CY7C344B-12PC/PI [CYPRESS]

32-Macrocell MAX㈢ EPLD; 32宏单元MAX® EPLD
CY7C344B-12PC/PI
型号: CY7C344B-12PC/PI
厂家: CYPRESS    CYPRESS
描述:

32-Macrocell MAX㈢ EPLD
32宏单元MAX® EPLD

文件: 总17页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C344B  
fax id: 6101  
CY7C344  
CY7C344B  
32-Macrocell MAX® EPLD  
sents the densest EPLD of this size. Eight dedicated inputs  
and 16 bidirectional I/O pins communicate to one logic array  
block. In the CY7C344 LAB there are 32 macrocells and 64  
expander product terms. When an I/O macrocell is used as an  
input, two expanders are used to create an input path. Even if  
all of the I/O pins are driven by macrocell registers, there are  
still 16 “buried” registers available. All inputs, macrocells, and  
I/O pins are interconnected within the LAB.  
Features  
• High-performance, high-density replacement for TTL,  
74HC, and custom logic  
• 32 macrocells, 64 expander product terms in one LAB  
• 8 dedicated inputs, 16 I/O pins  
• 0.8-micron double-metal CMOS EPROM technology  
(CY7C344)  
The speed and density of the CY7C344/CY7C344B makes it  
a natural for all types of applications. With just this one device,  
the designer can implement complex state machines, regis-  
tered logic, and combinatorial “glue” logic, without using mul-  
tiple chips. This architectural flexibility allows the  
CY7C344/CY7C344B to replace multichip TTL solutions,  
whether they are synchronous, asynchronous, combinatorial,  
or all three.  
• Advanced 0.65-micron CMOS EPROM technology to  
increase performance (CY7C344B)  
• 28-pin 300-mil DIP, cerDIP or 28-pin HLCC, PLCC  
package  
Functional Description  
Available in a 28-pin 300-mil DIP or windowed J-leaded ce-  
ramic chip carrier (HLCC), the CY7C344/CY7C344B repre-  
Logic Block Diagram[1]  
Pin Configurations  
HLCC  
15(22) INPUT  
15(23) INPUT  
INPUT  
1(8)  
Top View  
INPUT/CLK 2(9)  
27(6)  
28(7)  
INPUT  
INPUT  
INPUT  
INPUT  
13(20)  
14(21)  
4
3
2
1
28 27 26  
25  
5
6
7
8
9
10  
11  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT/CLK  
I/O  
24  
23  
22  
21  
20  
19  
MACROCELL 2  
MACROCELL 1  
I/O 3(10)  
I/O 4(11)  
I/O 5(12)  
I/O 6(13)  
I/O 9(16)  
I/O 10(17)  
I/O 11(18)  
I/O 12(19)  
I/O 17(24)  
I/O 18(25)  
I/O 19(26)  
I/O 20(27)  
I/O 23(2)  
I/O 24(3)  
I/O 25(4)  
I/O 26(5)  
INPUT  
INPUT  
INPUT  
INPUT  
I/O  
MACROCELL 4  
MACROCELL 6  
MACROCELL 8  
MACROCELL 10  
MACROCELL 12  
MACROCELL 14  
MACROCELL 16  
MACROCELL 18  
MACROCELL 20  
MACROCELL 22  
MACROCELL 24  
MACROCELL 26  
MACROCELL 28  
MACROCELL 30  
MACROCELL 32  
MACROCELL 3  
MACROCELL 5  
MACROCELL 7  
MACROCELL 9  
MACROCELL 11  
MACROCELL 13  
MACROCELL 15  
MACROCELL 17  
MACROCELL 19  
MACROCELL 21  
MACROCELL 23  
MACROCELL 25  
MACROCELL 27  
MACROCELL 29  
MACROCELL 31  
G
L
I
O
O
B
A
L
I/O  
12 13 141516 1718  
C
O
N
T
C344–2  
CerDIP  
Top View  
B
U
S
R
O
L
INPUT  
INPUT  
INPUT  
I/O  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INPUT/CLK  
I/O  
2
3
4
5
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CC  
V
CC  
GND  
I/O  
GND  
I/O  
8
9
I/O  
I/O  
10  
11  
12  
13  
14  
I/O  
I/O  
INPUT  
I/O  
I/O  
INPUT  
C344–1  
32  
64 EXPANDER PRODUCT TERM ARRAY  
INPUT  
INPUT  
C344–3  
Selection Guide  
7C344–15  
7C344–20  
7C344–25  
7C344B–10  
7C344B–12  
12  
7C344B–15  
7C344B–20  
7C344B–25  
Maximum Access Time (ns)  
10  
15  
20  
25  
Maximum  
Operating  
Current (mA)  
Commercial  
Military  
Industrial  
Commercial  
Military  
200  
200  
220  
220  
150  
170  
170  
200  
200  
220  
220  
150  
170  
170  
200  
220  
220  
150  
170  
170  
220  
150  
Maximum Standby  
Current (mA)  
150  
Industrial  
170  
Shaded area contains preliminary information.  
Note:  
1. Numbers in () refer to J-leaded packages.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
January 1990 – Revised October 1995  
CY7C344  
CY7C344B  
DC Output Current, per Pin......................–25 mA to +25 mA  
Maximum Ratings  
[2]  
DC Input Voltage .........................................–3.0V to +7.0V  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
DC Program Voltage .................................................. +13.0V  
Storage Temperature ................................. –65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied...................................................0°C to +70°C  
Range  
Commercial  
Industrial  
Military  
Temperature  
V
CC  
Maximum Junction Temperature (Under Bias)............. 150°C  
Supply Voltage to Ground Potential............... –2.0V to +7.0V  
Maximum Power Dissipation...................................1500 mW  
0°C to +70°C  
5V ±5%  
5V ±10%  
5V ±10%  
–40°C to +85°C  
–55°C to +125°C (Case)  
DC V or GND Current............................................500 mA  
CC  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015)..............................>2001V  
[3]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Level  
Test Conditions  
Min.  
Max.  
Unit  
V
V
V
V
V
V
= Min., I = –4.0 mA  
2.4  
V
V
OH  
OL  
IH  
CC  
CC  
OH  
= Min., I = 8 mA  
0.45  
+0.3  
OL  
2.2  
–0.3  
–10  
–40  
–30  
V
V
CC  
Input LOW Level  
0.8  
V
IL  
I
I
I
I
Input Current  
GND V V  
CC  
+10  
+40  
–90  
150  
170  
200  
220  
100  
100  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
ns  
ns  
IX  
IN  
Output Leakage Current  
Output Short Circuit Current  
V
V
= V or GND  
CC  
OZ  
O
[4, 5]  
= Max., V = 0.5V  
OUT  
OS  
CC  
Power Supply  
Current (Standby)  
V = V or GND (No Load)  
Commercial  
CC1  
I
CC  
Military/Industrial  
Commercial  
I
Power Supply Current  
V = V or GND (No Load)  
I CC  
CC2  
[4,6]  
f = 1.0 MHz  
Military/Industrial  
t
t
Recommended Input Rise Time  
Recommended Input Fall Time  
R
F
Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
= 2V, f = 1.0 MHz  
Max.  
10  
Unit  
pF  
C
C
V
V
IN  
IN  
= 2.0V, f = 1.0 MHz  
10  
pF  
OUT  
OUT  
AC Test Loads and Waveforms[7]  
R1 464Ω  
R1 464Ω  
5V  
5V  
ALL INPUT PULSES  
OUTPUT  
OUTPUT  
3.0V  
90%  
10%  
90%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
GND  
t
f
6ns  
6ns  
INCLUDING  
JIGAND  
t
t
F
R
SCOPE  
C344–4  
C344–5  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163Ω  
OUTPUT  
1.75V  
C344–6  
Notes:  
2. Minimum DC input is –0.3V. During transitions, the inputs may undershoot to –2.0V for periods less than 20 ns.  
3. Typical values are for TA = 25°C and VCC = 5V.  
4. Guaranteed by design but not 100% tested.  
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT = 0.5V has been chosen to avoid  
test problems caused by tester ground degradation.  
6. Measured with device programmed as a 16-bit counter.  
7. Part (a) in AC Test Load and Waveforms is used for all parameters except tER and tXZ, which is used for part (b) in AC Test Load and Waveforms. All external timing  
parameters are measured referenced to external pins of the device.  
2
CY7C344  
CY7C344B  
When expander logic is used in the data path, add the appro-  
Timing Delays  
priate maximum expander delay, t  
to t . Determine which of  
EXP  
S1  
Timing delays within the CY7C344/CY7C344B may be easily  
determined using Warp2®, Warp2Sim™, or Warp3® software  
or by the model shown in Figure 1. The CY7C344/CY7C344B  
has fixed internal delays, allowing the user to determine the  
worst case timing delays for any design. For complete timing  
information, the Warp3 software provides a timing simulator.  
1/(t  
+ t ), 1/t  
, or 1/(t  
+ t ) is the lowest frequency. The  
WH  
WL  
CO1  
EXP S1  
lowest of these frequencies is the maximum data-path frequency for  
the synchronous configuration.  
When calculating external asynchronous frequencies, use  
t
if all inputs are on dedicated input pins. If any data is applied to  
AS1  
an I/O pin, t  
must be used as the required set-up time. If (t  
+
AS2  
AS2  
t
) is greater than t  
, 1/(t  
+ t ) becomes the limiting fre-  
AH  
ACO1  
AS2 AH  
Design Recommendations  
quency in the data-path mode unless 1/(t  
+ t  
) is less than  
AWH  
AWL  
1/(t  
+ t ).  
AS2  
AH  
Operation of the devices described herein with conditions  
above those listed under “Absolute Maximum Ratings” may  
cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of  
this datasheet is not implied. Exposure to absolute maximum  
ratings conditions for extended periods of time may affect de-  
vice reliability. The CY7C344/CY7C344B contains circuitry to  
protect device pins from high-static voltages or electric fields;  
however, normal precautions should be taken to avoid applying  
any voltage higher than maximum rated voltages.  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, t to t . Determine which  
of 1/(t  
Thelowest of thesefrequencies is themaximum data-path frequency  
for the asynchronous configuration.  
EXP  
AS1  
+t  
), 1/t  
, or 1/(t  
+t  
) is the lowest frequency.  
AWH AWL  
ACO1  
EXP AS1  
The parameter t indicates the system compatibility of this device  
when driving other synchronous logic with positive input hold times,  
which is controlled by the same synchronous clock. If t is greater  
than the minimum required input hold time of the subsequent syn-  
chronous logic, then the devices are guaranteed to function properly  
with a common synchronous clock under worst-case environmental  
and supply voltage conditions.  
OH  
OH  
For proper operation, input and output pins must be con-  
strained to the range GND (VIN or VOUT) VCC. Unused in-  
puts must always be tied to an appropriate logic level (either VCC or  
GND). Each set of VCC and GND pins must be connected together  
directly at the device. Power supply decoupling capacitors of at least  
0.2 µF must be connected between VCC and GND. For the most  
effective decoupling, each VCC pin should be separately decoupled.  
The parameter t  
vice when driving subsequent registered logic with a positive hold  
time and using the same clock as the CY7C344/CY7C344B.In gen-  
indicates the system compatibility of this de-  
AOH  
eral, if t  
is greater than the minimum required input hold time of  
AOH  
the subsequent logic (synchronousor asynchronous), then thedevic-  
es are guaranteed to function properly under worst-case environ-  
mental and supply voltage conditions, provided the clock signal  
source is the same. This also applies if expander logic is used in the  
clock signal path of the driving device, but not for the driven device.  
This is due to the expander logic in the second device’s clock signal  
path adding an additional delay (t  
the preceding device to change prior to the arrival of the clock signal  
at the following device’s register.  
Timing Considerations  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum ex-  
pander delay t  
to the overall delay.  
EXP  
), causing the output data from  
EXP  
When calculating synchronous frequencies, use t if all inputs  
S1  
are on the input pins. t should be used if data is applied at an I/O  
S2  
pin. If t is greater than t  
, 1/t becomes the limiting frequency  
S2  
CO1  
S2  
in the data-path mode unless 1/(t  
+ t ) is less than 1/t .  
WL S2  
WH  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
t
CONTROLDELAY  
CLR  
INPUT  
t
LAC  
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
IN  
t
LOGIC ARRAY  
DELAY  
t
t
RD  
t
RSU  
t
t
COMB  
LATCH  
t
t
RH  
t
LAD  
SYSTEM CLOCK DELAYt  
ICS  
CLOCK  
DELAY  
I/O  
I/O DELAY  
I/O  
t
IC  
t
IO  
FEEDBACK  
DELAY  
t
C344–7  
FD  
Figure 1. CY7C344/CY7C344B Timing Model  
3
CY7C344  
CY7C344B  
External Synchronous Switching Characteristics[7] Over Operating Range  
7C344–15  
7C344B–10 7C344B–12 7C344B–15  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
[8]  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
f
Dedicated Input to Combinatorial Output Delay  
Com’l /Ind  
Mil  
10  
10  
16  
16  
10  
10  
5
12  
12  
12  
12  
18  
18  
18  
18  
12  
12  
12  
12  
6
15  
15  
15  
15  
30  
30  
30  
30  
20  
20  
20  
20  
10  
10  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
PD1  
PD2  
PD3  
PD4  
EA  
[9]  
I/O Input to Combinatorial Output Delay  
Com’l/Ind  
Mil  
Dedicated Input to Combinatorial Output Delay Com’l /Ind  
[10]  
with Expander Delay  
Mil  
I/O Input to Combinatorial Output Delay with  
Com’l/Ind  
Mil  
[4, 11]  
Expander Delay  
[4]  
Input to Output Enable Delay  
Com’l/Ind  
Mil  
[4]  
Input to Output Disable Delay  
Com’l /Ind  
Mil  
ER  
Synchronous Clock Input to Output Delay  
Com’l /Ind  
Mil  
CO1  
CO2  
S
6
Synchronous Clock to Local Feedback to Com- Com’l /Ind  
10  
12  
12  
[4, 12]  
binatorial Output  
Mil  
Dedicated Input or Feedback Set-Up Time to  
Synchronous Clock Input  
Com’l/Ind  
Mil  
6
0
8
8
10  
10  
0
[7]  
Input Hold Time from Synchronous Clock Input  
Com’l /Ind  
Mil  
0
H
0
0
[4]  
Synchronous Clock Input HIGH Time  
Com’l/Ind  
Mil  
4
4.5  
4.5  
4.5  
4.5  
12  
12  
12  
12  
6
WH  
WL  
RW  
RR  
RO  
PW  
PR  
6
[4]  
Synchronous Clock Input LOW Time  
Com’l /Ind  
Mil  
4
6
6
[4]  
Asynchronous Clear Width  
Com’l /Ind  
Mil  
10  
10  
20  
20  
20  
20  
[4]  
Asynchronous Clear Recovery Time  
Com’l /Ind  
Mil  
Asynchronous Clear to Registered Output De-  
Com’l /Ind  
Mil  
10  
12  
12  
15  
15  
[4]  
lay  
[4]  
Asynchronous Preset Width  
Com’l /Ind  
Mil  
10  
10  
12  
12  
12  
12  
20  
20  
20  
20  
[4]  
Asynchronous Preset Recovery Time  
Com’l /Ind  
Mil  
Asynchronous Preset to Registered Output  
Com’l /Ind  
Mil  
10  
3
12  
12  
3
15  
15  
4
PO  
CF  
[4]  
Delay  
[4, 13]  
[4]  
Synchronous Clock to Local Feedback Input  
External Synchronous Clock Period (1/f  
Com’l /Ind  
Mil  
3
4
)
MAX3  
Com’l/Ind  
Mil  
8
9
13  
13  
P
9
[4, 14]  
External Maximum Frequency(1/(t  
+ t ))  
Com’l/Ind 90.9  
Mil  
71.4  
71.4  
50.0  
50.0  
MAX1  
CO1  
S
Shaded area contains preliminary information.  
4
CY7C344  
CY7C344B  
External Synchronous Switching Characteristics[7] Over Operating Range (continued)  
7C344–15  
7C344B–12 7C344B–15  
7C344B–10  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
f
f
f
t
Maximum Frequency with Internal Only Feed- Com’l/Ind 111.1  
90.9  
90.9  
111.1  
111.1  
111.1  
111.1  
3
71.4  
71.4  
83.3  
83.3  
83.3  
83.3  
3
MHz  
MHz  
MHz  
ns  
MAX2  
MAX3  
MAX4  
OH  
[4, 15]  
back (1/(t + t ))  
CF  
S
Mil  
Data Path Maximum Frequency, least of 1/(t  
Com’l/Ind 125.0  
WL  
[4, 16]  
+ t ), 1/(t + t ), or (1/t )  
WH  
S
H
CO1  
Mil  
Maximum Register Toggle Frequency 1/(t  
+
Com’l/Ind 125.0  
Mil  
WL  
[4, 17]  
t
)
WH  
Output Data Stable Time from Synchronous  
Clock Input  
Com’l/ Ind  
Mil  
3
[4, 18]  
3
3
Shaded area contains preliminary information.  
Notes:  
8. This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander  
terms are used to form the logic function.  
9. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to  
form the logic function.  
10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes  
expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter  
is tested periodically by sampling production material.  
11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used  
to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
12. This specification is a measure of the delay from synchronous register clock input to internal feedback of the register output signal to a combinatorial output  
for which the registered output signal is used as an input. This parameter assumes no expanders are used in the logic of the combinatorial output and the  
register is synchronously clocked. This parameter is tested periodically by sampling production material.  
13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register set-up time, tS, is the minimum  
internal period for an internal state machine configuration. This parameter is tested periodically by sampling production material.  
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.  
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states  
must also control external points, this frequency can still be observed as long as it is less than 1/tCO1. This specification assumes no expander logic is used. This  
parameter is tested periodically by sampling production material.  
16. This frequency indicates the maximum frequency at which the device may operate in data-path mode (dedicated input pin to output pin). This assumes that  
no expander logic is used.  
17. This specification indicates the guaranteed maximum frequency in synchronous mode, at which an individual output or buried register can be cycled by a  
clock signal applied to either a dedicated input pin or an I/O pin.  
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.  
5
CY7C344  
CY7C344B  
External Synchronous Switching Characteristics[7] Over Operating Range (continued)  
7C344–20  
7C344B–20  
7C344–25  
7C344B–25  
Parameter  
Description  
Min.  
Max.  
20  
20  
20  
20  
30  
30  
30  
30  
20  
20  
20  
20  
12  
12  
22  
22  
Min.  
Max.  
25  
25  
25  
25  
40  
40  
40  
40  
25  
25  
25  
25  
15  
15  
29  
29  
Unit  
[8]  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Dedicated Input to Combinatorial Output Delay  
Com’l /Ind  
Mil  
ns  
PD1  
[9]  
I/O Input to Combinatorial Output Delay  
Com’l/Ind  
Mil  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PD2  
PD3  
PD4  
EA  
Dedicated Input to Combinatorial Output Delay with Ex- Com’l /Ind  
[10]  
pander Delay  
Mil  
I/O Input to Combinatorial Output Delay with Expander Com’l/Ind  
[4, 11]  
Delay  
Mil  
[4]  
Input to Output Enable Delay  
Com’l/Ind  
Mil  
[4]  
Input to Output Disable Delay  
Com’l /Ind  
Mil  
ER  
CO1  
CO2  
S
Synchronous Clock Input to Output Delay  
Com’l /Ind  
Mil  
Synchronous Clock to Local Feedback to Combinato- Com’l /Ind  
[4, 12]  
rial Output  
Mil  
Dedicated Input or Feedback Set-Up Time to Synchro- Com’l/Ind  
12  
12  
0
15  
15  
0
nous Clock Input  
Mil  
[7]  
Input Hold Time from Synchronous Clock Input  
Com’l /Ind  
Mil  
H
0
0
[4]  
Synchronous Clock Input HIGH Time  
Com’l/Ind  
Mil  
7
8
WH  
WL  
RW  
RR  
RO  
PW  
PR  
PO  
CF  
7
8
[4]  
Synchronous Clock Input LOW Time  
Com’l /Ind  
Mil  
7
8
7
8
[4]  
Asynchronous Clear Width  
Com’l /Ind  
Mil  
20  
20  
20  
20  
25  
25  
25  
25  
[4]  
Asynchronous Clear Recovery Time  
Com’l /Ind  
Mil  
[4]  
Asynchronous Clear to Registered Output Delay  
Com’l /Ind  
Mil  
20  
20  
25  
25  
[4]  
Asynchronous Preset Width  
Com’l /Ind  
Mil  
20  
20  
20  
20  
25  
25  
25  
25  
[4]  
Asynchronous Preset Recovery Time  
Com’l /Ind  
Mil  
[4]  
Asynchronous Preset to Registered Output Delay  
Com’l /Ind  
Mil  
20  
20  
4
25  
25  
7
[4, 13]  
Synchronous Clock to Local Feedback Input  
Com’l /Ind  
Mil  
4
7
[4]  
External Synchronous Clock Period (1/f  
)
MAX3  
Com’l/Ind  
Mil  
14  
14  
16  
16  
P
6
CY7C344  
CY7C344B  
External Synchronous Switching Characteristics[7] Over Operating Range (continued)  
7C344–20  
7C344B–20  
7C344–25  
7C344B–25  
Parameter  
Description  
External Maximum Frequency(1/(t + t ))  
Min.  
41.6  
41.6  
62.5  
62.5  
71.4  
71.4  
71.4  
71.4  
3
Max.  
Min.  
33.3  
33.3  
45.4  
45.4  
62.5  
62.5  
62.5  
62.5  
3
Max.  
Unit  
[4, 14]  
f
f
f
f
t
Com’l/Ind  
Mil  
MHz  
MAX1  
CO1  
S
Maximum Frequency with Internal Only Feedback  
Com’l/Ind  
Mil  
MHz  
MHz  
MHz  
ns  
MAX2  
MAX3  
MAX4  
OH  
[4, 15]  
(1/(t + t ))  
CF  
S
Data Path Maximum Frequency, least of 1/(t + t ), Com’l/Ind  
WL WH  
[4, 16]  
1/(t + t ), or (1/t )  
S
H
CO1  
Mil  
[4, 17]  
Maximum Register Toggle Frequency 1/(t + t  
)
Com’l/Ind  
Mil  
WL WH  
Output Data Stable Time from  
Com’l/ Ind  
Mil  
[4, 18]  
Synchronous Clock Input  
3
3
[7]  
External Asynchronous Switching Characteristics Over Operating Range  
7C344–15  
7C344B–10 7C344B–12 7C344B–15  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
t
t
t
t
t
t
t
t
f
f
f
f
t
Asynchronous Clock Input to Output Delay  
Com’l/ Ind  
Mil  
10  
12  
12  
18  
18  
15  
15  
30  
30  
ns  
ACO1  
ACO2  
AS  
Asynchronous Clock Input to Local Feedback to Com’l/Ind  
15  
ns  
[19]  
Combinatorial Output  
Mil  
Dedicated Input or Feedback Set-Up Time to  
Asynchronous Clock Input  
Com’l/Ind  
Mil  
4
3
4
5
4
4
4
4
5
5
6
6
7
7
7
7
6
6
7
7
ns  
Input Hold Time from Asynchronous Clock Input Com’l/Ind  
ns  
AH  
Mil  
[4, 20]  
Asynchronous Clock Input HIGH Time  
Com’l/Ind  
Mil  
ns  
AWH  
AWL  
[4]  
Asynchronous Clock Input LOW Time  
Com’l/Ind  
Mil  
ns  
[4,  
Asynchronous Clock to Local Feedback Input  
Com’l /Ind  
Mil  
7
9
9
18  
18  
ns  
ACF  
21]  
[4]  
External Asynchronous Clock Period (1/f  
)
MAX4  
Com’l/Ind  
Mil  
12  
12.5  
12.5  
62.5  
62.5  
76.9  
76.9  
83.3  
83.3  
90.9  
90.9  
12  
13  
13  
ns  
AP  
External Maximum Frequency in Asynchronous Com’l/Ind  
71.4  
90.9  
45.4  
45.4  
40  
MHz  
MHz  
MHz  
MHz  
ns  
MAXA1  
MAXA2  
MAXA3  
MAXA4  
AOH  
[4, 22]  
Mode 1/(t  
+ t  
)
ACO1  
AS  
Mil  
Maximum Internal Asynchronous Frequency  
Com’l/Ind  
Mil  
[4, 23]  
1/(t  
+ t ) or 1/(t  
+ t  
)
ACF  
AS  
AWH  
AWL  
40  
Data Path Maximum Frequencyin Asynchronous Com’l/Ind 100.0  
66.6  
66.6  
76.9  
76.9  
15  
[4, 24]  
Mode  
Mil  
Maximum Asynchronous Register Toggle Fre-  
Com’l /Ind 111.1  
Mil  
[4, 25]  
quency 1/(t  
+ t  
)
AWH  
AWL  
Output Data Stable Time from Asynchronous  
Com’l/Ind  
Mil  
12  
[4, 26]  
Clock Input  
15  
Shaded area contains preliminary information.  
7
CY7C344  
CY7C344B  
[7]  
External Asynchronous Switching Characteristics Over Operating Range (continued)  
7C344–20  
7C344B–20  
7C344–25  
7C344B–25  
Parameter  
Description  
Min. Max. Min. Max.  
Unit  
t
t
t
t
t
t
t
t
f
f
f
f
t
Asynchronous Clock Input to Output Delay  
Com’l/ Ind  
Mil  
20  
20  
30  
30  
25  
25  
37  
37  
ns  
ACO1  
Asynchronous Clock Input to Local Feedback to Com- Com’l/Ind  
ns  
ns  
ACO2  
AS  
[19]  
binatorial Output  
Mil  
Dedicated Input or Feedback Set-Up Time to Asyn-  
chronous Clock Input  
Com’l/Ind  
Mil  
9
9
9
9
7
7
9
9
12  
12  
12  
12  
9
Input Hold Time from Asynchronous Clock Input  
Com’l/Ind  
Mil  
ns  
AH  
[4, 20]  
Asynchronous Clock Input HIGH Time  
Com’l/Ind  
Mil  
ns  
AWH  
AWL  
9
[4]  
Asynchronous Clock Input LOW Time  
Com’l/Ind  
Mil  
11  
11  
ns  
[4, 21]  
Asynchronous Clock to Local Feedback Input  
Com’l /Ind  
Mil  
18  
18  
21  
21  
ns  
ACF  
[4]  
External Asynchronous Clock Period (1/f  
)
Com’l/Ind  
Mil  
16  
16  
20  
20  
ns  
AP  
MAX4  
External Maximum Frequency in Asynchronous Mode Com’l/Ind  
34.4  
34.4  
37  
27  
MHz  
MHz  
MHz  
MHz  
ns  
MAXA1  
MAXA2  
MAXA3  
MAXA4  
AOH  
[4, 22]  
1/(t  
+ t  
)
ACO1  
AS  
Mil  
27  
Maximum Internal Asynchronous Frequency 1/(t  
+
Com’l/Ind  
Mil  
30.3  
30.3  
40  
ACF  
[4, 23]  
t
) or 1/(t  
+ t  
)
AS  
AWH AWL  
37  
Data Path Maximum Frequency in Asynchronous  
Com’l/Ind  
Mil  
50  
[4, 23]  
Mode  
50  
40  
Maximum Asynchronous Register Toggle Frequency Com’l /Ind  
62.5  
62.5  
15  
50  
[4, 25]  
1/(t  
+ t  
)
AWH AWL  
Mil  
50  
Output Data Stable Time from Asynchronous Clock  
Com’l/Ind  
Mil  
15  
[4, 26]  
Input  
15  
15  
Notes:  
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial  
output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock  
input. This parameter is tested periodically by sampling production material.  
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative edge triggering, the tAWH and tAWL parameters must be swapped.  
If a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL  
.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the  
asynchronous register set-up time, tAS, is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic  
in the asynchronous clock path. This parameter is tested periodically by sampling production material.  
22. This parameter indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that no expander logic is employed in the clock signal path or data path.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.  
If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/tACO1. This specification  
assumes no expander logic is utilized. This parameter is tested periodically by sampling production material.  
24. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked  
mode. This frequency is least of 1/(tAWH + tAWL), 1/(tAS + tAH), or 1/tACO1. It also indicates the maximum frequency at which the device may operate in the asynchronously  
clocked data-path mode. Assumes no expander logic is used.  
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked  
mode by a clock signal applied to an external dedicated input or an I/O pin.  
26. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input  
to an external dedicated input or I/O pin.  
8
CY7C344  
CY7C344B  
[7]  
Typical Internal Switching Characteristics Over Operating Range  
7C344–15  
7C344B–10 7C344B–12 7C344B–15  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
t
Dedicated Input Pad and Buffer Delay  
Com’l/Ind  
Mil  
2
2
6
5
5
3
5
5
2.5  
2.5  
2.5  
2.5  
6
4
4
4
4
8
8
7
7
5
5
4
4
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Com’l/Ind  
Mil  
IO  
Com’l/Ind  
Mil  
EXP  
LAD  
LAC  
OD  
6
Logic Array Data Delay  
Com’l/Ind  
Mil  
6
6
Logic Array Control Delay  
Output Buffer and Pad Delay  
Com’l/Ind  
Mil  
5
5
Com’l/Ind  
Mil  
3
3
[27]  
Output Buffer Enable Delay  
Com’l /Ind  
Mil  
5
ZX  
5
Output Buffer Disable Delay  
Com’l/Ind  
Mil  
5
XZ  
5
Register Set-Up Time Relative to Clock Signal Com’l/Ind  
at Register  
2
4
2
2
5
5
5
5
7
7
RSU  
RH  
Mil  
Register Hold Time Relative to Clock Signal at Com’l/Ind  
Register  
Mil  
Flow-Through Latch Delay  
Register Delay  
Com’l/Ind  
Mil  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
1
1
1
1
1
LATCH  
RD  
Com’l/Ind  
Mil  
[28]  
Transparent Mode Delay  
Com’l/Ind  
Mil  
COMB  
CH  
Clock HIGH Time  
Com’l/Ind  
Mil  
3
3
4
4
4
4
6
6
6
6
Clock LOW Time  
Com’l/Ind  
Mil  
CL  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Feedback Delay  
Com’l/Ind  
Mil  
5
0.5  
1
6
6
7
7
1
1
1
1
5
5
5
5
IC  
Com’l/Ind  
Mil  
0.5  
0.5  
1
ICS  
FD  
Com’l/Ind  
Mil  
1
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Asynchronous Preset and Clear Pulse Width  
Com’l/Ind  
Mil  
2
3
PRE  
CLR  
PCW  
PCR  
3
Com’l/Ind  
Mil  
2
3
3
Com’l/Ind  
Mil  
2
2
3
3
3
3
5
5
5
5
Asynchronous Preset and Clear Recovery Time Com’l/Ind  
Mil  
Shaded area contains preliminary information.  
Notes:  
27. Sample tested only for an output change of 500 mV.  
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combi-  
natorial operation.  
9
CY7C344  
CY7C344B  
[7]  
Typical Internal Switching Characteristics Over Operating Range (continued)  
7C344–20  
7C344B–20  
7C344–25  
7C344B–25  
Parameter  
Description  
Min.  
Max.  
5
Min.  
Max.  
7
Unit  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Dedicated Input Pad and Buffer Delay  
Com’l/Ind  
Mil  
ns  
IN  
5
7
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Com’l/Ind  
Mil  
5
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IO  
5
7
Com’l/Ind  
Mil  
10  
10  
9
15  
15  
10  
10  
7
EXP  
LAD  
LAC  
OD  
Logic Array Data Delay  
Com’l/Ind  
Mil  
9
Logic Array Control Delay  
Output Buffer and Pad Delay  
Com’l/Ind  
Mil  
7
7
7
Com’l/Ind  
Mil  
5
5
5
5
[27]  
Output Buffer Enable Delay  
Com’l /Ind  
Mil  
8
11  
11  
11  
11  
ZX  
8
Output Buffer Disable Delay  
Com’l/Ind  
Mil  
8
XZ  
8
Register Set-Up Time Relative to Clock Signal at Reg- Com’l/Ind  
ister  
5
5
9
9
8
8
RSU  
RH  
Mil  
Register Hold Time Relative to Clock Signal at Register Com’l/Ind  
Mil  
12  
12  
Flow-Through Latch Delay  
Com’l/Ind  
Mil  
1
1
1
1
1
1
3
3
1
1
3
3
LATCH  
RD  
Register Delay  
Com’l/Ind  
Mil  
[28]  
Transparent Mode Delay  
Com’l/Ind  
Mil  
COMB  
CH  
Clock HIGH Time  
Com’l/Ind  
Mil  
7
7
7
7
8
8
8
8
Clock LOW Time  
Com’l/Ind  
Mil  
CL  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Com’l/Ind  
Mil  
8
8
2
2
1
1
6
6
6
6
10  
10  
3
IC  
Com’l/Ind  
Mil  
ICS  
FD  
3
Feedback Delay  
Com’l/Ind  
Mil  
1
1
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Asynchronous Preset and Clear Pulse Width  
Asynchronous Preset and Clear Recovery Time  
Com’l/Ind  
Mil  
9
PRE  
CLR  
PCW  
PCR  
9
Com’l/Ind  
Mil  
9
9
Com’l/Ind  
Mil  
5
5
5
5
7
7
7
7
Com’l/Ind  
Mil  
10  
CY7C344  
CY7C344B  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
t
/t  
PD1 PD2  
COMBINATORIAL  
OUTPUT  
t
ER  
COMBINATORIAL OR  
REGISTERED OUTPUT  
HIGH-IMPEDANCE  
THREE-STATE  
t
EA  
HIGH-IMPEDANCE  
THREE-STATE  
VALID OUTPUT  
C344–8  
C344–9  
C344–10  
External Synchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
t
WL  
S
H
WH  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t /t  
RR PR  
CO1  
RW PW  
ASYNCHRONOUS  
CLEAR/PRESET  
t
OH  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[12]  
REGISTERED FEEDBACK  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
AWL  
t
AH  
AWH  
AS  
ASYNCHRONOUS  
CLOCK INPUT  
t
ACO1  
t
/t  
t
/t  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
AOH  
t
/t  
RO PO  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
ACO2  
COMBINATORIAL OUTPUT FROM  
ASYNCH. REGISTERED  
[19]  
FEEDBACK  
11  
CY7C344  
CY7C344B  
Switching Waveforms (Continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
t
PIA  
t
IO  
I/O PIN  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
C344–11  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
C344–12  
Internal Synchronous (Input Path)  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IN  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
C344–13  
12  
CY7C344  
CY7C344B  
Switching Waveforms (Continued)  
Internal Synchronous (Output Path)  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH Z  
OUTPUT PIN  
C344–14  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C344B–10HC  
CY7C344B–10JC  
Package Type  
10  
H64  
J64  
28-Lead Windowed Leaded Chip Carrier Commercial  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
CY7C344B–10PC  
P21  
W22  
H64  
J64  
CY7C344B–10WC  
CY7C344B–12HC/HI  
CY7C344B–12JC/JI  
CY7C344B–12PC/PI  
CY7C344B–12WC/WI  
CY7C344B–12HMB  
CY7C344B–12WMB  
CY7C344–15HC/HI  
CY7C344–15JC/JI  
CY7C344–15PC/PI  
CY7C344–15WC/WI  
CY7C344B–15HC/HI  
CY7C344B–15JC/JI  
CY7C344B–15PC/PI  
CY7C344B–15WC/WI  
CY7C344B–15HMB  
CY7C344B–15WMB  
CY7C344–20HC/HI  
CY7C344–20JC/JI  
CY7C344–20PC/PI  
CY7C344–20WC/WI  
CY7C344B–20HC/HI  
CY7C344B–20JC/JI  
CY7C344B–20PC/PI  
CY7C344B–20WC/WI  
CY7C344–20HMB  
CY7C344–20WMB  
CY7C344B–20HMB  
CY7C344B–20WMB  
28-Lead Windowed CerDIP  
12  
15  
28-Lead Windowed Leaded Chip Carrier Commercial/Industrial  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier Military  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier Commercial/Industrial  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier Military  
28-Lead Windowed CerDIP  
20  
28-Lead Windowed Leaded Chip Carrier Commercial/Industrial  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
W22  
H64  
W22  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier Military  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Shaded area contains preliminary information.  
13  
CY7C344  
CY7C344B  
Ordering Information (continued)  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C344–25HC/HI  
CY7C344–25JC/JI  
CY7C344–25PC/PI  
CY7C344–25WC/WI  
CY7C344B–25HC/HI  
CY7C344B–25JC/JI  
CY7C344B–25PC/PI  
CY7C344B–25WC/WI  
CY7C344–25HMB  
CY7C344–25WMB  
CY7C344B–25HMB  
CY7C344B–25WMB  
Name  
H64  
J64  
Package Type  
25  
28-Lead Windowed Leaded Chip Carrier Commercial/Industrial  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
P21  
W22  
H64  
W22  
H64  
W22  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier Military  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Shaded area contains preliminary information.  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameter  
Subgroups  
1, 2, 3  
Parameter  
Subgroups  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
V
V
V
V
t
t
t
t
t
t
t
t
t
t
OH  
PD1  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
OL  
IH  
IL  
PD2  
PD3  
CO1  
S
I
I
I
IX  
OZ  
H
CC1  
ACO1  
ACO1  
AS  
AH  
Document #: 38–00127–G  
MAX is a registered trademark of Altera Corporation.  
Warp2 and Warp3 are registered trademarks of Cypress Semiconductor Corporation.  
Warp2Sim is a trademark of Cypress Semiconductor Corporation.  
14  
CY7C344  
CY7C344B  
Package Diagrams  
28-Pin Windowed Leaded Chip Carrier H64  
15  
CY7C344  
CY7C344B  
Package Diagrams (Continued)  
28-Lead Plastic Leaded Chip Carrier J64  
28-Lead (300-Mil) Molded DIP P21  
16  
CY7C344  
CY7C344B  
Package Diagrams (Continued)  
28-Lead (300-Mil) Windowed CerDIP W22  
MIL–STD–1835 D– 15Config.A  
© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C344B-12PI

UV-Erasable/OTP PLD
ETC

CY7C344B-12WC

UV-Erasable/OTP PLD
ETC

CY7C344B-12WC/WI

32-Macrocell MAX㈢ EPLD
CYPRESS

CY7C344B-12WI

UV-Erasable/OTP PLD
ETC

CY7C344B-12WMB

32-Macrocell MAX㈢ EPLD
CYPRESS

CY7C344B-15HC

UV-Erasable/OTP PLD
ETC

CY7C344B-15HC/HI

32-Macrocell MAX㈢ EPLD
CYPRESS

CY7C344B-15HI

UV-Erasable/OTP PLD
ETC

CY7C344B-15HMB

32-Macrocell MAX㈢ EPLD
CYPRESS

CY7C344B-15JC

UV-Erasable/OTP PLD
ETC

CY7C344B-15JC/JI

32-Macrocell MAX㈢ EPLD
CYPRESS

CY7C344B-15JCR

OT PLD, 30ns, CMOS, PQCC28, PLASTIC, LCC-28
CYPRESS