CY7C65215-32LTXI [CYPRESS]

USB Bus Controller, CMOS, QFN-32;
CY7C65215-32LTXI
型号: CY7C65215-32LTXI
厂家: CYPRESS    CYPRESS
描述:

USB Bus Controller, CMOS, QFN-32

时钟 外围集成电路
文件: 总35页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C65215  
CY7C65215A  
USB-Serial Dual Channel (UART/I2C/SPI)  
Bridge with CapSense® and BCD  
USB-Serial Dual Channel (UART/I2C/SPI) Bridge with CapSense® and BCD  
CapSense  
Charger detection  
GPIO  
Features  
USB 2.0 certified, Full-Speed (12 Mbps)  
Support for communication driver class (CDC), personal  
Driver support for VCOM and DLL  
Windows 10: 32- and 64-bit versions  
Windows 8.1: 32- and 64-bit versions  
Windows 8: 32- and 64-bit versions  
Windows 7: 32- and 64-bit versions  
Windows Vista: 32- and 64-bit versions  
Windows XP: 32- and 64-bit versions  
Windows CE  
health care device class (PHDC), and vendor device class  
Battery charger detection (BCD) compliant with USB Battery  
Charging Specification Rev 1.2 (Peripheral Detect only)  
Integrated USB termination resistors  
Two-channel configurable UART interfaces  
CY7C65215 supports 2-pin, 4-pin and 6-pin UART interface  
whereas CY7C65215A supports 2-pin, 4-pin, 6-pin and 8-pin  
UART interface  
Data rates up to 3 Mbps  
190 bytes each transmit and receive buffer per channel  
Data format:  
Mac OS-X: 10.6, and later versions  
Linux: Kernel version 2.6.35 onwards  
Android: Gingerbread and later versions  
• 7 or 8 data bits  
• 1 or 2 stop bits  
• No parity, even, odd, mark, or space parity  
Supports parity, overrun, and framing errors  
Supports flow control using CTS, RTS, DTR, DSR  
Supports UART break signal  
Clocking: Integrated 48-MHz clock oscillator  
Supports bus-/self-powered configurations  
USB suspend mode for low power  
Operating voltage: 1.71 to 5.5 V  
Operating temperature:  
Commercial: 0 °C to 70 °C  
Industrial: –40 °C to 85 °C  
CY7C65215supportsdualchannelRS232/RS422interfaces  
whereas CY7C65215A supports RS232/RS422/RS485  
interfaces  
Two-channel configurable SPI interfaces  
Data rate up to 3 MHz for SPI master and 1 MHz for SPI slave  
Data width: 4 bits to 16 bits  
ESD protection: 2.2 kV HBM  
RoHS compliant package  
32-pin QFN (5 × 5 × 1 mm. 0.5 mm pitch)  
256 bytes for each transmit and receive buffer per channel  
Supports Motorola, TI, and National SPI modes  
Two-channel configurable I2C interfaces  
Master/slave up to 400 kHz  
Ordering part number  
CY7C65215-32LTXI  
CY7C65215A-24LTXI  
Supports multi-master I2C  
256 bytes for each transmit and receive buffer per channel  
CapSense®  
Applications  
SmartSense™ Auto-Tuning is supported through a  
Cypress-supplied configuration utility  
Max CapSense buttons: 8  
GPIOs linked to CapSense buttons  
JTAG interface: JTAG master for code flashing at 400 kHz  
Medical/healthcare devices  
Point-of-Sale (POS) terminals  
Test and measurement system  
Gaming systems  
General-purpose input/output (GPIO) pins: 17  
Set-top box PC-USB interface  
Industrial  
Supports unique serial number feature for each device, which  
fixes the COM port number permanently when USB-Serial  
Bridge controller as CDC device plugs in  
Networking  
Configuration utility (Windows) to configure the following:  
Enabling USB connectivity in legacy peripherals  
Vendor ID (VID), Product ID (PID), and Product and Manu-  
facturer descriptors  
UART/I2C/SPI/JTAG  
USB Compliant  
The USB-Serial Dual-Channel Bridge with CapSense and BCD (CY7C65215/CY7C65215A) is fully  
compliant with the USB 2.0 specification and Battery Charging Specification v1.2, USB-IF Test-ID (TID)  
40001521.  
Cypress Semiconductor Corporation  
Document Number: 001-81006 Rev. *K  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 4, 2017  
 
CY7C65215  
CY7C65215A  
CY7C65215 and CY7C65215A Features Comparison  
Table 1. CY7C65215 and CY7C65215A Features Comparison  
Features  
CY7C65215  
CY7C65215A  
UART  
I2C  
Can be configured as Virtual COM Can be configured as Virtual COM  
port or USB vendor device  
port or USB vendor device  
Can be configured as USB vendor  
device  
Can be configured as Virtual COM  
port or USB vendor device  
SPI  
Can be configured as USB vendor  
device  
Can be configured as Virtual COM  
port or USB vendor device  
RS485 Support  
8-pin UART Support  
JTAG Support  
No  
No  
Yes  
Yes  
Yes  
No  
More Information  
Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly  
and effectively integrate the device into your design. For a comprehensive list of resources, see the document USB-Serial Bridge  
Controller Product Overview.  
Overview: USB Portfolio, USB Roadmap  
For complete list of knowledge base articles, click here.  
USB 2.0 Product Selectors: USB-Serial Bridge Controller, USB  
Code Examples: USB Full-Speed  
to UART Controller (Gen I)  
Development Kits:  
Knowledge Base Articles: Cypress offers a large number of  
USB knowledge base articles covering a broad range of topics,  
from basic to advanced level. Recommended knowledge base  
articles for getting started with USB-Serial Bridge Controller  
are:  
CYUSBS232, Cypress USB-UART LP Reference Design Kit  
CYUSBS234, Cypress USB-Serial (Single Channel)  
Development Kit  
CYUSBS236, Cypress USB-Serial (Dual Channel)  
Development Kit  
KBA85909 – Key Features of the Cypress® USB-Serial  
Models: IBIS  
Cypress USB-Serial (Dual Channel) Development Kit  
Bridge Controller  
KBA85920 – USB-UART and USB-Serial  
KBA85921  
Replacing FT232R with CY7C65213  
The Cypress USB-Serial (Dual Channel) Development Kit is a  
complete development resource. It provides a platform to  
develop and test custom projects. The development kit contains  
collateral materials for the firmware, hardware, and software  
aspects of a design.  
USB-UART LP Bridge Controller  
KBA85913 – Voltage supply range for USB-Serial  
KBA89355 – USB Serial Cypress Default VID and PID  
KBA92641 – USB-Serial Bridge Controller Managing I/Os  
using API  
KBA92442 – Non-Standard Baud Rates in USB-Serial Bridge  
Controllers  
KBA91366  
Binding  
a
USB-Serial Device to  
a
Microsoft® CDC Driver  
KBA92551 Testing a USB-Serial Bridge Controller  
Configured as USB-UART with Linux®  
KBA91299 – Interfacing an External I2C Device with the  
CYUSBS234/236 DVK  
Document Number: 001-81006 Rev. *K  
Page 2 of 35  
 
 
CY7C65215  
CY7C65215A  
Contents  
Block Diagram ..................................................................4  
Functional Overview ........................................................4  
USB and Charger Detect .............................................4  
Serial Communication .................................................5  
CapSense ....................................................................6  
JTAG Interface ............................................................6  
GPIO Interface ............................................................6  
Memory .......................................................................6  
System Resources ......................................................6  
Suspend and Resume .................................................7  
WAKEUP .....................................................................7  
Software ......................................................................7  
Internal Flash Configuration ........................................8  
Electrical Specifications ..................................................9  
Absolute Maximum Ratings .........................................9  
Operating Conditions ...................................................9  
Device Level Specifications .........................................9  
GPIO .........................................................................10  
nXRES .......................................................................11  
SPI Specifications .....................................................12  
I2C Specifications ......................................................14  
JTAG Specifications ..................................................14  
CapSense Specifications ..........................................14  
Flash Memory Specifications ....................................14  
Pin Description ...............................................................15  
USB Power Configurations ............................................18  
USB Bus-Powered Configuration ..............................18  
Self-Powered Configuration ......................................19  
USB Bus Powered with Variable I/O Voltage ............20  
Application Examples ....................................................21  
USB-to-Dual UART Bridge  
with Battery-Charge Detection ..........................................21  
USB to RS485 Application ........................................23  
CapSense ..................................................................24  
USB to Dual Channel (I2C/SPI) Bridge .....................25  
Ordering Information ......................................................30  
Ordering Code Definitions .........................................30  
Package Information ......................................................31  
Acronyms ........................................................................32  
Document Conventions .................................................32  
Units of Measure .......................................................32  
Document History Page .................................................33  
Sales, Solutions, and Legal Information ......................35  
Worldwide Sales and Design Support .......................35  
Products ....................................................................35  
PSoC® Solutions ......................................................35  
Cypress Developer Community .................................35  
Technical Support .....................................................35  
Document Number: 001-81006 Rev. *K  
Page 3 of 35  
CY7C65215  
CY7C65215A  
Block Diagram  
nXRES  
Reset  
Internal  
48 MHz OSC  
Internal  
SCB 0  
VDDD  
VCCD  
Voltage  
Regulator  
Channel 0  
256 Bytes  
UART/SPI/I2C  
TX Buffer  
UART/  
SPI/I2C  
32 KHz OSC  
256 Bytes  
RX Buffer  
USB  
SCB 1  
VBUS  
VBUS Regulator  
256 Bytes  
TX Buffer  
Channel 1  
UART/  
SPI/I2C  
UART/SPI/I2C  
Battery Charger  
Detection  
256 Bytes  
RX Buffer  
USBDP  
USBDM  
GND  
512 Bytes  
Flash  
Memory  
SIE  
CapSense  
CapSense  
USB  
Transceiver with  
Integrated  
JTAG  
(Master)  
JTAG  
GPIO  
Resistor  
GPIO  
termination resistors on the USB data lines and a 1.5-kpull-up  
resistor on USBDP.  
Functional Overview  
The CY7C65215/CY7C65215A is a Full-Speed USB controller  
that enables seamless PC connectivity for peripherals with  
dual-channel serial interfaces such as UART, SPI, and I2C.  
CY7C65215/CY7C65215A also integrates CapSense and BCD,  
which is compliant with the USB Battery Charging Specification  
Rev. 1.2. It integrates a voltage regulator, oscillator, and flash  
memory for storing configuration parameters, offering a  
cost-effective solution. CY7C65215/CY7C65215A supports  
bus-powered and self-powered modes, and enables efficient  
system power management with suspend and remote wake-up  
signals. It is available in a 32-pin QFN package.  
Charger Detection  
CY7C65215/CY7C65215A supports BCD for Peripheral Detect  
only and complies with the USB Battery Charging Specification  
Rev. 1.2. It supports the following charging ports:  
Standard Downstream Port (SDP): allows the system to draw  
up to 500 mA current from the host  
Charging Downstream Port (CDP): allows the system to draw  
up to 1.5 A current from the host  
Dedicated Charging Port (DCP): allows the system to draw up  
to 1.5 A of current from the wall charger  
USB and Charger Detect  
USB  
CY7C65215/CY7C65215A has a built-in USB 2.0 Full-Speed  
transceiver. The transceiver incorporates the internal USB series  
Document Number: 001-81006 Rev. *K  
Page 4 of 35  
 
CY7C65215  
CY7C65215A  
Table 2 shows maximum speed supported on both SCBs when  
they are configured as UART/I2C/SPI.  
Serial Communication  
CY7C65215/CY7C65215A has two serial communication blocks  
(SCBs). Each SCB can implement UART, SPI, or an I2C  
interface. A 256-byte buffer is available in both the TX and RX  
lines.  
Table 2. Maximum Speed supported on both SCBs  
No.  
1
Configuration  
SCB0 Maximum Speed  
SCB1 Maximum Speed  
SCB0 = UART, SCB1 = Disabled  
SCB0 = I2C Master, SCB1 = Disabled  
SCB0 = I2CSlave, SCB1 = Disabled  
SCB0 = SPI Master, SCB1 = Disabled  
SCB0 = SPI Slave, SCB1 = Disabled  
SCB0 = UART, SCB1 = UART  
3M (Either TX/RX)  
NA  
NA  
NA  
NA  
NA  
2
400 kHz (Both TX and RX)  
400 kHz (Both TX and RX)  
3M (Both TX and RX)  
1M (Both TX and RX)  
1M (Either TX/RX)  
3
4
5
6
1M (Either TX/RX)  
7
SCB0 = UART, SCB1 = I2C Master  
SCB0 = I2C Master, SCB1 = UART  
SCB0 = UART, SCB1 = I2C Slave  
SCB0 = I2C slave, SCB1 = UART  
SCB0 = UART, SCB1 = SPI Master  
SCB1 = SPI Master, SCB0 = UART  
1M (Either TX/RX)  
400 kHz (Both TX and RX)  
8
9
1M (Either TX/RX)  
1M (Either TX/RX)  
1M (Either TX/RX)  
400 kHz (Both TX and RX)  
1M (Both TX and RX)  
1M (Both TX and RX)  
10 SCB0 = UART, SCB1 = SPI Slave  
SCB0 = SPI Slave, SCB1 = UART  
11 SCB0 = I2C, SCB1 = I2C  
400 kHz (Both TX and RX)  
1M (Both TX and RX)  
400 kHz (Both TX and RX)  
1M (Both TX and RX)  
12 SCB0 = SPI, SCB1 = SPI  
UART Interface  
UART Flow Control  
The UART interface provides asynchronous serial  
communication with other UART devices operating at speeds of  
up to 3 Mbps. It supports 7 to 8 data bits, 1 to 2 stop bits, odd,  
even, mark, space, and no parity. The UART interface supports  
full duplex communication with a signaling format that is  
compatible with the standard UART protocol. In CY7C65215,  
UART pins may be interfaced to industry standard  
RS232/RS422 transceivers whereas in CY7C65215A these  
UART pins may be interfaced to RS232/RS422/RS485.  
The CY7C65215/CY7C65215A device supports UART  
hardware flow control using control signal pairs such as RTS#  
(Request to Send) / CTS# (Clear to Send) and DTR# (Data  
Terminal Ready) / DSR# (Data Set Ready). Data flow control is  
enabled by default. Flow control can be disabled using the  
configuration utility.  
The following section describes the flow control signals:  
CTS# (Input) / RTS# (Output)  
CY7C65215/CY7C65215A supports common UART functions  
such as parity error and frame error. In addition,  
CY7C65215/CY7C65215A supports baud rates ranging from  
300 baud to 3 Mbaud. UART baud rates can be set using the  
configuration utility.  
CTS# can pause or resume data transmission over the UART  
interface. Data transmission can be paused by de-asserting the  
CTS signal and resumed with CTS# assertion. The pause and  
resume operation does not affect data integrity. With flow control  
enabled, receive buffer has a watermark level of 93%. After the  
data in the receive buffer reaches that level, the RTS# signal is  
de-asserted, instructing the transmitting device to stop data  
transmission. The start of data consumption by the application  
reduces device data backlog. When it reaches the 75%  
watermark level, the RTS# signal is asserted to resume data  
reception.  
Notes:  
Parity error gets detected when UART transmitter device is  
configured for odd parity and UART receiver device is configured  
for even parity.  
Frame error gets detected when UART transmitter device is  
configured for 7 bits data width and 1 stop bit, whereas UART  
receiver device is configured for 8 bit data width and 2 stop bits.  
DSR# (Input) /DTR# (Output)  
DSR#/DTR# signals are used to establish the communication  
link with the UART. These signals complement each other in their  
functionality, similar to CTS# and RTS#.  
Document Number: 001-81006 Rev. *K  
Page 5 of 35  
 
 
 
 
CY7C65215  
CY7C65215A  
SPI Interface  
UART) serial interface is implemented. The configuration utility  
allows configuration of the GPIO pins. The configurable options  
are as follows:  
The SPI interface supports SPI Master and SPI Slave. This  
interface supports the Motorola, TI, and National Microwire  
protocols. The maximum frequency of operation is 3 MHz in SPI  
master mode and 1 MHz in SPI slave mode. It can support  
transaction sizes ranging from 4 bits to 16 bits in length, SPI  
slave supports 4 bits to 8 bits and 12 bits to 16 bits data width at  
1 MHz operation. Whereas, it supports 9 bits,10 bits and 11 bits  
data width operation at 500 kHz operation (for more details, refer  
to USB to Dual Channel (I2C/SPI) Bridge on page 25).  
TRISTATE: GPIO tristated  
DRIVE 1: Output static 1  
DRIVE 0: Output static 0  
POWER#: Power control for bus power designs  
TXLED#: Drives LED during USB transmit  
RXLED#: Drives LED during USB receive  
TX or RX LED#: Drives LED during USB transmit or receive  
GPIO can be configured to drive LED at 8-mA drive strength.  
I2C Interface  
The I2C interface implements full multi-master/slave modes and  
supports up to 400 kHz. The configuration utility tool is used to  
set the I2C address in slave mode. This tool enables only even  
slave addresses. For further details on protocol, refer to the NXP  
I2C specification rev5.  
BCD0/BCD1: Two-pin output to indicate the type of USB  
charger  
BUSDETECT: Connects VBUS pin for USB host detection  
CS0–CS7: CapSense button input (Sense pin)  
Notes  
I2C ports are not tolerant of higher voltages and cannot be  
hot-swapped or powered up independently from the rest of the  
I2C system.  
CSout0–CSout3: Indicates which CapSense button is pressed  
Cmod: External modulator capacitor that connects a 2.2-nF  
capacitor (±10%) to ground (GPIO_0 only)  
The minimum fall time of the SCL is met (as per NXP I2C  
specification Rev. 5) when VDDD is between 1.71 V and 3.0 V.  
When VDDD is within the range of 3.0 V to 3.6 V, it is  
recommended to add a 50 pF capacitor on the SCL signal.  
Cshield: Shield for waterproofing  
Memory  
CY7C65215/CY7C65215A has a 512-byte flash. The flash is  
used to store the USB parameters such as VID/PID, serial  
number, Product, and Manufacturer Descriptors, which can be  
programmed by the configuration utility.  
CapSense  
CapSense functionality is supported on all the GPIO pins. Any  
GPIO pin can be configured as a sense pin (CS0–CS7) using the  
configuration utility. When implementing CapSense functionality,  
the GPIO_0 pin (configured as the modulator capacitor - Cmod)  
should be connected to ground through a 2.2-nF capacitor (see  
Figure 12 on page 24). CY7C65215/CY7C65215A supports  
SmartSense auto-tuning of CapSense parameters and does not  
require manual tuning. SmartSense auto-tuning compensates  
for printed circuit board (PCB) variations and device process  
variations.  
System Resources  
Power System  
CY7C65215/CY7C65215A supports the USB Suspend mode to  
control power usage. CY7C65215/CY7C65215A operates in  
bus-powered or self-powered modes over a range of 3.15 to  
5.5 V.  
Optionally, any GPIO pin can be configured as a Cshield and  
connected to the shield of the CapSense button as shown in  
Figure 12 on page 24. The shield prevents false triggering of  
buttons due to water droplets and guarantees CapSense  
operation (sensors respond to finger touch). GPIOs can be  
linked to CapSense buttons to indicate the presence of a finger.  
CapSense functionality can be configured using configuration  
utility.  
Clock System  
CY7C65215/CY7C65215A has a fully integrated clock and does  
not require any external components. The clock system is  
responsible for providing clocks to all subsystems.  
Internal 48-MHz Oscillator  
The internal 48-MHz oscillator is the primary source of internal  
clocking in CY7C65215/CY7C65215A.  
CY7C65215/CY7C65215A supports up to eight CapSense  
buttons. For more information on CapSense, refer to Getting  
Started with CapSense.  
Internal 32-kHz Oscillator  
The internal 32-kHz oscillator is primarily used to generate  
clocks for peripheral operation in the USB Suspend mode.  
JTAG Interface  
CY7C65215/CY7C65215A supports a 5-pin JTAG in master  
mode for code flashing at 400 kHz.  
Reset  
Note: When JTAG is enabled, other interfaces in the  
CY7C65215/CY7C65215A device cannot be used.  
The reset block ensures reliable power-on reset and brings the  
device back to the default known state. The nXRES (active low)  
pin can be used by external devices to reset the  
CY7C65215/CY7C65215A.  
GPIO Interface  
CY7C65215/CY7C65215A has 17 GPIOs. A maximum of 17  
GPIOs are available for configuration if one 2-pin (I2C/2-pin  
Document Number: 001-81006 Rev. *K  
Page 6 of 35  
 
 
 
 
 
 
 
CY7C65215  
CY7C65215A  
In addition, the CY7C65215 device also supports the native Mac  
OSx CDC UART driver, and CY7C65215A supports native Mac  
OSx CDC UART/SPI/I2C driver.  
Suspend and Resume  
The CY7C65215/CY7C65215A device asserts the SUSPEND  
pin when the USB bus enters the suspend state. This helps in  
meeting the stringent suspend current requirement of the USB  
2.0 specification, while using the device in bus-powered mode.  
The device will resume from the suspend state under any of the  
following conditions:  
Drivers for Windows Operating Systems  
For Windows operating systems (XP, Vista, Win7, Win8, and  
Win8.1), Cypress delivers a User Mode dynamically linked  
library–CyUSBSerial DLL–that abstracts vendor-specific  
interface of CY7C65215/CY7C65215A devices and provides  
convenient APIs to the user. It provides interface APIs for  
vendor-specific UART/SPI/I2C and class-specific APIs for  
PHDC.  
1. Any activity is detected on the USB bus  
2. The WAKEUP pin is asserted to generate remote wakeup to  
the host  
WAKEUP  
USB-Serial Bridge Controller works with the Windows-standard  
USB CDC class driver, when either CY7C65215 is configured as  
CDC USB to UART device or when CY7C65215A is configured  
as CDC USB to UART/SPI/I2C device. A virtual COM port  
driver–CyUSBSerial.sys–is also delivered, which implements  
the USB CDC class driver. The Cypress Windows drivers are  
Windows hardware certification kit-compliant.  
The WAKEUP pin is used to generate a remote wakeup signal  
on the USB bus. The remote wakeup signal is sent only if the  
host enables this feature through the SET_FEATURE request.  
The device communicates support for the remote wakeup to the  
host through the configuration descriptor during the USB  
enumeration process. The CY7C65215/CY7C65215A device  
allows enabling/disabling and polarity of the remote wakeup  
feature through the configuration utility.  
These drivers are bound to device through WU (Windows  
Update) services.  
Software  
Cypress drivers also support Windows plug-and-play and power  
management and USB Remote Wake-up.  
Cypress delivers a complete set of software drivers and the  
configuration utility to enable product configuration during  
system development.  
Windows-CE support  
The CY7C65215/CY7C65215A solution includes a CDC UART  
driver library for Windows-CE platforms.  
Drivers for Linux Operating Systems  
Cypress provides a User Mode USB driver library (libcyusb-  
serial.so) that abstracts vendor commands for the UART  
interface and provides a simplified API interface to the user appli-  
cations. This library makes use of the standard open source  
libUSB library to enable the USB communication. The Cypress  
serial library supports the USB plug-and-play feature using the  
Linux 'udev' mechanism.  
Device Configuration Utility (Windows Only)  
A Windows-based configuration utility is available to configure  
various device initialization parameters. This graphical user  
application provides an interactive interface to define the various  
boot parameters stored in the device flash.  
This utility allows the user to save a user-selected configuration  
to text or xml formats. It also allows users to load a selected  
configuration from text or xml formats. The configuration utility  
allows the following operations:  
CY7C65215/CY7C65215A supports the standard USB CDC  
UART class driver, which is bundled with the Linux kernel.  
Android Support  
View current device configuration  
The CY7C65215/CY7C65215A solution includes an Android  
Java class–CyUsbSerial.java–which exposes a set of interface  
functions to communicate with the device.  
Select and configure UART/I2C/SPI, CapSense, battery  
charging, and GPIOs  
Configure USB VID, PID, and string descriptors  
Save or Load configuration  
Drivers for Mac OSx  
Cypress delivers  
a
dynamically linked shared library  
You can download the free configuration utility and drivers from  
www.cypress.com.  
(CyUSBSerial.dylib) based on libUSB, which enables  
communication to the CY7C65215/CY7C65215A device.  
Document Number: 001-81006 Rev. *K  
Page 7 of 35  
 
 
 
CY7C65215  
CY7C65215A  
Internal Flash Configuration  
The internal flash memory can be used to store the configuration parameters shown in the following table. A free configuration utility  
is provided to configure the parameters listed in the table to meet application specific requirements over USB interface. The configu-  
ration utility can be downloaded from www.cypress.com/go/usbserial.  
Table 3. Internal Flash Configuration for both CY7C65215 and CY7C65215A  
Parameter  
Default Value  
Description  
USB Configuration  
USB Vendor ID (VID)  
USB Product ID (PID)  
Manufacturer string  
Product string  
0x04B4  
0x0005  
Cypress  
Default Cypress VID. Can be configured to customer VID  
Default Cypress PID. Can be configured to customer PID  
Can be configured with any string up to 64 characters  
USB-Serial (Dual Channel) Can be configured with any string up to 64 characters  
Can be configured with any string up to 64 characters  
Serial string  
Power mode  
Bus powered  
100 mA  
Can be configured to bus-powered or self-powered mode  
Max current draw  
Can be configured to any value from 0 to 500 mA. Based on this, the config-  
uration descriptor will be updated.  
Remote wakeup  
USB interface protocol  
BCD  
Enabled  
CDC  
Can be disabled. Remote wakeup is initiated by asserting WAKEUP pin  
Can be configured to function in CDC, PHDC, or Cypress vendor class  
Disabled  
Charger detect is disabled by default. When BCD is enabled, three of the  
GPIOs must be configured for BCD  
GPIO Configuration  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_17  
GPIO_18  
TXLED#  
RXLED#  
DSR#_0  
RTS#_0  
CTS#_0  
TxD_0  
POWER#  
TRISTATE  
RxD_0  
DTR#_0  
RxD_1  
GPIO can be configured as shown in Table 18 on page 17.  
TxD_1  
RTS#_1  
CTS#1  
DSR#_1  
DTR#_1  
TRISTATE  
TRISTATE  
TRISTATE  
Document Number: 001-81006 Rev. *K  
Page 8 of 35  
CY7C65215  
CY7C65215A  
Electrical Specifications  
Static discharge voltage ESD protection levels:  
Absolute Maximum Ratings  
Exceeding maximum ratings [1] may shorten the useful life of the  
device.  
2.2-kV HBM per JESD22-A114  
Latch-up current ........................................................... 140 mA  
Current per GPIO ........................................................... 25 mA  
Storage temperature .................................... –55 °C to +100 °C  
Ambient temperature with  
Operating Conditions  
power supplied (Industrial) ............................ –40 °C to +85 °C  
Supply voltage to ground potential  
VDDD ..................................................................................6.0 V  
TA (ambient temperature under bias)  
Industrial ........................................................ –40 °C to +85 °C  
VBUS ..................................................................................6.0 V  
VCCD ................................................................................1.95 V  
VGPIO ............................................................... .....VDDD + 0.5 V  
V
BUS supply voltage ........................................ 3.15 V to 5.25 V  
VDDD supply voltage ........................................ 1.71 V to 5.50 V  
CCD supply voltage ........................................ 1.71 V to 1.89 V  
V
Device Level Specifications  
All specifications are valid for –40 °C TA 85 °C, TJ 100 °C, and 1.71 V to 5.50 V, except where noted.  
Table 4. DC Specifications  
Parameter  
VBUS  
Description  
VBUS supply voltage  
Min  
3.15  
4.35  
Typ  
3.30  
5.00  
Max  
3.45  
5.25  
Units  
Details/Conditions  
V
V
Set and configure correct voltage  
range using the configuration  
utility for VBUS  
.
VDDD  
VDDD supply voltage  
1.71  
2.0  
1.80  
3.3  
1.89  
5.5  
V
V
Used to set I/O and core voltage.  
Set and configure correct voltage  
range using the configuration  
utility for VDDD  
.
VCCD  
Output voltage (for core logic)  
1.80  
V
Do not use this supply to drive  
external device.  
• 1.71 V VDDD 1.89 V: Short  
the VCCD pin with the VDDD pin  
• VDDD > 2 V – connect a 1-µF  
capacitor (Cefc) between the  
VCCD pin and ground  
Cefc  
IDD1  
External regulator voltage bypass  
Operating supply current  
1.00  
1.30  
13  
1.60  
18  
µF  
X5R ceramic or better  
mA  
USB 2.0 FS, UART at 1 Mbps  
single channel,  
no GPIO switching at  
VBUS = 5 V, VDDD = 5 V  
IDD2  
USB Suspend supply current  
5
µA  
Does not include current through  
a pull-up resistor on USBDP.  
In USB suspend mode, the D+  
voltage can go up to a maximum  
of 3.8 V.  
Table 5. AC Specifications  
Parameter  
Description  
Min  
28  
Typ  
Max  
44  
Units  
Details/Conditions  
Zout  
USB driver output impedance  
Twakeup  
Wakeup from USB Suspend mode  
25  
µs  
Note  
1. Usage above the absolute maximum conditions may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of  
time may affect device reliability. When used below Absolute Maximum conditions but above normal operating conditions the device may not operate to specification.  
Document Number: 001-81006 Rev. *K  
Page 9 of 35  
 
 
 
 
 
 
CY7C65215  
CY7C65215A  
GPIO  
Table 6. GPIO DC Specification  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
[2]  
VIH  
Input voltage high threshold  
Input voltage low threshold  
LVTTL input, VDDD< 2.7 V  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD > 2.7 V  
LVTTL input, VDDD > 2.7 V  
CMOS output voltage high level  
0.7 × VDDD  
V
V
V
V
V
V
V
CMOS Input  
VIL  
VIH  
VIL  
VIH  
VIL  
0.3 × VDDD  
CMOS Input  
[2]  
[2]  
0.7 × VDDD  
0.3 × VDDD  
2
0.8  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
VDDD – 0.4  
IOH = 4 mA,  
VDDD = 5 V +/- 10%  
CMOS output voltage high level  
CMOS output voltage high level  
CMOS output voltage low level  
CMOS output voltage low level  
CMOS output voltage low level  
VDDD – 0.6  
V
V
V
V
V
IOH = 4 mA,  
VDDD = 3.3 V +/- 10%  
VDDD – 0.5  
IOH = 1 mA,  
VDDD = 1.8 V +/- 5%  
0.4  
0.6  
0.6  
IOL = 8 mA,  
VDDD = 5 V +/- 10%  
IOL = 8 mA,  
VDDD = 3.3 V +/- 10%  
IOL = 4 mA,  
VDDD = 1.8 V +/- 5%  
Rpullup  
Rpulldown  
IIL  
Pull-up resistor  
3.5  
5.6  
5.6  
8.5  
8.5  
2
k  
kΩ  
nA  
pF  
Pull-down resistor  
3.5  
Input leakage current (absolute value)  
Input capacitance  
25 °C, VDDD = 3.0 V  
CIN  
25  
7
Vhysttl  
Vhyscmos  
Input hysteresis LVTTL; VDDD > 2.7 V  
Input hysteresis CMOS  
40  
mV  
mV  
0.05 × VDDD  
Table 7. GPIO AC Specification  
Parameter Description  
TRiseFast1  
Min  
Typ  
Max  
Units  
Details/Conditions  
Rise Time in Fast mode  
Fall Time in Fast mode  
Rise Time in Slow mode  
Fall Time in Slow mode  
2
12  
ns  
VDDD = 3.3 V/ 5.5 V,  
Cload = 25 pF  
TFallFast1  
TRiseSlow1  
TFallSlow1  
2
12  
60  
60  
ns  
ns  
ns  
VDDD = 3.3 V/ 5.5 V,  
Cload = 25 pF  
10  
10  
VDDD = 3.3 V/ 5.5 V,  
Cload = 25 pF  
VDDD = 3.3 V/ 5.5 V,  
Cload = 25 pF  
TRiseFast2  
TFallFast2  
TRiseSlow2  
TFallSlow2  
Rise Time in Fast mode  
Fall Time in Fast mode  
Rise Time in Slow mode  
Fall Time in Slow mode  
2
20  
2
20  
100  
20  
ns  
ns  
ns  
ns  
VDDD = 1.8 V, Cload = 25 pF  
VDDD = 1.8 V, Cload = 25 pF  
VDDD = 1.8 V, Cload = 25 pF  
VDDD = 1.8 V, Cload = 25 pF  
20  
100  
Note  
2.  
V
must not exceed V  
+ 0.2 V.  
IH  
DDD  
Document Number: 001-81006 Rev. *K  
Page 10 of 35  
 
 
 
CY7C65215  
CY7C65215A  
nXRES  
Table 8. nXRES DC Specifications  
Parameter  
VIH  
Description  
Min  
Typ  
Max  
Units  
V
Details/Conditions  
Input voltage high threshold  
Input voltage low threshold  
Pull-up resistor  
0.7 × VDDD  
VIL  
3.5  
0.3 × VDDD  
V
Rpullup  
CIN  
5.6  
5
8.5  
kΩ  
pF  
Input capacitance  
Vhysxres  
Input voltage hysteresis  
100  
mV  
Table 9. nXRES AC Specifications  
Parameter  
Description  
Reset pulse width  
Min  
Typ  
Max  
Units  
Details/Conditions  
Details/Conditions  
Tresetwidth  
1
µs  
Table 10. UART AC Specifications  
Parameter Description  
FUART UART bit rate  
Min  
Typ  
Max  
Units  
0.3  
3000  
kbps  
Single SCB: TX + RX  
Dual SCB: TX or RX  
Document Number: 001-81006 Rev. *K  
Page 11 of 35  
CY7C65215  
CY7C65215A  
SPI Specifications  
Figure 1. SPI Master Timing  
FSPI  
SCK  
(CPOL=0,  
Output)  
SCK  
(CPOL=1,  
Output)  
TDSI  
MISO  
(input)  
MSB  
THMO  
LSB  
TDMO  
MOSI  
(output)  
MSB  
LSB  
SPI Master Timing for CPHA = 0 (Refer to Table 17)  
FSPI  
SCK  
(CPOL=0,  
Output)  
SCK  
(CPOL=1,  
Output)  
TDSI  
MISO  
(input)  
LSB  
THMO  
MSB  
TDMO  
MOSI  
(output)  
MSB  
LSB  
SPI Master Timing for CPHA = 1 (Refer to Table 17)  
Document Number: 001-81006 Rev. *K  
Page 12 of 35  
CY7C65215  
CY7C65215A  
Figure 2. SPI Slave Timing  
SSN  
(Input)  
FSPI  
SCK  
(CPOL=0,  
Input)  
TSSELSCK  
SCK  
(CPOL=1,  
Input)  
TDSO  
THSO  
MISO  
(Output)  
MSB  
MSB  
LSB  
LSB  
TDMI  
MOSI  
(Input)  
SPI Slave Timing for CPHA = 0 (Refer to Table 17)  
SSN  
(Input)  
FSPI  
SCK  
(CPOL=0,  
Input)  
TSSELSCK  
SCK  
(CPOL=1,  
Input)  
THSO  
TDSO  
MISO  
(Ouput)  
LSB  
LSB  
MSB  
MSB  
TDMI  
MOSI  
(Input)  
SPI Slave Timing for CPHA = 1 (Refer to Table 17)  
Document Number: 001-81006 Rev. *K  
Page 13 of 35  
CY7C65215  
CY7C65215A  
Table 11. SPI AC Specifications  
Parameter Description  
FSPI  
Min  
Typ  
Max  
Units  
Details/Conditions  
SPI operating frequency  
(Master/Slave)  
3
MHz  
Single SCB: TX + RX  
Dual SCB: TX or RX  
WLSPI  
SPI word length  
4
16  
bits  
SPI Master Mode  
TDMO  
MOSI valid after SClock driving edge  
15  
ns  
ns  
TDSI  
MISO valid before SClock capturing  
edge  
20  
THMO  
Previous MOSI data hold time with  
respect to capturing edge at slave  
0
ns  
SPI Slave Mode  
TDMI  
MOSI valid before Sclock Capturing  
edge  
40  
ns  
TDSO  
MISO valid after Sclock driving edge  
Previous MISO data hold time  
0
104.4  
ns  
ns  
ns  
THSO  
TSSELSCK  
SSEL valid to first SCK valid edge  
100  
2
I C Specifications  
Table 12. I2C AC Specifications  
Parameter  
FI2C  
Description  
I2C frequency  
Min  
Typ  
Max  
Units  
Details/Conditions  
1
400  
kHz  
JTAG Specifications  
Table 13. JTAG AC Specifications  
Parameter  
FJTAG  
Description  
JTAG operating frequency (master)  
Min  
Typ  
Max  
Units  
Details/Conditions  
400  
kHz  
Code flashing  
CapSense Specifications  
Table 14. CapSense AC Specifications  
Parameter  
VCSD  
SNR  
Description  
Min  
1.71  
5
Typ  
Max  
5.50  
Units  
V
Details/Conditions  
Voltage range of operation  
Ratio of counts of finger to noise  
Ratio  
Sensor capacitance range of  
9 to 35 pF; finger capacitance  
>= 0.1 pF sensitivity  
Flash Memory Specifications  
Table 15. Flash Memory Specifications  
Parameter  
Fend  
Fret  
Description  
Flash endurance  
Min  
100 K  
10  
Typ  
Max  
Units  
Details/Conditions  
cycles  
years  
Flash retention. TA 85 °C, 10 K  
program/erase cycles  
Document Number: 001-81006 Rev. *K  
Page 14 of 35  
CY7C65215  
CY7C65215A  
Pin Description  
Pin[3]  
Type  
Name  
Default  
Description  
1
Power  
VDDD  
Supply to the device core and Interface, 1.71 to 5.5 V  
2
3
SCB/GPIO  
SCB/GPIO  
Power  
SCB0_0  
GPIO_8  
GPIO_9  
RxD_0  
DTR#_0  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
Digital Ground  
SCB0_5  
4
VSSD  
5
SCB/GPIO  
SCB/GPIO  
SCB/GPIO  
SCB/GPIO  
SCB/GPIO  
SCB/GPIO  
Output  
SCB1_0  
SCB1_1  
SCB1_2  
SCB1_3  
SCB1_4  
SCB1_5  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
RxD_1  
TxD_1  
RTS#_1  
CTS#_1  
DSR#_1  
DTR#_1  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
GPIO/SCB1. See Table 17 and Table 18 on page 17  
6
7
8
9
10  
11  
SUSPEND  
Indicates device in suspend mode. Can be configured as active  
low/high using configuration utility  
12  
Input  
WAKEUP  
Wakeup device from suspend mode. Can be configured as  
active low/high using configuration utility  
13  
14  
GPIO  
GPIO_16  
USBDP  
TRISTATE  
GPIO. See Table 18 on page 17  
USBIO  
USB DataSignal Plus, integrates termination resistor and 1.5-k  
pull up resistor  
15  
16  
17  
18  
USBIO  
Power  
Power  
nXRES  
USBDM  
VCCD  
VSSD  
USB Data Signal Minus, integrates termination resistor  
Regulated supply, connect to 1-µF cap or 1.8 V  
Digital Ground  
nXRES  
Chip reset, active low. Can be left unconnected or have a pull-up  
resistor connected if not used.  
19  
20  
21  
22  
23  
24  
Power  
Power  
GPIO  
GPIO  
Power  
Power  
VBUS  
VSSD  
VBUS Supply, 3.15 V to 5.25 V  
Digital Ground  
GPIO_17  
GPIO_18  
VDDD  
TRISTATE  
GPIO. See Table 18 on page 17  
GPIO. See Table 18 on page 17  
Supply to the device core and Interface, 1.71 to 5.5 V  
Analog Ground  
TRISTATE  
VSSA  
25  
26  
27  
28  
GPIO  
GPIO  
GPIO_0  
GPIO_1  
TXLED#  
RXLED#  
DSR#_0  
RTS#_0  
GPIO. See Table 18 on page 17  
GPIO. See Table 18 on page 17  
SCB/GPIO  
SCB/GPIO  
SCB0_1  
GPIO_2  
GPIO_3  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
SCB0_2  
29  
30  
31  
32  
SCB/GPIO  
SCB/GPIO  
GPIO  
SCB0_3  
SCB0_4  
GPIO_4  
GPIO_5  
CTS#_0  
TxD_0  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
GPIO/SCB0. See Table 16 and Table 18 on page 17  
GPIO. See Table 18 on page 17  
GPIO_6  
GPIO_7  
POWER#  
TRISTATE  
GPIO  
GPIO. See Table 18 on page 17  
Note  
3. Any pin acting as an Input pin should not be left unconnected.  
Document Number: 001-81006 Rev. *K  
Page 15 of 35  
 
 
CY7C65215  
CY7C65215A  
Figure 3. 32-Pin QFN Pinout  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VSSA  
VDDD  
VDDD  
SCB0_0/GPIO_8  
SCB0_5/GPIO_9  
VSSD  
CY7C65215 /  
CY7C65215A  
GPIO_18  
GPIO_17  
VSSD  
32 QFN  
-
SCB1_0/GPIO_10  
SCB1_1/ GPIO_11  
VBUS  
Top View  
nXRES  
VSSD  
SCB1_2/GPIO_12  
SCB1_3/GPIO_13  
Table 16. Serial Communication Block (SCB0) Configuration  
Mode 0*  
Mode 1  
Mode 2  
Mode 3  
SPI Master  
GPIO_8  
Mode 4  
Mode 5  
I2C Master  
Mode 6  
I2C Slave  
GPIO_8  
GPIO_2  
Pin  
Serial Port 0  
6-pin UART 4-pin UART 2-pin UART  
SPI Slave  
RxD_0  
DSR#_0  
RTS#_0  
CTS#_0  
TxD_0  
RxD_0  
GPIO_2  
RTS#_0  
CTS#_0  
TxD_0  
RxD_0  
GPIO_2  
GPIO_3  
GPIO_4  
TxD_0  
GPIO_8  
GPIO_8  
2
SCB0_0  
SCB0_1  
SCB0_2  
SCB0_3  
SCB0_4  
SCB0_5  
SSEL_OUT_0 SSEL_IN_0  
GPIO_2  
27  
28  
29  
30  
3
MISO_IN_0 MISO_OUT_0 SCL_OUT_0 SCL_IN_0  
MOSI_OUT_0 MOSI_IN_0  
SCLK_OUT_0 SCLK_IN_0  
SDA_0  
GPIO_5  
GPIO_9  
SDA_0  
GPIO_5  
GPIO_9  
DTR#_0  
GPIO_9  
GPIO_9  
GPIO_9  
GPIO_9  
*Note: Device configured in Mode 0 as default. Other modes can be configured through Cypress-supplied configuration utility.  
Table 17. Serial Communication Block (SCB1) Configuration  
Mode 0*  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Pin  
Serial Port 1  
6-pin  
UART  
4-pin  
UART  
2-pin  
UART  
JTAG  
Master  
SPI Master  
SPI Slave  
I2C Master I2C Slave  
RxD_1  
TxD_1  
RxD_1  
TxD_1  
RxD_1  
TxD_1  
MISO_IN_1 MISO_OUT_1 SCL_OUT_1 SCL_IN_1  
TDO  
TDI  
5
6
SCB1_0  
SCB1_1  
SCB1_2  
SCB1_3  
SCB1_4  
SCB1_5  
MOSI_OUT_1 MOSI_IN_1  
SDA_1  
SDA_1  
RTS#_1  
CTS#_1  
RTS#_1  
CTS#_1  
GPIO_12 SSEL_OUT_1 SSEL_IN_1  
GPIO_13 SCLK_OUT_1 SCLK_IN_1  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_12  
GPIO_13  
GPIO_14  
TMS  
TCK  
7
8
DSR#_1 GPIO_14 GPIO_14  
DTR#_1 GPIO_15 GPIO_15  
GPIO_14  
GPIO_15  
GPIO_14  
GPIO_15  
TRST#  
9
GPIO_15 GPIO_15  
10  
*Note: Device configured in Mode 0 as default. Other modes can be configured via Cypress-supplied configuration utility.  
GPIO  
SCB0  
SCB1  
Document Number: 001-81006 Rev. *K  
Page 16 of 35  
 
CY7C65215  
CY7C65215A  
Table 18. GPIO Configuration  
GPIO Configuration Option  
TRISTATE  
Description  
I/O tristated  
DRIVE 1  
Output static 1  
Output static 0  
DRIVE 0  
POWER#  
This output is used to control power to an external logic via switch to cut power off during  
unconfigured USB device and USB suspend.  
0 - USB device in Configured state  
1 - USB device in Unconfigured state or during USB suspend mode  
TXLED#  
RXLED#  
Drives LED during USB transmit  
Drives LED during USB receive  
TX or RX LED#  
Drives LED during USB transmit or receive  
BCD0  
BCD1  
Configurable battery charger detect pins to indicate type of USB charger (SDP, CDP, or  
DCP)  
Configuration example:  
00 - Draw up to 100 mA (Unconfigured state)  
01 - SDP (up to 500 mA)  
10 - CDP/DCP (up to 1.5 A)  
11 - Suspend (up to 2.5 mA)  
This truth table can be configured using the configuration utility  
BUSDETECT  
VBUS detection. Connect VBUS to this pin via resistor network for VBUS detection when  
using BCD feature (refer to page 20).  
CS0, CS1, CS2, CS3, CS4, CS5, CS6, CapSense button input (Max up to 8)  
CS7  
CSout0, CSout1, CSout2, CSout3  
Indicates which CapSense button is pressed  
Cmod  
External modulator capacitor, connect a 2.2 nF capacitor (±10%) to ground  
(Available on GPIO_0 only)  
Cshield (optional)  
Shield for waterproofing  
Note: These signal options can be configured on any of the available GPIO pins using Cypress-supplied configuration utility.  
Document Number: 001-81006 Rev. *K  
Page 17 of 35  
CY7C65215  
CY7C65215A  
USB Power Configurations  
The following section describes possible USB power configurations for the CY7C65215/CY7C65215A. Refer to the Pin Description  
on page 15 for signal details.  
USB Bus-Powered Configuration  
Figure 4 shows an example of the CY7C65215/CY7C65215A in  
a bus-powered design. VBUS is connected directly to the  
CY7C65215/CY7C65215A because it has an internal regulator.  
The USB bus-powered system must comply with the following  
requirements:  
3. A high-power bus-powered system (can draw more than  
100 mA when operational) must use POWER# (configured  
over GPIO) to keep the current consumption below 100 mA  
prior to USB enumeration, and 2.5 mA during USB Suspend  
state.  
1. The system should not draw more than 100 mA prior to USB  
enumeration (Unconfigured state).  
4. The system should not draw more than 500 mA from the USB  
host.  
2. The system should not draw more than 2.5 mA during USB  
Suspend mode.  
The configuration descriptor in the CY7C65215/CY7C65215A  
flash should be updated to indicate bus power and the maximum  
current required by the system using the configuration utility.  
Figure 4. Bus-Powered Configuration  
CY7C65215/CY7C65215A  
GPIO_0  
25  
26  
27  
GPIO_1  
GPIO_2 / SCB0_1  
GPIO_3 / SCB0_2  
28  
29  
GPIO_4 / SCB0_3  
GPIO_5 / SCB0_4  
GPIO_6  
30  
31  
32  
2
GPIO_7  
GPIO_8 / SCB0_0  
GPIO_9 / SCB0_5  
1
3
USB  
VDDD  
CONNECTOR  
5
6
7
8
19  
14  
15  
GPIO_10 / SCB1_0  
GPIO_11 / SCB1_1  
GPIO_12 / SCB1_2  
VBUS  
USBDP  
USBDM  
VBUS  
D+  
D-  
GND  
GPIO_13 / SCB1_3  
GPIO_14 / SCB1_4  
GPIO_15 / SCB1_5  
GPIO_16  
4.7 uF  
0.1 uF  
8
10  
13  
21  
22  
18  
GPIO_17  
XRES  
VCCD  
GPIO_18  
11  
12  
16  
SUSPEND  
WAKEUP  
1 uF  
24 20 17  
4
Document Number: 001-81006 Rev. *K  
Page 18 of 35  
 
 
 
CY7C65215  
CY7C65215A  
Self-Powered Configuration  
Figure 5 shows an example of CY7C65215/CY7C65215A in a  
self-powered design.  
In this configuration:  
removes the 1.5-kpull-up resistor on USBDP, and this ensures  
no current flows from the USBDP to the USB host via a 1.5-k  
pull-up resistor, to comply with USB 2.0 specification.  
When reset is asserted to CY7C65215, all the I/O pins are  
tristated.  
Using the configuration utility, the configuration descriptor in the  
CY7C65215/CY7C65215A flash should be updated to indicate  
that it is self-powered.  
VBUS is powered from USB VBUS. VBUS pin is also used to  
detect USB connection.  
VDDD is powered from an external power supply.  
When VBUS is present, CY7C65215/CY7C65215A enables an  
internal, 1.5-kpull-up resistor on USBDP. When VBUS is  
absent (USB host is powered down), CY7C65215/CY7C65215A  
Figure 5. Self-Powered Configuration  
3.3 V  
3.3 V  
CY7C65215/CY7C65215A  
GPIO_0  
25  
26  
27  
GPIO_1  
GPIO_2 / SCB0_1  
GPIO_3 / SCB0_2  
1
28  
29  
VDDD  
VBUS  
GPIO_4 / SCB0_3  
GPIO_5 / SCB0_4  
GPIO_6  
19  
30  
31  
32  
2
GPIO_7  
GPIO_8 / SCB0_0  
GPIO_9 / SCB0_5  
3
USB  
CONNECTOR  
5
6
7
8
GPIO_10 / SCB1_0  
GPIO_11 / SCB1_1  
GPIO_12 / SCB1_2  
VBUS  
D+  
D-  
14  
15  
USBDP  
USBDM  
GND  
GPIO_13 / SCB1_3  
GPIO_14 / SCB1_4  
GPIO_15 / SCB1_5  
GPIO_16  
8
10  
13  
0.1 uF  
4.7 uF  
18 4.7 KO  
21  
22  
GPIO_17  
XRES  
VCCD  
GPIO_18  
10 KO  
11  
12  
16  
SUSPEND  
WAKEUP  
1 uF  
24 20 17  
4
Document Number: 001-81006 Rev. *K  
Page 19 of 35  
 
 
CY7C65215  
CY7C65215A  
USB Bus Powered with Variable I/O Voltage  
Figure 6 shows CY7C65215/CY7C65215A in a bus-powered  
system with variable I/O voltage. A low dropout (LDO) regulator  
is used to supply 1.8 V or 3.3 V (using a jumper switch) the input  
of which is 5 V from VBUS. Another jumper switch is used to  
select 1.8/3.3 V or 5 V from VBUS for the VDDD pin of  
CY7C65215/CY7C65215A. This allows I/O voltage and supply  
to external logic to be selected among 1.8 V, 3.3 V, or 5 V.  
The system should not draw more than 2.5 mA during USB  
Suspend mode.  
A high-power bus-powered system (can draw more than 100  
mA when operational) must use POWER# (configured over  
GPIO) to keep the current consumption below 100 mA prior to  
USB enumeration and 2.5 mA during USB Suspend state.  
The USB bus-powered system must comply with the following:  
The system should not draw more than 100 mA prior to USB  
enumeration (Unconfigured state).  
Figure 6. USB Bus-Powered with 1.8 V, 3.3 V, or 5 V Variable I/O Voltage [4]  
Power  
Switch  
CY7C65215/CY7C65215A  
GPIO_0  
25  
26  
27  
GPIO_1  
1.8v or 3.3v or 5v  
Supply to External Logic  
GPIO_2 / SCB0_1  
GPIO_3 / SCB0_2  
28  
29  
GPIO_4 / SCB0_3  
GPIO_5 / SCB0_4  
GPIO_6  
30  
31  
32  
2
1.8/3.3 V  
GPIO_7  
GPIO_8 / SCB0_0  
GPIO_9 / SCB0_5  
1
2
3
1
Jumper to select  
1.8 V/3.3 V or 5 V  
3
VDDD  
5
6
7
8
19  
14  
15  
GPIO_10 / SCB1_0  
GPIO_11 / SCB1_1  
GPIO_12 / SCB1_2  
VBUS  
USBDP  
USBDM  
VBUS  
D+  
D-  
GND  
USB  
CONNECTOR  
GPIO_13 / SCB1_3  
GPIO_14 / SCB1_4  
GPIO_15 / SCB1_5  
GPIO_16  
0.1uF  
8
10  
13  
21  
22  
18  
GPIO_17  
XRES  
VCCD  
GPIO_18  
VBUS  
11  
12  
16  
SUSPEND  
WAKEUP  
TC 1070  
Vout Vin  
SHDn  
Vadj GND  
1.8/3.3 V  
1 uF  
0.1 uF  
24 20 17  
4
1M  
1uF  
1 2 3  
VBUS  
VDDD  
0.1 uF  
3.3 V  
1.8 V  
562K  
2M  
4.7 uF  
0.1 uF  
4.7 uF  
Jumper to select  
1.8 V or 3.3 V  
Note  
4. 1.71 V VDDD 1.89 V - Short VCCD pin with VDDD pin; VDDD > 2 V - connect a 1-µF decoupling capacitor to the VCCD pin.  
Document Number: 001-81006 Rev. *K  
Page 20 of 35  
 
 
 
CY7C65215  
CY7C65215A  
Application Examples  
The following section provides CY7C65215/CY7C65215A application examples.  
USB-to-Dual UART Bridge with Battery-Charge Detection  
CY7C65215/CY7C65215A can connect any embedded system,  
with a serial port, to a host PC through USB.  
CY7C65215/CY7C65215A enumerates as a dual COM port on  
the host PC.  
SUSPEND is connected to the MCU to indicate USB suspend or  
USB Unconfigured and the WAKEUP pin is used to wake up  
CY7C65215/CY7C65215A, which in turn issues a remote  
wakeup to the USB host. GPIO1 and GPIO0 are configured as  
RXLED# and TXLED# to drive two LEDs indicating data receive  
and transmit respectively.  
CY7C65215/CY7C65215A implements the battery charger  
detection functionality based on the USB Battery Charging  
Specification Rev 1.2.  
Battery-operated bus power systems must comply with the  
following conditions:  
The system should not draw more than 500 mA for SDP and  
1.5 A for CDP/DCP  
To comply with the first requirement, VBUS from the USB host is  
connected  
to  
the  
battery  
charger  
as  
well  
as  
CY7C65215/CY7C65215A as shown in Figure 7. When VBUS  
is connected, CY7C65215/CY7C65215A initiates battery  
charger detection and indicates the type of USB charger over  
BCD0 and BCD1. If the USB charger is SDP or CDP,  
CY7C65215/CY7C65215A enables a 1.5-K pull-up resistor on  
the USBDP for Full-Speed enumeration. When VBUS is  
disconnected CY7C65215/CY7C65215A indicates absence of  
the USB charger over BCD0 and BCD1, and removes the 1.5-K  
pull-up resistor on USBDP. Removing this resistor ensures no  
current flows from the supply to the USB host through the  
USBDP, to comply with the USB 2.0 specification.  
To comply with the second and third requirements, two signals  
(BCD0 and BCD1) are configured over GPIO to communicate  
the type of USB host charger and the amount of current it can  
draw from the battery charger. The BCD0 and BCD1 signals can  
be configured using the configuration utility.  
Thesystemcanbepoweredfromthe battery(ifnotdischarged)  
and be operational if VBUS is not connected or powered down.  
The system should not draw more than 100 mA from the VBUS  
prior to USB enumeration and USB Suspend mode.  
Figure 7. USB to Dual UART Bridge with Battery Charge Detection[5]  
CY7C65215/CY7C65215A  
VCC  
28  
29  
30  
2
RTS#_0  
GPIO_3 / SCB0_2  
CTS#  
RTS#  
CTS#_0  
TXD_0  
GPIO_4 / SCB0_3  
1
GPIO_5 / SCB0_4  
GPIO_8 / SCB0_0  
RXD  
TXD  
VDDD  
MCU  
10K  
10K  
RXD_0  
EN1  
22  
13  
BCD0  
BCD1  
SYS  
BAT  
GPIO_18  
GPIO_16  
Battery  
Charger  
(MAX8856)  
12  
11  
I/O  
I/O  
WAKEUP  
EN2  
SUSPEND  
GND  
IN  
VCC  
VCC  
RTS#_1  
CTS#_1  
TXD_1  
7
8
6
5
RTSout  
RTSin  
19  
GPIO_12 / SCB1_2  
GPIO_13 / SCB1_3  
GPIO_11 / SCB1_1  
VBUS  
OVP  
VBUS  
D+  
D-  
GND  
1K  
1K  
14  
15  
RS232  
Level  
Convertor  
USBDP  
USBDM  
CTSin  
TXDout  
RXDin  
CTSout  
TXDin  
RXD_1  
0.1 uF  
GPIO_10 / SCB1_0  
RXDout  
USB  
CONNECTOR  
18  
XRES  
TXLED#  
RXLED#  
25  
26  
GPIO_0  
GPIO_1  
16  
VBUS  
0.1 uF  
VDDD  
VCCD  
1 uF  
4.7 uF  
24 20 17  
4
4.7 uF  
0.1 uF  
Note  
5. Add a 100 K pull-down resistor on the V  
pin for quick discharge.  
BUS  
Document Number: 001-81006 Rev. *K  
Page 21 of 35  
 
 
 
 
CY7C65215  
CY7C65215A  
In a battery charger system.a 9-V spike on the VBUS is possible. The CY7C65215/CY7C65215A VBUS pin is intolerant to voltage  
above 6 V. In the absence of over-voltage protection (OVP) on the VBUS line, VBUS should be connected to BUSDETECT (GPIO  
configured) using the resistive network and the output of battery charger to the VBUS pin of CY7C65215/CY7C65215A, as shown in  
the following figure.  
B
A
Rs  
Rs = 10 K  
VBUS  
VBUS = VDDD  
SYS  
BAT  
CY7C65215/  
CY7C65215A  
Battery Charger  
B
B
A
R1  
R2  
R1 = 10 k?  
R2/(R1+R2) = VDDD/VBUS  
BUSDETECT  
A
GPIO  
VBUS > VDDD  
VBUS  
When VBUS and VDDD are at the same voltage potential, VBUS  
can be connected to GPIO using a series resistor (Rs). This is  
shown in Figure 8. If there is a charger failure and VBUS  
becomes 9 V, then the 10-kresistor plays two roles. It reduces  
the amount of current flowing into the forward biased diodes in  
the GPIO, and it reduces the voltage seen on the pad.  
When VBUS > VDDD, a resistor voltage divider is necessary to  
reduce the voltage from VBUS down to VDDD for the GPIO  
sensing the VBUS voltage. This is shown in the following figure.  
The resistors should be sized as follows:  
R1 >= 10 K  
R2 / (R1 + R2) = VDDD / VBUS  
The first condition limits the voltage and current for the charger  
failure situation, as described in the previous paragraph, while  
the second condition allows for normal-operation VBUS  
detection.  
Figure 8. GPIO VBUS Detection, VBUS = VDDD  
VDDD  
BUSDETECT  
CY7C65215/  
CY7C65215A  
VBUS  
Rs  
Figure 9. GPIO VBUS Detection, VBUS > VDDD  
VDDD  
BUSDETECT  
CY7C65215/  
CY7C65215A  
VBUS  
R1  
R2  
Document Number: 001-81006 Rev. *K  
Page 22 of 35  
 
CY7C65215  
CY7C65215A  
GPIO can be configured using USB-Serial Configuration utility.  
Figure 11 shows timing diagram of this GPIO.  
USB to RS485 Application  
CY7C7C65215 can be configured as dual USB to UART  
interface. This UART interface operates at TTL level and it can  
be converted to RS485 interface using a GPIO and any half  
duplex RS485 transceiver IC (to convert TTL level to RS485  
level) as shown in following figure. This GPIO (TXD Enable)  
enables and disables the RS485 transceiver IC based on  
availability of character in UART buffer of CY7C65215A. This  
RS485 is a multi-drop network – i.e. many devices can  
communicate with each other over a single two wire cable  
connection. The RS485 cable requires to be terminated at each  
end of the cable. Links are provided to allow the cable to be  
terminated if the device is physically positioned at either end of  
the cable.  
Figure 10. USB to RS485 Bridge  
CY7C65215A  
VCC  
30  
2
TXD_0  
RXD_0  
GPIO_5 / SCB0_4  
TXDout RS485  
TXDin  
Level  
1
GPIO_8 / SCB0_0  
RXDout  
Convertor  
VDDD  
RXDin  
1.8/3.3 V  
GND  
TXDEN  
6
GPIO_17  
1
2
3
VDDD  
VCC  
VDDD  
VDDD  
19  
VBUS  
VBUS  
D+  
D-  
GND  
1K  
1K  
TXD_1  
RXD_1  
14  
15  
6
5
RS485  
Level  
Convertor  
GPIO_11 / SCB1_1  
GPIO_10 / SCB1_0  
USBDP  
USBDM  
TXDin  
TXDout  
RXDin  
GND  
RXDout  
TXDEN  
USB  
CONNECTOR  
6
18  
GPIO_18  
XRES  
TXLED#  
RXLED#  
25  
26  
GPIO_0  
GPIO_1  
VBUS  
TC 1070  
1.8/3.3 V  
16  
Vout  
Vin  
VCCD  
4
SHDn  
0.1 uF  
VBUS  
0.1 uF  
VDDD  
0.1 uF  
1 uF  
Vadj GND  
24 20 17  
1M  
1uF  
1 2 3  
4.7 uF  
4.7 uF  
3.3 V  
1.8 V  
562K  
2M  
Jumper to select  
1.8 V or 3.3 V  
Figure 11. RS485 GPIO (TXDEN) Timing diagram  
Document Number: 001-81006 Rev. *K  
Page 23 of 35  
 
 
CY7C65215  
CY7C65215A  
CapSense  
In Figure 12 CY7C65215/CY7C65215A is configured to support  
six CapSense buttons. Three GPIOs (CSout0, CSout1, and  
CSout2) are configured to indicate which CapSense button is  
pressed by the finger. It also implements a 2-pin UART on SCB0  
and a 4-pin UART on SCB1.  
A 2.2-nF (10%) capacitor (Cmod) must be connected on the  
GPIO_0 pin for proper CapSense operation. Optionally, the  
GPIO_7 pin is configured as Cshield and connected to the shield  
of the CapSense (pin 2 of Watershield jumper) as shown in  
Figure 12. The shield prevents false triggering of buttons due to  
water droplets and guarantees CapSense operation (sensors  
respond to finger touch).  
For further information on CapSense, refer to Getting Started  
with CapSense.  
Figure 12. CapSense Schematic  
CY7C65215/CY7C65215A  
GPIO_5 / SCB0_4  
VCC  
1
VDDD  
VDDD  
23  
30  
2
TXD_0  
RXD_0  
Jumper to select  
Shield or No shield  
Capsense  
button  
No  
button  
pressed  
CS0  
CS1  
CS2  
CS3  
CS4  
RXD  
TXD  
CSout2 CSout0 CSout1  
GPIO_8 / SCB0_0  
Cshield  
1
2
3
32  
0
0
0
GPIO_7  
27  
CSout0  
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
GPIO_2 / SCB0_1  
GPIO_3 / SCB0_2  
GPIO_4 / SCB0_3  
GPIO_6  
I/O  
MCU  
3
9
28  
29  
31  
CSout1  
CSout2  
I/O  
I/O  
GPIO_9 / SCB0_5  
GPIO_14 / SCB1_4  
CS0  
CS1  
560R  
560R  
560R  
CS5  
10  
CS2  
GPIO_15 / SCB1_5  
GPIO_18  
12  
11  
22  
21  
CS3  
CS4  
CS5  
WAKEUP  
I/O  
I/O  
560R  
560R  
SUSPEND  
GPIO_17  
GPIO_16  
13  
VCC  
560R  
1K  
RTS#_1  
CTS#_1  
TXD_1  
7
RTSout  
RTSin  
GPIO_12 / SCB1_2  
GPIO_13 / SCB1_3  
GPIO_11 / SCB1_1  
8
6
5
RS232  
Level  
Convertor  
CTSin  
TXDout  
RXDin  
CTSout  
TXDin  
19  
VBUS  
VBUS  
D+  
D-  
GND  
14  
15  
RXD_1  
GPIO_10 / SCB1_0  
RXDout  
USBDP  
USBDM  
0.1 uF  
18  
26  
25  
USB  
CONNECTOR  
GPIO_1  
GPIO_0  
XRES  
VCCD  
Cmod  
16  
2.2 nF  
VBUS  
0.1 uF  
VDDD  
0.1 uF  
1 uF  
24 20 17  
4
4.7 uF  
4.7 uF  
Document Number: 001-81006 Rev. *K  
Page 24 of 35  
 
 
CY7C65215  
CY7C65215A  
USB to Dual Channel (I2C/SPI) Bridge  
In Figure 13, CY7C65215/CY7C65215A is configured as a USB-to-Dual Channel (I2C/SPI) Bridge. GPIO1 and GPIO0 are configured  
as RXLED# and TXLED# to drive two LEDs indicating data USB receive and transmit respectively.  
Figure 13. USB to I2C/SPI Bridge  
1.8/3.3 V  
VDDD  
CY7C65215/CY7565215A  
2.2K  
2.2K  
1
2
3
1
Jumper to select  
1.8 V/3.3 V or 5 V  
VDDD  
VCC  
SCL  
SDA  
28  
29  
GPIO_3 / SCB0_2  
GPIO_4 / SCB0_3  
I2C  
Master/Slave  
GND  
19  
VDDD  
VBUS  
USBDP  
USBDM  
VBUS  
D+  
D-  
14  
15  
USB  
CONNECTOR  
10K  
GND  
0.1 uF  
7
5
SSEL  
MISO  
VCC  
GPIO_12 / SCB1_2  
GPIO_10 / SCB1_0  
SPI  
6
8
Master/Slave  
MOSI  
SCLK  
GPIO_11 / SCB1_1  
GPIO_13 / SCB1_3  
18  
GND  
XRES  
16  
VCCD  
4
VBUS  
1 uF  
VBUS  
0.1 uF  
VDDD  
0.1 uF  
TC 1070  
Vout Vin  
SHDn  
Vadj GND  
1.8/3.3 V  
24 20 17  
0.1 uF  
4.7 uF  
4.7 uF  
1M  
1uF  
1 2 3  
3.3 V  
1.8 V  
562K  
2M  
Jumper to select  
1.8 V or 3.3 V  
I2C  
The CY7C65215/CY7C65215A I2C can be configured as a  
Master or Slave using the configuration utility.  
CY7C65215/CY7C65215A supports I2C data rates up to  
100 kbits/s in the standard mode (SM) and 400 kbits/s in the fast  
mode (FM).  
SPI  
The CY7C65215/CY7C65215A SPI can be configured as a  
Master or Slave using the configuration utility.  
CY7C65215/CY7C65215A supports SPI master frequency up to  
3 MHz and SPI slave frequency up to 1 MHz. It can support  
transaction sizes ranging from 4 bits to 16 bits, which can be  
configured using the configuration utility.  
In  
the  
master  
mode,  
SCL  
is  
output  
from  
CY7C65215/CY7C65215A. In the slave mode, SCL is input to  
CY7C65215/CY7C65215A. The I2C slave address for  
CY7C65215/CY7C65215A can be configured using the config-  
uration utility. The SDA data line is bi-directional in the master  
and slave modes. The drive modes of the SCL and SDA port pins  
are always open drain.  
In the master mode, SCLK, MOSI and SSEL lines act as output  
and MISO acts as an input. In the slave mode, SCL SCLK, MOSI,  
and SSEL lines act as input and MISO acts as an output.  
CY7C65215/CY7C65215A supports three versions of the SPI  
protocol:  
Motorola - This is the original SPI protocol.  
Refer to the NXP I2C specification for further details on protocol.  
Texas Instruments - A variation of the original SPI protocol in  
which data frames are identified by a pulse on the SSEL line.  
National Semiconductors - A half-duplex variation of the  
original SPI protocol.  
Document Number: 001-81006 Rev. *K  
Page 25 of 35  
 
 
CY7C65215  
CY7C65215A  
Motorola  
When not transmitting data, the SSEL line is '1' and SCLK is  
typically off.  
The Motorola SPI protocol has four different modes that  
determine how data is driven and captured on the MOSI and  
MISO lines. These modes are determined by clock polarity  
(CPOL) and clock phase (CPHA). Clock polarity determines the  
value of the SCLK line when not transmitting data:  
The original SPI protocol is defined by Motorola. It is a full-duplex  
protocol: transmission and reception occur at the same time.  
A single (full-duplex) data transfer follows these steps: The  
master selects a slave by driving its SSEL line to '0'. Next, it  
drives data on its MOSI line and it drives a clock on its SCLK line.  
The slave uses the edges of the transmitted clock to capture the  
data on the MOSI line. The slave drives data on its MISO line.  
The master captures the data on the MISO line. The process is  
repeated for all the bits in the data transfer.  
CPOL is '0': SCLK is '0' when not transmitting data.  
CPOL is '1': SCLK is '1' when not transmitting data.  
Multiple data transfers may happen without the SSEL line  
changing from '0' to '1' and back from '1' to '0' in between the  
individual transfers. As a result, slaves must keep track of the  
progress of data transfers to separate individual transfers.  
Clock phase determines when data is driven and captured. It is  
dependent on the value of CPOL:  
Table 19. SPI Protocol Modes  
Mode  
CPOL  
CPHA  
Description  
0
1
2
3
0
0
1
1
0
1
0
1
Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK  
Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK  
Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK  
Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK  
Figure 14. Driving and Capturing of MOSI/MISO Data As A Function of CPOL and CPHA  
CPOL: ‘0’, CPHA: ‘0’  
SCLK  
MOSI/MISO  
MSB  
LSB  
CPOL: ‘0’, CPHA: ‘1’  
CPOL: ‘1’, CPHA: ‘0’  
SCLK  
MOSI/MISO  
MSB  
LSB  
SCLK  
MOSI/MISO  
MSB  
LSB  
CPOL: ‘1’, CPHA: ‘0’  
SCLK  
MOSI/MISO  
MSB  
LSB  
LEGEND:  
CPOL:  
CPHA:  
SCLK:  
MOSI:  
MISO:  
Clock Polarity  
Clock Phase  
SPI interface clock  
SPI Master Out / Slave In  
SPI Master In / Slave Out  
Document Number: 001-81006 Rev. *K  
Page 26 of 35  
CY7C65215  
CY7C65215A  
Figure 15. Single 8-bit Data Transfer and Two Successive 8-bit Data Transfers in Mode 0 (CPOL is ‘0’, CPHA is ‘0’)  
CPOL: ‘0’, CPHA: ‘0’, single data transfer  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
MSB  
LSB  
LSB  
CPOL: ‘0’, CPHA: ‘0’, two successive data transfers  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
MSB  
LSB MSB  
LSB  
LSB  
LSB  
MSB  
LEGEND:  
CPOL:  
CPHA:  
SCLK:  
SSEL:  
Clock Polarity  
Clock Phase  
SPI interface clock  
SPI slave select  
MOSI:  
MISO:  
SPI Master Out / Slave In  
SPI Master In / Slave Out  
Document Number: 001-81006 Rev. *K  
Page 27 of 35  
CY7C65215  
CY7C65215A  
Texas Instruments  
The TI SPI protocol only supports mode 1 (CPOL is '0' and CPHA  
is '1'): data is driven on a rising edge of SCLK and data is  
captured on a falling edge of SCLK.  
The following figure illustrates a single 8-bit data transfer and two  
successive 8-bit data transfers. The SSEL pulse precedes the  
first data bit. Note how the SSEL pulse of the second data  
transfer coincides with the last data bit of the first data transfer.  
The Texas Instruments' SPI protocol redefines the use of the  
SSEL signal. It uses the signal to indicate the start of a data  
transfer, rather than a low, active slave-select signal. The start of  
a transfer is indicated by a high, active pulse of a single-bit  
transfer period. This pulse may occur one cycle before the  
transmission of the first data bit, or may coincide with the  
transmission of the first data bit. The transmitted clock SCLK is  
a free-running clock.  
Single data transfer  
SCLK  
SSEL  
MOSI  
MSB  
MSB  
LSB  
LSB  
MISO  
SCLK  
Two successive data transfers  
SSEL  
MOSI  
MSB  
MSB  
LSB  
LSB  
MSB  
MSB  
LSB  
LSB  
MISO  
LEGEND:  
SCLK:  
SSEL:  
MOSI:  
MISO:  
SPI interface clock  
SPI slave select pulse  
SPI Master Out / Slave In  
SPI Master In / Slave Out  
The following figure illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SSEL pulse coincides with the  
first data bit.  
Single data transfer  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
MSB  
LSB  
LSB  
Two successive data transfers  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
MSB  
LSB  
LSB  
MSB  
MSB  
LSB  
LSB  
LEGEND:  
SCLK:  
SPI interface clock  
SSEL:  
SPI slave select pulse  
MOSI:  
MISO:  
SPI Master Out / Slave In  
SPI Master In / Slave Out  
Document Number: 001-81006 Rev. *K  
Page 28 of 35  
CY7C65215  
CY7C65215A  
National Semiconductors  
The transmission data transfer size and reception data transfer  
size may differ. The National Semiconductors' SPI protocol only  
supports mode 0: data is driven on a falling edge of SCLK and  
data is captured on a rising edge of SCLK.  
The following figure illustrates a single data transfer and two  
successive data transfers. In both cases, the transmission data  
transfer size is 8 bits and the reception transfer size is 4 bits.  
The National Semiconductors' SPI protocol is a half-duplex  
protocol. Rather than transmission and reception occurring at  
the same time, transmission and reception take turns (trans-  
mission happens before reception). A single “idle” bit transfer  
period separates transmission from reception.  
Note: Successive data transfers are NOT separated by an “idle”  
bit transfer period.  
Single data transfer  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
LSB  
MSB  
LSB  
“idle” ‘0’ cycle  
Two successive data transfers  
SCLK  
SSEL  
MOSI  
MISO  
MSB  
LSB  
MSB  
MSB  
“idle” ‘0’ cycle  
LSB  
no “idle” cycle  
LEGEND:  
SCLK:  
SSEL:  
MOSI:  
MISO:  
SPI interface clock  
SPI slave select  
SPI Master Out / Slave In  
SPI Master In / Slave Out  
The above figure defines MISO and MOSI as undefined when  
the lines are considered idle (not carrying valid information). It  
will drive the outgoing line values to '0' during idle time (to satisfy  
the requirements of specific master devices (NXP LPC17xx) and  
specific slave devices (MicroChip EEPROM)).  
Document Number: 001-81006 Rev. *K  
Page 29 of 35  
CY7C65215  
CY7C65215A  
Ordering Information  
Table 20 lists the CY7C65215/CY7C65215A key package features and ordering codes. For more information, contact your local sales  
representative.  
Table 20. Key Features and Ordering Information  
Package  
Ordering Code  
CY7C65215-32LTXI  
Operating Range  
Industrial  
32-pin QFN (5 × 5 × 1 mm, 0.5 mm pitch) (Pb-free)  
32-pin QFN (5 × 5 × 1 mm, 0.5 mm pitch) (Pb-free) – Tape CY7C65215-32LTXIT  
and Reel  
Industrial  
32-pin QFN (5 × 5 × 1 mm, 0.5 mm pitch) (Pb-free)  
CY7C65215A-32LTXI  
Industrial  
Industrial  
32-pin QFN (5 × 5 × 1 mm, 0.5 mm pitch) (Pb-free) – Tape CY7C65215A-32LTXIT  
and Reel  
Ordering Code Definitions  
CY  
7
C
65 XXXX - 32 LT  
X
I
X
X = blank or T  
blank = Tube; T = Tape and Reel  
Temperature Range:  
I = Industrial  
Pb-free  
Package Type:  
LT = QFN  
Number of pins: 32 pins  
Part Number: XXXX = 215 or 215A  
Family Code:  
65 = USB Hubs  
Technology Code: C = CMOS  
Marketing Code: 7 = Cypress products  
Company ID: CY = Cypress  
Document Number: 001-81006 Rev. *K  
Page 30 of 35  
 
 
 
CY7C65215  
CY7C65215A  
Package Information  
The package currently planned to be supported is the 32-pin QFN.  
Figure 16. 32-pin QFN 5 × 5 × 1.0 mm LT32B 3.5 × 3.5 EPAD (Sawn)  
001-30999 *D  
Table 21. Package Characteristics  
Parameter Description  
Min  
–40  
Typ  
25  
Max  
85  
Units  
°C  
TA  
THJ  
Operating ambient temperature  
Package JA  
19  
°C/W  
Table 22. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Maximum Time at Peak Temperature  
32-pin QFN  
260 °C  
30 seconds  
Table 23. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
32-pin QFN  
MSL 3  
Document Number: 001-81006 Rev. *K  
Page 31 of 35  
CY7C65215  
CY7C65215A  
Acronyms  
Document Conventions  
Table 24. Acronyms Used in this Document  
Units of Measure  
Acronym  
BCD  
CDC  
CDP  
DCP  
DLL  
Description  
battery charger detection  
Table 25. Units of Measure  
Symbol  
Unit of Measure  
communication driver class  
charging downstream port  
dedicated charging port  
dynamic link library  
C  
degree Celsius  
DMIPS  
dhrystone million instructions per second  
k  
kilo-ohm  
KB  
kilobyte  
ESD  
GPIO  
HBM  
I2C  
electrostatic discharge  
general purpose input/output  
human-body model  
kHz  
kV  
kilohertz  
kilovolt  
Mbps  
MHz  
mm  
V
megabits per second  
megahertz  
millimeter  
volt  
inter-integrated circuit  
Microcontroller Unit  
MCU  
OSC  
PHDC  
PID  
oscillator  
personal health care device class  
Product Identification  
SCB  
SCL  
serial communication block  
I2C Serial Clock  
SDA  
SDP  
SIE  
I2C Serial Data  
Standard Downstream Port  
serial interface engine  
serial peripheral interface  
virtual communication port  
Universal Serial Bus  
SPI  
VCOM  
USB  
UART  
VID  
universal asynchronous receiver transmitter  
Vendor Identification  
Document Number: 001-81006 Rev. *K  
Page 32 of 35  
CY7C65215  
CY7C65215A  
Document History Page  
Document Title: CY7C65215/CY7C65215A, USB-Serial Dual Channel (UART/I2C/SPI) Bridge with CapSense® and BCD  
Document Number: 001-81006  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*G  
*H  
4287738  
4430603  
SAMT  
MVTA  
02/21/2014 Updated Ordering Information (Updated part numbers).  
07/11/2014 Updated Features.  
Updated Functional Overview:  
Updated JTAG Interface:  
Updated description.  
Updated Software:  
Updated Drivers for Windows Operating Systems:  
Updated description.  
Updated Electrical Specifications:  
Updated Device Level Specifications:  
Updated Table 4:  
Updated details in “Details/Conditions” column of VBUS and VDDD parameters.  
Updated typical and maximum values of IDD1 parameter.  
Updated details in “Details/Conditions” column of IDD1 parameter.  
Updated Table 5:  
Removed F1 and F2 parameters and their details.  
Updated GPIO:  
Updated Table 6:  
Updated details in “Description” column of VOH and VOL parameters.  
Updated Pin Description:  
Updated Table 17:  
Updated details in “Mode 7” column of pin 6 and pin 7.  
Updated USB Power Configurations:  
Updated Self-Powered Configuration:  
Updated description.  
Updated Figure 5.  
Updated Application Examples:  
Updated CapSense:  
Updated description.  
Updated Figure 12.  
Completing Sunset Review.  
*I  
4807404  
RRSH  
06/23/2015 Updated Features.  
Updated Functional Overview:  
Updated Serial Communication:  
Updated UART Interface:  
Updated description.  
Updated I2C Interface:  
Updated description.  
Updated System Resources:  
Updated Power System:  
Updated description.  
Updated Internal 32-kHz Oscillator:  
Updated description.  
Updated Reset:  
Updated description.  
Updated Software:  
Updated Drivers for Windows Operating Systems:  
Updated description.  
Updated Windows-CE support:  
Updated description.  
Updated Electrical Specifications:  
Updated Operating Conditions:  
Updated details corresponding to VBUS supply voltage.  
Updated Device Level Specifications:  
Updated Table 4:  
Changed maximum value of VBUS parameter from 5.25 V to 5.5 V.  
Updated GPIO:  
Updated Table 6:  
Updated details in “Description” column of VOH and VOL parameters.  
Document Number: 001-81006 Rev. *K  
Page 33 of 35  
CY7C65215  
CY7C65215A  
Document History Page (continued)  
Document Title: CY7C65215/CY7C65215A, USB-Serial Dual Channel (UART/I2C/SPI) Bridge with CapSense® and BCD  
Document Number: 001-81006  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*I (cont.)  
4807404  
RRSH  
06/23/2015 Updated Pin Description:  
Updated details in “Description” column of pin 19.  
Updated Application Examples:  
Updated USB to Dual Channel (I2C/SPI) Bridge:  
Updated description.  
Updated to new template.  
Completing Sunset Review.  
*J  
5063358  
MVTA  
12/24/2015 Updated Document Title to read as “CY7C65215/CY7C65215A, USB-Serial  
Dual Channel (UART/I2C/SPI) Bridge with CapSense® and BCD”.  
Included details of CY7C65215A part number in all instances across the  
document.  
Updated Features:  
Updated description.  
Added CY7C65215 and CY7C65215A Features Comparison.  
Added More Information.  
Updated Functional Overview:  
Updated Serial Communication:  
Added Table 2.  
Updated UART Interface:  
Updated description.  
Updated UART Flow Control:  
Updated description.  
Updated SPI Interface:  
Updated description.  
Updated Electrical Specifications:  
Updated Operating Conditions:  
Updated details corresponding to “VBUS supply voltage”.  
Updated Device Level Specifications:  
Updated Table 4:  
Changed maximum value of VBUS parameter from 5.5 V to 5.25 V.  
Updated details in “Details/Conditions” column corresponding to IDD2  
parameter.  
Updated Pin Description:  
Updated details in “Description” column corresponding to VBUS pin.  
Updated USB Power Configurations:  
Updated USB Bus-Powered Configuration:  
Updated Figure 4.  
Updated Self-Powered Configuration:  
Updated Figure 5.  
Updated USB Bus Powered with Variable I/O Voltage:  
Updated Figure 6.  
Updated Application Examples:  
Updated USB-to-Dual UART Bridge with Battery-Charge Detection:  
Updated Figure 7.  
Added USB to RS485 Application.  
Updated CapSense:  
Updated Figure 12.  
Updated USB to Dual Channel (I2C/SPI) Bridge:  
Updated Figure 13.  
Updated Ordering Information:  
Updated part numbers.  
Updated Ordering Code Definitions.  
*K  
5726562  
GNKK  
05/04/2017 Updated the Cypress logo and copyright information.  
Document Number: 001-81006 Rev. *K  
Page 34 of 35  
CY7C65215  
CY7C65215A  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/memory  
cypress.com/go/psoc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & Power Control  
Memory  
Community | Forums | Blogs | Video | Training  
Technical Support  
PSoC  
cypress.com/go/support  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners  
Document Number: 001-81006 Rev. *K  
Revised May 4, 2017  
Page 35 of 35  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY