17. READ with Address Counter Advance for Flow Through Mode  
tCYC  
C
tSAC tHAC  
A
An  
ADS  
CNTEN  
DQ  
tSAC tHAC  
tCD1  
DQx  
DQn  
DQn + 1  
DQn + 2  
DQn + 3  
DQn + 4  
tDC  
READ EXTERNAL ADDRESS  
READ W ITH COUNTER  
COUNTER HOLD  
READ W ITH COUNTER  
Document Number: 38-06082 Rev. *H  
Page 30 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 18. Port-to-Port WRITE–READ for Pipelined Mode  
t
CYC  
Left Port  
C
L
A
A
n
L
R/WL  
DQ  
DQ  
L
n
Right Port  
t
CCS  
C
R
t
CYC  
A
R
A
n
R/WR  
t
t
SAC HAC  
DQ  
R
DQ  
n
t
t
DC  
CD2  
Figure 19. Chip Enable READ for Pipelined Mode  
t
CYC  
C
CE0  
CE1  
R/W  
A
t
t
SAC HAC  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
DQ  
DQ  
n+3  
n
t
t
DC  
t
CD2  
CKLZ2  
Document Number: 38-06082 Rev. *H  
Page 31 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 20. OE Controlled WRITE for Pipelined Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x-1  
x
n
n+1  
n+2  
Figure 21. OE Controlled WRITE for Flow Through Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x
x+1  
n
n+1  
n+2  
Document Number: 38-06082 Rev. *H  
Page 32 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 22. Byte-Enable READ for Pipelined Mode  
tCYC  
C
A
A
A
A
A
n
n+1  
n+2  
n+3  
R/W  
BE7  
BE6  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
tCKLZ2  
tCKHZ2  
DQn+1(63:71)  
DQ  
63:71  
54:62  
DQn+1(54:62)  
DQ  
DQ  
DQ  
DQn+2(45:53)  
45:53  
36:44  
DQn+2(36:44)  
DQn+1(27:35)  
DQ  
DQ  
27:35  
18:26  
DQn+2(18:26)  
DQn+3(9:17)  
DQ  
DQ  
9:17  
0:8  
DQn+3(0:8)  
Document Number: 38-06082 Rev. *H  
Page 33 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 23. Port-to-Port WRITE-to-READ for Flow Through Mode  
CL  
R/W L  
AL  
tSAC  
tHAC  
NO MATCH  
MATCH  
tSD  
tHD  
VALID  
DQL  
tCCS  
CR  
tCD1  
R/W R  
tHAC  
tSAC  
NO MATCH  
AR  
MATCH  
tCD1  
DQR  
VALID  
VALID  
tDC  
tDC  
Document Number: 38-06082 Rev. *H  
Page 34 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 24. Busy Address Readback for Pipelined and Flow Through Modes, CNT/MSK = RET = LOW[37]  
t
CYC  
~
~
C
Internal  
Address  
Amatch+2  
Amatch+3  
Amatch+4  
BUSY  
~
~
CNTEN  
ADS  
~
~
External  
Address  
Amatch  
Pipelined  
tAC  
tCA2  
External  
Address  
~
Amatch  
Flow through  
tAC  
tCA1  
Figure 25. Read Cycle for Flow Through Mode  
tCYC  
C
CE0  
CE1  
tSAC  
tHAC  
BEn  
R/W  
A
tSAC  
tHAC  
An  
An + 1  
An + 2  
An + 3  
tCKHZ1  
tCD1  
tDC  
DQ  
OE  
DQn  
DQn + 1  
DQn + 2  
tDC  
tCKLZ1  
tOLZ  
tOHZ  
tOE  
Note  
37. A  
is the matching address that is reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy Address  
match  
Readback.”  
Document Number: 38-06082 Rev. *H  
Page 35 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 26. READ-to-WRITE for Pipelined Mode (OE = VIL)[38, 39, 40]  
tCYC  
tCL  
C
A
tCH  
A
A
x
A
A
n+2  
n
n+1  
tSAC tHAC  
tSAC tHAC  
R/W  
DQ  
t
CKLZ2  
DQ  
DQ  
DQ  
x
DQ  
x-2  
x-1  
DQ  
n+2  
DQ  
n+1  
n
tDC  
tCD2  
tCKHZ2  
tSD tHD  
Figure 27. READ-to-WRITE for Pipelined Mode (OE Controlled)[41, 42]  
tCYC  
C
A
A
A
A
A
A
A
A
n+3  
x
x+1  
x+2  
n
n+1  
n+2  
tSAC tHAC  
R/W  
OE  
tOHZ  
tSD tHD  
DQ  
x
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x-2  
x-1  
n
n+1  
n+2  
Notes  
38. When OE = V , the last read operation is enabled to complete before the DQ bus is tri-stated and the user is enabled to drive write data.  
IL  
39. Two dummy writes are issued to accomplish bus turnaround. The third instruction is the first valid write.  
40. Chip enable or all byte enables are held inactive during the two dummy writes to avoid data corruption.  
41. OE is deasserted and t  
enabled to elapse before the first write operation is issued.  
OHZ  
42. Any write scheduled to complete after OE is deasserted is pre-empted.  
Document Number: 38-06082 Rev. *H  
Page 36 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 28. Read-to-Write-to-Read for Flow Through Mode (OE = LOW)  
tCYC  
C
tSAC tHAC  
CE0  
CE1  
BEn  
tSAC  
tHAC  
R/W  
A
An  
An + 1  
An + 2  
An + 2  
An + 3  
An + 4  
tSD  
tHD  
DQIN  
DQn + 2  
tCD1  
tCD1  
tCD1  
tCD1  
DQn  
tDC  
DQOUT  
DQn + 1  
DQn + 3  
tCKHZ1  
tCKLZ1  
tDC  
READ  
NOP  
W RITE  
READ  
Document Number: 38-06082 Rev. *H  
Page 37 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 29. Read-to-Write-to-Read for Flow Through Mode (OE Controlled)  
tCYC  
C
tHAC  
tSAC  
CE0  
CE1  
BEn  
tHAC  
tSAC  
R/W  
A
An  
An + 1  
An + 2  
tHD  
An + 3  
An + 4  
An + 5  
tSD  
DQIN  
DQn + 2  
DQn + 3  
tOE  
tCD1  
tCD1  
tDC  
tCD1  
DQOUT  
DQn  
DQn + 4  
tDC  
tCKLZ1  
tOHZ  
OE  
READ  
W RITE  
READ  
Document Number: 38-06082 Rev. *H  
Page 38 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 30. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow Through Modes, Clock Timing Violates tCCS  
.
(Flag Both Ports)  
Port A  
C
A
R/W  
BUSY  
C
tBSY  
tBSY  
< tCCS  
Port B  
A
R/W  
tBSY  
tBSY  
BUSY  
Figure 31. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow Through Modes, Clock Timing Meets tCCS  
(Flag Losing Port)  
.
Losing Port  
C
A
R/W  
tccs  
tBSY  
BUSY  
tBSY  
Winning Port  
C
A
Match  
R/W  
BUSY  
Document Number: 38-06082 Rev. *H  
Page 39 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 32. Read with Echo Clock for Pipelined Mode (CQEN = HIGH)  
C
tSAC  
tHAC  
R/W  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
An+6  
A
CQ0  
CQ0  
CQ1  
tCCQ  
CQ1  
DQ  
tCQHQX  
tCQHQV  
DQn  
DQn+1  
DQn+2  
DQn+3  
DQn+4  
DQx-1  
DQx  
Document Number: 38-06082 Rev. *H  
Page 40 of 52  
[+] Feedback  
FullFlex  
Switching Waveforms (continued)  
Figure 33. Mailbox Interrupt Output  
t
CYC  
C
L
A
MAX  
A
L
R/WL  
DQ  
L
INT  
R
t
SINT  
t
RINT  
C
R
A
MAX  
A
R
R/WR  
DQ  
MAX  
DQ  
R
Document Number: 38-06082 Rev. *H  
Page 41 of 52  
[+] Feedback  
FullFlex  
Ordering Information  
512K  
×
72 (36 Mbit) 1.8V/1.5V Synchronous CYD36S72V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD36S72V18-200BGXC  
CYD36S72V18-200BGC  
167 CYD36S72V18-167BGXC  
CYD36S72V18-167BGC  
CYD36S72V18-167BGXI  
CYD36S72V18-167BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
133 CYD36S72V18-133BGXC  
CYD36S72V18-133BGC  
CYD36S72V18-133BGXI  
CYD36S72V18-133BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
256K  
× 72 (18 Mbit) 1.8V/1.5V Synchronous CYD18S72V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S72V18-200BGXC  
CYD18S72V18-200BGC  
CYD18S72V18-200BGXI  
CYD18S72V18-200BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
167 CYD18S72V18-167BGXC  
CYD18S72V18-167BGC  
CYD18S72V18-167BGXI  
CYD18S72V18-167BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
128K  
× 72 (9 Mbit) 1.8V/1.5V Synchronous CYD09S72V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD09S72V18-200BGXC  
CYD09S72V18-200BGC  
CYD09S72V18-200BGXI  
CYD09S72V18-200BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
167 CYD09S72V18-167BGXC  
CYD09S72V18-167BGC  
CYD09S72V18-167BGXI  
CYD09S72V18-167BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
Document Number: 38-06082 Rev. *H  
Page 42 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
64K  
×
72 (4 Mbit) 1.8V/1.5V Synchronous CYD04S72V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD04S72V18-200BGXC  
CYD04S72V18-200BGC  
CYD04S72V18-200BGXI  
CYD04S72V18-200BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
167 CYD04S72V18-167BGXC  
CYD04S72V18-167BGC  
CYD04S72V18-167BGXI  
CYD04S72V18-167BGI  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
51-85218 484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 23 mm x 23 mm with 1.0 mm pitch  
1024K  
× 36 (36 Mbit) 1.8V/1.5V Synchronous CYD36S36V18 Dual Port SRAM  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD36S36V18-200BGXC  
CYD36S36V18-200BGC  
167 CYD36S36V18-167BGXC  
CYD36S36V18-167BGC  
CYD36S36V18-167BGXI  
CYD36S36V18-167BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
133 CYD36S36V18-133BGXC  
CYD36S36V18-133BGC  
CYD36S36V18-133BGXI  
CYD36S36V18-133BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
512K  
× 36 (18 Mbit) 1.8V/1.5V Synchronous CYD18S36V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S36V18-200BBAXC  
CYD18S36V18-200BBAC  
CYD18S36V18-200BBAXI  
CYD18S36V18-200BBAI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD18S36V18-167BBAXC  
CYD18S36V18-167BBAC  
CYD18S36V18-167BBAXI  
CYD18S36V18-167BBAI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
Document Number: 38-06082 Rev. *H  
Page 43 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
256K  
×
36 (9 Mbit) 1.8V/1.5V Synchronous CYD09S36V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD09S36V18-200BBXC  
CYD09S36V18-200BBC  
CYD09S36V18-200BBXI  
CYD09S36V18-200BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD09S36V18-167BBXC  
CYD09S36V18-167BBC  
CYD09S36V18-167BBXI  
CYD09S36V18-167BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
128K  
× 36 (4 Mbit) 1.8V/1.5V Synchronous CYD04S36V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD04S36V18-200BBXC  
CYD04S36V18-200BBC  
CYD04S36V18-200BBXI  
CYD04S36V18-200BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD04S36V18-167BBXC  
CYD04S36V18-167BBC  
CYD04S36V18-167BBXI  
CYD04S36V18-167BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
64K  
× 36 (2 Mbit) 1.8V/1.5V Synchronous CYD02S36V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD02S36V18-200BBXI  
167 CYD02S36V18-167BBXI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
Document Number: 38-06082 Rev. *H  
Page 44 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
2048K  
×
18 (36 Mbit) 1.8V/1.5V Synchronous CYD36S18V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD36S18V18-200BGXC  
CYD36S18V18-200BGC  
167 CYD36S18V18-167BGXC  
CYD36S18V18-167BGC  
CYD36S18V18-167BGXI  
CYD36S18V18-167BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
133 CYD36S18V18-133BGXC  
CYD36S18V18-133BGC  
CYD36S18V18-133BGXI  
CYD36S18V18-133BGI  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Commercial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
001-07825 484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Pb-Free) Industrial  
484-Ball Grid Array 27 mm x 27 mm with 1.0 mm pitch  
1024K  
× 18 (18 Mbit) 1.8V/1.5V Synchronous CYD18S18V18 Dual Port SRAM  
Package  
Diagram  
Speed  
MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD18S18V18-200BBAXC  
CYD18S18V18-200BBAC  
CYD18S18V18-200BBAXI  
CYD18S18V18-200BBAI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD18S18V18-167BBAXC  
CYD18S18V18-167BBAC  
CYD18S18V18-167BBAXI  
CYD18S18V18-167BBAI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17mm with 1.0 mm pitch  
512K  
× 18 (9 Mbit) 1.8V/1.5V Synchronous CYD09S18V18 Dual Port SRAM  
Package  
Diagram  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
200 CYD09S18V18-200BBXC  
CYD09S18V18-200BBC  
CYD09S18V18-200BBXI  
CYD09S18V18-200BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD09S18V18-167BBXC  
CYD09S18V18-167BBC  
CYD09S18V18-167BBXI  
CYD09S18V18-167BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
Document Number: 38-06082 Rev. *H  
Page 45 of 52  
[+] Feedback  
FullFlex  
Ordering Information (continued)  
256K  
×
18 (4 Mbit) 1.8V or 1.5V Synchronous CYD04S18V18 Dual Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
200 CYD04S18V18-200BBXC  
CYD04S18V18-200BBC  
CYD04S18V18-200BBXI  
CYD04S18V18-200BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
167 CYD04S18V18-167BBXC  
CYD04S18V18-167BBC  
CYD04S18V18-167BBXI  
CYD04S18V18-167BBI  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Commercial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
51-85108 256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Pb-Free) Industrial  
256-Ball Grid Array 17 mm x 17 mm with 1.0 mm pitch  
Document Number: 38-06082 Rev. *H  
Page 46 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 34. 256-Ball FBGA (17 x 17 mm), 51-85108  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
A
51-85108-*F  
Document Number: 38-06082 Rev. *H  
Page 47 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 35. 484-Ball PBGA (23 mm x 23 mm x 2.03 mm), 51-85218  
Ø0.50~Ø0.70(484X)  
PIN #1 CORNER  
9
1
2
11  
7
3
1
3
5
7
9
21  
20 22  
13  
5
11  
13 15 17 19  
10 12 14 16 18  
21  
17 15  
19  
2
4
6
8
22 20 18 16 14 12 10  
8
6
4
Ø1.00(3X) REF.  
A
B
A
B
C
C
D
E
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
M
N
P
R
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AB  
AA  
AB  
1.00  
ꢀBꢀ  
21.00  
3.20*45°(4x)  
20.00 REF.  
ꢀAꢀ  
23.00 0.20  
0.20(4X)  
30° TYP.  
Package Weight ꢀ 2.0 grams  
Jedec Outline ꢀ Design Guide 4.14  
ꢀCꢀ  
SEATING PꢁANE  
51-85218-**  
Document Number: 38-06082 Rev. *H  
Page 48 of 52  
[+] Feedback  
FullFlex  
Package Diagrams  
Figure 36. 484-Ball PBGA (27 mm x 27 mm x 2.33 mm), 001-07825  
001-07825-**  
Document Number: 38-06082 Rev. *H  
Page 49 of 52  
[+] Feedback  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Date  
Change  
**  
302411  
334036  
See ECN  
See ECN  
YDT  
New data sheet  
*A  
YDT  
Corrected typo on page 1  
Reproduced PDF file to fix formatting errors  
*B  
395800  
See ECN  
SPN  
Added statement about no echo clocks for flow through mode  
Updated electrical characteristics  
Added note 16 and 17 (1.5V timing)  
Added note 33 (timing for x18 devices)  
Updated input edge rate (note 34)  
Updated table 5 on deterministic access control logic  
Added description of busy readback in deterministic access control section  
Changed dummy write descriptions  
Updated ZQ pins connection details  
Updated note 24, B0 to BE0  
Added power supply requirements to MRST and VC_SEL  
Added note 4 (VIM disable)  
Updated supply voltage to ground potential to 4.1V  
Updated parameters on table 15  
Updated and added parameters to table 16  
Updated x72 pinout to SDR only pinout  
Updated 484 PBGA pin diagram  
Updated the pin definition of MRST  
Updated the pin definition of VC_SEL  
Updated READY description to include Wired OR note  
Updated master reset to include wired OR note for READY  
Updated minimum VOH value for the 1.8V LVCMOS configuration  
Updated electrical characteristics to include IOH and IOL values  
Updated electrical characteristics to include READY  
Added IIX3  
Updated maximum input capacitance  
Added Notes 33 and 34Removed Notes 15 and 17  
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1  
Removed -100 Speed bin from Table.1 Selection Guide  
Changed voltage name from VDDQ to VDDIO  
Changed voltage name from VDD to VCORE  
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD18S18V18 parts  
Updated the Package Type for the CYD18S36V18 parts  
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256  
Included an OE Controlled Write for Flow through Mode Switching Waveform  
Included a Read with Echo Clock Switching Waveform  
Updated Figure 5 and Figure 6  
Updated Electrical Characteristics for READY VOH and READY V  
Updated Electrical Characteristics for VOH and VOL for the -167 and -133 speeds  
Included a Unit column for Table 5  
Removed Switching Characteristic tCA from chart  
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode  
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow through Mode  
Document Number: 38-06082 Rev. *H  
Page 50 of 52  
[+] Feedback  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Updated AC Test Load and Waveforms  
Date  
Change  
*C  
402238  
SEE ECN  
KGH  
Included FullFlex36 SDR 484-Ball BGA Pinout (Top View)  
Included FullFlex18 SDR 484-Ball BGA Pinout (Top View)  
Included Timing Parameter tCORDY  
*D  
458131  
SEE ECN  
YDT  
Changed ordering information with Pb-free part numbers  
Removed VC_SEL  
Added IO and core voltage adders  
Removed references to bin drop for LVTTL/2.5V LVCMOS and 1.5V core modes  
Updated Cin and Cout  
Updated ICC, ISB1, ISB2 and ISB3 tables  
Updated busy address read back timing diagram  
Added HTSL input waveform  
Removed HSTL (AC) from DC tables  
Added 484-ball 27 mmx27 mmx2.33 mm PBGA package  
*E  
470031  
SEE ECN  
YDT  
Changed VOL of 1.8V LVCMOS to 0.45V  
Updated tRSF  
VREF is DNU when HSTL is not used  
Formatted pin description table  
Changed VDDIO pins for 36M x 36 and 36M x 18 pinouts  
Changed 36Mx72 JTAG IDCODE  
*F  
500001  
627539  
SEE ECN  
SEE ECN  
YDT  
QSL  
DLL Change, added Clock Input Cycle to Cycle Jitter  
Modified DLL description  
Changed Input Capacitance Table  
Changed tCCS number  
Added note 31  
*G  
change all NC to DNU  
corrected switching waveform for (CQEN = High) from both Pipeline and Flow  
through mode to only pipeline mode  
Modified master reset description  
Modified switching characteristics tables, extracted signals effected by the DLL  
into one table and combine all other signals into one table  
updated package name  
Added footnote for tHD, tHAC and tSAC  
changed note 26 description  
Document Number: 38-06082 Rev. *H  
Page 51 of 52  
[+] Feedback  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous SDR Dual Port SRAM  
Document Number: 38-06082  
Submission Orig. of  
REV.  
ECN NO.  
Description of Change  
Date  
Change  
*H  
2505003  
See ECN  
VKN/  
Modified footnote #1  
AESA Removed 250 MHz speed bin  
Added 2-Mbit part and it’s related information  
Changed ball name ZQ1 to DNU for 18M and lesser density devices  
Added 256-Ball (17 x 17 mm) BGA package for 18M  
Made PORTSTD[1:0] left and right pins driven only by LVTTL reference level  
For 1.8V LVCMOS level, Changed VIH(min) from 1.26V to 0.65 times VDDIO and  
Changed VIL(max) from 0.36V to 0.35 times VDDIO  
Changed tHD, tHAC specs for 36M from 0.6 ns/0.7 ns to 0.8 ns (See footnote# 32)  
Updated Ordering Information table  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2005-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-06082 Rev. *H  
Revised May 15, 2008  
Page 52 of 52  
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are trademarks of their respective holders.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY