CY7C1470BV33-250BZI [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流水线SRAM与NoBL⑩架构
CY7C1470BV33-250BZI
型号: CY7C1470BV33-250BZI
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
72兆位( 2M ×36 / 4M ×18 / 1M X 72 )流水线SRAM与NoBL⑩架构

存储 内存集成电路 静态存储器 时钟
文件: 总30页 (文件大小:902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
are 3.3V, 2M x 36/4M x 18/1M x 72 Synchronous pipelined burst  
SRAMs with No Bus Latency™ (NoBL™) logic, respectively.  
They are designed to support unlimited true back-to-back read  
or write operations with no wait states. The CY7C1470BV33,  
CY7C1472BV33, and CY7C1474BV33 are equipped with the  
advanced (NoBL) logic required to enable consecutive read or  
write operations with data being transferred on every clock cycle.  
This feature dramatically improves the throughput of data in  
systems that require frequent read or write transitions. The  
CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33 are pin  
compatible and functionally equivalent to ZBT devices.  
Pin-compatible and functionally equivalent to ZBT™  
Supports 250 MHz bus operations with zero wait states  
Available speed grades are 250, 200, and 167 MHz  
Internally self-timed output buffer control to eliminate the need  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte Write capability  
Single 3.3V power supply  
3.3V/2.5V IO power supply  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the Clock Enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
Fast clock-to-output time  
3.0 ns (for 250-MHz device)  
Clock Enable (CEN) pin to suspend operation  
Synchronous self-timed writes  
Write operations are controlled by the Byte Write Selects  
CY7C1470BV33, CY7C1472BV33 available in  
(BWa–BWd  
for  
CY7C1470BV33,  
BWa–BWb  
for  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non-Pb-free 165-ball FBGA package. CY7C1474BV33  
available in Pb-free and non-Pb-free 209-ball FBGA package  
CY7C1472BV33, and BWa–BWh for CY7C1474BV33) and a  
Write Enable (WE) input. All writes are conducted with on-chip  
synchronous self-timed write circuitry.  
IEEE 1149.1 JTAG Boundary Scan compatible  
Burst capability—linear or interleaved burst order  
“ZZ” Sleep Mode option and Stop Clock option  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. To avoid bus contention,  
the output drivers are synchronously tri-stated during the data  
portion of a write sequence.  
Selection Guide  
Description  
Maximum Access Time  
250 MHz  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
3.0  
500  
120  
Maximum Operating Current  
500  
450  
mA  
mA  
Maximum CMOS Standby Current  
120  
120  
Cypress Semiconductor Corporation  
Document #: 001-15031 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 29, 2008  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Logic Block Diagram – CY7C1470BV33 (2M x 36)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
O
S
U
D
A
T
U
T
T
P
U
T
E
N
S
P
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
F
E
R
S
S
T
E
E
R
I
DQ s  
DQ P  
DQ P  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
a
a
b
c
A
M
P
BW  
BW  
BW  
b
c
S
T
E
R
S
d
d
S
WE  
E
E
N
G
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1472BV33 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
b
S
T
E
R
S
b
S
N
G
WE  
E
E
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document #: 001-15031 Rev. *C  
Page 2 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Logic Block Diagram – CY7C1474BV33 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
BW  
BW  
a
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
a
b
c
c
d
e
S
T
E
R
S
S
d
e
f
BW  
f
N
G
BW  
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document #: 001-15031 Rev. *C  
Page 3 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Pin Configurations  
Figure 1. 100-Pin TQFP Pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
DDQ  
V
V
DDQ  
DDQ  
V
V
V
SS  
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
NC  
DQb  
DQb  
DQb  
DQb  
DQPa  
DQa  
DQa  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
V
SS  
SS  
V
V
DD  
NC  
DD  
NC  
CY7C1472BV33  
(4M x 18)  
CY7C1470BV33  
(2M x 36)  
NC  
NC  
V
V
DD  
DD  
V
V
SS  
SS  
ZZ  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQb  
DQa  
DQa  
V
DQd  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
V
V
SS  
V
SS  
V
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQPb  
NC  
DQa  
DQa  
NC  
NC  
V
SS  
V
V
V
SS  
SS  
SS  
V
V
DDQ  
V
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 001-15031 Rev. *C  
Page 4 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1470BV33 (2M x 36)  
1
2
A
3
4
BW  
BW  
V
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
A
B
C
D
CE3  
CLK  
ADV/LD  
OE  
CE  
BW  
b
CEN  
WE  
1
c
NC/1G  
A
NC  
DQ  
CE2  
A
A
NC  
DQ  
NC  
BW  
d
a
DQP  
V
V
V
V
V
V
V
V
V
V
V
DQP  
DQ  
c
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
b
DQ  
V
V
V
V
V
V
V
V
c
c
DDQ  
DD  
SS  
SS  
DD  
b
b
DQ  
DQ  
DQ  
DQ  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
E
F
c
c
c
c
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
b
b
b
b
DQ  
V
V
V
c
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
b
b
DQ  
V
V
V
G
H
J
c
SS  
SS  
DD  
NC  
NC  
DQ  
NC  
V
V
V
NC  
NC  
DQ  
ZZ  
SS  
SS  
DD  
DQ  
V
V
V
V
V
DQ  
a
d
d
DDQ  
DDQ  
DDQ  
DDQ  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
a
DQ  
DQ  
DQ  
DQ  
V
V
V
V
V
V
V
V
V
V
V
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
K
L
d
d
d
d
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
DD  
a
a
a
a
a
a
DQ  
V
V
V
d
SS  
SS  
DD  
DQ  
V
V
V
V
V
M
N
P
d
SS  
SS  
DD  
DQP  
NC  
A
V
NC  
NC  
A1  
NC  
V
NC  
A
DQP  
a
d
DDQ  
SS  
SS  
DDQ  
NC/144M  
MODE  
A
TDI  
TDO  
A
NC/288M  
A
A
A
A
A
A
A
TMS  
A0  
TCK  
A
A
R
CY7C1472BV33 (4M x 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
CE2  
BWb  
NC  
CE3  
CLK  
VSS  
VSS  
CEN  
ADV/LD  
A
A
A
NC  
BWa  
VSS  
VSS  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VDDQ  
VDDQ  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
DQPb  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 001-15031 Rev. *C  
Page 5 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1474BV33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
A
CE2  
A
ADV/LD  
WE  
A
A
CE3  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
BWSc  
BWSg  
NC  
BWSb  
BWSf  
DQg  
DQg  
DQg  
DQg  
BWSh  
VSS  
BWSd NC/576M CE1  
NC  
NC  
BWSe  
NC  
BWSa  
VSS  
C
D
NC/1G  
OE  
NC  
DQb  
DQPb  
DQf  
E
F
DQPg  
DQc  
DQPc  
DQc  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
DQPf  
DQf  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
G
H
J
DQc  
DQc  
DQc  
NC  
VDDQ  
VSS  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
VDDQ  
NC  
VDDQ  
CLK  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
A
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 001-15031 Rev. *C  
Page 6 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 1. Pin Definitions  
Pin Name  
A0  
A1  
A
IO Type  
Pin Description  
Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge  
Input-  
Synchronous of the CLK.  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Byte Write Select Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf  
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
BWg  
BWh  
WE  
Input-  
Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
Synchronous signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance/Load Input Used to Advance the On-chip Address Counter or Load a New  
Synchronous Address. When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When  
LOW, a new address can be loaded into the device for an access. After being deselected, ADV/LD  
must be driven LOW to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE2 and CE3 to select or deselect the device.  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
Synchronous with CE1 and CE3 to select or deselect the device.  
Input-  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE2 to select or deselect the device.  
Input-  
Output Enable, Active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the IO pins. When LOW, the IO pins are enabled to behave as outputs.  
When deasserted HIGH, IO pins are tri-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when emerging from a deselected state  
and when the device has been deselected.  
CEN  
DQS  
Input-  
Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the  
Synchronous SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
IO-  
Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered  
Synchronous by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a tri-state condition. The outputs are automat-  
ically tri-stated during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, and when the device is deselected, regardless of the state of OE.  
DQPX  
IO-  
Bidirectional Data Parity IO Lines. Functionally, these signals are identical to DQX. During write  
Synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc,  
and DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf, DQPg  
is controlled by BWg, DQPh is controlled by BWh.  
MODE  
TDO  
TDI  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE must not change states during operation. When  
left floating MODE defaults HIGH, to an interleaved burst order.  
JTAG Serial  
Output  
Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG Serial Input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK.  
Synchronous  
Document #: 001-15031 Rev. *C  
Page 7 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 1. Pin Definitions (continued)  
Pin Name  
IO Type  
Pin Description  
TMS  
Test Mode Select This Pin Controls the Test Access Port State Machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
VDDQ  
VSS  
NC  
JTAG Clock  
Clock Input to the JTAG Circuitry.  
Power Supply Power Supply Inputs to the Core of the Device.  
IO Power Supply Power Supply for the IO Circuitry.  
Ground  
Ground for the Device. Should be connected to ground of the system.  
No Connects. This pin is not connected to the die.  
NC(144M,  
288M,  
These Pins are Not Connected. They are used for expansion to the 144M, 288M, 576M, and  
1G densities.  
576M, 1G)  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin must be LOW or left floating.  
ZZ pin has an internal pull-down.  
register and onto the data bus within 3.0 ns (250-MHz device)  
Functional Overview  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW to drive out the requested  
data. During the second clock, a subsequent operation (read,  
write, or deselect) can be initiated. Deselecting the device is also  
pipelined. Therefore, when the SRAM is deselected at clock rise  
by one of the chip enable signals, its output tri-states following  
the next clock rise.  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
are synchronous-pipelined Burst NoBL SRAMs designed specif-  
ically to eliminate wait states during read or write transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
Clock Enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data outputs  
pass through output registers controlled by the rising edge of the  
clock. Maximum access delay from the clock rise (tCO) is 3.0 ns  
(250-MHz device).  
Burst Read Accesses  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
have an on-chip burst counter that enables the user to supply a  
single address and conduct up to four reads without reasserting  
the address inputs. ADV/LD must be driven LOW to load a new  
address into the SRAM, as described in the Single Read  
Accesses section. The sequence of the burst counter is deter-  
mined by the MODE input signal. A LOW input on MODE selects  
a linear burst mode, a HIGH selects an interleaved burst  
sequence. Both burst counters use A0 and A1 in the burst  
sequence, and wraps around when incremented sufficiently. A  
HIGH input on ADV/LD increments the internal burst counter  
regardless of the state of chip enables inputs or WE. WE is  
latched at the beginning of a burst cycle. Therefore, the type of  
access (read or write) is maintained throughout the burst  
sequence.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If CEN is  
active LOW and ADV/LD is asserted LOW, the address  
presented to the device is latched. The access can either be a  
read or write operation, depending on the status of the Write  
Enable (WE). BW[x] can be used to conduct Byte Write opera-  
tions.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
must be driven LOW after the device has been deselected to  
load a new address for the next operation.  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the signal WE is  
asserted LOW. The address presented to the address inputs is  
loaded into the Address Register. The write signals are latched  
into the Control Logic block.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the input signal WE is  
deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
Address Register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
requested data is allowed to propagate through the output  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1470BV33, DQa,b/DQPa,b for  
CY7C1472BV33, and DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for  
CY7C1474BV33). In addition, the address for the subsequent  
Document #: 001-15031 Rev. *C  
Page 8 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
access (read, write, or deselect) is latched into the Address  
Register (provided the appropriate control signals are asserted).  
clock rise, the Chip Enables (CE1, CE2, and CE3) and WE inputs  
are ignored and the burst counter is incremented. The correct  
BW (BWa,b,c,d for CY7C1470BV33, BWa,b for CY7C1472V33,  
and BWa,b,c,d,e,f,g,h for CY7C1474BV33) inputs must be driven  
in each cycle of the burst write to write the correct bytes of data.  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1470BV33, DQa,b/DQPa,b for  
CY7C1472BV33, and DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for  
CY7C1474BV33) (or a subset for byte write operations, see  
“Partial Write Cycle Description” on page 11 for details) inputs is  
latched into the device and the write is complete.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected before entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
The data written during the Write operation is controlled by BW  
(BWa,b,c,d for CY7C1470BV33, BWa,b for CY7C1472BV33, and  
BWa,b,c,d,e,f,g,h  
for  
CY7C1474BV33)  
signals.  
