CY8C21334-24PVXI [CYPRESS]

PSoC㈢ Mixed-Signal Array; 的PSoC ™混合信号阵列
CY8C21334-24PVXI
型号: CY8C21334-24PVXI
厂家: CYPRESS    CYPRESS
描述:

PSoC㈢ Mixed-Signal Array
的PSoC ™混合信号阵列

多功能外围设备 微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总42页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSoC® Mixed-Signal Array  
Final Data Sheet  
CY8C21234, CY8C21334,  
CY8C21434, CY8C21534, and CY8C21634  
Features  
Powerful Harvard Architecture Processor  
Flexible On-Chip Memory  
Programmable Pin Configurations  
M8C Processor Speeds to 24 MHz  
Low Power at High Speed  
8K Flash Program Storage 50,000 Erase/Write  
Cycles  
25 mA Drive on All GPIO  
Pull Up, Pull Down, High Z, Strong, or Open  
Drain Drive Modes on All GPIO  
512 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
2.4V to 5.25V Operating Voltage  
Up to 8 Analog Inputs on GPIO  
Operating Voltages Down to 1.0V Using  
On-Chip Switch Mode Pump (SMP)  
Configurable Interrupt on All GPIO  
Industrial Temperature Range: -40°C to +85°C  
Flexible Protection Modes  
Versatile Analog Mux  
EEPROM Emulation in Flash  
Common Internal Analog Bus  
Advanced Peripherals (PSoC Blocks)  
Simultaneous Connection of IO Combinations  
Capacitive Sensing Application Capability  
Complete Development Tools  
4 Analog Type “E” PSoC Blocks Provide:  
- 2 Comparators with DAC Refs  
Free Development Software  
(PSoC Designer™)  
Additional System Resources  
- Single or Dual 8-Bit 28 Channel ADC  
4 Digital PSoC Blocks Provide:  
Full-Featured, In-Circuit Emulator and  
Programmer  
2
I C™ Master, Slave and Multi-Master to  
400 kHz  
- 8- to 32-Bit Timers, Counters, and PWMs  
- CRC and PRS Modules  
Full Speed Emulation  
Watchdog and Sleep Timers  
Complex Breakpoint Structure  
128K Trace Memory  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
- Full-Duplex UART, SPIMaster or Slave  
- Connectable to All GPIO Pins  
Complex Peripherals by Combining Blocks  
Precision, Programmable Clocking  
On-Chip Precision Voltage Reference  
Internal ±2.5% 24/48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
PSoC® Functional Overview  
The PSoC® family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components  
with one, low cost single-chip programmable component. A  
PSoC device includes configurable blocks of analog and digital  
logic, as well as programmable interconnect. This architecture  
allows the user to create customized peripheral configurations,  
to match the requirements of each individual application. Addi-  
tionally, a fast CPU, Flash program memory, SRAM data mem-  
ory, and configurable IO are included in a range of convenient  
pinouts.  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow all the device resources to be combined into a  
complete custom system. Each CY8C21x34 PSoC device  
includes four digital blocks and four analog blocks. Depending  
on the PSoC package, up to 28 general purpose IO (GPIO) are  
also included. The GPIO provide access to the global digital  
and analog interconnects.  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO (inter-  
nal main oscillator) and ILO (internal low speed oscillator). The  
January 12, 2007  
© Cypress Semiconductor Corp. 2004-2007 — Document No. 38-12025 Rev. *K  
1
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
CPU core, called the M8C, is a powerful processor with speeds  
up to 24 MHz. The M8C is a four MIPS 8-bit Harvard architec-  
ture microprocessor.  
Digital System Block Diagram  
Port 3  
Port 1  
Port 2  
Port 0  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC mixed-signal  
arrays, I2C functionality for implementing an I2C master, slave,  
MultiMaster, an internal voltage reference that provides an  
absolute value of 1.3V to a number of PSoC subsystems, a  
switch mode pump (SMP) that generates normal operating volt-  
ages off a single battery cell, and various system resets sup-  
ported by the M8C.  
DigitalClocks  
FromCore  
ToAnalog  
System  
To SystemBus  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
Row 0  
The Digital System is composed of an array of digital PSoC  
blocks, which can be configured into any number of digital  
peripherals. The digital blocks can be connected to the GPIO  
through a series of global buses that can route any signal to any  
pin. Freeing designs from the constraints of a fixed peripheral  
controller.  
4
4
DBB00  
DBB01  
DCB02  
DCB03  
8
8
8
8
The Analog System is composed of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to  
8 bits in precision.  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
The Digital System  
The Digital System is composed of 4 digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral configura-  
tions include those listed below.  
The Analog System  
The Analog System is composed of 4 configurable blocks,  
allowing the creation of complex analog signal flows. Analog  
peripherals are very flexible and can be customized to support  
specific application requirements. Some of the common PSoC  
analog functions for this device (most available as user mod-  
ules) are listed below.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Analog-to-digital converters (single or dual, with 8-bit resolu-  
Timers (8 to 32 bit)  
tion)  
UART 8 bit with selectable parity  
SPI master and slave  
Pin-to-pin comparator  
Single-ended comparators (up to 2) with absolute (1.3V) ref-  
erence or 8-bit DAC reference  
I2C slave and multi-master  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA  
1.3V reference (as a System Resource)  
In most PSoC devices, analog blocks are provided in columns  
of three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x34 devices provide  
limited functionality Type “E” analog blocks. Each column con-  
tains one CT Type E block and one SC Type E block. Refer to  
the PSoC Mixed-Signal Array Technical Reference Manual for  
detailed information on the CY8C21x34’s Type E analog blocks.  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the con-  
straints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the opti-  
mum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device Charac-  
teristics” on page 3.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
2
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
Analog System Block Diagram  
Additional System Resources  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems. Addi-  
tional resources include a switch mode pump, low voltage  
detection, and power on reset. Brief statements describing the  
merits of each system resource are presented below.  
Array Input  
Configuration  
Digital clock dividers provide three customizable clock fre-  
quencies for use in applications. The clocks can be routed to  
both the digital and analog systems. Additional clocks can be  
generated using digital PSoC blocks as clock dividers.  
ACI0[1:0]  
ACI1[1:0]  
The I2C module provides 100 and 400 kHz communication  
over two wires. Slave, master, and multi-master modes are  
all supported.  
All IO  
X
X
Low Voltage Detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
AC OL 1MU X  
X
X
An al o g MuxBus  
X
Array  
An internal 1.3 voltage reference provides an absolute refer-  
ACE00  
ACE01  
ASE11  
ence for the analog system, including ADCs and DACs.  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
ASE10  
Versatile analog multiplexer system.  
PSoC Device Characteristics  
The Analog Multiplexer System  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources  
available for specific PSoC device groups. The PSoC device  
covered by this data sheet is highlighted below.  
The Analog Mux Bus can connect to every GPIO pin. Pins can  
be connected to the bus individually or in any combination. The  
bus also connects to the analog system for analysis with com-  
parators and analog-to-digital converters. An additional 8:1 ana-  
log input multiplexer provides a second path to bring Port 0 pins  
to the analog array.  
PSoC Device Characteristics  
Switch control logic enables selected pins to precharge continu-  
ously under hardware control. This enables capacitive mea-  
surement for applications such as touch sensing. Other  
multiplexer applications include:  
PSoC Part  
Number  
up to  
64  
CY8C29x66  
4
16  
12  
4
4
12  
2K  
32K  
Track pad, finger sensing.  
up to  
44  
256  
Bytes  
CY8C27x43  
CY8C24x94  
CY8C24x23A  
2
1
1
8
4
4
12  
48  
12  
4
2
2
4
2
2
12  
6
16K  
16K  
4K  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
56  
1K  
up to  
24  
256  
Bytes  
6
When designing capacitive sensing applications, refer to the  
signal-to-noise system level requirement found in Application  
Note AN2403 at http://www.cypress.com/design/AN2403 on the  
Cypress web site.  
up to  
28  
512  
Bytes  
a
CY8C21x34  
CY8C21x23  
CY8C20x34  
1
1
0
4
4
0
28  
8
0
0
0
2
2
0
8K  
4K  
8K  
4
256  
Bytes  
a
16  
4
up to  
28  
512  
Bytes  
b
28  
3
a. Limited analog functionality.  
b. Two analog blocks and one CapSense.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
3
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
Getting Started  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows NT 4.0, Windows 2000, Windows Millennium  
(Me), or Windows XP. (Reference the PSoC Designer Func-  
tional Flow diagram below.)  
The quickest path to understanding the PSoC silicon is by read-  
ing this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an over-  
view of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual, which  
can be found on http://www.cypress.com/psoc.  
PSoC Designer helps the customer to select an operating con-  
figuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on  
the web at http://www.cypress.com.  
Development Kits  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com, click the Online Store shopping cart  
icon at the bottom of the web page, and click PSoC (Program-  
mable System-on-Chip) to view a current list of available items.  
PSoC Designer Subsystems  
Technical Training Modules  
Free PSoC technical training modules are available for users  
new to PSoC. Training modules cover designing, debugging,  
advanced  
analog  
and  
CapSense.  
Go  
to  
http://  
www.cypress.com/techtrain.  
Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Design  
Support located on the left side of the web page, and select  
CYPros Consultants.  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/login.cfm.  
Application Notes  
A long list of application notes will assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
the http://www.cypress.com web site and select Application  
Notes under the Design Resources list located in the center of  
the web page. Application notes are sorted by date by default.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
4
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
PSoC Designer Software Subsystems  
Device Editor  
Debugger  
The device editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read the  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic reconfig-  
uration allows for changing configurations at run time.  
PSoC Designer sets up power-on initialization tables for  
selected PSoC block configurations and creates source code  
for an application framework. The framework contains software  
to operate the selected components and, if the project uses  
more than one operating configuration, contains routines to  
switch between different sets of PSoC block configurations at  
run time. PSoC Designer can print out a configuration sheet for  
a given project configuration for use during application pro-  
gramming in conjunction with the Device Data Sheet. Once the  
framework is generated, the user can add application-specific  
code to flesh out the framework. It’s also possible to change the  
selected components and regenerate the framework.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Hardware Tools  
In-Circuit Emulator  
Design Browser  
A low cost, high functionality ICE (In-Circuit Emulator) is avail-  
able for development support. This hardware has the capability  
to program single devices.  
The Design Browser allows users to select and import precon-  
figured designs into the user’s project. Users can easily browse  
a catalog of preconfigured designs to facilitate time-to-design.  
Examples provided in the tools include a 300-baud modem, LIN  
Bus master and slave, fan controller, and magnetic card reader.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and will operate  
with all PSoC devices. Emulation pods for each device family  
are available separately. The emulation pod takes the place of  
the PSoC device in the target board and performs full speed (24  
MHz) operation.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble, com-  
pile, link, and build.  
Assembler. The macro assembler allows the assembly code  
to be merged seamlessly with C code. The link libraries auto-  
matically use absolute addressing or can be compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler is available  
that supports the PSoC family of devices. Even if you have  
never worked in the C language before, the product quickly  
allows you to create complete C programs for the PSoC family  
devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
5
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
User Module and Source Code Development Flows  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture  
a unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, buses and to the IO  
pins. Iterative development cycles permit you to adapt the hard-  
ware as well as the software. This substantially lowers the risk  
of having to select a different part to meet the final design  
requirements.  
Device Editor  
Placement  
User  
Module  
Selection  
Source  
Code  
Generator  
and  
Parameter  
-ization  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
Project  
Manager  
Build  
Manager  
To speed the development process, the PSoC Designer Inte-  
grated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library con-  
tains over 50 common peripherals such as ADCs, DACs Tim-  
ers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Build  
All  
Debugger  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters  
that allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Mod-  
ule configures one or more digital PSoC blocks, one for each 8  
bits of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides high-  
level functions to control and respond to hardware events at run  
time. The API also provides optional interrupt service routines  
that you can adapt as needed.  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
The next step is to write your main program, and any sub-rou-  
tines using PSoC Designer’s Application Editor subsystem.  
The Application Editor includes a Project Manager that allows  
you to open the project source code files (including all gener-  
ated code files) from a hierarchal view. The source code editor  
provides syntax coloring and advanced edit features for both C  
and assembly language. File search capabilities include simple  
string searches and recursive “grep-style” patterns. A single  
mouse click invokes the Build Manager. It employs a profes-  
sional-strength “makefile” system to automatically analyze all  
file dependencies and run the compiler and assembler as nec-  
essary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in  
a console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the set-  
ting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project, you  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides the high-level user  
module API functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger down-  
loads the HEX image to the In-Circuit Emulator (ICE) where it  
runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
6
[+] Feedback  
CY8C21x34 Final Data Sheet  
PSoC® Overview  
Document Conventions  
Table of Contents  
For an in depth discussion and more information on your PSoC  
device, obtain the PSoC Mixed-Signal Array Technical Refer-  
ence Manual on http://www.cypress.com. This document is  
organized into the following chapters and sections.  
Acronyms Used  
The following table lists the acronyms that are used in this doc-  
ument.  
1.  
Pin Information ........................................................................................ 8  
1.1 Pinouts ........................................................................................... 8  
Acronym  
AC  
Description  
alternating current  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
16-Pin Part Pinout .......................................................... 8  
20-Pin Part Pinout .......................................................... 9  
28-Pin Part Pinout ........................................................ 10  
32-Pin Part Pinout ........................................................ 11  
56-Pin Part Pinout ......................................................... 12  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
2.  
3.  
Register Reference ................................................................................ 14  
2.1  
2.2  
Register Conventions ................................................................... 14  
Register Mapping Tables ............................................................. 14  
DAC  
DC  
digital-to-analog converter  
direct current  
Electrical Specifications ....................................................................... 17  
ECO  
EEPROM  
FSR  
GPIO  
GUI  
external crystal oscillator  
electrically erasable programmable read-only memory  
full scale range  
3.1  
3.2  
3.3  
Absolute Maximum Ratings ......................................................... 18  
Operating Temperature ................................................................ 18  
DC Electrical Characteristics ........................................................ 18  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.7  
3.3.8  
DC Chip-Level Specifications ........................................ 18  
DC General Purpose IO Specifications ......................... 19  
DC Operational Amplifier Specifications ....................... 20  
DC Low Power Comparator Specifications ................... 20  
DC Switch Mode Pump Specifications .......................... 21  
DC Analog Mux Bus Specifications ............................... 22  
DC POR and LVD Specifications .................................. 22  
DC Programming Specifications ................................... 23  
general purpose IO  
graphical user interface  
human body model  
HBM  
ICE  
in-circuit emulator  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
3.4  
AC Electrical Characteristics ........................................................ 24  
IMO  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
AC Chip-Level Specifications ........................................ 24  
AC General Purpose IO Specifications ......................... 26  
AC Operational Amplifier Specifications ........................ 27  
AC Low Power Comparator Specifications ................... 27  
AC Analog Mux Bus Specifications ............................... 27  
AC Digital Block Specifications ..................................... 27  
AC External Clock Specifications .................................. 29  
AC Programming Specifications .................................... 30  
AC I2C Specifications .................................................... 31  
IO  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
4.  
5.  
Packaging Information .......................................................................... 32  
PLL  
phase-locked loop  
4.1  
4.2  
4.3  
Packaging Dimensions ................................................................. 32  
Thermal Impedances .................................................................. 36  
Solder Reflow Peak Temperature ................................................ 36  
POR  
PPOR  
PSoC®  
PWM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
switched capacitor  
Development Tool Selection ................................................................ 37  
5.1  
Software ....................................................................................... 37  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
PSoC Designer............................................................... 37  
PSoC Express‰ ........................................................... 37  
PSoC Programmer ........................................................ 37  
CY3202-C iMAGEcraft C Compiler ............................... 37  
SLIMO  
SMP  
SRAM  
slow IMO  
5.2  
5.3  
Development Kits ......................................................................... 37  
switch mode pump  
5.2.1  
5.2.2  
CY3215-DK Basic Development Kit .............................. 37  
CY3210-ExpressDK Development Kit ........................... 38  
static random access memory  
Evaluation Tools ........................................................................... 38  
5.3.1  
5.3.2  
5.3.3  
CY3210-MiniProg1 ........................................................ 38  
CY3210-PSoCEval1 ...................................................... 38  
CY3214-PSoCEvalUSB ................................................ 38  
5.4  
Device Programmers ................................................................... 38  
Units of Measure  
5.4.1  
5.4.2  
CY3216 Modular Programmer ...................................... 38  
CY3207ISSP In-System Programmer ........................... 38  
A units of measure table is located in the Electrical Specifica-  
tions section. Table 3-1 on page 17 lists all the abbreviations  
used to measure the PSoC devices.  
5.5  
5.6  
5.7  
Accessories (Emulation and Programming) ................................. 39  
3rd-Party Tools ............................................................................. 39  
Build a PSoC Emulator into Your Board ...................................... 39  
6.  
7.  
Ordering Information ............................................................................ 40  
6.1 Ordering Code Definitions ............................................................ 40  
Numeric Naming  
Sales and Service Information ............................................................. 41  
7.1  
7.2  
Revision History ........................................................................... 41  
Copyrights and Code Protection .................................................. 42  
Hexidecimal numbers are represented with all letters in upper-  
case with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
7
[+] Feedback  
1. Pin Information  
This chapter describes, lists, and illustrates the CY8C21x34 PSoC device pins and pinout configurations.  
1.1  
Pinouts  
The CY8C21x34 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port  
pin (labeled with a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, SMP, and XRES are  
not capable of Digital IO.  
1.1.1  
16-Pin Part Pinout  
Table 1-1. 16-Pin Part Pinout (SOIC)  
Type  
Pin  
CY8C21234 16-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7] Analog column mux input.  
P0[5] Analog column mux input.  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
SMP  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
P1[4],EXTCLK,M  
P1[2],M  
P0[3] Analog column mux input, integrating  
input.  
SOIC  
4
5
IO  
I, M  
P0[1] Analog column mux input, integrating  
input.  
Vss  
M,I2CSCL,P1[1]  
Vss  
Power  
Power  
SMP  
Switch Mode Pump (SMP) connection to  
required external components.  
P1[0],I2CSDA,M  
6
Vss  
Ground connection.  
7
IO  
M
P1[1] I2C Serial Clock (SCL), ISSP-SCLK*.  
Vss Ground connection.  
8
Power  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M
M
P1[0] I2C Serial Data (SDA), ISSP-SDATA*.  
P1[2]  
10  
11  
12  
13  
14  
15  
16  
M
P1[4] Optional External Clock Input (EXTCLK).  
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input.  
P0[6] Analog column mux input.  
I, M  
I, M  
I, M  
I, M  
Power  
Vdd  
Supply voltage.  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset).  
See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
8
[+] Feedback  
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.2  
20-Pin Part Pinout  
Table 1-2. 20-Pin Part Pinout (SSOP)  
Type  
Pin  
CY8C21334 20-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Analog column mux input.  
Analog column mux input.  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
XRES  
P1[6],M  
P1[4],EXTCLK,M  
P1[2],M  
Analog column mux input, integrating  
input.  
4
IO  
I, M  
P0[1]  
Analog column mux input, integrating  
input.  
SSOP  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
5
6
Power  
Vss  
Ground connection.  
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
M,I2C  
SCL,P1[1]  
Vss  
7
P1[0],I2C SDA,M  
10  
8
9
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
10  
11  
12  
13  
Power  
IO  
IO  
IO  
M
M
M
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA*.  
Optional External Clock Input (EXT-  
CLK).  
14  
15  
IO  
M
P1[6]  
Input  
XRES  
Active high external reset with internal  
pull down.  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I, M  
I, M  
I, M  
I, M  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset).  
See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
9
[+] Feedback  
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.3  
28-Pin Part Pinout  
Table 1-3. 28-Pin Part Pinout (SSOP)  
Type  
Pin  
CY8C21534 28-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
IO  
IO  
I, M  
I, M  
P0[7]  
P0[5]  
Analog column mux input.  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
M,P2[7]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Vdd  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Analog column mux input and column  
output.  
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
P2[6],M  
3
4
IO  
IO  
I, M  
I, M  
P0[3]  
P0[1]  
Analog column mux input and column  
output, integrating input.  
Analog column mux input, integrating  
input.  
M,P2[5]  
M, P2[3]  
M, P2[1]  
P2[4],M  
P2[2],M  
SSOP  
5
IO  
IO  
IO  
IO  
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Vss  
6
Vss  
P2[0],M  
XRES  
P1[6],M  
7
I, M  
I, M  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Ground connection.  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
8
P1[4],EXTCLK,M  
P1[2],M  
P1[0],I2C SDA,M  
9
Power  
Power  
M,I2C SCL,P1[1]  
Vss  
10  
11  
12  
13  
14  
15  
16  
17  
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
IO  
IO  
IO  
M
M
M
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA*.  
Optional External Clock Input (EXT-  
CLK).  
18  
19  
IO  
M
P1[6]  
Input  
XRES  
Active high external reset with internal  
pull down.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I, M  
I, M  
M
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
M
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset).  
See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
10  
[+] Feedback  
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.4  
32-Pin Part Pinout  
Table 1-4. 32-Pin Part Pinout (QFN**)  
Type  
Pin  
CY8C21434 32-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
IO  
I, M  
P0[1]  
Analog column mux input, integrating  
input.  
2
3
4
5
6
6
IO  
IO  
IO  
IO  
IO  
M
M
M
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
SMP  
In CY8C21434 part.  
Power  
Switch Mode Pump (SMP) connection to  
required external components in  
CY8C21634 part.  
7
IO  
M
P3[1]  
Vss  
In CY8C21434 part.  
7
Power  
Power  
Ground connection in CY8C21634 part.  
I2C Serial Clock (SCL).  
8
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
9
I2C Serial Data (SDA).  
10  
11  
12  
13  
14  
15  
16  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
IO  
IO  
IO  
IO  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
I2C Serial Data (SDA), ISSP-SDATA*.  
Optional External Clock Input (EXTCLK).  
17  
Input  
XRES  
Active high external reset with internal  
pull down.  
CY8C21634 32-Pin PSoC Device  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M
M
M
M
M
M
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
Power  
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Analog column mux input.  
Analog column mux input.  
Analog column mux input, integrating  
input.  
32  
Power  
Vss  
Ground connection.  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset).  
See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
** The center pad on the QFN package should be connected to ground (Vss)  
for best mechanical, thermal, and electrical performance. If not connected to  
ground, it should be electrically floated and not connected to any other signal.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
11  
[+] Feedback  
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.5  
56-Pin Part Pinout  
The 56-pin SSOP part is for the CY8C21001 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Table 1-5. 56-Pin Part Pinout (SSOP)  
Type  
CY8C21001 56-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
Power  
Vss  
Ground connection.  
Vss  
56  
55  
Vdd  
1
2
2
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
Analog column mux input.  
AI, P0[7]  
AI, P0[5]  
AI, P0[3]  
P0[6], AI  
P0[4], AI  
P0[2], AI  
3
4
5
6
54  
53  
3
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
4
AI, P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
P0[0], AI  
P2[6]  
52  
51  
5
P2[4]  
P2[2]  
P2[0]  
NC  
7
8
9
50  
49  
48  
6
7
10  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
8
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
No connection.  
NC  
NC  
NC  
NC  
11  
12  
13  
9
P3[2]  
P3[0]  
CCLK  
HCLK  
XRES  
NC  
10  
11  
12  
13  
14  
15  
16  
OCDE  
OCDO  
SMP  
14  
SSOP  
NC  
No connection..  
15  
16  
NC  
No connection.  
17  
Vss  
Vss  
NC  
No connection..  
NC  
NC  
NC  
18  
19  
20  
P3[3]  
P3[1]  
NC  
OCD  
OCD  
OCDE  
OCD even data IO.  
OCDO OCD odd data output.  
NC  
21  
22  
23  
NC  
Power  
SMP  
Switch Mode Pump (SMP) connection to  
required external components.  
NC  
P1[6]  
I2C SCL, P1[7]  
P1[4], EXTCLK  
P1[2]  
I2C SDA, P1[5]  
NC  
24  
25  
33  
32  
17  
18  
19  
20  
Power  
Power  
Vss  
Ground connection.  
Vss  
Ground connection.  
P1[3]  
SCLK, I2C SCL, P1[1]  
Vss  
P1[0], I2C  
NC  
SDA, SDATA  
26  
27  
28  
31  
30  
IO  
IO  
P3[3]  
P3[1]  
NC  
29  
21  
NC  
No connection.  
Not for Production  
22  
23  
24  
25  
26  
NC  
No connection..  
IO  
IO  
P1[7]  
P1[5]  
NC  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
No connection.  
IO  
IO  
P1[3]  
I
.
FMTEST  
27  
P1[1]  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
28  
29  
30  
31  
Power  
Vss  
NC  
Ground connection.  
No connection.  
NC  
No connection..  
IO  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
32  
P1[2]  
V
.
FMTEST  
33  
34  
35  
36  
37  
38  
39  
40  
41  
IO  
IO  
P1[4]  
P1[6]  
NC  
Optional External Clock Input (EXTCLK).  
No connection..  
No connection.  
No connection..  
No connection.  
No connection..  
No connection..  
NC  
NC  
NC  
NC  
NC  
Input  
XRES  
Active high external reset with internal pull  
down.  
42  
43  
44  
45  
46  
47  
OCD  
OCD  
IO  
HCLK  
CCLK  
P3[0]  
P3[2]  
NC  
OCD high-speed clock output.  
OCD CPU clock output.  
IO  
No connection.  
No connection..  
NC  
January 12, 2007  
Document No. 38-12025 Rev. *K  
12  
[+] Feedback  
CY8C21x34 Final Data Sheet  
1. Pin Information  
Table 1-5. 56-Pin Part Pinout (SSOP)  
48  
49  
50  
51  
52  
53  
54  
55  
56  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I
I
I
I
Analog column mux input.  
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
13  
[+] Feedback  
2. Register Reference  
This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual.  
2.1  
Register Conventions  
2.2  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI  
bit is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
C
#
January 12, 2007  
Document No. 38-12025 Rev. *K  
14  
[+] Feedback  
CY8C21x34 Final Data Sheet  
2. Register Reference  
Register Map 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
PRT3GS  
PRT3DM2  
CUR_PP  
STK_PP  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
RW  
#
RW  
RW  
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
AMUXCFG  
PWM_CR  
RW  
RW  
RW  
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
RES_WDT  
#
CMP_CR0  
CMP_CR1  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
#
#
ADC0_CR  
ADC1_CR  
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
DAC_D  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
15  
[+] Feedback  
CY8C21x34 Final Data Sheet  
2. Register Reference  
Register Map 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
VLT_CMP  
ADC0_TR  
ADC1_TR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
RW  
RW  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
DAC_CR  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
16  
[+] Feedback  
3. Electrical Specifications  
This chapter presents the DC and AC electrical specifications of the CY8C21x34 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC as specified, except where noted.  
A
J
Refer to Table 3-15 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
Figure 3-1a. Voltage versus CPU Frequency  
Figure 3-1b. IMO Frequency Trim Options  
5.25  
5.25  
SLIMO  
SLIMO  
Mode=1  
Mode=0  
4.75  
4.75  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
SLIMO SLIMO  
Mode=1 Mode=1  
93 kHz  
12 MHz  
CPUFrequency  
24 MHz  
3 MHz  
93 kHz  
6 MHz  
12 MHz  
24 MHz  
IMOFrequency  
The following table lists the units of measure that are used in this chapter.  
Table 3-1: Units of Measure  
Symbol  
Unit of Measure  
Symbol  
µW  
mA  
ms  
mV  
nA  
Unit of Measure  
o
C
degree Celsius  
decibels  
microwatts  
dB  
fF  
milli-ampere  
milli-second  
milli-volts  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
ns  
kilohertz  
nV  
kilohm  
ohm  
MHz  
MΩ  
µA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
picoampere  
picofarad  
pF  
pp  
peak-to-peak  
parts per million  
picosecond  
µF  
ppm  
ps  
µH  
µs  
sps  
σ
samples per second  
sigma: one standard deviation  
volts  
µV  
µVrms  
microvolts root-mean-square  
V
January 12, 2007  
Document No. 38-12025 Rev. *K  
17  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3-2. Absolute Maximum Ratings  
Symbol  
Description  
Min  
-55  
Typ  
Max  
+100  
Units  
Notes  
o
o
T
Storage Temperature  
25  
Higher storage temperatures will reduce data  
retention time. Recommended storage temper-  
C
STG  
o
o
ature is +25 C ± 25 C. Extended duration stor-  
o
age temperatures above 65 C will degrade  
reliability.  
T
A
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+85  
C
Vdd  
-0.5  
+6.0  
V
V
V
Vss - 0.5  
Vss - 0.5  
-25  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
IO  
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
V
IOZ  
MIO  
I
mA  
V
ESD  
LU  
2000  
Human Body Model ESD.  
200  
mA  
3.2  
Operating Temperature  
Table 3-3. Operating Temperature  
Symbol  
Description  
Min  
-40  
Typ  
Max  
+85  
Units  
Notes  
o
o
T
A
Ambient Temperature  
Junction Temperature  
C
C
T
-40  
+100  
The temperature rise from ambient to junction is  
package specific. See “Thermal Impedances”  
on page 36. The user must limit the power con-  
sumption to comply with this requirement.  
J
3.3  
DC Electrical Characteristics  
3.3.1  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-4. DC Chip-Level Specifications  
Symbol  
Description  
Min  
2.40  
Typ  
Max  
5.25  
Units  
Notes  
Vdd  
Supply Voltage  
3
V
See table titled “DC POR and LVD Specifica-  
tions” on page 22.  
o
I
Supply Current, IMO = 24 MHz  
4
mA  
mA  
mA  
Conditions are Vdd = 5.0V, T = 25 C, CPU = 3  
A
MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 =  
93.75 kHz, VC3 = 0.366 kHz.  
DD  
o
I
Supply Current, IMO = 6 MHz using SLIMO mode.  
Supply Current, IMO = 6 MHz using SLIMO mode.  
1.2  
1.1  
2
Conditions are Vdd = 3.3V, T = 25 C, CPU = 3  
A
MHz, clock doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
DD3  
o
I
1.5  
Conditions are Vdd = 2.55V, T = 25 C, CPU = 3  
A
DD27  
MHz, clock doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
o
o
I
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active. Mid temperature range.  
2.6  
4.  
µA  
µA  
V
Vdd = 2.55V, 0 C T 40 C.  
SB27  
A
o
o
I
SB  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active.  
2.8  
5
Vdd = 3.3V, -40 C T 85 C.  
A
V
Reference Voltage (Bandgap)  
1.28  
1.30  
1.32  
Trimmed for appropriate Vdd. Vdd = 3.0V to  
5.25V.  
REF  
January 12, 2007  
Document No. 38-12025 Rev. *K  
18  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Table 3-4. DC Chip-Level Specifications (continued)  
Symbol  
Description  
Reference Voltage (Bandgap)  
Min  
1.16  
Typ  
1.30  
Max  
1.33  
Units  
Notes  
V
REF27  
V
V
Trimmed for appropriate Vdd. Vdd = 2.4V to  
3.0V.  
AGND  
Analog Ground  
V
V
V
REF  
REF  
REF  
- 0.003  
+ 0.003  
3.3.2  
DC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, and 2.7V at 25°C and are for design guidance only.  
Table 3-5. 5V and 3.3V DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
R
Pull-up Resistor  
4
4
8
8
PU  
PD  
OH  
R
Pull-down Resistor  
High Output Level  
5.6  
kΩ  
V
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
V
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
OL  
V
V
V
I
Input Low Level  
Input High Level  
Input Hysteresis  
V
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
IL  
IH  
H
2.1  
V
60  
1
mV  
nA  
pF  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
IL  
o
C
C
3.5  
3.5  
10  
10  
Package and pin dependent. Temp = 25 C.  
IN  
o
Package and pin dependent. Temp = 25 C.  
OUT  
Table 3-6. 2.7V DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
R
Pull-up Resistor  
4
5.6  
5.6  
8
8
kΩ  
kΩ  
V
PU  
PD  
OH  
R
Pull-down Resistor  
High Output Level  
4
V
Vdd - 0.4  
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4 to 3.0V (16  
mA maximum, 50 mA Typ combined IOH bud-  
get).  
V
OL  
Low Output Level  
0.75  
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90 mA maxi-  
mum combined IOL budget).  
V
V
V
I
Input Low Level  
Input High Level  
Input Hysteresis  
0.75  
V
Vdd = 2.4 to 3.0.  
Vdd = 2.4 to 3.0.  
IL  
IH  
H
2.0  
V
90  
1
mV  
nA  
pF  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
IL  
o
C
C
3.5  
3.5  
10  
10  
Package and pin dependent. Temp = 25 C.  
IN  
o
Package and pin dependent. Temp = 25 C.  
OUT  
January 12, 2007  
Document No. 38-12025 Rev. *K  
19  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.3  
DC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-7. 5V DC Operational Amplifier Specifications  
Symbol  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Min  
Typ  
2.5  
Max  
Units  
mV  
Notes  
V
15  
OSOA  
o
TCV  
10  
200  
4.5  
µV/ C  
OSOA  
a
pA  
pF  
V
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25 C.  
I
EBOA  
o
C
9.5  
INOA  
V
0.0  
Vdd - 1  
CMOA  
G
I
Open Loop Gain  
80  
10  
dB  
OLOA  
Amplifier Supply Current  
30  
µA  
SOA  
a. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
Table 3-8. 3.3V DC Operational Amplifier Specifications  
Symbol  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
Min  
Typ  
2.5  
Max  
15  
Units  
mV  
Notes  
V
0
OSOA  
o
TCV  
10  
200  
4.5  
µV/ C  
OSOA  
a
pA  
pF  
V
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25 C.  
I
EBOA  
o
C
9.5  
INOA  
V
Vdd - 1  
CMOA  
G
I
80  
10  
dB  
µA  
OLOA  
Amplifier Supply Current  
30  
SOA  
a. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
Table 3-9. 2.7V DC Operational Amplifier Specifications  
Symbol  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
Min  
Typ  
2.5  
Max  
15  
Units  
mV  
Notes  
V
0
OSOA  
o
TCV  
10  
200  
4.5  
µV/ C  
OSOA  
a
pA  
pF  
V
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25 C.  
I
EBOA  
o
C
9.5  
INOA  
V
Vdd - 1  
CMOA  
G
I
80  
10  
dB  
µA  
OLOA  
Amplifier Supply Current  
30  
SOA  
a. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
3.3.4  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 3-10. DC Low Power Comparator Specifications  
Symbol  
Description  
Low power comparator (LPC) reference voltage range  
LPC supply current  
Min  
Typ  
Max  
Vdd - 1  
40  
Units  
Notes  
V
I
0.2  
V
REFLPC  
10  
µA  
SLPC  
V
LPC voltage offset  
2.5  
30  
mV  
OSLPC  
January 12, 2007  
Document No. 38-12025 Rev. *K  
20  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.5  
DC Switch Mode Pump Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-11. DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
4.75  
Typ  
5.0  
Max  
5.25  
Units  
Notes  
a
V
V
V
I
5V Output Voltage from Pump  
V
V
V
Configuration of footnote. Average, neglecting  
PUMP5V  
ripple. SMP trip voltage is set to 5.0V.  
a
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
Available Output Current  
3.00  
2.45  
3.25  
2.55  
3.60  
2.80  
Configuration of footnote. Average, neglecting  
PUMP3V  
PUMP2V  
ripple. SMP trip voltage is set to 3.25V.  
a
Configuration of footnote. Average, neglecting  
ripple. SMP trip voltage is set to 2.55V.  
a
Configuration of footnote.  
PUMP  
V
V
V
= 1.8V, V  
= 1.5V, V  
= 1.3V, V  
= 5.0V  
5
8
8
mA  
mA  
mA  
SMP trip voltage is set to 5.0V.  
SMP trip voltage is set to 3.25V.  
SMP trip voltage is set to 2.55V.  
BAT  
BAT  
BAT  
PUMP  
PUMP  
PUMP  
= 3.25V  
= 2.55V  
a
V
Input Voltage Range from Battery  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
Minimum Input Voltage from Battery to Start Pump  
Line Regulation (over Vi range)  
1.8  
1.0  
1.0  
1.2  
5
5.0  
3.3  
2.8  
V
Configuration of footnote. SMP trip voltage is  
set to 5.0V.  
BAT5V  
a
V
V
V
V
Configuration of footnote. SMP trip voltage is  
BAT3V  
set to 3.25V.  
a
V
Configuration of footnote. SMP trip voltage is  
BAT2V  
set to 2.55V.  
a
o
V
Configuration of footnote. 0 C T 100.  
BATSTART  
A
o
1.25V at T = -40 C.  
A
a
V  
V  
V  
%V  
Configuration of footnote.  
V is the “Vdd Value  
O
PUMP_Line  
PUMP_Load  
PUMP_Ripple  
O
O
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
13 on page 22.  
a
Load Regulation  
5
%V  
Configuration of footnote.  
V is the “Vdd Value  
O
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
13 on page 22.  
a
Output Voltage Ripple (depends on cap/load)  
Efficiency  
100  
50  
mVpp  
%
Configuration of footnote. Load is 5 mA.  
a
E
3
35  
Configuration of footnote. Load is 5 mA. SMP  
trip voltage is set to 3.25V.  
E
2
Efficiency  
35  
80  
%
For I load = 1mA, V  
= 2.55V, V  
= 1.3V,  
PUMP  
BAT  
10 uH inductor, 1 uF capacitor, and Schottky  
diode.  
F
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
PUMP  
DC  
PUMP  
a. L1 = 2 µH inductor, C1 = 10 µF capacitor, D1 = Schottky diode. See Figure 3-2.  
Figure 3-2. Basic Switch Mode Pump Circuit  
D1  
Vdd  
VPUMP  
L1  
SMP  
Vss  
+
C1  
VBAT  
Battery  
PSoC  
January 12, 2007  
Document No. 38-12025 Rev. *K  
21  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.6  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-12. DC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
400  
800  
Units  
Notes  
R
R
Switch Resistance to Common Analog Bus  
Vdd 2.7V  
2.4V Vdd 2.7V  
SW  
Resistance of Initialization Switch to Vdd  
800  
VDD  
3.3.7  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-13. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
Min  
Typ  
Max  
Units  
Notes  
Vdd must be greater than or equal to 2.5V  
during startup, reset from the XRES pin, or  
reset from Watchdog.  
V
V
V
PPOR0  
PPOR1  
PPOR2  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
2.36  
2.40  
V
V
V
2.82  
4.55  
2.95  
4.70  
a
b
V
V
V
V
V
V
V
V
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51  
2.99  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
c
V
V
V
V
V
V
V
V
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
V
V
V
V
V
V
V
V
2.62  
3.09  
3.16  
3.32  
4.74  
4.83  
4.92  
5.12  
PUMP0  
PUMP1  
PUMP2  
PUMP3  
PUMP4  
PUMP5  
PUMP6  
PUMP7  
d
a. Always greater than 50 mV above VPPOR (PORLEV = 00) for falling supply.  
b. Always greater than 50 mV above VPPOR (PORLEV = 01) for falling supply.  
c. Always greater than 50 mV above V  
d. Always greater than 50 mV above V  
.
.
LVD0  
LVD3  
January 12, 2007  
Document No. 38-12025 Rev. *K  
22  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.8  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-14. DC Programming Specifications  
Symbol  
Vdd  
Description  
Min  
2.70  
Typ  
Max  
Units  
Notes  
Supply Voltage for Flash Write Operations  
Supply Current During Programming or Verify  
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
5
V
IWRITE  
DDP  
I
25  
0.8  
mA  
V
V
ILP  
V
IHP  
2.2  
V
I
Input Current when Applying Vilp to P1[0] or P1[1] During  
Programming or Verify  
0.2  
mA  
Driving internal pull-down resistor.  
Driving internal pull-down resistor.  
ILP  
I
Input Current when Applying Vihp to P1[0] or P1[1] During  
Programming or Verify  
1.5  
mA  
IHP  
V
V
Output Low Voltage During Programming or Verify  
Output High Voltage During Programming or Verify  
Vss + 0.75  
Vdd  
V
V
OLV  
Vdd - 1.0  
OHV  
Flash  
Flash  
Flash  
Flash Endurance (per block)  
50,000  
1,800,000  
10  
Erase/write cycles per block.  
Erase/write cycles.  
ENPB  
ENT  
DR  
a
Flash Endurance (total)  
Flash Data Retention  
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than  
50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to  
the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
23  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4  
AC Electrical Characteristics  
3.4.1  
AC Chip-Level Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-15. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
Description  
Min  
23.4  
Typ  
Max  
Units  
MHz  
Notes  
a,b,c  
F
F
Internal Main Oscillator Frequency for 24 MHz  
24  
6
Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 3-1b on  
page 17. SLIMO mode = 0.  
24.6  
IMO24  
a,b,c  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
MHz  
Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 3-1b on  
page 17. SLIMO mode = 1.  
6.35  
IMO6  
a,b  
F
F
F
CPU Frequency (5V Nominal)  
CPU Frequency (3.3V Nominal)  
0.93  
0.93  
0
24  
12  
48  
MHz  
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
24.6  
12.3  
49.2  
CPU1  
CPU2  
BLK5  
b,c  
0
a,b,d  
Refer to the AC Digital Block Specifica-  
tions below.  
Digital PSoC Block Frequency (5V Nominal)  
b,d  
F
F
Digital PSoC Block Frequency (3.3V Nominal)  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
0
24  
32  
MHz  
kHz  
ns  
24.6  
64  
200  
BLK33  
32K1  
15  
Jitter32k  
Jitter32k  
100  
1400  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
T
10  
40  
µs  
XRST  
DC24M  
24 MHz Duty Cycle  
50  
60  
%
Step24M  
Fout48M  
Jitter24M1  
24 MHz Trim Step Size  
50  
kHz  
MHz  
ps  
a,c  
48 MHz Output Frequency  
46.8  
48.0  
600  
Trimmed. Utilizing factory trim values.  
49.2  
24 MHz Peak-to-Peak Period Jitter (IMO)  
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
F
T
12.3  
MHz  
µs  
MAX  
0
RAMP  
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
Table 3-16. 2.7V AC Chip-Level Specifications  
Symbol  
Description  
Min  
11.5  
Typ  
Max  
Units  
MHz  
Notes  
0
a,b,c  
F
F
Internal Main Oscillator Frequency for 12 MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 17.  
SLIMO mode = 1.  
12  
6
12.7  
IMO12  
a,b,c  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 17.  
SLIMO mode = 1.  
6.35  
IMO6  
a,b  
F
F
CPU Frequency (2.7V Nominal)  
0.093  
0
3
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
3.15  
12.5  
CPU1  
a,b,c  
Digital PSoC Block Frequency (2.7V Nominal)  
12  
Refer to the AC Digital Block Specifica-  
tions below.  
BLK27  
F
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
8
32  
96  
200  
kHz  
ns  
32K1  
Jitter32k  
Jitter32k  
150  
1400  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
T
10  
µs  
XRST  
F
T
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
12.3  
MHz  
µs  
MAX  
0
RAMP  
a. 2.4V < Vdd < 3.0V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum frequency for user modules.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
24  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Figure 3-3. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Figure 3-4. 32 kHz Period Jitter (ILO) Timing Diagram  
Jitter32k  
F32K1  
January 12, 2007  
Document No. 38-12025 Rev. *K  
25  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.2  
AC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-17. 5V and 3.3V AC GPIO Specifications  
Symbol  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
MHz  
Notes  
Normal Strong Mode  
F
0
3
2
7
7
12  
18  
18  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
27  
22  
Table 3-18. 2.7V AC GPIO Specifications  
Symbol  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
Notes  
Normal Strong Mode  
F
0
3
MHz  
ns  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
6
50  
50  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
6
ns  
18  
18  
40  
40  
120  
120  
ns  
ns  
Figure 3-5. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
January 12, 2007  
Document No. 38-12025 Rev. *K  
26  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.3  
AC Operational Amplifier Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-19. AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
100  
200  
Units  
ns  
ns  
Notes  
T
Comparator Mode Response Time, 50 mV Overdrive  
Vdd 3.0V.  
2.4V < Vcc < 3.0V.  
COMP  
3.4.4  
AC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 3-20. AC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
µs  
Notes  
T
LPC response time  
50  
50 mV overdrive comparator reference set  
RLPC  
within V  
.
REFLPC  
3.4.5  
AC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-21. AC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
3.17  
Units  
MHz  
Notes  
F
Switch Rate  
SW  
3.4.6  
AC Digital Block Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-22. 5V and 3.3V AC Digital Block Specifications  
Function  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max  
49.2  
Units  
MHz  
Notes  
4.75V < Vdd < 5.25V.  
All  
Functions  
Timer  
24.6  
MHz  
ns  
3.0V < Vdd < 4.75V.  
a
50  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
Counter  
50  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
50  
50  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
January 12, 2007  
Document No. 38-12025 Rev. *K  
27  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Table 3-22. 5V and 3.3V AC Digital Block Specifications (continued)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
MHz  
SPIM  
Maximum Input Clock Frequency  
Maximum data rate at 4.1 MHz due to 2 x over  
clocking.  
SPIS  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
50  
Transmitter Maximum Input Clock Frequency  
24.6  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Maximum Input Clock Frequency with Vdd 4.75V, 2  
Stop Bits  
49.2  
MHz  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
Receiver  
Maximum Input Clock Frequency  
24.6  
49.2  
MHz  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
Maximum Input Clock Frequency with Vdd 4.75V, 2  
Stop Bits  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Table 3-23. 2.7V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
12.7  
Units  
MHz  
Notes  
All  
Maximum Block Clocking Frequency  
2.4V < Vdd < 3.0V.  
Functions  
Timer  
a
Capture Pulse Width  
ns  
100  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
12.7  
MHz  
ns  
Counter  
100  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
12.7  
12.7  
MHz  
MHz  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
100  
100  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
12.7  
6.35  
MHz  
MHz  
SPIM  
Maximum data rate at 3.17 MHz due to 2 x over  
clocking.  
SPIS  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
100  
Transmitter Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
Receiver Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
a. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
January 12, 2007  
Document No. 38-12025 Rev. *K  
28  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.7  
AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-24. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
Typ  
Max  
24.6  
Units  
MHz  
Notes  
F
Frequency  
High Period  
Low Period  
OSCEXT  
20.6  
20.6  
150  
5300  
ns  
ns  
µs  
Power Up IMO to Switch  
Table 3-25. 3.3V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
F
F
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 12 MHz at 3.3V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
12.3  
OSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
24.6  
MHz  
If the frequency of the external clock is greater  
than 12 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
OSCEXT  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
Table 3-26. 2.7V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
F
F
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 3 MHz at 2.7V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
3.08  
OSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
6.35  
MHz  
If the frequency of the external clock is greater  
than 3 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
OSCEXT  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
160  
160  
150  
5300  
ns  
ns  
µs  
January 12, 2007  
Document No. 38-12025 Rev. *K  
29  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.8  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-27. AC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ns  
Notes  
T
Rise Time of SCLK  
Fall Time of SCLK  
1
20  
20  
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
T
T
T
F
T
T
T
T
T
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
Flash Erase Time (Block)  
15  
30  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
45  
50  
70  
3.6 < Vdd  
ns  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
ns  
January 12, 2007  
Document No. 38-12025 Rev. *K  
30  
[+] Feedback  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
2
3.4.9  
AC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-28. AC Characteristics of the I2C SDA and SCL Pins for Vdd 3.0V  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
SCLI2C  
Description  
SCL Clock Frequency  
Units  
kHz  
Notes  
F
T
0
0
400  
Hold Time (repeated) START Condition. After this  
period, the first clock pulse is generated.  
4.0  
0.6  
µs  
HDSTAI2C  
T
T
T
T
T
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Set-up Time for a Repeated START Condition  
Data Hold Time  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
a
Data Set-up Time  
250  
4.0  
100  
0.6  
1.3  
0
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START Condition 4.7  
Pulse Width of spikes are suppressed by the input fil-  
ter.  
50  
SPI2C  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This will automatically be  
the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data  
bit to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Table 3-29. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported)  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
SCLI2C  
Description  
SCL Clock Frequency  
Units  
kHz  
Notes  
F
T
0
Hold Time (repeated) START Condition. After this  
period, the first clock pulse is generated.  
4.0  
µs  
HDSTAI2C  
T
T
T
T
T
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Set-up Time for a Repeated START Condition  
Data Hold Time  
4.7  
4.0  
4.7  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
Data Set-up Time  
250  
4.0  
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START Condition 4.7  
Pulse Width of spikes are suppressed by the input fil-  
ter.  
SPI2C  
Figure 3-6. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
January 12, 2007  
Document No. 38-12025 Rev. *K  
31  
[+] Feedback  
4. Packaging Information  
This chapter illustrates the packaging specifications for the CY8C21x34 PSoC device, along with the thermal impedances for each  
package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
4.1  
Packaging Dimensions  
51-85068 *B  
Figure 4-1. 16-Lead (150-Mil) SOIC  
January 12, 2007  
Document No. 38-12025 Rev. *K  
32  
[+] Feedback  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
51-85077 *C  
Figure 4-2. 20-Lead (210-MIL) SSOP  
51-85079 *C  
Figure 4-3. 28-Lead (210-Mil) SSOP  
January 12, 2007  
Document No. 38-12025 Rev. *K  
33  
[+] Feedback  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
E-PAD X, Y for this product is 3.53 mm, 3.53 mm (+/-0.11 mm)  
51-85188 *A  
Figure 4-4. 32-Lead (5x5 mm 0.93 MAX) QFN  
E-PAD X, Y for this product is 3.53 mm, 3.53 mm (+/-0.11 mm)  
001-06392 *A  
Figure 4-5. 32-Lead (5x5 mm 0.60 MAX) QFN  
January 12, 2007  
Document No. 38-12025 Rev. *K  
34  
[+] Feedback  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
51-85062 *C  
Figure 4-6. 56-Lead (300-Mil) SSOP  
January 12, 2007  
Document No. 38-12025 Rev. *K  
35  
[+] Feedback  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
4.2  
Thermal Impedances  
Table 4-1. Thermal Impedances per Package  
Package  
16 SOIC  
Typical θJA  
*
Typical θJC  
o
o
123 C/W  
55 C/W  
o
o
20 SSOP  
117 C/W  
41 C/W  
o
o
28 SSOP  
96 C/W  
39 C/W  
o
o
32 QFN** 5x5 mm 0.60 MAX  
32 QFN** 5x5 mm 0.93 MAX  
* T = T + Power x θ  
27 C/W  
15 C/W  
o
o
22 C/W  
12 C/W  
J
A
JA  
** To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the  
PCB ground plane.  
4.3  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 4-2. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature*  
Maximum Peak Temperature  
o
o
16 SOIC  
240 C  
260 C  
o
o
20 SSOP  
28 SSOP  
32 QFN  
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C  
o
with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
36  
[+] Feedback  
5. Development Tool Selection  
This chapter presents the development tools available for all current PSoC device families including the CY8C21x34 family.  
5.1  
Software  
5.2  
Development Kits  
All development kits can be purchased from the Cypress Online  
Store.  
5.1.1  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this  
robust software has been facilitating PSoC designs for half a  
decade. PSoC Designer is available free of charge at http://  
www.cypress.com under DESIGN RESOURCES >> Software  
and Drivers.  
5.2.1  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the content of specific memory locations. Advance  
emulation features also supported through PSoC Designer. The  
kit includes:  
5.1.2  
PSoC Express™  
PSoC Designer Software CD  
As the newest addition to the PSoC development software  
suite, PSoC Express is the first visual embedded system design  
tool that allows a user to create an entire PSoC project and  
generate a schematic, BOM, and data sheet without writing a  
single line of code. Users work directly with application objects  
such as LEDs, switches, sensors, and fans. PSoC Express is  
available free of charge at http://www.cypress.com/psocex-  
press.  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
5.1.3  
PSoC Programmer  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can oper-  
ate directly from PSoC Designer or PSoC Express. PSoC Pro-  
grammer software is compatible with both PSoC ICE-Cube In-  
Circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free ofcharge at http://www.cypress.com/psocpro-  
grammer.  
5.1.4  
CY3202-C iMAGEcraft C Compiler  
CY3202 is the optional upgrade to PSoC Designer that enables  
the iMAGEcraft C compiler. It can be purchased from the  
Cypress Online Store. At http://www.cypress.com, click the  
Online Store shopping cart icon at the bottom of the web page,  
and click PSoC (Programmable System-on-Chip) to view a cur-  
rent list of available items..  
January 12, 2007  
Document No. 38-12025 Rev. *K  
37  
[+] Feedback  
CY8C21x34 Final Data Sheet  
5. Development Tool Selection  
5.2.2  
CY3210-ExpressDK PSoC Express  
Development Kit  
5.3.3  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features a develop-  
ment board for the CY8C24794-24LFXI PSoC device. Special  
features of the board include both USB and capacitive sensing  
development and debugging support. This evaluation board  
also includes an LCD module, potentiometer, LEDs, an enunci-  
ator and plenty of bread boarding space to meet all of your eval-  
uation needs. The kit includes:  
The CY3210-ExpressDK is for advanced prototyping and devel-  
opment with PSoC Express (may be used with ICE-Cube In-Cir-  
cuit Emulator). It provides access to I2C buses, voltage  
reference, switches, upgradeable modules and more. The kit  
includes:  
PSoC Express Software CD  
Express Development Board  
4 Fan Modules  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
2 Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
USB 2.0 Cable  
Serial Cable (DB9)  
5.4  
Device Programmers  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
All device programmers can be purchased from the Cypress  
Online Store.  
5.4.1  
CY3216 Modular Programmer  
5.3  
Evaluation Tools  
The CY3216 Modular Programmer kit features a modular pro-  
grammer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
All evaluation tools can be purchased from the Cypress Online  
Store.  
Modular Programmer Base  
3 Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
5.3.1  
CY3210-MiniProg1  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
USB 2.0 Cable  
MiniProg Programming Unit  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
5.4.2  
CY3207ISSP In-System Serial  
Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes pro-  
tection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Note: CY3207ISSP needs special software and is not compati-  
ble with PSoC Programmer. The kit includes:  
Getting Started Guide  
USB 2.0 Cable  
5.3.2  
CY3210-PSoCEval1  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
January 12, 2007  
Document No. 38-12025 Rev. *K  
38  
[+] Feedback  
CY8C21x34 Final Data Sheet  
5. Development Tool Selection  
5.5  
Accessories (Emulation and  
Programming)  
Table 5-1. Emulation and Programming Accessories  
a
b
c
Part #  
Pin  
Package  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY8C21234 16 SOIC  
-24S  
CY3250-21X34 CY3250-  
See note c. below  
See note c. below  
See note c. below  
See note c. below  
See note c. below  
16SOIC-FK  
CY8C21334 20 SSOP  
-24PVXI  
CY3250-21X34 CY3250-  
20SSOP-FK  
CY8C21434 32 QFN  
-24LFXI  
CY3250-  
CY3250-  
21X34QFN  
32QFN-FK  
CY8C21534 28 SSOP  
-24PVXI  
CY3250-21X34 CY3250-  
28SSOP-FK  
CY8C21634 32 QFN  
-24LFXI  
CY3250-  
21X34QFN  
CY3250-  
32QFN-FK  
a. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two  
flex-pods.  
b. Foot kit includes surface mount feet that can be soldered to the target PCB.  
c. Programming adapter converts non-DIP package to DIP footprint. Specific  
details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
5.6  
3rd-Party Tools  
Several tools have been specially designed by the following  
3rd-party vendors to accompany PSoC devices during develop-  
ment and production. Specific details for each of these tools can  
be found at http://www.cypress.com under DESIGN  
RESOURCES >> Evaluation Boards.  
5.7  
Build a PSoC Emulator into  
Your Board  
For details on how to emulate your circuit before going to vol-  
ume production using an on-chip debug (OCD) non-production  
PSoC device, see Application Note “Debugging - Build a PSoC  
Emulator into Your Board - AN2323” at http://www.cypress.com/  
an2323.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
39  
[+] Feedback  
6. Ordering Information  
.
CY8C21x34 PSoC Device Key Features and Ordering Information  
12a  
12a  
16a  
16a  
24a  
24a  
28a  
28a  
28a  
28a  
26a  
26a  
26a  
16 Pin (150-Mil) SOIC  
CY8C21234-24SXI  
CY8C21234-24SXIT  
CY8C21334-24PVXI  
CY8C21334-24PVXIT  
CY8C21534-24PVXI  
CY8C21534-24PVXIT  
CY8C21434-24LFXI  
CY8C21434-24LFXIT  
CY8C21434-24LKXI  
CY8C21434-24LKXIT  
CY8C21634-24LFXI  
CY8C21634-24LFXIT  
CY8C21001-24PVXI  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
12  
12  
16  
16  
24  
24  
28  
28  
28  
28  
26  
26  
26  
0
0
0
0
0
0
0
0
0
0
0
0
0
No  
No  
16 Pin (150-Mil) SOIC  
(Tape and Reel)  
20 Pin (210-Mil) SSOP  
No  
No  
No  
No  
No  
No  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
20 Pin (210-Mil) SSOP  
(Tape and Reel)  
28 Pin (210-Mil) SSOP  
28 Pin (210-Mil) SSOP  
(Tape and Reel)  
32 Pin (5x5 mm 0.93 MAX) QFN b  
32 Pin (5x5 mm 0.93 MAX) QFN b  
(Tape and Reel)  
32 Pin (5x5 mm 0.60 MAX) QFN b  
32 Pin (5x5 mm 0.06 MAX) QFN b  
(Tape and Reel)  
32 Pin (5x5 mm 0.93 MAX) QFN b  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
32 Pin (5x5 mm 0.93 MAX) QFN b  
(Tape and Reel)  
56 Pin OCD SSOP  
a. All Digital IO Pins also connect to the common analog mux.  
b. Refer to the “32-Pin Part Pinout” on page 11 for pin differences.  
6.1  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX/LKX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
January 12, 2007  
Document No. 38-12025 Rev. *K  
40  
[+] Feedback  
7. Sales and Service Information  
Cypress Semiconductor  
198 Champion Court  
San Jose, CA 95134  
408.943.2600  
Web Sites:  
Company Information – http://www.cypress.com  
Sales – http://www.cypress.com/aboutus/sales_locations.cfm  
Technical Support – http://www.cypress.com/support/login.cfm  
7.1  
Revision History  
Document Title:  
CY8C21234, CY8C21334, CY8C21434, CY8C21534, and CY8C21634 PSoC Mixed-Signal Array Final Data Sheet  
Document Number: 38-12025  
Originof  
Change  
Revision ECN # Issue Date  
Description of Change  
New silicon and document (Revision **).  
**  
5/19/2004  
HMT  
SFV  
227340  
Updated Overview and Electrical Spec. chapters, along with revisions to the 24-pin pinout part.  
Revised the register mapping tables. Added a SSOP 28-pin part.  
*A  
235992 See ECN  
Changed title to include all part #s. Changed 28-pin SSOP from CY8C21434 to CY8C21534.  
Changed pin 9 on the 28-pin SSOP from SMP pin to Vss pin. Added SMP block to architecture  
diagram. Update Electrical Specifications. Added another 32-pin MLF part: CY8C21634.  
*B  
*C  
248572 See ECN  
277832 See ECN  
SFV  
HMT  
Verify data sheet standards from SFV memo. Add Analog Input Mux to applicable pin outs.  
Update PSoC Characteristics table. Update diagrams and specs. Final.  
*D  
*E  
285293 See ECN  
301739 See ECN  
329104 See ECN  
HMT  
HMT  
HMT  
Update 2.7V DC GPIO spec. Add Reflow Peak Temp. table.  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Re-add pinout ISSP notation. Fix TMP register names. Clarify ADC feature. Update Electrical  
Specifications. Update Reflow Peak Temp. table. Add 32 MLF E-PAD dimensions. Add ThetaJC to  
Thermal Impedance table. Fix 20-pin package order number. Add CY logo. Update CY copyright.  
*F  
352736 See ECN  
HMT  
Add new color and logo. Add URL to preferred dimensions for mounting MLF packages. Update  
Transmitter and Receiver AC Digital Block Electrical Specifications.  
*G  
*H  
*I  
390152 See ECN  
413404 See ECN  
430185 See ECN  
HMT  
HMT  
HMT  
Clarify MLF thermal pad connection info. Replace 16-pin 300-MIL SOIC with correct 150-MIL.  
Update 32-pin QFN E-Pad dimensions and rev. *A. Update CY branding and QFN convention.  
Add new 32-pin 5x5 mm 0.60 thickness QFN package and diagram, CY8C21434-24LKXI. Update  
thermal resistance data. Add 56-pin SSOP on-chip debug non-production part, CY8C21001-  
24PVXI. Update typical and recommended Storage Temperature per industrial specs. Update  
copyright and trademarks.  
*J  
677717 See ECN  
HMT  
Add CapSense SNR requirement reference. Add new Dev. Tool section. Add CY8C20x34 to  
PSoC Device Characteristics table. Add Low Power Comparator (LPC) AC/DC electrical spec.  
tables. Update rev. of 32-Lead (5x5 mm 0.60 MAX) QFN package diagram.  
*K  
Distribution: External/Public  
Posting: None  
January 12, 2007  
© Cypress Semiconductor Corp. 2004-2007 — Document No. 38-12025 Rev. *K  
41  
[+] Feedback  
CY8C21x34 Final Data Sheet  
7. Sales and Service Information  
7.2  
Copyrights and Code Protection  
Copyrights  
© Cypress Semiconductor Corp. 2004-2007. All rights reserved. PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC®  
is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.  
The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry  
embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its prod-  
ucts for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclu-  
sion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies  
Cypress Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical con-  
trol or safety applications, unless pursuant to an express written agreement with Cypress Semiconductor.  
Flash Code Protection Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.  
Cypress Semiconductor products meet the specifications contained in their particular data sheets. Cypress Semiconductor believes that its PSoC family of products is one  
of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach  
the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semicon-  
ductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."  
Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress  
Semiconductor are committed to continuously improving the code protection features of our products.  
January 12, 2007  
Document No. 38-12025 Rev. *K  
42  
[+] Feedback  

相关型号:

CY8C21334-24PVXIT

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21334-24PX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24SX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334B

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21334B-24PVXI

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21334B-24PVXIT

Multifunction Peripheral, CMOS, PDSO20, SSOP-20
CYPRESS

CY8C21334_11

Automotive PSoC? Programmable System-on-Chip?
CYPRESS

CY8C21334_13

Automotive – Extended Temperature PSoC® Programmable System-on-Chip™
CYPRESS

CY8C21345

PSoC Programmable System-on-Chip
CYPRESS

CY8C21345-12PVXE

Automotive PSoC? Programmable System-on-Chip?
CYPRESS

CY8C21345-24PVXA

Automotive PSoC? Programmable System-on-Chip?
CYPRESS

CY8C21345-24SXI

PSoC Programmable System-on-Chip
CYPRESS