CYD04S72V_11 [CYPRESS]

FLEx72 3.3 V 64 K/128 K/256 K x 72 Synchronous Dual-Port RAM; FLEx72 3.3 V 64 K / 128 K / 256的K× 72同步双端口RAM
CYD04S72V_11
型号: CYD04S72V_11
厂家: CYPRESS    CYPRESS
描述:

FLEx72 3.3 V 64 K/128 K/256 K x 72 Synchronous Dual-Port RAM
FLEx72 3.3 V 64 K / 128 K / 256的K× 72同步双端口RAM

文件: 总30页 (文件大小:887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYD04S72V  
CYD09S72V  
CYD18S72V  
FLEx72™ 3.3 V 64 K/128 K/256 K × 72  
Synchronous Dual-Port RAM  
Features  
Functional Description  
True dual-ported memory cells that allow simultaneous access  
of the same memory location  
The FLEx72 family includes 4 Mbit, 9 Mbit and 18 Mbit pipelined,  
synchronous, true dual-port static RAMs that are high-speed,  
low-power 3.3 V CMOS. Two ports are provided, permitting  
independent, simultaneous access to any location in memory.  
The result of writing to the same location by more than one port  
at the same time is undefined. Registers on control, address, and  
data lines allow for minimal set-up and hold time.  
Synchronous pipelined operation  
Family of 4 Mbit, 9 Mbit, and 18 Mbit devices  
Pipelined output mode allows fast operation  
0.18-micron complmentary metal oxide semiconductor  
(CMOS) for optimum speed and power  
During a Read operation, data is registered for decreased cycle  
time. Each port contains a burst counter on the input address  
register. After externally loading the counter with the initial  
address, the counter will increment the address internally (more  
details to follow). The internal write pulse width is independent of  
the duration of the R/W input signal. The internal write pulse is  
self-timed to allow the shortest possible cycle times.  
High-speed clock to data access  
3.3 V low power  
Active as low as 225 mA (typ)  
Standby as low as 55 mA (typ)  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
Mailbox function for message passing  
Global master reset  
Separate byte enables on both ports  
Commercial and industrial temperature ranges  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
IEEE 1149.1-compatible joint test action group (JTAG)  
boundary scan  
484-ball fine-pitch ball grid array (FBGA) (1-mm pitch)  
Pb-free packaging available  
The CYD18S72V device have limited features. Please see  
Table 3 on page 8 for details.  
Counter wrap around control  
Internal mask register controls counter wrap-around  
Counter-interrupt flags to indicate wrap-around  
Memory block retransmit operation  
Seamless Migration to Next-Generation Dual-Port  
Family  
Counter readback on address lines  
Cypress offers a migration path for all devices to the  
next-generation devices in the Dual-Port family with a compatible  
footprint. Please contact Cypress Sales for more details  
Mask register readback on address lines  
Dual chip enables on both ports for easy depth expansion  
Seamless migration to next generation dual-port family  
Table 1. Product Selection Guide  
.
4-Mbit  
9-Mbit  
18-Mbit  
Density  
(64K x 72)  
CYD04S72V  
167  
(128K x 72)  
(256K x 72)  
Part number  
CYD09S72V  
CYD18S72V  
Max. speed (MHz)  
133  
4.4  
133  
5.0  
Max. access time—clock to data (ns)  
Typical operating current (mA)  
Package  
4.0  
225  
350  
410  
484-ball FBGA  
23 mm x 23 mm  
484-ball FBGA  
23 mm x 23 mm  
484-ball FBGA  
23 mm x 23 mm  
Cypress Semiconductor Corporation  
Document Number : 38-06069 Rev. *L  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 25, 2011  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Logic Block Diagram[1]  
FTSEL  
L
FTSEL  
R
CONFIG Block  
CONFIG Block  
PORTST[1:0]  
L
PORTST[1:0]  
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
BE [7:0]  
R
L
CE0  
CE1  
CE0  
R
L
IO  
Control  
IO  
Control  
CE1  
R
L
OE  
OE  
R
L
R/W  
R/W  
R
L
Dual-Ported Array  
Arbitration Logic  
BUSY  
BUSY  
L
R
A [17:0]  
A [17:0]  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
RET  
R
L
CNTINT  
L
CNTINT  
R
C
C
L
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
MRST  
READY  
LowSPD  
RESET  
LOGIC  
READY  
L
R
R
LowSPD  
L
Note  
1. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
Document Number : 38-06069 Rev. *L  
Page 2 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Contents  
Pin Configuration .............................................................4  
Pin Definitions ..................................................................5  
Master Reset ...............................................................7  
Mailbox Interrupts ........................................................7  
Address Counter and Mask Register Operations.........8  
Counter Reset Operation ............................................8  
Counter Load Operation ..............................................8  
Counter Increment Operation ......................................9  
Counter Hold Operation ..............................................9  
Counter Interrupt .........................................................9  
Counter Readback Operation ......................................9  
Retransmit ...................................................................9  
Mask Reset Operation .................................................9  
Mask Load Operation ..................................................9  
Mask Readback Operation ..........................................9  
Counting by Two .........................................................9  
IEEE 1149.1 Serial Boundary Scan (JTAG) ...................11  
Performing a TAP Reset ...........................................11  
Performing a Pause/Restart ......................................11  
Boundary Scan Hierarchy for FLEx72 Family ...........11  
Maximum Ratings............................................................13  
Operating Range .............................................................13  
Electrical Characteristics Over the Operating Range .13  
Capacitance .....................................................................14  
AC Test Load and Waveforms .......................................14  
Switching Characteristics Over the Operating Range 14  
JTAG Timing Characteristics ........................................16  
Switching Waveforms ....................................................16  
Ordering Information ......................................................26  
Ordering Code Definitions .........................................26  
Package Diagram ............................................................27  
Acronyms ........................................................................28  
Document Conventions .................................................28  
Units of Measure .......................................................28  
Document History Page .................................................29  
Sales, Solutions, and Legal Information ......................30  
Worldwide Sales and Design Support .......................30  
Products ....................................................................30  
PSoC Solutions .........................................................30  
Document Number : 38-06069 Rev. *L  
Page 3 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Configuration  
484-ball BGA  
Top View  
CYD04S72V/CYD09S72V/CYD18S72V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC DQ61L DQ59L DQ57L DQ54L DQ51L DQ48L DQ45L DQ42L DQ39L DQ36L DQ36R DQ39R DQ42R DQ45R DQ48R DQ51R DQ54R DQ57R DQ59R DQ61R NC  
A
DQ63L DQ62L DQ60L DQ58L DQ55L DQ52L DQ49L DQ46L DQ43L DQ40L DQ37L DQ37R DQ40R DQ43R DQ46R DQ49R DQ52R DQ55R DQ58R DQ60R DQ62R DQ63R  
B
C
DQ65L DQ64L VSS  
DQ67L DQ66L VSS  
VSS  
VSS  
DQ56L DQ53L DQ50L DQ47L DQ44L DQ41L DQ38L DQ38R DQ41R DQ44R DQ47R DQ50R DQ53R DQ56R  
VSS  
VSS  
VSS DQ64R DQ65R  
VSS DQ66R DQ67R  
[2, 5]  
[2, 5]  
[2, 5]  
[2, 5]  
[2, 5]  
VSS NC  
NC  
VSS LOWSP PORTS NC  
BUSYL CNTINT PORTS NC NC  
NC  
VSS  
NC  
[2,4]  
[2, 5]  
DL  
TD0L  
L
TD1L  
D
E
[2,4]  
[10]  
[2, 4]  
DQ69L DQ68L VDDIOL VSS  
VSS VDDIOL VDDIO VDDIO VDDIOL VDDIOL VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIOR  
VSS VDDIOR DQ68R DQ69R  
L
L
R
R
R
[8]  
[9]  
[9]  
[8]  
DQ71L DQ70L CE1L  
CE0L  
VDDIOL VDDIOL VDDIO VDDIO VDDIOL VCORE VCOREVCORE VCORE VDDIO VDDIO VDDIO VDDIOR VDDIOR CE0R  
CE1R DQ70R DQ71R  
F
G
H
J
L
L
R
R
R
[2,3]  
[2,3  
A0L  
A2L  
A4L  
A6L  
A8L  
A1L RETL  
BE4L VDDIOL VDDIOL VREFL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VREFR VDDIOR VDDIOR BE4R RETR  
A1R  
A3R  
A0R  
A2R  
A4R  
A6R  
A8R  
[2, 4]  
[2, 4]  
]
[2,  
[2,  
A3L WRPL  
BE5L VDDIOL VDDIOL VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR VDDIOR BE5R WRPR  
3]  
3]  
A5L READYL BE6L VDDIOL VDDIOL VSS  
[2, 5]  
VSS VDDIOR VDDIOR BE6R READYR A5R  
[2, 5]  
[2,5]  
[2,5]  
A7L  
A9L  
NC  
BE7L  
OEL  
VTTL VCORE VSS  
VTTL VCORE VSS  
VTTL VCORE VSS  
VSS VCORE VDDIOR BE7R NC  
A7R  
A9R  
K
L
CL  
VSS VCORE VTTL  
VSS VCORE VTTL  
VSS VCORE VTTL  
OER  
CR  
A10L A11L  
VSS  
BE3L  
BE3R  
VSS  
A11R A10R  
A13R A12R  
M
N
P
R
T
[9]  
[9]  
A12L A13L ADSL  
BE2L VDDIOL VCORE VSS  
BE2R ADSR  
A14L A15L CNT/MS BE1L VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR BE1R CNT/MS A15R A14R  
[8]  
[8]  
KL  
KR  
A16L A17L CNTENL BE0L VDDIOL VDDIOL VSS  
VSS VDDIOR VDDIOR BE0R CNTENR A17R A16R  
[6]  
[7]  
[9]  
[9]  
[7]  
[6]  
A18L  
[2,5]  
NC CNTRST INTL VDDIOL VDDIOL VREFL VSS  
VSS VREFR VDDIOR VDDIOR INTR CNTRST NC  
A18R  
[2,5]  
[8]  
[2, 4]  
[2, 4]  
[8]  
L
R
[2,4  
DQ35L DQ34L R/WL  
REVL VDDIOL VDDIOL VDDIO VDDIO VDDIOL VCORE VCOREVCORE VCORE VDDIO VDDIO VDDIO VDDIOR VDDIOR REVR  
R/WR DQ34R DQ35R  
[2,4]  
]
L
L
R
R
R
U
V
[2,  
DQ33L DQ32L FTSELL VDDIOL  
NC VDDIOL VDDIO VDDIO VDDIOL VTTL VTTL VTTL VDDIO VDDIO VDDIO VDDIO VDDIOR TRST VDDIOR FTSELR DQ32R DQ33R  
[2,3]  
5]  
[2,3]  
L
R
R
R
R
[2, 5]  
[2, 5]  
[2,  
[2, 5]  
[2, 5]  
[2, 5]  
DQ31L DQ30L VSS  
DQ29L DQ28L VSS  
MRST  
VSS  
VSS NC  
NC  
REVL PORTS CNTINT BUSYR NC  
PORTS LOWSP VSS NC  
NC  
VSS  
TDI  
TDO DQ30R DQ31R  
4]  
[2, 5]  
[2,4]  
TD1R  
R
TD0R DR  
W
[2, 4]  
[10]  
[2,4]  
DQ20L DQ17L DQ14L DQ11L DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11R DQ14R DQ17R DQ20R TMS  
TCK DQ28R DQ29R  
Y
DQ27L DQ26L DQ24L DQ22L DQ19L DQ16L DQ13L DQ10L DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10R DQ13R DQ16R DQ19R DQ22R DQ24R DQ26R DQ27R  
NC DQ25L DQ23L DQ21L DQ18L DQ15L DQ12L DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12R DQ15R DQ18R DQ21R DQ23R DQ25R NC  
AA  
AB  
Notes  
2. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.  
3. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales.  
4. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.  
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
6. Leave this ball unconnected for a 64K x 72 configuration.  
7. Leave this ball unconnected for 128K x 72 and 64K x72 configurations.  
8. These balls are not applicable for CYD18S72V device. They need to be tied to VDDIO.  
9. These balls are not applicable for CYD18S72V device. They need to be tied to VSS.  
10. These balls are not applicable for CYD18S72V device. They need to be no connected.  
Document Number : 38-06069 Rev. *L  
Page 4 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Definitions  
Left Port  
Right Port  
Description  
A0L–A17L  
A0R–A17R  
Address inputs.  
BE0L–BE7L  
BE0R–BE7R  
Byte enable inputs. Asserting these signals enables Read and Write operations to the  
corresponding bytes of the memory array.  
[11,12]  
[11,12]  
BUSYL  
BUSYR  
Port busy output. When the collision is detected, a BUSY is asserted.  
Input clock signal.  
CL  
CR  
[13]  
[13]  
CE0L  
CE0R  
Active low chip enable input.  
[14]  
[14]  
CE1L  
CE1R  
Active high chip enable input.  
DQ0L–DQ71L  
OEL  
DQ0R–DQ71R  
OER  
Data bus input/output.  
Output enable input. This asynchronous signal must be asserted LOW to enable the  
DQ data pins during Read operations.  
INTL  
INTR  
Mailbox interrupt flag output. The mailbox permits communications between ports.  
The upper two memory locations can be used for message passing. INTL is asserted  
LOW when the right port writes to the mailbox location of the left port, and vice versa.  
An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox.  
[11,15]  
[11,15]  
LowSPDL  
LowSPDR  
Port low speed select input. When operating at less than 100 MHz, the LowSPD  
disables the port DLL.  
[11,15  
[11,15  
PORTSTD[1:0]L  
PORTSTD[1:0]R  
Port address/control/data i/o standard select input.  
]
]
R/WL  
R/WR  
Read/write enable input. Assert this pin LOW to write to, or HIGH to Read from the  
dual-port memory array.  
[11,12]  
[11,12]  
READYL  
READYR  
Port ready output. This signal will be asserted when a port is ready for normal  
operation.  
[14]  
[14]  
CNT/MSKL  
CNT/MSKR  
Port counter/mask select input. Counter control input.  
Port counter address load strobe input. Counter control input.  
Port counter enable input. Counter control input.  
Port counter reset input. Counter control input.  
[13]  
[13]  
ADSL  
ADSR  
[13]  
[13]  
[14]  
CNTENL  
CNTENR  
[14]  
CNTRSTL  
CNTRSTR  
[16]  
[16]  
CNTINTL  
CNTINTR  
Port counter interrupt output. This pin is asserted LOW when the unmasked portion  
of the counter is incremented to all “1s”.  
[11,17]  
[11,17]  
WRPL  
WRPR  
Port counter wrap input. After the burst counter reaches the maximum count, if WRP  
is low, the unmasked counter bits will be set to 0. If high, the counter will be loaded with  
the value stored in the mirror register.  
[11,17]  
[12,17]  
RETL  
RETR  
Port counter retransmit input. Counter control input.  
[11,17]  
[11,17]  
FTSELL  
FTSELR  
Flow-through select. Use this pin to select Flow-Through mode. When is de-asserted,  
the device is in pipelined mode.  
[11,15]  
[11,15]  
VREFL  
VREFR  
Port external high-speed io reference input.  
Notes  
11. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.  
12. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
13. These balls are not applicable for CYD18S72V device. They need to be tied to VSS.  
14. These balls are not applicable for CYD18S72V device. They need to be tied to VDDIO.  
15. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.  
16. These balls are not applicable for CYD18S72V device. They need to be no connected.  
17. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales  
Document Number : 38-06069 Rev. *L  
Page 5 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Pin Definitions (continued)  
Left Port  
Right Port  
Description  
VDDIOL  
VDDIOR  
Port IO power supply.  
REV[18,19]  
REV[18,19]  
Reserved pins for future features.  
L
R
MRST  
Master reset input. MRST is an asynchronous input signal and affects both ports. A  
master reset operation is required at power-up.  
TRST[18,20]  
TMS  
JTAG reset input.  
JTAG test mode select input. It controls the advance of JTAG TAP state machine.  
State machine transitions occur on the rising edge of TCK.  
TDI  
JTAG test data input. Data on the TDI input will be shifted serially into selected  
registers.  
TCK  
TDO  
JTAG test clock input.  
JTAG test data output. TDO transitions occur on the falling edge of TCK. TDO is  
normally three-stated except when captured data is shifted out of the JTAG TAP.  
VSS  
Ground inputs.  
[21]  
VCORE  
Core power supply.  
LVTTL power supply.  
VTTL  
Notes  
18. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.  
19. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales  
20. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.  
21. This family of Dual-Ports does not use V  
, and these pins are internally NC. The next generation Dual-Port family, the FLEx72-E™, will use V  
of 1.5 V or 1.8  
CORE  
CORE  
V. Please contact local Cypress FAE for more information  
Document Number : 38-06069 Rev. *L  
Page 6 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
operation by the left port to address 3FFFF will assert INTR LOW.  
At least one byte has to be active for a write to generate an  
interrupt. A valid Read of the 3FFFF location by the right port will  
reset INTR HIGH. At least one byte has to be active in order for  
a read to reset the interrupt. When one port writes to the other  
port’s mailbox, the INT of the port that the mailbox belongs to is  
asserted LOW.  
Master Reset  
The FLEx72 family devices undergo a complete reset by taking  
the MRST input LOW. MRST input can switch asynchronously to  
the clocks. MRST initializes the internal burst counters to zero,  
and the counter mask registers to all ones (completely  
unmasked). MRST also forces the mailbox interrupt (INT) flags  
and the Counter Interrupt (CNTINT) flags HIGH. MRST must be  
performed on the FLEx72 family devices after power-up.  
The INT is reset when the owner (port) of the mailbox reads the  
contents of the mailbox. The interrupt flag is set in a flow-thru  
mode (i.e., it follows the clock edge of the writing port). Also, the  
flag is reset in a flow-thru mode (i.e., it follows the clock edge of  
the reading port)  
Mailbox Interrupts  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports using 18 Mbit device  
as an example. The highest memory location, 3FFFF is the  
mailbox for the right port and 3FFFE is the mailbox for the left  
port. Table 2.shows that in order to set the INTR flag, a write  
Each port can read the other port’s mailbox without resetting the  
interrupt. And each port can write to its own mailbox without  
setting the interrupt. If an application does not require message  
passing, INT pins should be left open.  
Table 2. Interrupt Operation Example [22, 23, 24, 25]  
Left Port  
Function  
Right Port  
R/WL  
CEL  
A0L–17L  
3FFFF  
X
INTL  
X
R/WR  
CER  
X
A0R–17R  
X
INTR  
L
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
L
X
X
H
L
X
H
L
X
X
L
3FFFF  
3FFFE  
X
H
X
X
L
L
X
Reset Left INTL Flag  
L
3FFFE  
H
X
X
X
Notes  
22. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
23. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and  
0
1
can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
24. OE is “Don’t Care” for mailbox operation.  
25. At least one of BE0 or BE7 must be LOW.  
Document Number : 38-06069 Rev. *L  
Page 7 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Table 3. Address Counter and Counter Mask Register Control Operation (Any Port) [26,27]  
CLK MRST CNT/MSK CNTRST ADS CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask register  
to all 1s  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s  
H
Load counter with external address value presented  
on address lines  
H
H
H
H
H
H
H
H
H
L
H
H
H
L
Counter Readback Read out counter internal value on address lines  
Counter Increment Internally increment address counter value  
H
Counter Hold  
Constantly hold the address value for multiple clock  
cycles  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s  
H
Load mask register with value presented on the  
address lines  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address lines  
H
Operation undefined  
Address Counter and Mask Register Operations[28]  
Table 3 summarizes the operation of these registers and the  
required input control signals. The MRST control signal is  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1).  
This section describes the features only apply to 4 Mbit and 9  
Mbit devices, not to 18 Mbit device. Each port has a program-  
mable burst address counter. The burst counter contains three  
registers: a counter register, a mask register, and a mirror  
register.  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH transition  
of that port’s clock signal. This will Read/Write one word from/into  
each successive address location until CNTEN is deasserted.  
The counter can address the entire memory array, and will loop  
back to the start. Counter reset (CNTRST) is used to reset the  
unmasked portion of the burst counter to 0s. A counter-mask  
register is used to control the counter wrap.  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only by  
the Mask Load and Mask Reset operations, and by the MRST.  
The mask register defines the counting range of the counter  
register. It divides the counter register into two regions: zero or  
more “0s” in the most significant bits define the masked region,  
one or more “1s” in the least significant bits define the unmasked  
region. Bit 0 may also be “0,” masking the least significant  
counter bit and causing the counter to increment by two instead  
of one.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset to  
“0.” All masked bits remain unchanged. A Mask Reset followed  
by a Counter Reset will reset the counter and mirror registers to  
00000, as will master reset (MRST).  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and Counter Reset  
operations, and by the MRST.  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Notes  
26. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
27. Counter operation and mask register operation is independent of chip enables.  
28. The CYD04S72V has 16 address bits and a maximum address value of FFFF. The CYD09S72V has 17 address bits and a maximum address value of 1FFFF. The  
CYD18S72V has 18 address bits and a maximum address value of 3FFFF.  
Document Number : 38-06069 Rev. *L  
Page 8 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
This eliminates the need for external logic to store and route  
data. It also reduces the complexity of the system design and  
saves board space. An internal “mirror register” is used to store  
the initially loaded address counter value. When the counter  
unmasked portion reaches its maximum value set by the mask  
register, it wraps back to the initial value stored in this “mirror  
register.” If the counter is continuously configured in increment  
mode, it increments again to its maximum value and wraps back  
to the value initially stored into the “mirror register.” Thus, the  
repeated access of the same data is allowed without the need  
for any external logic.  
Counter Increment Operation  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incremented.  
The corresponding bit in the mask register must be a “1” for a  
counter bit to change. The counter register is incremented by 1  
if the least significant bit is unmasked, and by 2 if it is masked. If  
all unmasked bits are “1,” the next increment will wrap the  
counter back to the initially loaded value. If an Increment results  
in all the unmasked bits of the counter being “1s,” a counter  
interrupt flag (CNTINT) is asserted. The next Increment will  
return the counter register to its initial value, which was stored in  
the mirror register. The counter address can instead be forced to  
loop to 00000 by externally connecting CNTINT to CNTRST.[29]  
An increment that results in one or more of the unmasked bits of  
the counter being “0” will de-assert the counter interrupt flag. The  
example in Figure 2 shows the counter mask register loaded with  
a mask value of 0003Fh unmasking the first 6 bits with bit “0” as  
the LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 1FFFFh. Setting the mask register  
to this value allows the counter to access the entire memory  
space. The address counter is then loaded with an initial value  
of 8h. The base address bits (in this case, the 6th address  
through the 16th address) are loaded with an address value but  
do not increment once the counter is configured for increment  
operation. The counter address will start at address 8h. The  
counter will increment its internal address value till it reaches the  
mask register value of 3Fh. The counter wraps around the  
memory block to location 8h at the next count. CNTINT is issued  
when the counter reaches its maximum value.  
Mask Reset Operation  
The mask register is reset to all “1s,” which unmasks every bit of  
the counter. Master reset (MRST) also resets the mask register  
to all “1s.”  
Mask Load Operation  
The mask register is loaded with the address value presented at  
the address lines. Not all values permit correct increment  
operations. Permitted values are of the form 2n–1 or 2n–2. From  
the most significant bit to the least significant bit, permitted  
values have zero or more “0s,” one or more “1s,” or one “0.” Thus  
1FFFF, 003FE, and 00001 are permitted values, but 1F0FF,  
003FC, and 00000 are not.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1 shows  
a block diagram of the operation.  
Counter Hold Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are needed,  
or when address is available a few cycles ahead of data in a  
shared bus interface.  
Counting by Two  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the x72  
devices as a 144-bit single port SRAM in which the counter of  
one port counts even addresses and the counter of the other port  
counts odd addresses. This even-odd address scheme stores  
one half of the 144-bit data in even memory locations, and the  
other half in odd memory locations.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset and  
Mask Load operations, and by MRST.  
Counter Readback Operation  
The internal value of the counter register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCA2 after the next rising edge of the port’s clock. If address  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1 shows  
a block diagram of the operation.  
Retransmit  
Retransmit is a feature that allows the Read of a block of memory  
more than once without the need to reload the initial address.  
Note  
29. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document Number : 38-06069 Rev. *L  
Page 9 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[30]  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
17  
From  
Increment  
Logic  
Mask  
Register  
17  
Wrap  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Detect  
Wrap  
1
0
17  
1
0
To  
Counter  
Note  
30. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
Document Number : 38-06069 Rev. *L  
Page 10 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Figure 2. Programmable Counter-Mask Register Operation[31, 32]  
CNTINT  
Example:  
Load  
Counter-Mask  
Register = 3F  
H
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
IEEE 1149.1 Serial Boundary Scan (JTAG)[33]  
registers. The circuity and operation of the DIE boundary scan  
are described in detail below. The scan chain of each DIE is  
connected serially to form the scan chain of the FLEx72 family  
as shown in Figure 3. TMS and TCK are connected in parallel to  
each DIE to drive all 4 TAP controllers in unison. In many cases,  
each DIE will be supplied with the same instruction. In other  
cases, it might be useful to supply different instructions to each  
DIE. One example would be testing the device ID of one DIE  
while bypassing the others.  
The FLEx72 incorporates an IEEE 1149.1 serial boundary scan  
test access port (TAP). The TAP controller functions in a manner  
that does not conflict with the operation of other devices using  
1149.1-compliant  
TAPs.  
The  
TAP  
operates  
using  
JEDEC-standard 3.3 V I/O logic levels. It is composed of three  
input connections and one output connection required by the test  
logic defined by the standard.  
Each pin of FLEx72 family is typically connected to multiple DIEs.  
For connectivity testing with the EXTEST instruction, it is  
desirable to check the internal connections between DIEs as well  
as the external connections to the package. This can be  
accomplished by merging the netlist of the devices with the  
netlist of the user’s circuit board. To facilitate boundary scan  
testing of the devices, Cypress provides the BSDL file for each  
DIE, the internal netlist of the device, and a description of the  
device scan chain. The user can use these materials to easily  
integrate the devices into the board’s boundary scan  
environment. Further information can be found in the Cypress  
application note Using JTAG Boundary Scan with the  
FLEx18/72TM Dual-Port SRAMs.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
FLEx72 family and may be performed while the device is  
operating. An MRST must be performed on the FLEx72 after  
power-up.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the scan  
chain will output the next bit in the chain twice. For example, if  
the value expected from the chain is 1010101, the device will  
output a 11010101. This extra bit will cause some testers to  
report an erroneous failure for the FLEx72 in a scan test.  
Therefore the tester should be configured to never enter the  
PAUSE-DR state.  
Boundary Scan Hierarchy for FLEx72 Family  
Internally, the CYD04S72V and CYD09S72V have two DIEs  
while CYD18S72V has four DIEs. Each DIE contains all the  
circuitry required to support boundary scan testing. The circuitry  
includes the TAP, TAP controller, instruction register, and data  
Notes  
31. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
32. The “X” in this diagram represents the counter upper bits.  
33. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance.  
Document Number : 38-06069 Rev. *L  
Page 11 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Figure 3. Scan Chain  
18 Mbit  
4 Mbit/9 Mbit  
TDO  
TDO  
TDO  
D4  
TDI  
TDO  
D2  
TDI  
TDO  
D2  
TDI  
TDO  
D3  
TDI  
TDO  
D1  
TDI  
TDO  
D1  
TDI  
TDI  
TDI  
Table 4. Identification Register Definitions  
Instruction Field  
Revision number(31:28)  
Cypress device(27:12)  
Value  
0h  
Description  
Reserved for version number  
C002h  
Defines Cypress DIE number for CYD18S72V and  
CYD09S72V  
C001h  
034h  
1
Defines Cypress DIE number for CYD04S72V  
Allows unique identification of FLEx72 family device vendor  
Indicates the presence of an ID register  
Cypress JDEC ID(11:1)  
ID register presence (0)  
Table 5. Scan Registers Sizes  
Register Name  
Instruction  
Bit Size  
4
1
Bypass  
Identification  
Boundary scan  
32  
n[34]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO  
Places the BYR between TDI and TDO  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO  
Places BYR between TDI and TDO. Forces all FLEx72 output drivers to a High-Z state  
Controls boundary to 1/0. Places BYR between TDI and TDO  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO  
Resets the non-boundary scan logic. Places BYR between TDI and TDO  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above  
Note  
34. See details in the device BSDL files.  
Document Number : 38-06069 Rev. *L  
Page 12 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Maximum Ratings[35]  
Output current into outputs (LOW) .............................. 20 mA  
Static discharge voltage...........................................> 2000 V  
(JEDEC JESD22-A114-2000B)  
(Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested)  
Latch-up current .....................................................> 200 mA  
Storage temperature............................... –65 °C to + 150 °C  
Ambient temperature with  
power applied .......................................... –55 °C to + 125 °C  
Operating Range  
Ambient  
[36]  
Range  
VDD  
VCORE  
Supply voltage to ground potential ..............–0.5 V to + 4.6 V  
Temperature  
DC Voltage Applied to  
Outputs in High-Z state........................ –0.5 V to VDD + 0.5 V  
DC input voltage............................. –0.5 V to VDD + 0.5 V[37]  
Commercial 0 °C to +70 °C 3.3 V ± 165 mV 1.8 V ± 100 mV  
Industrial –40 °C to +85 °C 3.3 V ± 165 mV 1.8 V ± 100mV  
Electrical Characteristics Over the Operating Range  
–167  
–133  
Typ  
–100  
Typ  
Parameter  
Description  
Part No.  
Unit  
Min  
Typ  
Max Min  
Max  
Min  
Max  
VOH  
Output HIGH voltage (VDD = Min., IOH  
–4.0 mA)  
=
2.4  
2.4  
2.4  
V
VOL  
Output LOW voltage (VDD = Min., IOL= +4.0  
mA)  
0.4  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
IIX1  
Input HIGH voltage  
Input LOW voltage  
Output leakage current  
2.0  
2.0  
2.0  
V
V
0.8  
10  
10  
0.8  
10  
10  
0.8  
10  
10  
–10  
–10  
–10  
–10  
–10  
–10  
A  
A  
Input leakage current except TDI, TMS,  
MRST  
IIX2  
ICC  
Input leakage current TDI, TMS, MRST  
–0.1  
225  
1.0  
300  
–0.1  
1.0  
–0.1  
1.0  
mA  
mA  
Operating current  
(VDD = Max.,IOUT = 0 mA),  
outputs disabled  
CYD04S72V  
CYD09S72V  
CYD18S72V  
CYD04S72V  
CYD09S72V  
350  
410  
500  
580  
315  
450  
mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
ISB5  
Standby current  
(both ports TTL level)  
CEL and CER VIH, f = fMAX  
90  
115  
105  
266  
55  
150  
380  
75  
Standby current  
(one port TTL level)  
CEL | CER VIH, f = fMAX  
CYD04S72V  
CYD09S72V  
160  
210  
mA  
mA  
mA  
mA  
mA  
Standby current (both ports CYD04S72V  
55  
75  
CMOS level) CEL and CER  
VDD – 0.2V, f = 0  
CYD09S72V  
Standby current  
(one port CMOS level)  
CEL | CER VIH, f = fMAX  
CYD04S72V  
CYD09S72V  
160  
210  
75  
0
224  
320  
75  
Operating current (VDDIO CYD18S72V  
= Max, Iout = 0 mA, f = 0)  
outputs disabled  
[36]  
ICORE  
Core operating current for (VDD = Max.,  
0
0
0
0
0
I
OUT = 0 mA), outputs disabled  
Notes  
35. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
36. This family of Dual-Ports does not use VCORE, and these pins are internally NC. The next generation Dual-Port family, the FLEx72-E™, will use VCORE of 1.5 V or  
1.8 V. Please contact local Cypress FAE for more information.  
37. Pulse width < 20 ns.  
Document Number : 38-06069 Rev. *L  
Page 13 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Capacitance[38]  
Part#  
Parameter  
Description  
Input capacitance  
Test Conditions  
Max  
Unit  
pF  
CYD04S72V CIN  
CYD09S72V  
TA = 25 °C, f = 1 MHz,  
VDD = 3.3 V  
20  
10[39]  
40  
COUT  
Output capacitance  
Input capacitance  
Output capacitance  
pF  
CYD18S72V CIN  
COUT  
pF  
20  
pF  
AC Test Load and Waveforms  
3.3 V  
Z0 = 50  
R = 50   
OUTPUT  
R1 = 590   
OUTPUT  
C = 5 pF  
C = 10 pF  
R2 = 435   
VTH = 1.5 V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0 V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
–167  
–133  
–100  
CYD18S72V  
Parameter  
Description  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Unit  
Min  
Max  
167  
Min  
Max  
133  
Min  
Max  
133  
Min  
Max  
100  
fMAX2  
tCYC2  
tCH2  
Maximum operating frequency  
Clock cycle time  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.4  
3.4  
10  
Clock HIGH time  
4.5  
4.5  
tCL2  
Clock LOW time  
[40]  
tR  
Clock rise time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[40]  
tF  
Clock fall time  
tSA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
tHD  
Address set-up time  
Address hold time  
Byte select set-up time  
Byte select hold time  
Chip enable set-up time  
Chip enable hold time  
R/W set-up time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.2  
1.0  
2.2  
1.0  
NA  
NA  
2.2  
1.0  
2.2  
1.0  
2.7  
1.0  
2.7  
1.0  
NA  
NA  
2.7  
1.0  
2.7  
1.0  
R/W hold time  
Input data set-up time  
Input data hold time  
Notes  
38. C  
also references C  
I/O.  
OUT  
39. Except INT and CNTINT which are 20 pF.  
40. Except JTAG signal (t and t < 10 ns max).  
R
F
Document Number : 38-06069 Rev. *L  
Page 14 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Characteristics Over the Operating Range (continued)  
–167  
–133  
–100  
Parameter  
Description  
CYD04S72V  
CYD09S72V  
CYD18S72V  
CYD18S72V  
Unit  
Min  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
Max  
Min  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
Max  
Min  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Max  
Min  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Max  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tSCM  
tHCM  
tOE  
ADS set-up time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADS hold time  
CNTEN set-up time  
CNTEN hold time  
CNTRST set-up time  
CNTRST hold time  
CNT/MSK set-up time  
CNT/MSK hold time  
Output enable to data valid  
OE to Low Z  
4.0  
4.4  
5.5  
5.5  
[41, 42]  
tOLZ  
0
0
0
0
[41, 42]  
tOHZ  
OE to High Z  
0
4.0  
4.0  
4.0  
4.0  
0
4.4  
4.4  
4.4  
4.4  
0
5.5  
5.0  
NA  
NA  
0
5.5  
5.2  
NA  
NA  
tCD2  
tCA2  
tCM2  
Clock to data valid  
Clock to counter address valid  
Clock to mask register readback  
valid  
tDC  
Data output hold after clock  
HIGH  
1.0  
1.0  
1.0  
1.0  
ns  
[41, 42]  
tCKHZ  
Clock HIGH to output High Z  
Clock HIGH to output Low Z  
Clock to INT set time  
0
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
0
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
0
4.7  
4.7  
7.5  
7.5  
NA  
NA  
0
5.0  
5.0  
10  
ns  
ns  
ns  
ns  
ns  
ns  
[41, 42]  
tCKLZ  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
tSINT  
tRINT  
Clock to INT reset time  
10  
tSCINT  
tRCINT  
Clock to CNTINT set time  
Clock to CNTINT reset time  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to clock skew  
5.2  
6.0  
5.7  
8.0  
ns  
Master Reset Timing  
tRS  
Master reset pulse width  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
6.0  
5.0  
5.0  
8.5  
5.0  
cycles  
ns  
tRSS  
Master reset set-up time  
tRSR  
Master reset recovery time  
Master Reset to outputs inactive  
cycles  
ns  
tRSF  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
tRSCNTINT  
Master reset to counter interrupt  
flag reset time  
ns  
Notes  
41. This parameter is guaranteed by design, but is not production tested.  
42. Test conditions used are Load 2.  
Document Number : 38-06069 Rev. *L  
Page 15 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
JTAG Timing Characteristics  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Parameter  
Description  
Unit  
–167/–133/–100  
Min  
Max  
10  
fJTAG  
tTCYC  
tTH  
Maximum JTAG TAP controller frequency  
TCK clock cycle time  
100  
40  
40  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock HIGH time  
tTL  
TCK clock LOW time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS set-up to TCK clock rise  
TMS hold after TCK clock rise  
TDI set-up to TCK clock rise  
TDI hold after TCK clock rise  
TCK clock LOW to TDO valid  
TCK clock LOW to TDO invalid  
30  
0
Switching Waveforms  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Document Number : 38-06069 Rev. *L  
Page 16 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 4. Master Reset  
tRS  
MRST  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Figure 5. Read Cycle[43, 44, 45, 46, 47]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE7  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes  
43. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and  
0
1
can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
44. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
45. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
46. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
47. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document Number : 38-06069 Rev. *L  
Page 17 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 6. Bank Select Read[48, 49]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Figure 7. Read-to-Write-to-Read (OE = LOW)[47, 50, 51, 52, 53]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+2  
tSD tHD  
Dn+2  
An+3  
ADDRESS  
DATAIN  
tSA  
tHA  
tCD2  
tDC  
tCKHZ  
Qn  
DATAOUT  
WRITE  
NO OPERATION  
READ  
Notes  
48. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx72 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
49. ADS = CNTEN = BE0 – BE7 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
50. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
51. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
52. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
53. CE = BE0 – BE7 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document Number : 38-06069 Rev. *L  
Page 18 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 8. Read-to-Write-to-Read (OE Controlled)[54, 55, 56, 57]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Figure 9. Read with Address Counter Advance[56]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Notes  
54. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
55. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
56. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH  
0
1
57. CE = BE0 – BE7 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document Number : 38-06069 Rev. *L  
Page 19 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 10. Write with Address Counter Advance [58]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Note  
58. CE = BE0 – BE7 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document Number : 38-06069 Rev. *L  
Page 20 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 11. Counter Reset [59, 60]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
tSD  
DATAIN  
D0  
tCD2  
tCD2  
[72]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS An  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS Am  
Notes  
59. CE = BE0 – BE7 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
60. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
Document Number : 38-06069 Rev. *L  
Page 21 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 12. Readback State of Address Counter or Mask Register[61, 62, 63, 64]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A17  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
EXTERNAL  
ADDRESS  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
Notes  
61. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
62. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
63. Address in input mode. Host can drive address bus after t  
.
CKHZ  
64. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document Number : 38-06069 Rev. *L  
Page 22 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 13. Left_Port (L_Port) Write to Right_Port (R_Port) Read[65, 66, 67]  
tCYC2  
tCL2  
tCH2  
CLKL  
tHA  
tSA  
L_PORT  
ADDRESS  
An  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
ADDRESS  
An  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes  
65. CE = OE = ADS = CNTEN = BE0 – BE7 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
66. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
67. If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If  
CCS  
CYC2  
CD2  
t
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CYC2  
CD2  
Document Number : 38-06069 Rev. *L  
Page 23 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Switching Waveforms (continued)  
Figure 14. Counter Interrupt and Retransmit[68, 69, 70, 71, 72]  
tCYC2  
tCL2  
tCH2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
1FFFE  
tSCINT  
1FFFC  
Last_Loaded  
1FFFD  
1FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Figure 15. Mailbox Interrupt Timing[73, 74, 75, 76, 77]  
tCYC2  
tCL2  
tCH2  
CLKL  
tSA tHA  
3FFFF  
L_PORT  
ADDRESS  
An+1  
An  
An+2  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
ADDRESS  
Am+1  
3FFFF  
Am+3  
Am+4  
Notes  
68. CE = OE = BE0 – BE7 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
69. CNTINT is always driven.  
70. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
71. The mask register assumed to have the value of 1FFFFh.  
72. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
73. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
74. Address “1FFFF” is the mailbox location for R_Port.  
75. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
76. At least one byte enable (B0 – B3) is required to be active during interrupt operations.  
77. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
Document Number : 38-06069 Rev. *L  
Page 24 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Table 7. Read/Write and Enable Operation (Any Port) [78, 79, 80, 81, 82]  
Inputs  
Outputs  
DQ0 DQ71  
High-Z  
Operation  
OE  
CLK  
CE0  
CE1  
R/W  
X
H
X
X
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
H
X
DOUT  
High-Z  
Read  
H
X
Outputs disabled  
Notes  
78. CYD04S72V have 16 address bits, CYD09S72V have 17 address bits and CYD18S72V have 18 bits.  
79. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
80. OE is an asynchronous input signal.  
81. When CE changes state, deselection and Read happen after one cycle of latency.  
82. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document Number : 38-06069 Rev. *L  
Page 25 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Ordering Information  
Speed  
(MHz)  
Ordering Code  
Package Name  
Package Type  
Operating Range  
256K × 72 (18-Mbit) 3.3 V Synchronous CYD18S72V Dual-Port SRAM  
133  
100  
CYD18S72V-133BBC  
CYD18S72V-133BBI  
CYD18S72V-100BBC  
CYD18S72V-100BBI  
BB484  
BB484  
BB484  
BB484  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
Commercial  
Industrial  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
Commercial  
Industrial  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
128K  
× 72 (9-Mbit) 3.3 V Synchronous CYD09S72V Dual-Port SRAM  
133  
CYD09S72V-133BBC  
BB484  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
Commercial  
Commercial  
64K x 72 (4-Mbit) 3.3 V Synchronous CYD04S72V Dual-Port SRAM  
167  
CYD04S72V-167BBC  
BB484  
484-ball Ball Grid Array  
23 mm × 23 mm with 1.0-mm pitch (FBGA)  
Ordering Code Definitions  
CY D XX 72 V - XXX BB  
S
X
X
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
X = Pb-free (RoHS Compliant)  
Package Type:  
BB = 484-ball BGA  
Speed Grade: XXX = 100 MHz / 133 MHz / 167 MHz  
V = 3.3 V  
72 = Width: × 72  
S = Sync  
XX = Density: 04 = 4 Mb; 09 = 9 Mb; 18 = 18 Mb  
D = Dual Port SRAM  
CY = Cypress Device  
Document Number : 38-06069 Rev. *L  
Page 26 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Package Diagram  
51-85124 *G  
Document Number : 38-06069 Rev. *L  
Page 27 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Acronyms  
Acronym  
CMOS  
FBGA  
Description  
Complementary metal oxide semiconductor  
fine-pitch ball grid array  
joint test action group  
JTAG  
OE  
Output enable  
RAM  
Random access memory  
Document Conventions  
Units of Measure  
Symbol  
ns  
Unit of Measure  
nano seconds  
Volts  
V
µA  
mA  
mV  
mW  
MHz  
pF  
micro Amperes  
milli Amperes  
milli Volts  
milli Watts  
Mega Hertz  
pico Farad  
degree Celcius  
Watts  
°C  
W
Document Number : 38-06069 Rev. *L  
Page 28 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Document History Page  
Document Title: CYD04S72V / CYD09S72V / CYD18S72V FLEx72™ 3.3 V 64 K/128 K/256 K × 72 Synchronous Dual-Port  
RAM  
Document Number: 38-06069  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
125859  
128707  
06/17/03  
08/01/03  
SPN  
New Data Sheet  
*A  
SPN  
Added -133 speed bin  
Updated spec values for ICC, tHA, HB, HW, HD  
t
t
t
Added new parameter ICC1  
Added bank select read and read to write to read (OE=low) timing diagrams  
*B  
128997  
09/18/03  
SPN  
Updated spec values for tOE, tOHZ, CH2, CL2, HA, HB, HW, HD, CC, SB5, SA,  
tSB, SW, SD, CD2  
Updated read to write (OE=low) timing diagram  
Updated Master Reset values for tRS, RSR, RSF  
t
t
t
t
t
t
I
I
t
t
t
t
t
t
Updated pinout  
Updated VCORE voltage range  
*C  
*D  
129936  
233830  
09/30/03  
See ECN  
SPN  
Updated package diagram  
Updated tCD2 value on first page  
Removed Preliminary status  
WWZ  
Added 4 Mbit and 9 Mbit x72 devices into the data sheet with updated pinout,  
pin description table, power table, and timing table  
Changed title  
Added Preliminary status to reflect the addition of 4 Mbit and 9 Mbit devices  
Removed FLEx72-E from the document  
Added counter related functions for 4 Mbit and 9 Mbit  
Removed standard JTAG description  
Updated block diagram  
Updated pinout with FTSEL and one more PORTSTD pins per port  
Updated tRSF of CYD18S72V value  
*E  
*F  
288892  
327355  
See ECN  
See ECN  
WWZ  
AEQ  
Change pinout D15 from REV[2,4] to VSS to reflect SC pin removal  
Changed pinout K3 from NC to NC[2,5]  
Changed pinout K20 from NC to NC[2,5]  
Changed pinout D15 from VSS to NC  
Changed pinout D8 and M3 from REVL[2,4] to VSS  
Changed pinout M20 and W15 from REVR[2,4] to VSS  
*G  
*H  
345735  
360316  
See ECN  
See ECN  
PCX  
YDT  
VREF Pin Definition Updated  
Added Pb-Free Part Ordering Informations  
Added note for VCORE  
Changed notes for PORTSTD to VSS  
Changed ICC, ISB1, ISB2 and ISB4 number for CYD09S72V per PE request  
*I  
460454  
See ECN  
07/01/10  
YDT  
AJU  
Changed CYDxxS72AV to CYDxxS72V (rev. A not implemented)  
*J  
2898491  
Removed inactive parts from Ordering Information.  
Updated Packaging Information  
*K  
*L  
3110296 12/14/2010  
3265044 05/25/2011  
ADMU  
ADMU  
Updated Ordering Information.  
Added Ordering Code Definitions.  
Updates link to Application note.  
Removed obsolete part information.  
Notes updated across datasheet as per template.  
Added Acronyms and Units of measure table.  
Document Number : 38-06069 Rev. *L  
Page 29 of 30  
[+] Feedback  
CYD04S72V  
CYD09S72V  
CYD18S72V  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2003-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number : 38-06069 Rev. *L  
Revised May 25, 2011  
Page 30 of 30  
[+] Feedback  

相关型号:

CYD09S18V

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CYD09S18V-100BBC

FLEx18™ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CYD09S18V-100BBI

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CYD09S18V-133BBC

FLEx18⑩ 3.3V 64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CYD09S18V18

18-Mb/9-Mb/4-Mb x36/x18 FullFlex⑩ Dual-Ports
CYPRESS

CYD09S18V18-167BBC

Dual-Port SRAM, 512KX18, 11ns, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, MO-192, FBGA-256
CYPRESS

CYD09S18V18-167BBXI

512KX18 DUAL-PORT SRAM, 4ns, PBGA256, 17 X 17 MM, 1.70 MM HEIGHT, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
ROCHESTER

CYD09S18V18-200BBXC

512KX18 DUAL-PORT SRAM, 3.3ns, PBGA256, 17 X 17 MM, 1.70 MM HEIGHT, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
ROCHESTER

CYD09S18V18-200BBXI

Dual-Port SRAM, 512KX18, 3.3ns, CMOS, PBGA256, 17 X 17 MM, 1.70 MM HEIGHT, 1 MM PITCH, LEAD FREE, MO-192, FBGA-256
CYPRESS

CYD09S36V

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD09S36V-133BBC

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS

CYD09S36V-133BBI

FLEx36 3.3V 32K/64K/128K/256K/512 x 36 Synchronous Dual-Port RAM
CYPRESS