The  
CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
provides Byte Write capability that is described in “Partial Write  
Cycle Description” on page 11. Asserting the Write Enable input  
(WE) with the selected BW input selectively writes to only the  
desired bytes. Bytes not selected during a Byte Write operation  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations. Byte Write  
capability has been included to greatly simplify read, modify, or  
write sequences, which can be reduced to simple Byte Write  
operations.  
Table 2. Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Because the CY7C1470BV33, CY7C1472BV33, and  
CY7C1474BV33 are common IO devices, data must not be  
driven into the device while the outputs are active. The OE can  
be deasserted HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1470BV33, DQa,b/DQPa,b for  
CY7C1472BV33, and DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for  
CY7C1474BV33) inputs. Doing so tri-states the output drivers.  
As a safety precaution, DQ and DQP (DQa,b,c,d/DQPa,b,c,d for  
CY7C1470BV33, DQa,b/DQPa,b for CY7C1472BV33, and  
DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for CY7C1474BV33) are  
automatically tri-stated during the data portion of a write cycle,  
regardless of the state of OE.  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Table 3. Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Burst Write Accesses  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
has an on-chip burst counter that enables the user to supply a  
single address and conduct up to four write operations without  
reasserting the address inputs. ADV/LD must be driven LOW to  
load the initial address, as described in “Single Write Accesses”  
on page 8. When ADV/LD is driven HIGH on the subsequent  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
Unit  
mA  
ns  
ZZ > VDD 0.2V  
120  
tZZS  
ZZ > VDD 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 001-15031 Rev. *C  
Page 9 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 4. Truth Table  
The truth table for CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33 follows.[1, 2, 3, 4, 5, 6, 7]  
Operation  
Address Used  
None  
CE  
H
ZZ  
L
ADV/LD WE  
BWx  
X
OE  
X
CEN CLK  
DQ  
Deselect Cycle  
L
X
X
L
L
L-H  
L-H  
Tri-State  
Tri-State  
Continue  
None  
X
L
H
X
X
Deselect Cycle  
Read Cycle  
(Begin Burst)  
External  
Next  
L
X
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
X
H
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
X
Data Out (Q)  
Data Out (Q)  
Tri-State  
Tri-State  
Data In (D)  
Data In (D)  
Tri-State  
Tri-State  
-
Read Cycle  
(Continue Burst)  
NOP/Dummy Read  
(Begin Burst)  
External  
Next  
H
H
X
X
X
X
X
X
Dummy Read  
(Continue Burst)  
X
L
H
L
Write Cycle  
(Begin Burst)  
External  
Next  
Write Cycle  
(Continue Burst)  
X
L
H
L
X
L
L
NOP/Write Abort  
(Begin Burst)  
None  
H
H
X
X
Write Abort  
(Continue Burst)  
Next  
X
X
X
H
X
X
X
X
X
Ignore Clock Edge  
(Stall)  
Current  
None  
Sleep Mode  
Tri-State  
Notes  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = 0 signifies at least one Byte Write Select is active, BWx = Valid  
signifies that the desired byte write selects are asserted, see “Partial Write Cycle Description” on page 11 for details.  
2. Write is defined by WE and BW  
. See “Partial Write Cycle Description” on page 11 for details.  
[a:d]  
3. When a write cycle is detected, all IOs are tri-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device powers up deselected with the IOs in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a read cycle DQ and DQP  
= tri-state when OE is  
[a:d]  
s
inactive or when the device is deselected, and DQ = data when OE is active.  
s
Document #: 001-15031 Rev. *C  
Page 10 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 5. Partial Write Cycle Description  
The partial write cycle description for CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33 follows.[1, 2, 3, 8]  
Function (CY7C1470BV33)  
WE  
H
L
BWd  
X
H
H
H
H
H
H
H
H
L
BWc  
X
H
H
H
H
L
BWb  
X
H
H
L
BWa  
X
H
L
Read  
Write – No bytes written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
L
L
H
L
L
L
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
L
H
H
L
H
L
L
L
Write Bytes c, b  
L
L
H
L
Write Bytes c, b, a  
L
L
L
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes d, b  
L
L
H
L
Write Bytes d, b, a  
L
L
L
Write Bytes d, c  
L
L
H
H
L
H
L
Write Bytes d, c, a  
L
L
L
Write Bytes d, c, b  
L
L
L
H
L
Write All Bytes  
L
L
L
L
Function (CY7C1472BV33)  
WE  
BWb  
BWa  
Read  
H
L
L
L
L
x
H
H
L
x
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
L
L
Function (CY7C1474BV33)  
WE  
BWx  
Read  
H
L
L
L
x
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
Write All Bytes  
H
L
All BW = L  
Note  
8. Table lists only a partial listing of the Byte Write combinations. Any combination of BW  
is valid. Appropriate Write is based on which Byte Write is active.  
[a:d]  
Document #: 001-15031 Rev. *C  
Page 11 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Test Mode Select (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
incorporates a serial boundary scan test access port (TAP). This  
port operates in accordance with IEEE Standard 1149.1-1990  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V IO logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information about  
loading the instruction register, see the TAP Controller State  
Diagram. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most  
significant bit (MSB) of any register. (See TAP Controller Block  
Diagram.)  
The CY7C1470BV33, CY7C1472BV33, and CY7C1474BV33  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull up resistor. TDO must be left  
unconnected. During power up, the device comes up in a reset  
state, which does not interfere with the operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See TAP Controller State Diagram.)  
Figure 3. TAP Controller Block Diagram  
Figure 2. TAP Controller State Diagram  
0
TEST-LOGIC  
1
RESET  
0
Bypass Register  
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
0
0
TDI  
TDO  
1
1
.
.
. 2 1  
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
TCK  
TAP CONTROLLER  
TM S  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
1
0
1
0
During power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
scans data into and out of the SRAM test circuitry. Only one  
register can be selected at a time through the instruction register.  
Data is serially loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Document #: 001-15031 Rev. *C  
Page 12 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Instruction Register  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller is moved  
into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the “TAP Controller Block Diagram”  
on page 12. During power up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is executed  
whenever the instruction register is loaded with all 0s. EXTEST  
is not implemented in this SRAM TAP controller, and therefore  
this device is not compliant to 1149.1. The TAP controller does  
recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to enable fault  
isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts data through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the IO ring.  
The IDCODE instruction is loaded into the instruction register  
during power up or whenever the TAP controller is in a test logic  
reset state.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO balls when the TAP controller is in a  
Shift-DR state. It also places all SRAM outputs into a High-Z  
state.  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in “Identification Register Definitions” on  
page 17.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output may undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 17. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in this section in detail.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the IO ring when these instruc-  
tions are executed.  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 001-15031 Rev. *C  
Page 13 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not imple-  
mented, putting the TAP to the Update-DR state while performing  
a SAMPLE/PRELOAD instruction has the same effect as the  
Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Figure 4. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 001-15031 Rev. *C  
Page 14 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
10  
ns  
ns  
tTDOX  
TCK Clock LOW to TDO Invalid  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 001-15031 Rev. *C  
Page 15 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................VSS to 3.3V  
Input rise and fall times....................................................1 ns  
Input timing reference levels........................................... 1.5V  
Output reference levels .................................................. 1.5V  
Test load termination supply voltage .............................. 1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels ........................................ 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.25V  
1.5V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135V to 3.6V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
Output HIGH Voltage IOH = –4.0 mA,VDDQ = 3.3V  
IOH = –1.0 mA,VDDQ = 2.5V  
V
V
V
V
V
V
V
V
V
V
V
V
µA  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA  
IOL = 1.0 mA  
0.4  
0.4  
Output LOW Voltage IOL = 100 µA  
0.2  
0.2  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
VIL  
–0.3  
–0.3  
–5  
0.7  
IX  
Input Load Current  
GND < VIN < VDDQ  
5
Note  
11. All voltages refer to V (GND).  
SS  
Document #: 001-15031 Rev. *C  
Page 16 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 6. Identification Register Definitions  
CY7C1470BV33  
Instruction Field  
CY7C1472BV33  
(4M x 18)  
CY7C1474BV33  
Description  
(1M x 72)  
(2M x 36)  
Revision Number (31:29)  
Device Depth (28:24)[12]  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
001000  
01011  
001000  
01011  
001000  
Architecture/Memory  
Type(23:18)  
Defines memory type and archi-  
tecture  
Bus Width/Density(17:12)  
100100  
010100  
110100  
Defines width and density  
Cypress JEDEC ID Code  
(11:1)  
00000110100  
00000110100  
00000110100  
Enables unique identification of  
SRAM vendor  
ID Register Presence  
Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Table 7. Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
Bypass  
ID  
3
1
3
1
3
1
32  
71  
-
32  
52  
-
32  
-
Boundary Scan Order – 165 FBGA  
Boundary Scan Order – 209 FBGA  
110  
Table 8. Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI  
and TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
RESERVED  
101  
Do Not Use: This instruction is reserved for future use.  
Note  
12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 001-15031 Rev. *C  
Page 17 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Table 9. Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
165-Ball ID  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
K10  
J10  
3
E1  
R4  
4
D2  
P6  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A9  
5
E2  
R6  
6
F1  
R8  
7
G1  
F2  
P3  
8
P4  
9
G2  
J1  
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P9  
K1  
P10  
R9  
L1  
J2  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
M1  
N1  
B9  
K2  
A10  
B10  
A8  
L2  
M2  
R1  
B8  
R2  
A7  
Table 10. Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
Bit #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
165-Ball ID  
R4  
Bit #  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
165-Ball ID  
L10  
Bit #  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
165-Ball ID  
B10  
A8  
D2  
E2  
F2  
G2  
J1  
2
P6  
K10  
J10  
3
R6  
B8  
4
R8  
H11  
G11  
F11  
A7  
5
P3  
B7  
6
K1  
L1  
P4  
B6  
7
P8  
E11  
A6  
8
M1  
N1  
R1  
R2  
R3  
P2  
P9  
D11  
C11  
A11  
B5  
9
P10  
R9  
A4  
10  
11  
12  
13  
B3  
R10  
R11  
M10  
A9  
A3  
B9  
A2  
A10  
B2  
Document #: 001-15031 Rev. *C  
Page 18 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
U10  
T11  
Bit #  
85  
209-Ball ID  
B11  
B10  
A11  
A10  
A7  
2
A2  
T2  
86  
3
B1  
U1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
89  
6
V2  
90  
A5  
7
W1  
W2  
T6  
91  
A9  
8
92  
U8  
9
93  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
D6  
F1  
V4  
95  
K6  
F2  
U4  
96  
B6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
L10  
97  
K3  
P6  
98  
A8  
W6  
V5  
J11  
99  
B4  
J10  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
B3  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
J2  
U6  
C4  
L1  
W7  
V7  
C8  
L2  
C9  
M1  
M2  
N1  
N2  
P1  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B8  
V9  
A4  
W11  
W10  
V11  
V10  
U11  
C6  
B7  
P2  
A3  
R2  
R1  
Document #: 001-15031 Rev. *C  
Page 19 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage.......................................... > 2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch Up Current................................................... > 200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........–0.5V to +4.6V  
Supply Voltage on VDDQ Relative to GND.......–0.5V to +VDD  
DC to Outputs in Tri-State....................0.5V to VDDQ + 0.5V  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
Commercial 0°C to +70°C  
Industrial –40°C to +85°C  
3.3V  
–5%/+10%  
2.5V – 5%  
to VDD  
Electrical Characteristics  
Over the Operating Range[13, 14]  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min  
Max  
3.6  
Unit  
V
3.135  
3.135  
2.375  
2.4  
VDDQ  
VOH  
VOL  
VIH  
VIL  
For 3.3V IO  
For 2.5V IO  
VDD  
2.625  
V
V
Output HIGH Voltage  
Output LOW Voltage  
For 3.3V IO, IOH = 4.0 mA  
For 2.5V IO, IOH= 1.0 mA  
For 3.3V IO, IOL= 8.0 mA  
For 2.5V IO, IOL= 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[13] For 3.3V IO  
2.0  
1.7  
VDD + 0.3V  
V
V
For 2.5V IO  
VDD + 0.3V  
Input LOW Voltage[13] For 3.3V IO  
For 2.5V IO  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
V
IX  
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
μA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
μA  
μA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
μA  
30  
5
μA  
IOZ  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
μA  
[15]  
IDD  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
500  
500  
450  
245  
245  
245  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN VIH or VIN VIL,  
5.0-ns cycle, 200 MHz  
f = fMAX = 1/tCYC  
6.0-ns cycle, 167 MHz  
ISB2  
Automatic CE  
Power Down  
Current—CMOS Inputs f = 0  
Max. VDD, Device Deselected, All speed grades  
VIN 0.3V or VIN > VDDQ 0.3V,  
Notes  
13. Overshoot: V (AC) < V +1.5V (pulse width less than t  
/2). Undershoot: V (AC)> –2V (pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
.
14. T  
: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD  
15. The operation current is calculated with 50% read cycle and 50% write cycle.  
Document #: 001-15031 Rev. *C  
Page 20 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Electrical Characteristics  
Over the Operating Range[13, 14] (continued)  
Parameter  
ISB3  
Description  
Automatic CE  
Power Down  
Test Conditions  
Min  
Max  
245  
245  
245  
135  
Unit  
mA  
mA  
mA  
mA  
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN 0.3V or VIN > VDDQ 0.3V,  
5.0-ns cycle, 200 MHz  
Current—CMOS Inputs f = fMAX = 1/tCYC  
6.0-ns cycle, 167 MHz  
ISB4  
Automatic CE  
Max. VDD, Device Deselected, All speed grades  
Power Down  
Current—TTL Inputs  
VIN VIH or VIN VIL, f = 0  
Capacitance  
Tested initially and after any design or process changes that may affect these parameters.  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
VDD = 3.3V  
VDDQ = 2.5V  
CIO  
Thermal Resistance  
Tested initially and after any design or process changes that may affect these parameters.  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameters  
Description  
Test Conditions  
Unit  
Package  
Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures for  
measuring thermal impedance,  
per EIA/JESD51.  
24.63  
16.3  
15.2  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
R = 50Ω  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 001-15031 Rev. *C  
Page 21 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Switching Characteristics  
Over the Operating Range. Timing reference is 1.5V when VDDQ = 3.3V and is 1.25V when VDDQ = 2.5V. Test conditions shown in  
(a) of “AC Test Loads and Waveforms” on page 21 unless otherwise noted.  
–250  
–200  
Max  
–167  
Parameter  
Description  
Unit  
Min  
Max  
Min  
Min  
Max  
[16]  
tPower  
VCC (typical) to the First Access Read or Write  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5.0  
6.0  
ns  
MHz  
ns  
FMAX  
tCH  
250  
200  
167  
2.0  
2.0  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEV  
tDOH  
Data Output Hold After CLK Rise  
Clock to High-Z[17, 18, 19]  
Clock to Low-Z[17, 18, 19]  
OE HIGH to Output High-Z[17, 18, 19]  
OE LOW to Output Low-Z[17, 18, 19]  
1.3  
1.3  
0
1.3  
1.3  
0
1.5  
1.5  
0
tCHZ  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tCLZ  
tEOHZ  
tEOLZ  
Setup Times  
tAS  
Address Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
CEN Setup Before CLK Rise  
WE, BWx Setup Before CLK Rise  
ADV/LD Setup Before CLK Rise  
Chip Select Setup  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx Hold After CLK Rise  
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
tALH  
tCEH  
Notes  
16. This part has an internal voltage regulator; t  
is the time power is supplied above V minimum initially, before a read or write operation can be initiated.  
DD  
power  
17. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of “AC Test Loads and Waveforms” on page 21. Transition is measured ±200 mV  
CHZ CLZ EOLZ  
EOHZ  
from steady-state voltage.  
18. At any voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
EOHZ  
EOLZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to  
achieve High-Z before Low-Z under the same system conditions.  
19. This parameter is sampled and not 100% tested.  
Document #: 001-15031 Rev. *C  
Page 22 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Switching Waveforms  
Figure 5 shows read-write timing waveform.[20, 21, 22]  
Figure 5. Read/Write Timing  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
CEN  
t
t
t
CENS  
CENH  
CL  
CH  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
20. For this waveform ZZ is tied LOW.  
21. When CE is LOW, CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH, CE is HIGH, CE is LOW or CE is HIGH.  
1
2
3
1
2
3
22. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1= Interleaved). Burst operations are optional.  
Document #: 001-15031 Rev. *C  
Page 23 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Switching Waveforms (continued)  
Figure 6 shows NOP, STALL and DESELECT Cycles waveform.[20, 21, 23]  
Figure 6. NOP, STALL and DESELECT Cycles  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Figure 7 shows ZZ Mode timing waveform.[24, 25]  
Figure 7. ZZ Mode Timing  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
23. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A Write is not performed during this cycle.  
24. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.  
25. IOs are in High-Z when exiting ZZ sleep mode.  
Document #: 001-15031 Rev. *C  
Page 24 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1470BV33-167AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
CY7C1472BV33-167AXC  
Commercial  
CY7C1470BV33-167BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1472BV33-167BZC  
CY7C1470BV33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-167BZXC  
CY7C1474BV33-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474BV33-167BGXC  
CY7C1470BV33-167AXI  
CY7C1472BV33-167AXI  
CY7C1470BV33-167BZI  
CY7C1472BV33-167BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1470BV33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-167BZXI  
CY7C1474BV33-167BGI  
CY7C1474BV33-167BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
200 CY7C1470BV33-200AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
CY7C1472BV33-200AXC  
Commercial  
CY7C1470BV33-200BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1472BV33-200BZC  
CY7C1470BV33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-200BZXC  
CY7C1474BV33-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474BV33-200BGXC  
CY7C1470BV33-200AXI  
CY7C1472BV33-200AXI  
CY7C1470BV33-200BZI  
CY7C1472BV33-200BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1470BV33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-200BZXI  
CY7C1474BV33-200BGI  
CY7C1474BV33-200BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
Document #: 001-15031 Rev. *C  
Page 25 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1470BV33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
CY7C1472BV33-250AXC  
Commercial  
CY7C1470BV33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1472BV33-250BZC  
CY7C1470BV33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-250BZXC  
CY7C1474BV33-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474BV33-250BGXC  
CY7C1470BV33-250AXI  
CY7C1472BV33-250AXI  
CY7C1470BV33-250BZI  
CY7C1472BV33-250BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1470BV33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1472BV33-250BZXI  
CY7C1474BV33-250BGI  
CY7C1474BV33-250BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-free  
Document #: 001-15031 Rev. *C  
Page 26 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Package Diagrams  
Figure 8. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
1.00 REF.  
0.20 MIN.  
51-85050-*B  
DETAIL  
A
Document #: 001-15031 Rev. *C  
Page 27 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Package Diagrams (continued)  
Figure 9. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 001-15031 Rev. *C  
Page 28 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Package Diagrams (continued)  
Figure 10. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167  
51-85167-**  
Document #: 001-15031 Rev. *C  
Page 29 of 30  
[+] Feedback  
CY7C1470BV33  
CY7C1472BV33, CY7C1474BV33  
Document History Page  
Document Title: CY7C1470BV33/CY7C1472BV33/CY7C1474BV33, 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM  
with NoBL™ Architecture  
Document Number: 001-15031  
Orig. of  
Change  
REV.  
ECN No. Issue Date  
Description of Change  
**  
1032642  
1897447  
2082487  
2159486  
See ECN VKN/KKVTMP New Data Sheet  
*A  
*B  
*C  
See ECN  
See ECN  
See ECN  
VKN/AESA  
VKN  
Added footnote 15 related to IDD  
Converted from preliminary to final  
VKN/PYRS  
Minor Change-Moved to the external web  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 001-15031 Rev. *C  
Revised February 29, 2008  
Page 30 of 30  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1470BV33-250BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470BV33-250BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470BV33_11

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1470BV33_13

72-Mbit (2 M x 36/4 M × 18/1 M x 72) Pipelined SRAM with NoBL™ Architecture
CYPRESS

CY7C1470V25

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470V25-167AXC

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470V25-167AXC

2MX36 ZBT SRAM, 3.4ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
ROCHESTER

CY7C1470V25-167AXI

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470V25-167BGC

ZBT SRAM, 2MX36, 3.4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1470V25-167BZC

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470V25-167BZI

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1470V25-167BZXC

72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS