CY8C20XX7 [CYPRESS]

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors; 1.8 V CapSense®控制器SmartSenseâ ?? ¢自动调整31按钮,滑块6 ,接近传感器
CY8C20XX7
型号: CY8C20XX7
厂家: CYPRESS    CYPRESS
描述:

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
1.8 V CapSense®控制器SmartSenseâ ?? ¢自动调整31按钮,滑块6 ,接近传感器

传感器 接近传感器 控制器
文件: 总43页 (文件大小:689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20xx7/S  
1.8 V CapSense® Controller with  
SmartSense™ Auto-tuning  
31 Buttons, 6 Sliders, Proximity Sensors  
1.8  
V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors  
4 Clock Sources  
Features  
Internal main oscillator (IMO): 6/12/24 MHz  
Internal low-speed oscillator (ILO) at 32 kHz for watchdog  
QuietZone™ Controller  
Patented Capacitive Sigma Delta PLUS (CSD PLUS™)  
sensing algorithm for robust performance  
High Sensitivity (0.1 pF) and best-in-class SNR performance  
to support:  
and sleep timers  
External 32 KHz Crystal Oscillator  
External Clock Input  
Programmable pin configurations  
Up to 34 general-purpose I/Os (GPIOs)  
Dual mode GPIO (Analog and Digital)  
High sink current of 25 mA per GPIO  
• Max sink current 120 mA for all I/Os combined  
Source Current  
• 5 mA on ports 0 and 1  
• 1 mA on ports 2,3 and 4  
Configurable internal pull-up, high-Z and open drain modes  
Selectable, regulated digital I/O on port 1  
Configurable input threshold on port 1  
• Overlay thickness of 15 mm for glass and 5 mm plastic  
• Proximity Solutions  
Superiornoiseimmunityperformanceagainstconductedand  
radiated noise and ultra low radiated emissions  
• Standardized user modules for overcoming noise  
Low power CapSense® block with SmartSense Auto-tuning  
Low average power consumption –  
• 28 µA/sensor in run time (wake-up and scan once every  
125 ms)  
SmartSense_EMC_PLUS Auto-Tuning  
• Sets and maintains optimal sensor performance during run  
time  
Versatile Analog functions  
Internal analog bus supports connection of multiple sensors  
• Eliminates system tuning during development and  
production  
• Compensates for variations in manufacturing process  
to form ganged proximity sensor  
Internal Low-Dropout voltage regulator for high power supply  
rejection ratio (PSRR)  
Driven shield available on five GPIO pins  
Delivers best-in class water tolerant designs  
Robust proximity sensing in the presence of metal objects  
Supports longer trace lengths  
Additional system resources  
I2C Slave:  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• Selectable Clock stretch or Forced Nack Mode  
• I2C wake from sleep with Hardware address match  
12 MHz (Configurable) SPI master and slave  
Three 16-bit timers  
Max load of 100 pF (3 MHz)  
Powerful Harvard-architecture processor  
M8C CPU with a max speed of 24 MHz  
Watchdog and sleep timers  
Integrated supervisory circuit  
10-bit incremental analog-to-digital converter (ADC) with  
internal voltage reference  
Two general-purpose high speed, low power analog  
comparators  
Operating Range: 1.71 V to 5.5 V  
Standby Mode 1.1 μA (Typ)  
Deep Sleep 0.1 μA (Typ)  
Operating Temperature range: –40 oC to +85 oC  
Flexible on-chip memory  
Complete development tools  
8 KB flash, 1 KB SRAM  
16 KB flash, 2 KB SRAM  
Free development tool (PSoC Designer™)  
32 KB flash, 2 KB SRAM  
Sensor and Package options  
50,000 flash erase/write cycles  
Read while Write with EEPROM emulation  
In-system programming simplifies manufacturing process  
10 Sensing Inputs – 16-pin QFN, 16-pin SOIC  
16 Sensing Inputs – 24-pin QFN  
24 Sensing Inputs – 30-pin WLCSP [1]  
25 Sensing Inputs – 32-pin QFN  
31 Sensing Inputs – 48-pin QFN  
Note  
1. Please contact your nearest sales office for additional details.  
Cypress Semiconductor Corporation  
Document Number: 001-69257 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 7, 2013  
CY8C20xx7/S  
Logic Block Diagram  
1.8/2.5/3 V  
LDO  
PWRSYS  
[2]  
(Regulator)  
Port 4  
Port 3  
Port2  
Port 1  
Port 0  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
1K/2 K  
SRAM  
8K/16K/32 K Flash  
Nonvolatile Memory  
Supervisory ROM(SROM)  
Interrupt  
Controller  
Sleep and  
Watchdog  
CPU Core(M8C)  
6/12/ 24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
CAPSENSE  
SYSTEM  
Analog  
Reference  
CapSense  
Module  
Comparator #1  
Comparator #2  
Analog  
Mux  
SYSTEM BUS  
Internal  
Voltage  
References  
POR  
and  
LVD  
SPI  
Master/  
Slave  
Three16- Bit  
Programmable  
Timers  
I2C  
Slave  
System  
Resets  
Digital  
Clocks  
SYSTEM RESOURCES  
Note  
2. Internal voltage regulator for internal circuitry  
Document Number: 001-69257 Rev. *I  
Page 2 of 43  
CY8C20xx7/S  
Contents  
PSoC® Functional Overview ............................................4  
PSoC Core ..................................................................4  
CapSense System .......................................................4  
Additional System Resources .....................................5  
Getting Started ..................................................................5  
Application Notes/Design Guides ................................5  
Development Kits ........................................................5  
Training .......................................................................5  
CYPros Consultants ....................................................5  
Solutions Library ..........................................................5  
Technical Support .......................................................5  
Designing with PSoC Designer .......................................6  
Select Components .....................................................6  
Configure Components ...............................................6  
Organize and Connect ................................................6  
Generate, Verify, and Debug .......................................6  
Pinouts ..............................................................................7  
16-pin SOIC (10 Sensing Inputs) ................................7  
16-pin QFN (10 Sensing Inputs)[7] .............................8  
24-pin QFN (16 Sensing Inputs)[11] ...........................9  
30-ball WLCSP (24 Sensing Inputs) ..........................10  
32-pin QFN (25 Sensing Inputs)[18] ..........................11  
48-pin QFN (31 Sensing Inputs)[22] ..........................12  
Electrical Specifications ................................................13  
Absolute Maximum Ratings .......................................13  
Operating Temperature .............................................13  
DC Chip-Level Specifications ....................................14  
DC GPIO Specifications ............................................15  
DC Analog Mux Bus Specifications ...........................17  
DC Low Power Comparator Specifications ...............17  
Comparator User Module Electrical Specifications ...18  
ADC Electrical Specifications ....................................18  
DC POR and LVD Specifications ..............................19  
DC Programming Specifications ...............................19  
DC I2C Specifications ...............................................20  
Shield Driver DC Specifications ................................20  
DC IDAC Specifications ............................................20  
AC Chip-Level Specifications ....................................21  
AC General Purpose I/O Specifications ....................22  
AC Comparator Specifications ..................................22  
AC External Clock Specifications ..............................22  
AC Programming Specifications ................................23  
AC I2C Specifications ................................................24  
Packaging Information ...................................................27  
Thermal Impedances .................................................30  
Capacitance on Crystal Pins .....................................30  
Solder Reflow Peak Temperature .............................30  
Development Tool Selection .........................................31  
Software ....................................................................31  
Development Kits ......................................................31  
Evaluation Tools ........................................................31  
Device Programmers .................................................31  
Accessories (Emulation and Programming) ..............32  
Third Party Tools .......................................................32  
Build a PSoC Emulator into Your Board ....................32  
Ordering Information ......................................................33  
Ordering Code Definitions .........................................34  
Acronyms ........................................................................35  
Reference Documents ....................................................35  
Document Conventions .............................................35  
Units of Measure .......................................................35  
Numeric Naming ........................................................36  
Glossary ..........................................................................36  
Appendix: Silicon Errata for the  
CY8C20xx7/S Family ......................................................37  
CY8C20xx7/S Qualification Status ............................37  
CY8C20xx7/S Errata Summary .................................37  
Document History Page .................................................41  
Sales, Solutions, and Legal Information ......................43  
Worldwide Sales and Design Support .......................43  
Products ....................................................................43  
PSoC Solutions .........................................................43  
Document Number: 001-69257 Rev. *I  
Page 3 of 43  
CY8C20xx7/S  
®
Figure 1. CapSense System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of many devices with on-chip  
controllers. These devices are designed to replace multiple  
traditional MCU-based system components with one low-cost  
single-chip programmable component. A PSoC device includes  
configurable blocks of analog and digital logic, and  
programmable interconnect. This architecture makes it possible  
for you to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast central processing unit (CPU), flash program memory,  
SRAM data memory, and configurable I/O are included in a  
range of convenient pinouts.  
CS1  
CS2  
IDAC  
CSN  
Vr  
The architecture for this device family, as shown in the Logic  
Block Diagram on page 2, consists of three main areas:  
Reference  
Buffer  
The core  
Cexternal (P0[1]  
or P0[3])  
Comparator  
CapSense analog system  
System resources  
Mux  
Mux  
Refs  
A common, versatile bus allows connection between I/O and the  
analog system.  
Each CY8C20x37/47/67/S PSoC device includes a dedicated  
CapSense block that provides sensing and scanning control  
circuitry for capacitive sensing applications. Depending on the  
PSoC package, up to 34 GPIOs are also included. The GPIOs  
provide access to the MCU and analog mux.  
Cap Sense Counters  
CSCLK  
PSoC Core  
CapSense  
Clock Select  
IMO  
Oscillator  
The PSoC core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO and  
ILO. The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a 4-million instructions per  
second (MIPS), 8-bit Harvard-architecture microprocessor.  
Analog Multiplexer System  
The analog mux bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
CapSense System  
The analog system contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. The analog system is composed of the  
CapSense PSoC block and an internal 1 V or 1.2 V analog  
reference, which together support capacitive sensing of up to 31  
inputs[3]. Capacitive sensing is configurable on each GPIO pin.  
Scanning of enabled CapSense pins is completed quickly and  
easily across multiple ports.  
Switch-control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Chip-wide mux that allows analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
SmartSenseAuto-tuning  
SmartSense auto-tuning is an innovative solution from Cypress  
that removes manual tuning of CapSense applications. This  
solution is easy to use and provides robust noise immunity. It is  
the only auto-tuning solution that establishes, monitors, and  
maintains all required tuning parameters of each sensor during  
run time. SmartSense auto-tuning allows engineers to go from  
prototyping to mass production without retuning for  
manufacturing variations in PCB and/or overlay material  
properties.  
Note  
3. 34 GPIOs = 31 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
Document Number: 001-69257 Rev. *I  
Page 4 of 43  
CY8C20xx7/S  
Additional System Resources  
Getting Started  
System resources provide additional capability, such as  
configurable I2C slave, SPI master/slave communication  
interface, three 16-bit programmable timers, various system  
resets supported by the M8C low voltage detection and power-  
on reset. The merits of each system resource are listed here:  
The quickest way to understand PSoC silicon is to read this  
datasheet and then use the PSoC Designer Integrated  
Development Environment (IDE). This datasheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications.  
The I2C slave/SPI master-slave module provides 50/100/  
400 kHz communication over two wires. SPI communication  
over three or four wires runs at speeds of 46.9 kHz to 3 MHz  
(lower for a slower system clock).  
For in depth information, along with detailed programming  
details, see the Technical Reference Manual for the CY8C20x37/  
47/67/S PSoC devices.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web  
at www.cypress.com/psoc.  
The I2C hardware address recognition feature reduces the  
already low power consumption by eliminating the need for  
CPU intervention until a packet addressed to the target device  
is received.  
Application Notes/Design Guides  
The I2C enhanced slave interface appears as a 32-byte RAM  
buffer to the external I2C master. Using a simple predefined  
protocol, the master controls the read and write pointers into  
the RAM. When this method is enabled, the slave does not stall  
the bus when receiving data bytes in active mode. For usage  
details, see the applicationnote I2CEnhancedSlaveOperation  
- AN56007.  
Application notes and design guides are an excellent  
introduction to the wide variety of possible PSoC designs. They  
are located at www.cypress.com/gocapsense. Select  
Application Notes under the Related Documentation tab.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet, Digi-  
Key, Farnell, Future Electronics, and Newark. See Development  
Kits on page 31.  
Low-voltage detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced power-  
on reset (POR) circuit eliminates the need for a system  
supervisor.  
Training  
An internal reference provides an absolute reference for  
capacitive sensing.  
Free PSoC and CapSense technical training (on demand,  
webinars, and workshops) is available online at  
www.cypress.com/training. The training covers a wide variety of  
topics and skill levels to assist you in your designs.  
A register-controlled bypass mode allows the user to disable  
the LDO regulator.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various  
application designs that include firmware and hardware design  
files that enable you to complete your designs quickly.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, create a technical support case  
or call technical support at 1-800-541-4736.  
Document Number: 001-69257 Rev. *I  
Page 5 of 43  
CY8C20xx7/S  
Organize and Connect  
Designing with PSoC Designer  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select User Modules  
2. Configure User Modules  
3. Organize and Connect  
4. Generate and Verify  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run time and interrupt service routines that  
you can adapt as needed.  
Select Components  
PSoC Designer provides a library of pre-built, pre-tested  
hardware peripheral components called “user modules”. User  
modules make selecting and implementing peripheral devices,  
both analog and digital, simple.  
Configure Components  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
Each of the User Modules you select establishes the basic  
register settings that implement the selected function. They also  
provide parameters and properties that allow you to tailor their  
precise configuration to your particular application. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus. All the user modules  
are documented in datasheets that may be viewed directly in  
PSoC Designer or on the Cypress website. These user module  
datasheets explain the internal operation of the User Module and  
provide performance specifications. Each datasheet describes  
the use of each user module parameter, and other information  
you may need to successfully implement your design.  
Document Number: 001-69257 Rev. *I  
Page 6 of 43  
CY8C20xx7/S  
Pinouts  
The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of digital I/O and connection to the common analog bus. However, VSS, VDD, and XRES  
are not capable of digital I/O.  
16-pin SOIC (10 Sensing Inputs)  
Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI [4]  
Type  
Figure 2. CY8C20237-24SXI, CY8C20247/S-24SXI  
Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
P0[3] Integrating Input  
P0[1] Integrating Input  
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3]  
AI, P0[3]  
P0[7], AI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AI, P0[1]  
AI, P2[5]  
VDD  
P0[4], AI  
AI, P2[3]  
AI, P1[7]  
XRES  
P1[4], EXTCLK  
SOIC  
AI, P1[5]  
AI, P1[3]  
P1[2], AI  
P1[0], ISSP DATA, I2C SDA, SPI CLK, AI  
AI, ISSP CLK, I2C SCL, SPI MOSI, P1[1]  
VSS  
P1[1] ISSP CLK[5], I2C SCL, SPI  
MOSI  
9
Power  
VSS Ground connection  
10  
I/O  
I
P1[0] ISSP DATA[5], I2C SDA, SPI  
CLK[6]  
11  
12  
I/O  
I/O  
I
I
P1[2] Driven Shield Output (optional)  
P1[4] Optional external clock  
(EXTCLK)  
13  
INPUT  
Power  
XRES Active high external reset with  
internal pull-down  
14  
15  
16  
I/O  
I/O  
I
I
P0[4]  
VDD Supply voltage  
P0[7]  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
4. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
5. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
6. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 7 of 43  
CY8C20xx7/S  
[7]  
16-pin QFN (10 Sensing Inputs)  
Table 2. Pin Definitions – CY8C20237, CY8C20247/S [8]  
Type  
Pin  
Figure 3. CY8C20237, CY8C20247/S Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
I/O  
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
I/O  
AI, XOut,P2[5]  
AI, XIn,P2[3]  
1
2
P0[4] , AI  
XRES  
IOHR  
IOHR  
IOHR  
IOHR  
12  
11  
QFN  
3
4
(Top View)10 P1[4], EXTCLK, AI  
AI,I2 C SCL, SPI SS, P1[7]  
AI,I2 C SDA, SPI MISO, P1[5]  
9
P1[2] , AI  
P1[1] ISSP CLK[9], I2C SCL, SPI  
MOSI  
7
8
Power  
VSS Ground connection  
IOHR  
I
P1[0] ISSP DATA[9], I2C SDA, SPI  
CLK[10]  
9
IOHR  
IOHR  
I
I
P1[2] Driven Shield Output (optional)  
10  
P1[4] Optional external clock  
(EXTCLK)  
11  
Input  
XRES Active high external reset with  
internal pull-down  
12  
13  
14  
15  
16  
IOH  
Power  
I
P0[4]  
VDD Supply voltage  
P0[7]  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating input  
P0[1] Integrating input  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
7. No center pad.  
8. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
9. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
10. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 8 of 43  
CY8C20xx7/S  
[11]  
24-pin QFN (16 Sensing Inputs)  
Table 3. Pin Definitions – CY8C20337, CY8C20347/S [12]  
Type  
Pin  
Figure 4. CY8C20337, CY8C20347/S Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
I/O  
I/O  
I
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
18  
17  
16  
15  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[2], AI  
P0[0], AI  
P2[4], AI  
P2[2], AI  
XRES  
I/O  
IOHR  
IOHR  
IOHR  
IOHR  
AI, P2[1]  
QFN  
(Top View)  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
14  
13  
P1[6], AI  
P1[1] ISSP CLK[13], I2C SCL, SPI  
MOSI  
8
NC  
No connection  
9
Power  
VSS  
Ground connection  
10  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
P1[0] ISSPDATA[13], I2CSDA, SPI  
CLK[14]  
11  
12  
P1[2] Driven Shield Output  
(optional)  
P1[4] Optional external clock input  
(EXTCLK)  
13  
14  
P1[6]  
Input  
XRES Active high external reset  
with internal pull-down  
15  
16  
17  
18  
I/O  
I/O  
I
I
I
I
I
P2[2] Driven Shield Output  
(optional)  
P2[4] Driven Shield Output  
(optional)  
IOH  
IOH  
IOH  
P0[0] Driven Shield Output  
(optional)  
P0[2] Driven Shield Output  
(optional)  
19  
20  
21  
22  
23  
24  
CP  
P0[4]  
Power  
VDD  
Supply voltage  
IOH  
IOH  
I
I
P0[7]  
P0[3] Integrating input  
VSS Ground connection  
P0[1] Integrating input  
Power  
IOH  
Power  
I
VSS  
Center pad must be  
connected to ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
11. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
12. 19 GPIOs = 16 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
13. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
14. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 9 of 43  
CY8C20xx7/S  
30-ball WLCSP (24 Sensing Inputs)  
Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) [15]  
Type  
Pin No.  
Name  
Description  
Figure 5. CY8C20767, CY8C20747 30-ball  
WLCSP  
Digital  
Analog  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
E1  
IOH  
IOH  
I
I
P0[2]  
P0[6]  
VDD  
Driven Shield Output (optional)  
Bottom View  
5
4
3
2
1
Power  
Supply voltage  
A
B
C
D
E
F
IOH  
I/O  
I/O  
IOH  
IOH  
IOH  
I/O  
I/O  
I/O  
I/O  
IOH  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P4[2]  
P0[0]  
P0[4]  
P0[3]  
P2[5]  
P2[2]  
P2[4]  
P0[7]  
P3[2]  
P2[3]  
P2[0]  
P3[0]  
P3[1]  
P3[3]  
P2[1]  
XRES  
Integrating Input  
Driven Shield Output (optional)  
Integrating Input  
Crystal Output (Xout)  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
Top View  
1
2
3
4
5
Crystal Input (Xin)  
A
B
C
Input  
Active high external reset with  
internal pull-down  
D
E
E2  
E3  
IOHR  
IOHR  
I
I
P1[6]  
P1[4]  
Optional external clock input  
(EXT CLK)  
F
E4  
E5  
F1  
F2  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
P1[7]  
P1[5]  
P1[2]  
P1[0]  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
Driven Shield Output (optional)  
ISSP DATA[16], I2C SDA, SPI  
CLK[17]  
VSS  
F3  
F4  
Power  
IOHR  
Supply ground  
ISSP CLK[16], I2C SCL, SPI  
MOSI  
I
I
P1[1]  
F5  
IOHR  
P1[3]  
SPI CLK  
LEGEND: A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output  
Notes  
15. 27 GPIOs = 24 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
17. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 10 of 43  
CY8C20xx7/S  
[18]  
32-pin QFN (25 Sensing Inputs)  
Table 5. Pin Definitions – CY8C20437, CY8C20447/S, CY8C20467/S [19]  
Type  
Figure 6. CY8C20437, CY8C20447/S, CY8C20467/S Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
IOH  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P0[1] Integrating input  
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
2
3
I/O  
AI , XOut,P0[1]  
AI ,XIn,P2[5]  
1
2
3
4
5
6
7
8
24 P2[4] ,AI  
23 P2[2] ,AI  
22 P2[0] ,AI  
21 P4[2] ,AI  
20 P4[0] ,AI  
19 P3[2] ,AI  
18 P3[0] ,AI  
17 XRES  
4
I/O  
5
I/O  
P4[3]  
AI  
AI  
,P2[3]  
,P2[1]  
QFN  
(Top View)  
6
I/O  
P3[3]  
AI ,P4[3]  
AI ,P3[3]  
7
I/O  
P3[1]  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK.  
AI ,P3[1]  
AI ,I2 C SCL, SPI SS,P1[7]  
8
IOHR  
IOHR  
IOHR  
IOHR  
9
10  
11  
P1[1] ISSP CLK[20], I2C SCL, SPI  
MOSI.  
12  
13  
Power  
VSS  
Ground connection  
IOHR  
I
P1[0] ISSP DATA[20], I2C SDA,  
SPI CLK[21]  
14  
15  
IOHR  
IOHR  
I
I
P1[2] Driven Shield Output (optional)  
P1[4] Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
I/O  
P4[0]  
I/O  
P4[2]  
I/O  
P2[0]  
I/O  
P2[2] Driven Shield Output (optional)  
I/O  
P2[4] Driven Shield Output (optional)  
IOH  
IOH  
IOH  
IOH  
P0[0] Driven Shield Output (optional)  
P0[2] Driven Shield Output (optional)  
P0[4]  
P0[6]  
Power  
VDD  
IOH  
IOH  
I
I
P0[7]  
P0[3] Integrating input  
Power  
Power  
VSS  
VSS  
Ground connection  
Centerpadmustbeconnectedto  
ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
18. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
19. 28 GPIOs = 25 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
20. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
21. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 11 of 43  
CY8C20xx7/S  
[22]  
48-pin QFN (31 Sensing Inputs)  
Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S  
Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Device  
[23]  
1
NC  
No connection  
NC  
AI ,P2[7]  
NC  
36  
35  
34  
33  
32  
31  
1
2
2
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
P2[4],  
AI  
3
Crystal output (XOut)  
Crystal input (XIn)  
AI , XOut,P2[5]  
3
4
5
6
P2[2],  
P2[0],  
P4[2],  
P4[0],  
AI  
AI  
AI  
AI  
4
I/O  
AI , XIn ,P2[3]  
AI ,P2[1]  
AI ,P4[3]  
AI ,P4[1]  
AI ,P3[7]  
AI ,P3[5]  
AI ,P3[3]  
5
I/O  
6
I/O  
QFN  
(Top View)  
7
I/O  
30  
29  
28  
27  
P3[6],  
P3[4],  
P3[2],  
7
8
9
10  
AI  
AI  
8
I/O  
9
I/O  
AI  
AI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I/O  
],  
P3[0  
AI P  
3[1]  
I/O  
XRES  
26  
25  
11  
12  
2
AI ,I2 C SCL, SPI SS,P1[7]  
P1[6],AI  
IOHR  
IOHR  
I C SCL, SPI SS  
2
I C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
NC  
IOHR  
IOHR  
I
I
P1[3]  
P1[1]  
[24]  
2
ISSP CLK , I C SCL, SPI MOSI  
Ground connection  
No connection  
Power  
V
SS  
NC  
NC  
No connection  
Power  
IOHR  
V
Supply voltage  
DD  
[24]  
2
[25]  
I
I
I
P1[0]  
P1[2]  
P1[4]  
ISSP DATA , I C SDA, SPI CLK  
Driven Shield Output (optional)  
Optional external clock input  
(EXTCLK)  
IOHR  
IOHR  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES  
Active high external reset with  
internal pull-down  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
NC  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Power  
V
Supply voltage  
No connection  
No connection  
DD  
NC  
NC  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
No connection  
IOH  
IOH  
I
I
P0[7]  
NC  
No connection  
P0[3]  
Integrating input  
Ground connection  
Integrating input  
IOH  
IOH  
IOH  
I
I
I
P0[0]  
P0[2]  
P0[4]  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
Power  
V
SS  
IOH  
I
P0[1]  
Power  
V
Center pad must be connected to ground  
SS  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
22. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
23. 34 GPIOs = 31 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
24. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
25. Alternate SPI clock.  
Document Number: 001-69257 Rev. *I  
Page 12 of 43  
CY8C20xx7/S  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical  
specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.  
Figure 8. Voltage versus CPU Frequency  
5.5 V  
1.71 V  
750kHz  
3 MHz  
24MHz  
CPU Frequency  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 7. Absolute Maximum Ratings  
Symbol  
Description  
Storage temperature  
Conditions  
Min  
Typ  
Max  
Units  
T
Higher storage temperatures reduce data  
retention time. Recommended Storage  
Temperature is +25 °C ± 25 °C. Extended  
duration storage temperatures above 85 °C  
degrades reliability.  
–55  
+25  
+125  
°C  
STG  
V
V
V
Supply voltage relative to V  
DC input voltage  
–0.5  
+6.0  
V
V
DD  
SS  
V
V
– 0.5  
V
V
+ 0.5  
IO  
SS  
SS  
DD  
DD  
DC voltage applied to tristate  
Maximum current into any port pin  
Electro static discharge voltage  
Latch up current  
– 0.5  
+ 0.5  
V
IOZ  
MIO  
I
–25  
+50  
mA  
V
ESD  
LU  
Human body model ESD  
2000  
In accordance with JESD78 standard  
200  
mA  
Operating Temperature  
Table 8. Operating Temperature  
Symbol  
Description  
Conditions  
Min  
–40  
0
Typ  
Max  
+85  
70  
Units  
°C  
T
Ambient temperature  
A
T
Commercial temperature range  
Operational die temperature  
°C  
C
J
T
The temperature rise from ambient to junction  
is package specific. See the Thermal Imped-  
ances on page 30. The user must limit the  
power consumption to comply with this  
requirement.  
–40  
+100  
°C  
Document Number: 001-69257 Rev. *I  
Page 13 of 43  
CY8C20xx7/S  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 9. DC Chip-Level Specifications  
Symbol  
Description  
Supply voltage  
Conditions  
Min  
Typ  
Max Units  
[26, 27, 28]  
V
I
See table DC POR and LVD Specifications on  
page 19  
1.71  
5.50  
V
DD  
Supply current, IMO = 24 MHz Conditions are V 3.0 V, T = 25 °C,  
2.88  
1.71  
1.16  
4.00  
mA  
DD24  
DD12  
DD6  
DD  
A
CPU = 24 MHz. CapSense running at 12 MHz,  
no I/O sourcing current  
I
I
Supply current, IMO = 12 MHz Conditions are V 3.0 V, T = 25 °C,  
2.60  
1.80  
mA  
mA  
DD  
A
CPU = 12 MHz. CapSense running at  
12 MHz, no I/O sourcing current  
Supply current, IMO = 6 MHz  
Conditions are V 3.0 V, T = 25 °C,  
DD  
A
CPU = 6 MHz. CapSense running at 6 MHz,  
no I/O sourcing current  
I
I
Deep sleep current  
V
3.0 V, T = 25 °C, I/O regulator turned off  
0.10  
1.07  
1.1  
A  
A  
SB0  
DD  
A
Standby current with POR, LVD V 3.0 V, T = 25 °C, I/O regulator turned off  
and sleep timer  
1.50  
SB1  
DD  
A
2
I
Standby current with I C  
enabled  
Conditions are V = 3.3 V, T = 25 °C and  
CPU = 24 MHz  
1.64  
A  
SBI2C  
DD  
A
Notes  
26. When VDD remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be  
slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.  
27. If powering down in standby sleep mode, to properly detect and recover from a VDD brown out condition any of the following actions must be taken:  
a. Bring the device out of sleep before powering down.  
b. Assure that VDD falls below 100 mV before powering back up.  
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
d. Increase the buzz rate to assure that the falling edge of VDD is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced  
registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows VDD brown out  
conditions to be detected and resets the device when VDD goes lower than 1.1 V at edge rates slower than 1 V/ms.  
28. For proper CapSense block functionality, if the drop in VDD exceeds 5% of the base VDD, the rate at which VDD drops should not exceed 200 mV/s. Base VDD can  
be between 1.8 V and 5.5 V.  
Document Number: 001-69257 Rev. *I  
Page 14 of 43  
CY8C20xx7/S  
DC GPIO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 10. 3.0 V to 5.5 V DC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ Max Units  
R
Pull-up resistor  
I
4
5.60  
8
k  
PU  
V
V
V
High output voltage  
Port 2 or 3 pins  
< 10 A, maximum of 10 mA source  
V
– 0.20  
V
OH1  
OH  
DD  
DD  
DD  
current in all I/Os  
High output voltage  
Port 2 or 3 Pins  
I
= 1 mA, maximum of 20 mA source  
OH  
V
V
– 0.90  
– 0.20  
V
V
OH2  
OH3  
current in all I/Os  
I < 10 A, maximum of 10 mA source  
OH  
High output voltage  
Port 0 or 1 pins with LDO regulator Disabled current in all I/Os  
for port 1  
V
V
V
High output voltage  
Port 0 or 1 pins with LDO regulator Disabled current in all I/Os  
for port 1  
I
= 5 mA, maximum of 20 mA source  
V
– 0.90  
V
V
V
OH4  
OH5  
OH6  
OH  
DD  
High output voltage  
Port 1 Pins with LDO Regulator Enabled for 4 I/Os all sourcing 5 mA  
3 V out  
I
< 10 A, V > 3.1 V, maximum of  
2.85  
3.00 3.30  
OH  
DD  
High output voltage  
Port 1 pins with LDO regulator enabled for source current in all I/Os  
I
= 5 mA, V > 3.1 V, maximum of 20 mA  
2.20  
OH  
DD  
3 V out  
V
V
V
V
V
High output voltage  
Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os  
I
< 10 A, V > 2.7 V, maximum of 20 mA  
2.35  
1.90  
1.60  
1.20  
2.50 2.75  
V
V
V
V
V
OH7  
OH8  
OH9  
OH10  
OL  
OH  
DD  
High output voltage = 2 mA, V > 2.7 V, maximum of 20 mA  
Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os  
High output voltage < 10 A, V > 2.7 V, maximum of 20 mA  
Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os  
High output voltage = 1 mA, V > 2.7 V, maximum of 20 mA  
Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os  
I
OH  
DD  
I
1.80 2.10  
OH  
DD  
I
OH  
DD  
Low output voltage  
I
= 25 mA, V > 3.3 V, maximum of 60 mA  
0.75  
OL  
DD  
sink current on even port pins (for example,  
P0[2] and P1[4]) and 60 mA sink current on  
odd port pins (for example, P0[3] and P1[5])  
V
V
V
I
Input low voltage  
2.00  
0.80  
V
V
IL  
IH  
H
Input high voltage  
1
Input hysteresis voltage  
Input leakage (Absolute Value)  
80  
mV  
A  
0.00  
1
IL  
C
Pin capacitance  
Package and pin dependent  
Temp = 25 °C  
0.50  
0.8  
1.4  
0.8  
1.7  
1.70  
7
pF  
PIN  
VILLVT3.3 Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold  
set, Enable for Port1 voltage of Port1 input  
V
VIHLVT3.3 Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold  
set, Enable for Port1 voltage of Port1 input  
V
VILLVT5.5 Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold  
set, Enable for Port1 voltage of Port1 input  
V
VIHLVT5.5 Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low threshold  
V
set, Enable for Port1  
voltage of Port1 input  
Document Number: 001-69257 Rev. *I  
Page 15 of 43  
CY8C20xx7/S  
Table 11. 2.4 V to 3.0 V DC GPIO Specifications  
Symbol Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
R
I
4
PU  
V
V
V
High output voltage  
Port 2 or 3 pins  
< 10 A, maximum of 10 mA source V - 0.20  
current in all I/Os  
V
OH1  
OH  
DD  
High output voltage  
Port 2 or 3 Pins  
I
= 0.2 mA, maximum of 10 mA  
V - 0.40  
DD  
V
V
OH2  
OH3  
OH  
source current in all I/Os  
I < 10 A, maximum of 10 mA source V - 0.20  
OH  
current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
DD  
Disabled for port 1  
V
V
V
V
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for Port 1  
I
= 2 mA, maximum of 10 mA source V - 0.50  
1.80  
V
V
V
V
OH4  
OH5A  
OH6A  
OL  
OH  
DD  
current in all I/Os  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V 20 mA source current in all I/Os  
out  
I
< 10 A, V > 2.4 V, maximum of  
1.50  
1.20  
2.10  
OH  
DD  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V 20 mA source current in all I/Os  
out  
I
= 1 mA, V > 2.4 V, maximum of  
OH DD  
Low output voltage  
I
= 10 mA, maximum of 30 mA sink  
0.75  
OL  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
V
V
V
Input low voltage  
1.40  
0.72  
V
V
IL  
IH  
H
Input high voltage  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
1000  
7
mV  
nA  
pF  
I
IL  
C
Package and pin dependent  
0.50  
1.70  
PIN  
Temp = 25 C  
V
V
Input Low Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low  
threshold voltage of Port1 input  
0.7  
1.2  
V
ILLVT2.5  
IHLVT2.5  
Input High Voltage with low threshold Bit3 of IO_CFG1 set to enable low  
enable set, Enable for Port1  
V
threshold voltage of Port1 input  
Table 12. 1.71 V to 2.4 V DC GPIO Specifications  
Symbol Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
R
4
PU  
V
V
V
High output voltage  
Port 2 or 3 pins  
I
= 10 A, maximum of 10 mA V – 0.20  
V
OH1  
OH  
DD  
source current in all I/Os  
High output voltage  
Port 2 or 3 pins  
I
= 0.5 mA, maximum of 10 mA V – 0.50  
V
V
OH2  
OH3  
OH  
DD  
source current in all I/Os  
I = 100 A, maximum of 10 mA V – 0.20  
OH  
source current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for Port 1  
DD  
V
High output voltage  
Port 0 or 1 Pins with LDO Regulator  
I
= 2 mA, maximum of 10 mA source V – 0.50  
V
OH4  
OH  
DD  
current in all I/Os  
Disabled for Port 1  
Document Number: 001-69257 Rev. *I  
Page 16 of 43  
CY8C20xx7/S  
Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)  
Symbol Description  
Low output voltage  
Conditions  
Min  
Typ  
Max  
Units  
V
I
= 5 mA, maximum of 20 mA sink  
OL  
0.40  
V
OL  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
V
V
V
Input low voltage  
0.30 × V  
V
V
IL  
IH  
H
DD  
Input high voltage  
0.65 × V  
DD  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
mV  
nA  
pF  
I
1000  
7
IL  
C
Package and pin dependent  
0.50  
1.70  
PIN  
temp = 25 C  
Table 13. GPIO Current Sink and Source Specifications  
Supply  
Voltage  
Port 0/1 per I/O  
(max)  
Port 2/3/4 per Total Current Even Total Current Odd  
Mode  
Units  
I/O (max)  
Pins (max)  
Pins (max)  
1.71–2.4  
2.4–3.0  
3.0–5.0  
Sink  
Source  
Sink  
5
2
5
20  
30  
mA  
mA  
mA  
mA  
mA  
mA  
[29]  
[29]  
[29]  
0.5  
10  
0.2  
25  
1
10  
10  
20  
10  
2
30  
60  
30  
60  
Source  
Sink  
25  
5
Source  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 14. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
R
Switch resistance to common analog  
bus  
800  
SW  
R
Resistance of initialization switch to  
800  
GND  
V
SS  
The maximum pin voltage for measuring RSW and RGND is 1.8 V  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 15. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Low power comparator (LPC) common Maximum voltage limited to V  
mode  
0.2  
1.8  
V
LPC  
DD  
I
LPC supply current  
LPC voltage offset  
10  
80  
30  
A  
LPC  
V
2.5  
mV  
OSLPC  
Note  
29. Total current (odd + even ports)  
Document Number: 001-69257 Rev. *I  
Page 17 of 43  
CY8C20xx7/S  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40 °C TA 85 °C, 1.71 V V 5.5 V.  
DD  
Table 16. Comparator User Module Electrical Specifications  
Symbol  
Description  
Comparator response time 50 mV overdrive  
Valid from 0.2 V to 1.5 V  
Conditions  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
T
COMP  
Offset  
2.5  
20  
mV  
µA  
Current  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage > 2 V  
Supply voltage < 2 V  
Power supply rejection ratio  
80  
40  
dB  
dB  
V
PSRR  
Power supply rejection ratio  
Input range  
0.2  
1.5  
ADC Electrical Specifications  
Table 17. ADC User Module Electrical Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Input  
V
Input voltage range  
Input capacitance  
Input resistance  
0
VREFADC  
5
V
pF  
IN  
C
R
IIN  
IN  
Equivalent switched cap input 1/(500fF × 1/(400fF × 1/(300fF ×  
resistance for 8-, 9-, or 10-bit data clock) data clock) data clock)  
resolution  
Reference  
V
ADC reference voltage  
Data clock  
1.14  
2.25  
1.26  
6
V
REFADC  
Conversion Rate  
F
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications on page 21 for  
accuracy  
MHz  
CLK  
S8  
8-bit sample rate  
10-bit sample rate  
Data clock set to 6 MHz.  
sample rate = 0.001/  
(2^Resolution/Data Clock)  
23.43  
5.85  
ksps  
ksps  
S10  
Data clock set to 6 MHz.  
sample rate = 0.001/  
(2^resolution/data clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8, 9, or 10 bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
INL  
+2  
LSB  
E
8-bit resolution  
10-bit resolution  
For any resolution  
3.20  
12.80  
19.20  
76.80  
+5  
LSB  
OFFSET  
0
LSB  
E
Gain error  
–5  
%FSR  
GAIN  
Power  
I
Operating current  
2.10  
24  
2.60  
mA  
dB  
dB  
ADC  
PSRR  
Power supply rejection ratio PSRR (V > 3.0 V)  
DD  
PSRR (V < 3.0 V)  
30  
DD  
Document Number: 001-69257 Rev. *I  
Page 18 of 43  
CY8C20xx7/S  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
1.61  
Typ  
1.66  
2.36  
2.60  
2.82  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
Max  
1.71  
2.41  
2.66  
2.95  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
Units  
V
V
V
V
V
V
V
V
V
V
V
V
1.66 V selected in PSoC Designer V must be greater thanor equal to 1.71 V  
V
POR0  
POR1  
POR2  
POR3  
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
DD  
during startup, reset from the XRES pin, or  
reset from watchdog.  
2.36 V selected in PSoC Designer  
2.60 V selected in PSoC Designer  
2.82 V selected in PSoC Designer  
2.45 V selected in PSoC Designer –  
2.71 V selected in PSoC Designer  
2.92 V selected in PSoC Designer  
3.02 V selected in PSoC Designer  
3.13 V selected in PSoC Designer  
1.90 V selected in PSoC Designer  
1.80 V selected in PSoC Designer  
4.73 V selected in PSoC Designer  
2.40  
V
[30]  
2.64  
2.85  
2.95  
[31]  
[32]  
3.06  
1.84  
[33]  
1.75  
4.62  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Programming Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Supply voltage for flash write  
operations  
1.71  
5.25  
V
DDIWRITE  
I
Supply current during  
programming or verify  
5
25  
mA  
V
DDP  
V
Input low voltage during  
programming or verify  
See appropriate DC GPIO Specifications  
on page 15  
V
IL  
ILP  
V
Input high voltage during  
programming or verify  
See appropriate DC GPIO Specifications  
on page 15  
V
V
IHP  
IH  
I
I
Input current when Applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull-down resistor  
0.2  
mA  
ILP  
ILP  
Input current when applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull-down resistor  
1.5  
mA  
IHP  
IHP  
V
V
Output low voltage during  
programming or verify  
V
+ 0.75  
V
V
OLP  
SS  
Output high voltage during  
programming or verify  
See appropriate DC GPIO Specifications  
V
V
DD  
OHP  
OH  
on page 15. For V > 3V use V  
in  
DD  
OH4  
Table 10 on page 15.  
Flash  
Flash  
Flash write endurance  
Flash data retention  
Erase/write cycles per block  
50,000  
20  
ENPB  
Following maximum Flash write cycles;  
ambient temperature of 55 °C  
Years  
DR  
Notes  
30. Always greater than 50 mV above VPPOR1 voltage for falling supply.  
31. Always greater than 50 mV above VPPOR2 voltage for falling supply.  
32. Always greater than 50 mV above VPPOR3 voltage for falling supply.  
33. Always greater than 50 mV above VPPOR0 voltage for falling supply.  
Document Number: 001-69257 Rev. *I  
Page 19 of 43  
CY8C20xx7/S  
2
DC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
[34]  
Table 20. DC I2C Specifications  
Symbol  
Description  
Input low level  
Conditions  
3.1 V V 5.5 V  
Min  
Typ  
Max  
Units  
V
0.25 × V  
V
ILI2C  
DD  
DD  
DD  
DD  
2.5 V V 3.0 V  
0.3 × V  
0.3 × V  
V
V
V
DD  
1.71 V V 2.4 V  
DD  
V
Input high level  
1.71 V V 5.5 V  
0.65 × V  
V
0.7 V  
+
IHI2C  
DD  
DD  
DD  
[35]  
Shield Driver DC Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 21. Shield Driver DC Specifications  
Symbol  
Description  
Conditions  
1.7 V V 5.5 V  
Min  
Typ  
Max  
Units  
V
V
Reference buffer output  
0.942  
1.106  
V
Ref  
DD  
Reference buffer output  
1.7 V V 5.5 V  
1.104  
1.296  
V
RefHi  
DD  
DC IDAC Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. DC IDAC Specifications (8-bit IDAC)  
Symbol  
IDAC_DNL  
IDAC_DNL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Min  
–1  
Typ  
Max  
1
Units  
LSB  
LSB  
µA  
Notes  
–2  
2
IDAC_Current Range = 4x  
Range = 8x  
138  
138  
169  
169  
DAC setting = 127 dec  
DAC setting = 64 dec  
µA  
Table 23. DC IDAC Specifications (7-bit IDAC)  
Symbol  
IDAC_DNL  
IDAC_DNL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Min  
–1  
Typ  
Max  
1
Units  
LSB  
LSB  
µA  
Notes  
–2  
2
IDAC_Current Range = 4x  
Range = 8x  
137  
138  
168  
169  
DAC setting = 127 dec  
DAC setting = 64 dec  
µA  
Notes  
34. Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S/H/L power supply. See the CY8C20xx7  
Silicon Errata document for more details.  
35. Please refer to Item # 6 of the Silicon Errata for the CY8C20xx7/S Family  
Document Number: 001-69257 Rev. *I  
Page 20 of 43  
CY8C20xx7/S  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 24. AC Chip-Level Specifications  
Symbol  
Description  
IMO frequency at 24 MHz Setting  
IMO frequency at 12 MHz setting  
IMO frequency at 6 MHz setting  
CPU frequency  
Conditions  
Min  
22.8  
11.4  
5.7  
0.75  
15  
13  
40  
40  
Typ  
24  
12  
6.0  
Max  
25.2  
12.6  
6.3  
25.20  
50  
Units  
MHz  
MHz  
MHz  
MHz  
kHz  
kHz  
%
F
F
F
F
F
F
V
IMO24  
IMO12  
IMO6  
CPU  
ILO frequency  
32  
32  
50  
50  
32K1  
ILO untrimmed frequency  
Duty cycle of IMO  
82  
32K_U  
DC  
DC  
SR  
60  
IMO  
ILO duty cycle  
60  
%
ILO  
Power supply slew rate  
slew rate during power-up  
DD  
250  
V/ms  
ms  
POWER_UP  
t
t
t
External reset pulse width at power-up  
External reset pulse width after power-up  
6 MHz IMO cycle-to-cycle jitter (RMS)  
After supply voltage is valid  
1
XRST  
[36]  
Applies after part has booted  
10  
s  
XRST2  
[37]  
0.7  
4.3  
6.7  
29.3  
ns  
JIT_IMO  
6 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
ns  
6 MHz IMO period jitter (RMS)  
0.7  
0.5  
2.3  
3.3  
5.2  
5.6  
ns  
ns  
ns  
12 MHz IMO cycle-to-cycle jitter (RMS)  
12 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
––  
12 MHz IMO period jitter (RMS)  
0.4  
1.0  
1.4  
2.6  
8.7  
6.0  
ns  
ns  
ns  
24 MHz IMO cycle-to-cycle jitter (RMS)  
24 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
24 MHz IMO period jitter (RMS)  
0.6  
4.0  
ns  
Note  
36. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23).  
37. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.  
Document Number: 001-69257 Rev. *I  
Page 21 of 43  
CY8C20xx7/S  
AC General Purpose I/O Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 25. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
6 MHz for  
Units  
F
GPIO operating frequency  
Normal strong mode Port 0, 1  
0
MHz  
GPIO  
1.71 V <V < 2.40 V  
DD  
0
12 MHz for  
MHz  
ns  
2.40 V < V < 5.50 V  
DD  
t
t
t
t
t
t
Rise time, strong mode, Cload = 50 pF  
Ports 2 or 3  
V
V
V
= 3.0 to 3.6 V, 10% to 90%  
= 1.71 to 3.0 V, 10% to 90%  
= 3.0 to 3.6 V, 10% to 90%  
15  
15  
10  
10  
10  
10  
80  
80  
50  
80  
50  
70  
RISE23  
RISE23L  
RISE01  
RISE01L  
FALL  
DD  
DD  
DD  
Rise time, strong mode low supply,  
Cload = 50 pF, Ports 2 or 3  
ns  
Rise time, strong mode, Cload = 50 pF  
Ports 0 or 1  
ns  
LDO enabled or disabled  
Rise time, strong mode low supply,  
Cload = 50 pF, Ports 0 or 1  
V
= 1.71 to 3.0 V, 10% to 90%  
ns  
DD  
LDO enabled or disabled  
Fall time, strong mode, Cload = 50 pF  
all ports  
V
= 3.0 to 3.6 V, 10% to 90%  
ns  
DD  
DD  
Fall time, strong mode low supply,  
Cload = 50 pF, all ports  
V
= 1.71 to 3.0 V, 10% to 90%  
ns  
FALLL  
Figure 9. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. AC Low Power Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
t
Comparator response time,  
50 mV overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
LPC  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
Frequency (external oscillator  
frequency)  
0.75  
25.20  
MHz  
OSCEXT  
High period  
20.60  
20.60  
150  
5300  
ns  
ns  
s  
Low period  
Power-up IMO to switch  
Document Number: 001-69257 Rev. *I  
Page 22 of 43  
CY8C20xx7/S  
AC Programming Specifications  
Figure 10. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 28. AC Programming Specifications  
Symbol  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
t
t
t
t
RSCLK  
Fall time of SCLK  
1
ns  
FSCLK  
SSCLK  
HSCLK  
Data setup time to falling edge of SCLK  
Data hold time from falling edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
F
8
MHz  
ms  
ms  
ns  
SCLK  
t
t
t
t
t
t
Flash erase time (block)  
18  
25  
60  
85  
130  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
XRST3  
Flash block write time  
Data out delay from falling edge of SCLK 3.6 V  
Data out delay from falling edge of SCLK 3.0 V 3.6  
Data out delay from falling edge of SCLK 1.71 V 3.0  
External reset pulse width after power-up Required to enter programming  
mode when coming out of sleep  
DD  
ns  
DD  
ns  
DD  
300  
s  
t
t
t
t
t
XRES pulse length  
300  
0.1  
1
s  
ms  
ms  
ms  
ms  
XRES  
[38]  
[38]  
V
V
stable to wait-and-poll hold off  
stable to XRES assertion delay  
VDDWAIT  
DD  
14.27  
0.01  
3.20  
VDDXRES  
DD  
SDAT high pulse time  
200  
19.60  
POLL  
[38]  
“Key window” time after a V ramp  
acquire event, based on 256 ILO clocks.  
ACQ  
DD  
[38]  
t
“Key window” time after an XRES event,  
based on 8 ILO clocks  
98  
615  
s  
XRESINI  
Note  
38. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67,  
CY8C20X47, CY8C20X37, Programming Spec for more details.  
Document Number: 001-69257 Rev. *I  
Page 23 of 43  
CY8C20xx7/S  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 29. AC Characteristics of the I2C SDA and SCL Pins  
Standard  
Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
100  
Min  
0
Max  
f
t
SCL clock frequency  
0
400 kHz  
SCL  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated  
4.0  
0.6  
µs  
HD;STA  
t
t
t
t
t
t
t
t
LOW period of the SCL clock  
4.7  
4.0  
4.7  
20  
1.3  
0.6  
0.6  
20  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOW  
HIGH Period of the SCL clock  
HIGH  
Setup time for a repeated START condition  
Data hold time  
SU;STA  
HD;DAT  
SU;DAT  
SU;STO  
BUF  
[39]  
3.45  
0.90  
[40]  
Data setup time  
250  
4.0  
4.7  
100  
Setup time for STOP condition  
0.6  
1.3  
0
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
50  
SP  
Figure 11. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Notes  
39. To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. See the  
CY8C20xx7 Silicon Errata document for more details.  
40. A Fast-Mode I2C-bus device can be used in a standard mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This automatically be the  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Document Number: 001-69257 Rev. *I  
Page 24 of 43  
CY8C20xx7/S  
Table 30. SPI Master AC Specifications  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Units  
F
SCLK clock frequency  
V
V
2.4 V  
6
3
MHz  
MHz  
SCLK  
DD  
DD  
< 2.4 V  
DC  
t
SCLK duty cycle  
50  
%
MISO to SCLK setup time  
V
V
2.4 V  
< 2.4 V  
60  
100  
ns  
ns  
SETUP  
DD  
DD  
t
t
t
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
40  
ns  
ns  
ns  
HOLD  
OUT_VAL  
OUT_H  
40  
Figure 12. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
Figure 13. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Document Number: 001-69257 Rev. *I  
Page 25 of 43  
CY8C20xx7/S  
Table 31. SPI Slave AC Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
4
Units  
MHz  
ns  
F
SCLK clock frequency  
SCLK low time  
SCLK  
t
t
t
t
t
t
t
t
t
42  
LOW  
SCLK high time  
42  
ns  
HIGH  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
SS high time  
30  
ns  
SETUP  
HOLD  
50  
ns  
153  
125  
ns  
SS_MISO  
SCLK_MISO  
SS_HIGH  
SS_CLK  
CLK_SS  
ns  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
Figure 14. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Figure 15. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
MSB  
LSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
Document Number: 001-69257 Rev. *I  
Page 26 of 43  
CY8C20xx7/S  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20x37/47/67 PSoC device, along with the thermal impedances for  
each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 16. 16-pin (150 Mil) SOIC  
51-85068 *E  
Figure 17. 16-pin QFN No Center Pad (3 x 3 x 0.6 mm) Package Outline (Sawn)  
001-09116 *H  
Document Number: 001-69257 Rev. *I  
Page 27 of 43  
CY8C20xx7/S  
Figure 18. 24-Pin (4 × 4 × 0.6 mm) QFN  
001-13937 *E  
Figure 19. 32-Pin (5 × 5 × 0.6 mm) QFN  
001-42168 *E  
Document Number: 001-69257 Rev. *I  
Page 28 of 43  
CY8C20xx7/S  
Figure 20. 48-Pin (6 × 6 × 0.6 mm) QFN  
001-57280 *E  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-69257 Rev. *I  
Page 29 of 43  
CY8C20xx7/S  
Thermal Impedances  
Table 32. Thermal Impedances per Package  
[41]  
Package  
16-Pin SOIC  
16-Pin QFN  
Typical JA  
95 C/W  
33 C/W  
21 C/W  
20 C/W  
18 C/W  
54 C/W  
[42]  
24-Pin QFN  
32-Pin QFN  
48-Pin QFN  
[42]  
[42]  
30-Ball WLCSP  
Capacitance on Crystal Pins  
Table 33. Typical Package Capacitance on Crystal Pins  
Package  
32-Pin QFN  
48-Pin QFN  
Package Capacitance  
3.2 pF  
3.3 pF  
Solder Reflow Peak Temperature  
Table 34 shows the solder reflow temperature limits that must not be exceeded.  
Table 34. Solder Reflow Peak Temperature  
Package  
16-pin SOIC  
16-pin QFN  
24-pin QFN  
32-pin QFN  
48-pin QFN  
30-ball WLCSP  
Maximum Time above TC – 5 C  
Maximum Peak Temperature (TC)  
260 C  
260 C  
260 C  
260 C  
260 C  
260 C  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
Notes  
41. TJ = TA + Power ×   
.
JA  
42. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
Document Number: 001-69257 Rev. *I  
Page 30 of 43  
CY8C20xx7/S  
Development Kits  
Development Tool Selection  
Software  
All development kits are sold at the Cypress Online Store.  
Evaluation Tools  
PSoC Designer™  
All evaluation tools are sold at the Cypress Online Store.  
At the core of the PSoC development software suite is  
PSoC Designer, used to generate PSoC firmware applications.  
PSoC Designer is a Microsoft Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows XP and Windows Vista.  
CY3210-MiniProg1  
®
The CY3210-MiniProg1 kit allows you to program PSoC devices  
through the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
through a provided USB 2.0 cable. The kit includes:  
This system provides design database management by project,  
in-system programming support, and built-in support for third-  
party assemblers and C compilers. PSoC Designer also  
supports C language compilers developed specifically for the  
devices in the PSoC family. PSoC Designer is available free of  
charge at  
MiniProg programming unit  
MiniEval socket programming and evaluation board  
28-pin CY8C29466-24PXI PDIP PSoC device sample  
28-pin CY8C27443-24PXI PDIP PSoC device sample  
PSoC Designer software CD  
http://www.cypress.com/psocdesigner and includes a free C  
compiler.  
PSoC Designer Software Subsystems  
Getting Started guide  
You choose a base device to work with and then select different  
onboard analog and digital components called user modules that  
use the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters. You configure the user modules  
for your chosen application and connect them to each other and  
to the proper pins. Then you generate your project. This  
prepopulates your project with APIs and libraries that you can  
use to program your application.  
USB 2.0 cable  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration allows for changing configurations at run time.  
Code Generation Tools PSoC Designer supports multiple third-  
party C compilers and assemblers. The code generation tools  
work seamlessly within the PSoC Designer interface and have  
been tested with a full range of debugging tools. The choice is  
yours.  
Evaluation board with LCD module  
MiniProg programming unit  
Two 28-pin CY8C29466-24PXI PDIP PSoC device samples  
PSoC Designer software CD  
Getting Started guide  
USB 2.0 cable  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
Device Programmers  
All device programmers are purchased from the Cypress Online  
Store.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all the features of C tailored to  
the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
CY3216 Modular Programmer  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
Modular programmer base  
Three programming module cards  
MiniProg programming unit  
PSoC Designer software CD  
Getting Started guide  
PSoC Programmer  
PSoC Programmer is flexible enough and is used on the bench  
in development and is also suitable for factory programming.  
PSoC Programmer works either as a standalone programming  
application or operates directly from PSoC Designer. PSoC  
Programmer software is compatible with both PSoC ICE Cube  
in-circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free of cost at  
USB 2.0 cable  
http://www.cypress.com/psocprogrammer.  
Document Number: 001-69257 Rev. *I  
Page 31 of 43  
CY8C20xx7/S  
CY3207ISSP In-System Serial Programmer (ISSP)  
CY3207 programmer unit  
PSoC ISSP software CD  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
110 ~ 240 V power supply, Euro-Plug adapter  
USB 2.0 cable  
Note CY3207ISSP needs special software and is not compatible  
with PSoC Programmer. The kit includes:  
Accessories (Emulation and Programming)  
Table 35. Emulation and Programming Accessories  
[43]  
[44]  
[45]  
Part Number  
CY8C20237-24LKXI  
CY8C20247-24LKXI  
CY8C20337-24LQXI  
CY8C20347-24LQXI  
CY8C20437-24LQXI  
CY8C20447-24LQXI  
CY8C20467-24LQXI  
CY8C20637-24LQXI  
CY8C20647-24LQXI  
CY8C20667-24LQXI  
Pin Package  
16 QFN  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY3250-20246QFN  
CY3250-20246QFN  
CY3250-20346QFN  
CY3250-20346QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20666QFN  
CY3250-20666QFN  
CY3250-20666QFN  
CY3250-20246QFN-POD  
CY3250-20246QFN-POD  
CY3250-20346QFN-POD  
CY3250-20346QFN-POD  
CY3250-20466QFN-POD  
CY3250-20466QFN-POD  
CY3250-20466QFN-POD  
CY3250-20666QFN-POD  
CY3250-20666QFN-POD  
CY3250-20666QFN-POD  
See note 42  
See note 45  
See note 42  
See note 45  
See note 42  
See note 45  
See note 45  
See note 45  
See note 45  
See note 45  
16 QFN  
24 QFN  
24 QFN  
32 QFN  
32 QFN  
32 QFN  
48 QFN  
48 QFN  
48 QFN  
Third Party Tools  
Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and  
production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.  
Build a PSoC Emulator into Your Board  
For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC  
device, see the Application Note Debugging - Build a PSoC Emulator into Your Board – AN2323.  
Notes  
43. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
44. Foot kit includes surface mount feet that can be soldered to the target PCB.  
45. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
Document Number: 001-69257 Rev. *I  
Page 32 of 43  
CY8C20xx7/S  
Ordering Information  
The following table lists the CY8C20x37/47/67/S PSoC devices' key package features and ordering codes.  
Table 36. PSoC Device Key Features and Ordering Information  
Flash SRAM CapSense Digital I/O  
XRES  
Pin  
Analog  
Ordering Code  
Package  
ADC  
[46]  
(Bytes) (Bytes) Sensors  
Pins  
13  
13  
13  
13  
13  
13  
13  
13  
13  
19  
19  
19  
19  
19  
19  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
Inputs  
13  
13  
13  
13  
13  
13  
13  
13  
13  
19  
19  
19  
19  
19  
19  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
CY8C20237-24SXI  
16-pin SOIC  
8 K  
16 K  
16 K  
8 K  
1 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
10  
10  
10  
10  
10  
10  
10  
10  
10  
16  
16  
16  
16  
16  
16  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
CY8C20247/S-24SXI  
CY8C20247S-24SXI  
CY8C20237-24LKXI  
CY8C20237-24LKXIT  
CY8C20247/S-24LKXI  
CY8C20247/S-24LKXIT  
CY8C20247S-24LKXI  
CY8C20247S-24LKXIT  
CY8C20337-24LQXI  
CY8C20337-24LQXIT  
CY8C20347-24LQXI  
CY8C20347-24LQXIT  
CY8C20347S-24LQXI  
CY8C20347S-24LQXIT  
CY8C20437-24LQXI  
CY8C20437-24LQXIT  
CY8C20447-24LQXI  
CY8C20447-24LQXIT  
CY8C20447S-24LQXI  
CY8C20447S-24LQXIT  
CY8C20467-24LQXI  
CY8C20467-24LQXIT  
CY8C20467S-24LQXI  
CY8C20467S-24LQXIT  
CY8C20637-24LQXI  
CY8C20637-24LQXIT  
CY8C20647-24LQXI  
CY8C20647-24LQXIT  
CY8C20647S-24LQXI  
CY8C20647S-24LQXIT  
CY8C20667-24LQXI  
CY8C20667-24LQXIT  
CY8C20667S-24LQXI  
CY8C20667S-24LQXIT  
16-pin SOIC  
16-pin SOIC  
16-pin QFN  
16-pin QFN (Tape and Reel)  
16-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
8 K  
16-pin QFN (Tape and Reel)  
16-pin QFN  
16-pin QFN (Tape and Reel)  
24-pin QFN  
24-pin QFN (Tape and Reel)  
24-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
8 K  
24-pin QFN (Tape and Reel)  
24-pin QFN  
24-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
32 K  
32 K  
32 K  
32 K  
8 K  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
32 K  
32 K  
32 K  
32 K  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
Note  
46. Dual-function Digital I/O Pins also connect to the common analog mux.  
Document Number: 001-69257 Rev. *I  
Page 33 of 43  
CY8C20xx7/S  
Table 36. PSoC Device Key Features and Ordering Information (continued)  
Flash SRAM CapSense Digital I/O  
XRES  
Pin  
Analog  
Inputs  
Ordering Code  
Package  
30-pin WLCSP  
ADC  
[46]  
(Bytes) (Bytes) Sensors  
Pins  
CY8C20747-24FDXC  
CY8C20747-24FDXCT  
CY8C20767-24FDXC  
CY8C20767-24FDXCT  
16 K  
16 K  
32 K  
32 K  
1 K  
1 K  
2 K  
2 K  
24  
24  
24  
24  
27  
27  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
30-pin WLCSP (Tape and Reel)  
30-pin WLCSP  
27  
27  
27  
27  
30-pin WLCSP (Tape and Reel)  
27  
27  
Ordering Code Definitions  
-
CY 8 C 20 XX7 X 24 XX  
(T)  
X
X
Tape and reel  
Temperature range: X = C or I  
C = Commercial; I = Industrial  
Pb-free  
Package Types: XX = S, LK, LQ, or FD  
S = 16-pin SOIC  
LK = 16-pin QFN (no center pad)  
LQ = 24-pin QFN, 32-pin QFN, 48-pin QFN  
FD = 30-ball WLCSP  
Speed grade = 24 MHz  
S = SmartSense™ Auto-tuning Enabled  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Document Number: 001-69257 Rev. *I  
Page 34 of 43  
CY8C20xx7/S  
Acronyms  
Reference Documents  
The following table lists the acronyms that are used in this  
document.  
Technical reference manual for CY20xx7 devices  
In-system Serial Programming (ISSP) protocol for 20xx7  
Host Sourced Serial Programming for 20xx7 devices  
Table 37. Acronyms Used in this Document  
Acronym  
AC  
Description  
alternating current  
Document Conventions  
ADC  
API  
CMOS  
CPU  
DAC  
DC  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
digital-to-analog converter  
direct current  
Units of Measure  
Table 38 lists all the abbreviations used to measure the PSoC  
devices.  
Table 38. Units of Measure  
ESD  
FSR  
electrostatic discharge  
full scale range  
general purpose input/output  
inter-integrated circuit  
in-circuit emulator  
internal low speed oscillator  
internal main oscillator  
input/output  
in-system serial programming  
liquid crystal display  
low dropout (regulator)  
light-emitting diode  
low power comparator  
least-significant bit  
low voltage detect  
micro-controller unit  
million instructions per second  
master in slave out  
master out slave in  
most-significant bit  
on-chip debug  
printed circuit board  
power on reset  
power supply rejection ratio  
Symbol  
°C  
Unit of Measure  
degree Celsius  
decibel  
kilohertz  
GPIO  
dB  
kHz  
ksps  
k  
MHz  
A  
s  
mA  
mm  
ms  
mV  
nA  
ns  
2
I C  
ICE  
ILO  
IMO  
I/O  
ISSP  
LCD  
LDO  
LED  
LPC  
LSB  
kilo samples per second  
kilohm  
megahertz  
microampere  
microsecond  
milliampere  
millimeter  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
LVD  
MCU  
MIPS  
MISO  
MOSI  
MSB  
OCD  
PCB  
POR  
PSRR  
%
pF  
V
percent  
picofarad  
volt  
W
watt  
PWRSYS power system  
PSoC  
QFN  
SCLK  
SDA  
programmable system-on-chip  
quad flat no-lead  
2
serial I C clock  
2
serial I C data  
SDATA  
SOIC  
SPI  
SRAM  
SS  
serial ISSP data  
small outline integrated circuit  
serial peripheral interface  
static random access memory  
slave select  
USB  
universal serial bus  
WLCSP  
wafer level chip scale package  
Document Number: 001-69257 Rev. *I  
Page 35 of 43  
CY8C20xx7/S  
Numeric Naming  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
Glossary  
Crosspoint connection  
Differential non linearity  
Connection between any GPIO combination via analog multiplexer bus.  
Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly  
one LSB apart. Differential non-linearity is a measure of the worst case deviation from the  
ideal 1 LSB step.  
Hold time  
Hold time is the time following a clock event during which the data input to a latch or flip-  
flop must remain stable in order to guarantee that the latched data is correct.  
2
I C  
It is a serial multi-master bus used to connect low speed peripherals to MCU.  
Integral nonlinearity  
It is a term describing the maximum deviation between the ideal output of a DAC/ADC and  
the actual output level.  
Latch-up current  
Current at which the latch-up test is conducted according to JESD78 standard (at 125  
degree Celsius)  
Power supply rejection ratio (PSRR)  
The PSRR is defined as the ratio of the change in supply voltage to the corresponding  
change in output voltage of the device.  
Scan  
The conversion of all sensor capacitances to digital values.  
Setup time  
Period required to prepare a device, machine, process, or system for it to be ready to  
function.  
Signal-to-noise ratio  
SPI  
The ratio between a capacitive finger signal and system noise.  
Serial peripheral interface is a synchronous serial data link standard.  
Document Number: 001-69257 Rev. *I  
Page 36 of 43  
CY8C20xx7/S  
Appendix: Silicon Errata for the CY8C20xx7/S Family  
This section describes the errata for the CY8C20xx7/S family. Details include errata trigger conditions, scope of impact, available  
workarounds, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
CY8C20xx7/S Qualification Status  
Product Status: Production released.  
CY8C20xx7/S Errata Summary  
The following Errata items apply to the CY8C20xx7/S datasheet 001-69257.  
1. DoubleTimer0 ISR  
Problem Definition  
When programmable timer 0 is used in “one-shot” mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt  
is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.  
Scope of Impact  
The ISR may be executed twice.  
Workaround  
In the ISR, firmware should clear the one-shot bit with a statement such as “and reg[B0h], FDh”  
Fix Status  
Will not be fixed  
Changes  
None  
2. Missed GPIO Interrupt  
Problem Definition  
When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt  
may be missed, and the corresponding GPIO ISR not run.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.  
Scope of Impact  
The GPIO interrupt service routine will not be run.  
Workaround  
The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake  
the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.  
Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.  
Alternatively, the ISR’s for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system  
has attempted to generate a GPIO interrupt.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *I  
Page 37 of 43  
CY8C20xx7/S  
3. Missed Interrupt During Transition to Sleep  
Problem Definition  
If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will  
be missed.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling sleep mode just prior to an interrupt.  
Scope of Impact  
The relevant interrupt service routine will not be run.  
Workaround  
None.  
Fix Status  
Will not be fixed  
Changes  
None  
4. Wakeup from sleep with analog interrupt  
Problem Definition  
Device wakes up from sleep when an analog interrupt is trigger  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above  
Scope of Impact  
Device unexpectedly wakes up from sleep  
Workaround  
Disable the analog interrupt before entering sleep and turn it back on upon wake-up.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *I  
Page 38 of 43  
CY8C20xx7/S  
5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]  
Problem Definition  
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware  
address match event.  
Parameters Affected  
t
increased to 20 ns from 0 ns  
HD;DAT  
Trigger Condition(S)  
This is an issue only when all these three conditions are met:  
1) P1.0 and P1.1 are used as I2C pins,  
2) Wakeup from sleep with hardware address match feature is enabled, and  
3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.  
Scope of Impact  
These trigger conditions cause the device to never wake-up from sleep based on I2C address match event  
Workaround  
For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around.  
The R and C values proposed are 100 ohm and 200 pF respectively.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *I  
Page 39 of 43  
CY8C20xx7/S  
6. I2C Port Pin Pull-up Supply Voltage  
Problem Definition  
Pull-up resistor on I2C interface cannot be connected to a supply voltage that is greater than 0.7 V of CY8C20xx7/S V  
.
DD  
Parameters Affected  
None.  
Trigger Condition(S)  
This problem occurs only when the I2C master is powered at a higher voltage than CY8C20xx7/S.  
Scope of Impact  
This trigger condition will corrupt the I2C communication between the I2C host and the CY8C20xx7/S CapSense controller.  
Workaround  
I2C master cannot be powered at a supply voltage that is greater than 0.7 V compared to CY8C20xx7/S supply voltage.  
Fix Status  
Will not be fixed  
Changes  
None  
7. Port1 Pin Voltage  
Problem Definition  
Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S V  
.
DD  
Parameters Affected  
None.  
Trigger Condition(S)  
This problem occurs only when port1 pins are at voltage 0.7 V higher than V of CY8C20xx7/S.  
DD  
Scope of Impact  
This trigger condition will not allow CY8C20xx7/S to drive the output signal on port1 pins, input path is unaffected by this  
condition.  
Workaround  
Port1 should not be connected to a higher voltage than V of CY8C20xx7/S  
DD  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *I  
Page 40 of 43  
CY8C20xx7/S  
Document History Page  
DocumentTitle:CY8C20xx7/S, 1.8VCapSense® ControllerwithSmartSenseAuto-tuning 31Buttons,6Sliders,Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
3276782  
3327230  
DST  
DST  
06/27/2011 New silicon and document  
*A  
07/28/2011 Changed 48-pin dimensions to 6 × 6 × 0.6 mm QFN  
Updated pins name in Table 3 on page 9 and removed USB column and  
updated dimensions for 48-pin parts in Table 36 on page 33  
Updated Figure 20 on page 29  
Removed ICE and Debugger sections.  
Removed CY3215 Development Kit and CY3280-20x66 UCC sections.  
Updated Ordering Information.  
*B  
*C  
3403111  
3473317  
YVA  
DST  
10/12/2011 Moved status from Advance to Preliminary.  
Updated Ordering Information  
Removed the row named “48-Pin (6 × 6 mm) QFN (OCD)”.  
Changed all 48-pin ordering code column from CY8C20XXX-24LTxx to  
CY8C20XXX-24LQxx.  
Updated 16-pin SOIC and 16-pin QFN package drawings.  
12/23/2011 Updated Features.  
Updated Pinouts (Removed PSoC in captions of Figure 2, Figure 3, Figure 4,  
Figure 6, and Figure 7).  
Updated DC Chip-Level Specifications under Electrical Specifications  
(Updated typical value of I  
parameter from 3.32 mA to 2.88 mA, updated  
DD24  
typical value of I  
parameterfrom 1.86 mA to1.71mA, updated typical value  
DD12  
of I  
parameter from 1.13 mA to 1.16 mA, updated maximum value of I  
DD6  
SB0  
parameter from 0.50 µA to 1.1 µA, added I  
parameter and its details).  
SBI2C  
Updated DC GPIO Specifications under Electrical Specifications (Added the  
parameters namely VILLVT3.3, VIHLVT3.3, VILLVT5.5, VIHLVT5.5 and their details in  
Table 10, added the parameters namely V  
Table 11).  
, V  
and their details in  
ILLVT2.5 IHLVT2.5  
Added the following sections namely DC I2C Specifications, Shield Driver DC  
Specifications, and DC IDAC Specifications under Electrical Specifications.  
Updated AC Chip-Level Specifications (Added the parameter namely t  
and its details).  
JIT_IMO  
Updated Ordering Information (updated Table 36).  
*D  
3510277  
YVA/DST  
02/16/2012 Added CY8C20x37/37S/47/47S/67/67S part numbers and changed title to “1.8  
V CapSense® Controller with SmartSense™ Auto-tuning  
31 Buttons, 6 Sliders”  
Updated Features.  
Modified comparator blocks in Logic Block Diagram.  
Replaced SmartSense with SmartSense auto-tuning.  
Added CY8C20xx7S part numbers in Pin Definitions.  
Added footnote for Table 20.  
Updated Table 21 and Table 22 and added Table 23.  
Updated F  
min value.  
32K1  
Updated data hold time min values.  
Updated CY8C206x7 part information in Table 35.  
Updated Ordering Information.  
*E  
3539259  
DST  
03/01/2012 Changed Datasheet status from Preliminary to Final.  
Updated all Pinouts to include Driven Shield Output (optional) information.  
Updated Min value for V  
Table 15.  
LPC  
Updated Offset and Input range in Table 16.  
Document Number: 001-69257 Rev. *I  
Page 41 of 43  
CY8C20xx7/S  
Document History Page (continued)  
DocumentTitle:CY8C20xx7/S, 1.8VCapSense® ControllerwithSmartSenseAuto-tuning 31Buttons,6Sliders,Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*F  
3645807  
DST/BVI  
07/03/2012 Updated F  
page 26  
parameter in the Table 31, “SPI Slave AC Specifications,” on  
SCLK  
Changed t  
to t  
in Table 30, “SPI Master AC Specifications,” on  
OUT_H  
OUT_HIGH  
page 25  
Updated Features section, “Programmable pin configurations” bullet:  
Included the following sub-bullet point -  
5 mA source current on port 0 and 1 and 1 mA on port 2,3 and 4  
Changed the bullet point “High sink current of 25 mA for each GPIO” to “High  
sink current of 25 mA for each GPIO. Total 120 mA maximum sink current  
per chip”  
®
Added “QuietZone™ Controller” bullet and updated “Low power CapSense  
block with SmartSense™ auto-tuning” bullet.  
Updated package diagrams 001-13937 to *D and 001-57280 to *C revisions.  
*G  
3800055  
DST  
11/23/2012 Changed document title.  
Part named changed from CY8C20xx7 to CY8C20xx7/S  
Table 20: Update to VIHI2C to match Item #6 in K2 Si Errata document (001-  
75370)  
Updated package diagrams:  
51-85068 to *E  
001-09116 to *G  
001-13937 to *E  
001-42168 to *E  
001-57280 to *E  
*H  
*I  
3881332  
3993458  
SRLI  
DST  
02/04/2013 Updated Features:  
Added Note 1 and referred the same note in “24 Sensing Inputs – 30-pin  
WLCSP”.  
05/07/2013 Updated Electrical Specifications (Updated DC GPIO Specifications (Updated  
heading of third column as “Port 0/1 per I/O (max)” for Table 13)).  
Updated Packaging Information:  
spec 001-09116 – Changed revision from *G to *H (Figure 17).  
Added Appendix: Silicon Errata for the CY8C20xx7/S Family.  
Document Number: 001-69257 Rev. *I  
Page 42 of 43  
CY8C20xx7/S  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2011-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-69257 Rev. *I  
Revised May 7, 2013  
Page 43 of 43  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY8C20xx7S

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C21001-24PVXI

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21123

PSoC⑩ Mixed-Signal Array
CYPRESS

CY8C21123-24SXI

PSoC Programmable System-on-Chip
CYPRESS

CY8C21123-24SXIT

PSoC® Mixed Signal Array
CYPRESS

CY8C21123_09

PSoC Programmable System-on-Chip
CYPRESS

CY8C21123_11

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21123_12

PSoC® Programmable System-on-Chip™
CYPRESS

CY8C21223

PSoC⑩ Mixed-Signal Array
CYPRESS

CY8C21223-24LGXI

PSoC Programmable System-on-Chip
CYPRESS

CY8C21223-24PVXI

Multifunction Peripheral, CMOS, PDSO20, 0.210 INCH, LEAD FREE, SSOP-20
CYPRESS

CY8C21223-24SXI

PSoC Programmable System-on-Chip
CYPRESS