CY7C145 [CYPRESS]

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY; 8K X 8/9双口静态RAM与SEM , INT , BUSY
CY7C145
型号: CY7C145
厂家: CYPRESS    CYPRESS
描述:

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
8K X 8/9双口静态RAM与SEM , INT , BUSY

文件: 总20页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C144 CY7C1458K  
with SEM, INT, BUSY  
x 8/9 Dual-Port Static RAM  
CY7C144  
CY7C145  
8K x 8/9 Dual-Port Static RAM  
with SEM, INT, BUSY  
are included on the CY7C144/5 to handle situations when  
multiple processors access the same piece of data. Two ports  
are provided permitting independent, asynchronous access  
for reads and writes to any location in memory. The  
CY7C144/5 can be utilized as a standalone 64/72-Kbit  
dual-port static RAM or multiple devices can be combined in  
order to function as a 16/18-bit or wider master/slave dual-port  
static RAM. An M/S pin is provided for implementing 16/18-bit  
or wider memory applications without the need for separate  
master and slave devices or additional discrete logic. Appli-  
cation areas include interprocessor/multiprocessor designs,  
Features  
• TrueDual-Portedmemorycellsthatallowsimultaneous  
reads of the same memory location  
• 8K x 8 organization (CY7C144)  
• 8K x 9 organization (CY7C145)  
• 0.65-micron CMOS for optimum speed/power  
• High-speed access: 15ns  
• Low operating power: ICC = 160 mA (max.)  
• Fully asynchronous operation  
• Automatic power-down  
communications  
status  
buffering,  
and  
dual-port  
video/graphics memory.  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable (OE). Two flags,  
BUSY and INT, are provided on each port. BUSY signals that  
the port is trying to access the same location currently being  
accessed by the other port. The interrupt flag (INT) permits  
communication between ports or systems by means of a mail  
box. The semaphores are used to pass a flag, or token, from  
one port to the other to indicate that a shared resource is in  
use. The semaphore logic is comprised of eight shared  
latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared  
resource is in use. An automatic power-down feature is  
controlled independently on each port by a chip enable (CE)  
pin or SEM pin.  
• TTL compatible  
• Master/Slave select pin allows bus width expansion to  
16/18 bits or more  
• Busy arbitration scheme provided  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Available in 68-pin PLCC, 64-pin and 80-pin TQFP  
• Pb-Free packages available  
Functional Description  
The CY7C144 and CY7C145 are high-speed CMOS 8K x 8  
and 8K x 9 dual-port static RAMs. Various arbitration schemes  
Logic Block Diagram  
R/W  
L
R/W  
R
CE  
OE  
CE  
OE  
L
L
R
R
(7C145) I/O  
I/O (7C145)  
8R  
8L  
I/O  
7L  
I/O  
7R  
I/O  
CONTROL  
I/O  
CONTROL  
I/O  
0L  
I/O  
0R  
[1, 2]  
[1, 2]  
BUSY  
BUSY  
L
R
A
12L  
0L  
A
A
12R  
0R  
MEMORY  
ARRAY  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
A
INTERRUPT  
SEMAPHORE  
ARBITRATION  
CE  
L
CE  
OE  
R
R
OE  
L
R/W  
R/W  
L
R
SEM  
SEM  
R
L
[2]  
INT  
INT [2]  
R
L
M/S  
Notes:  
1. BUSY is an output in master mode and an input in slave mode.  
2. Interrupt: push-pull output and requires no pull-up resistor.  
Cypress Semiconductor Corporation  
Document #: 38-06034 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 6, 2005  
CY7C144  
CY7C145  
Pin Configurations  
68-Pin PLCC  
Top View  
9
8
7
6
5 4 3 2 1 68 6766 65 64 63 62 61  
I/O  
I/O  
I/O  
2L  
3L  
4L  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
A
4L  
A
3L  
I/O  
5L  
A
2L  
GND  
I/O  
A
1L  
6L  
A
0L  
I/O  
7L  
INT  
L
V
CC  
BUSY  
L
CY7C144/5  
GND  
GND  
M/S  
I/O  
I/O  
0R  
1R  
2R  
BUSY  
R
I/O  
V
INT  
21  
22  
23  
24  
25  
26  
R
A
0R  
CC  
I/O  
3R  
4R  
5R  
A
1R  
47  
46  
45  
44  
I/O  
I/O  
I/O  
A
2R  
A
3R  
6R  
A
4R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
64-Pin TQFP  
Top View  
I/O  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
3L  
3L  
4L  
I/O  
I/O  
2L  
46  
45  
3
4
A
A
1L  
5L  
GND  
44  
43  
42  
41  
5
6
7
8
9
0L  
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
L
GND  
M/S  
V
CC  
CY7C144  
GND  
40  
39  
BUSY  
I/O  
0R  
10  
R
I/O  
1R  
38  
37  
36  
INT  
R
11  
12  
13  
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
Notes:  
3. I/O on the CY7C145.  
8R  
4. I/O on the CY7C145.  
8L  
Document #: 38-06034 Rev. *C  
Page 2 of 20  
CY7C144  
CY7C145  
Pin Configurations (continued)  
80-Pin TQFP  
Top View  
NC  
1
2
3
4
NC  
60  
59  
58  
57  
/O  
A
5L  
2L  
/O  
/O  
/O  
A
4L  
3L  
4L  
5L  
A
3L  
A
2L  
5
6
7
8
56  
55  
54  
53  
A
1L  
GND  
/O  
A
0L  
6L  
/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
CY7C145  
NC  
GND  
/O  
11  
12  
13  
14  
50  
49  
48  
47  
BUSY  
0R  
R
/O  
1R  
INT  
R
/O  
2R  
A
0R  
V
A
1R  
CC  
15  
16  
46  
45  
O
A
2R  
3R  
O
A
3R  
4R  
17  
44  
O
A
5R  
18  
19  
20  
4R  
43  
42  
41  
O
6R  
NC  
NC  
NC  
Pin Definitions  
Left Port Right Port  
Description  
I/O0L7L(8L) I/O0R7R(8R) Data bus Input/Output  
A0L12L  
CEL  
A0R12R  
CER  
Address Lines  
Chip Enable  
OEL  
OER  
Output Enable  
Read/Write Enable  
R/WL  
SEML  
R/WR  
SEMR  
Semaphore Enable. When asserted LOW, allows access to eight semaphores. The three least signif-  
icant bits of the address lines will determine which semaphore to write or read. The I/O0 pin is used  
when writing to a semaphore. Semaphores are requested by writing a 0 into the respective location.  
INTL  
INTR  
Interrupt Flag. INTL is set when right port writes location 1FFE and is cleared when left port reads  
location 1FFE. INTR is set when left port writes location 1FFF and is cleared when right port reads  
location 1FFF.  
BUSYL  
M/S  
BUSYR  
Busy Flag  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
Selection Guide  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Unit  
ns  
Maximum Access Time  
15  
220  
60  
25  
180  
40  
35  
160  
30  
55  
160  
30  
Maximum Operating Current  
Maximum Standby Current for ISB1  
mA  
mA  
Document #: 38-06034 Rev. *C  
Page 3 of 20  
CY7C144  
CY7C145  
Maximum Ratings[5]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ..................................... −65°C to +150°C  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage to Ground Potential .................−0.5V to +7.0V  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
VCC  
DC Voltage Applied to Outputs  
in High Z State .....................................................−0.5V to +7.0V  
DC Input Voltage[6]..............................................−0.5V to +7.0V  
5V ± 10%  
5V ± 10%  
Electrical Characteristics Over the Operating Range  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
Parameter  
VOH  
VOL  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
Test Conditions  
Min.  
Max.  
Min. Max.  
Unit  
V
VCC = Min., IOH = 4.0 mA  
2.4  
2.4  
VCC = Min., IOL = 4.0 mA  
0.4  
0.4  
V
VIH  
2.2  
2.2  
V
VIL  
0.8  
+10  
+10  
220  
0.8  
+10  
+10  
180  
190  
40  
V
IIX  
GND < VI < VCC  
10  
10  
10  
10  
µA  
µA  
mA  
IOZ  
Outputs Disabled, GND < VO < VCC  
ICC  
VCC = Max., IOUT = 0 mA  
Outputs Disabled  
Com’l  
Ind  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER > VIH,  
Com’l  
Ind  
60  
130  
15  
mA  
mA  
mA  
[7]  
f = fMAX  
50  
Standby Current  
(One Port TTL Level)  
CEL or CER > VIH,  
Com’l  
Ind  
110  
120  
15  
[7]  
f = fMAX  
Standby Current  
(Both Ports CMOS Levels) CE and CER > VCC – 0.2V,  
Both Ports  
Com’l  
Ind  
30  
V
IN > VCC – 0.2V  
or VIN < 0.2V, f = 0[7]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port  
CEL or CER > VCC – 0.2V,  
Com’l  
Ind  
125  
100  
115  
mA  
VIN > VCC – 0.2V or  
VIN < 0.2V, Active  
Port Outputs, f = fMAX  
[7]  
Notes:  
5. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.  
6. Pulse width < 20 ns.  
7. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level  
MAX  
RC RC  
standby I  
.
SB3  
Document #: 38-06034 Rev. *C  
Page 4 of 20  
CY7C144  
CY7C145  
Electrical Characteristics Over the Operating Range (continued)  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
VOH  
VOL  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
Test Conditions  
VCC = Min., IOH = 4.0 mA  
VCC = Min., IOL = 4.0 mA  
Min.  
Max.  
Min.  
Max.  
Unit  
V
2.4  
2.4  
0.4  
0.4  
V
VIH  
2.2  
2.2  
V
VIL  
0.8  
+10  
+10  
160  
180  
30  
0.8  
+10  
+10  
160  
180  
30  
V
IIX  
GND < VI < VCC  
10  
10  
10  
10  
µA  
µA  
mA  
IOZ  
Outputs Disabled, GND < VO < VCC  
ICC  
VCC = Max., IOUT = 0 mA  
Outputs Disabled  
Com’l  
Ind  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Levels)  
CEL and CER > VIH,  
Com’l  
Ind  
mA  
mA  
mA  
[7]  
f = fMAX  
40  
40  
Standby Current  
(One Port TTL Level)  
CEL or CER > VIH,  
Com’l  
Ind  
100  
110  
15  
100  
110  
15  
[7]  
f = fMAX  
Standby Current  
(Both Ports CMOS Levels) CE and CER > VCC – 0.2V,  
Both Ports  
Com’l  
Ind  
30  
30  
V
IN > VCC – 0.2V  
or VIN < 0.2V, f = 0[7]  
ISB4  
Standby Current  
(One Port CMOS Level)  
One Port  
CEL or CER > VCC – 0.2V,  
VIN > VCC – 0.2V or  
Com’l  
Ind  
90  
90  
mA  
100  
100  
V
IN < 0.2V, Active  
[7]  
Port Outputs, f = fMAX  
Capacitance[8]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
10  
15  
pF  
pF  
V
CC = 5.0V  
COUT  
Note:  
8. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06034 Rev. *C  
Page 5 of 20  
CY7C144  
CY7C145  
AC Test Loads and Waveforms  
5V  
5V  
R1 = 893  
R1 = 893Ω  
R
TH  
= 250Ω  
OUTPUT  
OUTPUT  
C = 30pF  
OUTPUT  
C = 5 pF  
C = 30 pF  
R = 347Ω  
R2 = 347Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load1)  
(b) Thévenin Equivalent (Load 1)  
(c) Three-State Delay (Load 3)  
ALL INPUT PULSES  
OUTPUT  
3.0V  
GND  
90%  
90%  
10%  
10%  
C = 30 pF  
3 ns  
3 ns  
Load (Load 2)  
Switching Characteristics Over the Operating Range[9]  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Min.  
15  
3
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
tRC  
Read Cycle Time  
25  
3
35  
3
55  
3
ns  
ns  
ns  
tAA  
Address to Data Valid  
15  
25  
35  
55  
tOHA  
Output Hold From Address  
Change  
tACE  
tDOE  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
10  
25  
15  
35  
20  
55  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[10, 11,12]  
tLZOE  
3
3
0
3
3
0
3
3
0
3
3
0
[10, 11,12]  
tHZOE  
OE HIGH to High Z  
CE LOW to Low Z  
10  
10  
15  
15  
15  
25  
20  
20  
35  
25  
25  
55  
[10, 11,12]  
tLZCE  
[10, 11,12]  
tHZCE  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
[12]  
tPU  
[12]  
tPD  
WRITE CYCLE  
tWC  
tSCE  
tAW  
tHA  
Write Cycle Time  
15  
12  
12  
2
25  
20  
20  
2
35  
30  
30  
2
55  
45  
45  
2
ns  
ns  
ns  
ns  
ns  
ns  
CE LOW to Write End  
Address Set-Up to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
tSA  
0
0
0
0
tPWE  
12  
20  
25  
40  
Notes:  
9. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
I
/I and 30-pF load capacitance.  
OI OH  
10. At any given temperature and voltage condition for any given device, t  
is less than t  
and t  
is less than t  
.
LZOE  
HZCE  
LZCE  
HZOE  
11. Test conditions used are Load 3.  
12. This parameter is guaranteed but not tested.  
Document #: 38-06034 Rev. *C  
Page 6 of 20  
CY7C144  
CY7C145  
Switching Characteristics Over the Operating Range[9] (continued)  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
tSD  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
10  
0
15  
0
15  
0
25  
0
tHD  
ns  
[11,12]  
[11,12]  
tHZWE  
10  
15  
20  
25  
ns  
tLZWE  
R/W HIGH to Low Z  
3
3
3
3
ns  
[13]  
tWDD  
Write Pulse to Data Delay  
30  
25  
50  
30  
60  
35  
70  
40  
ns  
[13]  
tDDD  
Write Data Valid to Read Data  
Valid  
ns  
BUSY TIMING[14]  
tBLA BUSY LOW from Address  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
Match  
tBHA  
BUSY HIGH from Address  
Mismatch  
tBLC  
tBHC  
tPS  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
5
0
5
0
5
0
5
0
tWB  
tWH  
tBDD  
R/W LOW after BUSY LOW  
R/W HIGH after BUSY HIGH  
BUSY HIGH to Data Valid  
13  
20  
30  
30  
15  
25  
35  
55  
INTERRUPT TIMING[14]  
tINS INT Set Time  
tINR INT Reset Time  
SEMAPHORE TIMING  
15  
15  
25  
25  
25  
25  
35  
35  
ns  
ns  
tSOP  
SEM Flag Update Pulse (OE  
or SEM)  
10  
10  
15  
20  
ns  
tSWRD  
tSPS  
SEM Flag Write to Read Time  
5
5
5
5
5
5
5
5
ns  
ns  
SEM Flag Contention  
Window  
Notes:  
13. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.  
14. Test conditions used are Load 2.  
Document #: 38-06034 Rev. *C  
Page 7 of 20  
CY7C144  
CY7C145  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[15, 16]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[15, 17, 18]  
SEM or CE  
t
HZCE  
t
ACE  
OE  
t
HZOE  
t
DOE  
t
LZOE  
t
LZCE  
DATA VALID  
DATA OUT  
t
PU  
t
PD  
I
CC  
I
SB  
Read Timing with Port-to-Port Delay (M/S=L)[19, 20]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
SD  
HD  
DATAIN  
VALID  
R
ADDRESS  
L
MATCH  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Notes:  
15. R/W is HIGH for read cycle.  
16. Device is continuously selected CE = LOW and OE = LOW. This waveform cannot be used for semaphore reads.  
17.Address valid prior to or coincident with CE transition LOW.  
18. CE = L, SEM = H when accessing RAM. CE = H, SEM = L when accessing semaphores.  
L
19. BUSY = HIGH for the writing port.  
20. CE = CE = LOW.  
L
R
Document #: 38-06034 Rev. *C  
Page 8 of 20  
CY7C144  
CY7C145  
Switching Waveforms (continued)  
Write Cycle No. 1: OE Three-State Data I/Os (Either Port)[21, 22, 23]  
t
WC  
ADDRESS  
t
SCE  
SEM OR CE  
t
t
HA  
AW  
t
PWE  
R/W  
t
SA  
t
t
HD  
SD  
DATA IN  
DATA VALID  
OE  
t
t
HZOE  
LZOE  
HIGH IMPEDANCE  
DATA OUT  
Write Cycle No. 2: R/W Three-State Data I/Os (Either Port)[21, 23, 24]  
t
WC  
ADDRESS  
t
t
HA  
SCE  
SEM OR CE  
R/W  
t
AW  
t
SA  
t
PWE  
t
t
HD  
SD  
DATAVALID  
DATA IN  
t
t
LZWE  
HZWE  
HIGH IMPEDANCE  
DATA OUT  
Notes:  
21.The internal write time of the memory is defined by the overlap of CE or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal  
can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.  
22.If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data to  
PWE  
HZWE SD  
be placed on the bus for the required t . If OE is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply and the write  
SD  
pulse can be as short as the specified t  
.
PWE  
23. R/W must be HIGH during all address transitions.  
24.Data I/O pins enter high impedance when OE is held LOW during write.  
Document #: 38-06034 Rev. *C  
Page 9 of 20  
CY7C144  
CY7C145  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[25]  
t
AA  
t
OHA  
A A  
0
VALID ADDRESS  
VALID ADDRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Semaphore Contention[26, 27, 28]  
A A  
0L 2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A A  
0R 2R  
MATCH  
R/W  
R
SEM  
R
Notes:  
25. CE = HIGH for the duration of the above timing (both write and read cycle).  
26. I/O = I/O = LOW (request semaphore); CE = CE = HIGH  
0R  
0L  
R
L
27. Semaphores are reset (available to both ports) at cycle start.  
28.If t is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.  
SPS  
Document #: 38-06034 Rev. *C  
Page 10 of 20  
CY7C144  
CY7C145  
Switching Waveforms (continued)  
Read with BUSY (M/S=HIGH)[20]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATAIN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Document #: 38-06034 Rev. *C  
Page 11 of 20  
CY7C144  
CY7C145  
Switching Waveforms (continued)  
Busy Timing Diagram No. 1 (CE Arbitration)[29]  
CEL Valid First:  
ADDRESSL,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER Valid First:  
ADDRESSL,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
t
t
BHC  
BLC  
BUSY  
L
Busy Timing Diagram No. 2 (Address Arbitration)[29]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
BUSY  
R
R
t
t
BHA  
BLA  
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
29.If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted  
PS  
Document #: 38-06034 Rev. *C  
Page 12 of 20  
CY7C144  
CY7C145  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESS  
CE  
WRITE 1FFF  
L
L
[30]  
t
HA  
R/W  
INT  
L
R
[31]  
t
INS  
Right Side Clears INTR:  
t
RC  
ADDRESS  
READ 1FFF  
R
CE  
R
[31]  
t
INR  
R/W  
OE  
R
R
INT  
R
Right Side Sets INTL:  
t
WC  
ADDRESS  
WRITE 1FFE  
R
[30]  
t
HA  
CE  
R
R
R/W  
INT  
L
[31]  
t
INS  
Left Side Clears INTL:  
t
RC  
ADDRESS  
READ 1FFE  
R
CE  
L
[31]  
t
INR  
R/W  
L
OE  
L
INT  
L
Notes:  
30. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
31. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR L L  
Document #: 38-06034 Rev. *C  
Page 13 of 20  
CY7C144  
CY7C145  
Master/Slave  
Architecture  
An M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the  
slave. This will allow the device to interface to a master device  
with no external components.Writing of slave devices must be  
delayed until after the BUSY input has settled. Otherwise, the  
slave chip may begin a write cycle during a contention  
situation.When presented a HIGH input, the M/S pin allows the  
device to be used as a master and therefore the BUSY line is  
an output. BUSY can then be used to send the arbitration  
outcome to a slave.  
The CY7C144/5 consists of a an array of 8K words of 8/9 bits  
each of dual-port RAM cells, I/O and address lines, and control  
signals (CE, OE, R/W). These control pins permit independent  
access for reads or writes to any location in memory. To handle  
simultaneous writes/reads to the same location, a BUSY pin is  
provided on each port. Two interrupt (INT) pins can be utilized  
for port-to-port communication. Two semaphore (SEM) control  
pins are used for allocating shared resources. With the M/S  
pin, the CY7C144/5 can function as a Master (BUSY pins are  
outputs) or as a slave (BUSY pins are inputs). The CY7C144/5  
has an automatic power-down feature controlled by CE. Each  
port is provided with its own output enable control (OE), which  
allows data to be read from the device.  
Semaphore Operation  
The CY7C144/5 provides eight semaphore latches which are  
separate from the dual-port memory locations. Semaphores  
are used to reserve resources that are shared between the two  
ports.The state of the semaphore indicates that a resource is  
in use. For example, if the left port wants to request a given  
resource, it sets a latch by writing a 0 to a semaphore location.  
The left port then verifies its success in setting the latch by  
reading it. After writing to the semaphore, SEM or OE must be  
deasserted for tSOP before attempting to read the semaphore.  
The semaphore value will be available tSWRD + tDOE after the  
rising edge of the semaphore write. If the left port was  
successful (reads a 0), it assumes control over the shared  
resource, otherwise (reads a 1) it assumes the right port has  
control and continues to poll the semaphore.When the right  
side has relinquished control of the semaphore (by writing a  
1), the left side will succeed in gaining control of the  
semaphore. If the left side no longer requires the semaphore,  
a 1 is written to cancel its request.  
Functional Description  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the OE pin (see Write Cycle No.1  
waveform) or the R/W pin (see Write Cycle No. 2 waveform).  
Data can be written to the device tHZOE after the OE is  
deasserted or tHZWE after the falling edge of R/W. Required  
inputs for non-contention operations are summarized in  
Table 1.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must be met before the data is read on the output;  
otherwise the data read is not deterministic. Data will be valid  
on the port tDDD after the data is presented on the other port.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip enable for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same  
manner as a normal memory access.When writing or reading  
a semaphore, the other address pins have no effect.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after  
OE are asserted. If the user of the CY7C144/5 wishes to  
access a semaphore flag, then the SEM pin must be asserted  
instead of the CE pin.  
When writing to the semaphore, only I/O0 is used. If a 0 is  
written to the left port of an unused semaphore, a 1 will appear  
at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing 0  
(the left port in this case). If the left port now relinquishes  
control by writing a 1 to the semaphore, the semaphore will be  
set to 1 for both sides. However, if the right port had requested  
the semaphore (written a 0) while the left port had control, the  
right port would immediately own the semaphore as soon as  
the left port released it. Table 3 shows sample semaphore  
operations.  
Interrupts  
The interrupt flag (INT) permits communications between  
ports.When the left port writes to location 1FFF, the right port’s  
interrupt flag (INTR) is set. This flag is cleared when the right  
port reads that same location. Setting the left port’s interrupt  
flag (INTL) is accomplished when the right port writes to  
location 1FFE. This flag is cleared when the left port reads  
location 1FFE. The message at 1FFF or 1FFE is user-defined.  
See Table 2 for input requirements for INT. INTR and INTL are  
push-pull outputs and do not require pull-up resistors to  
operate.  
When reading a semaphore, all eight/nine data lines output the  
semaphore value. The read value is latched in an output  
register to prevent the semaphore from changing state during  
a write from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore will  
definitely be obtained by one side or the other, but there is no  
guarantee which side will control the semaphore.  
Busy  
The CY7C144/5 provides on-chip arbitration to alleviate simul-  
taneous memory location access (contention). If both ports’  
CEs are asserted and an address match occurs within tPS of  
each other the Busy logic will determine which port has  
access. If tPS is violated, one port will definitely gain  
permission to the location, but it is not guaranteed which one.  
BUSY will be asserted tBLA after an address match or tBLC  
after CE is taken LOW. BUSYL and BUSYR in master mode  
are push-pull outputs and do not require pull-up resistors to  
operate.  
Initialization of the semaphore is not automatic and must be  
reset during initialization program at power-up. All  
Semaphores on both sides should have a one written into  
them at initialization from both sides to assure that they will be  
free when needed.  
Document #: 38-06034 Rev. *C  
Page 14 of 20  
CY7C144  
CY7C145  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
I/O07/8  
CE  
H
R/W  
X
OE  
X
SEM  
Operation  
H
L
High Z  
Power-Down  
H
H
L
Data Out  
High Z  
Read Data in Semaphore  
I/O Lines Disabled  
X
X
H
X
L
H
X
Data In  
Write to Semaphore  
L
L
L
H
L
L
X
X
H
H
L
Data Out  
Data In  
Read  
Write  
X
Illegal Condition  
Table 2. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)  
Left Port  
Right Port  
OE  
Function  
R/W  
X
CE  
X
OE  
X
A012  
X
INT  
L
R/W  
L
CE  
L
A012  
1FFE  
X
INT  
X
Set Left INT  
X
L
X
L
Reset Left INT  
Set Right INT  
Reset Right INT  
X
L
L
1FFE  
1FFF  
X
H
X
L
X
L
L
X
X
X
X
X
L
X
X
X
X
X
L
1FFF  
H
Table 3. Semaphore Operation Example  
Function  
No action  
I/O0-7/8 Left  
I/O0-7/8 Right  
Status  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left port writes semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port obtains semaphore  
Right side is denied access  
Right port is granted access to semaphore  
No change. Left port is denied access  
Left port obtains semaphore  
No port accessing semaphore address  
Right port obtains semaphore  
No port accessing semaphore  
Left port obtains semaphore  
No port accessing semaphore  
Document #: 38-06034 Rev. *C  
Page 15 of 20  
CY7C144  
CY7C145  
Typical DC and AC Characteristics  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
200  
160  
120  
80  
1.4  
1.2  
1.0  
0.8  
1.2  
ICC  
1.0  
ICC  
ISB3  
0.8  
0.6  
0.4  
ISB3  
VCC = 5.0V  
TA = 25°C  
VCC = 5.0V  
VIN = 5.0V  
0.6  
0.4  
40  
0
0.2  
0.6  
0.2  
0.0  
5.0  
55  
25  
125  
0
1.0  
2.0  
3.0  
4.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
NORMALIZED ACCESS TIME  
vs. AMBIENT TEMPERATURE  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED ACCESS TIME  
vs. SUPPLY VOLTAGE  
140  
120  
1.6  
1.4  
1.4  
1.3  
1.2  
1.1  
100  
80  
1.2  
1.0  
60  
TA = 25°C  
VCC = 5.0V  
1.0  
40  
0.8  
V
CC = 5.0V  
20  
0
0.9  
0.8  
TA = 25°C  
0.6  
55  
0.0  
1.0  
2.0  
3.0  
4.0  
25  
125  
5.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TYPICAL POWER-ON CURRENT  
vs. SUPPLY VOLTAGE  
TYPICAL ACCESS TIME CHANGE  
vs. OUTPUT LOADING  
NORMALIZED ICC vs. CYCLE TIME  
1.25  
30.0  
25.0  
1.00  
V
CC = 5.0V  
TA = 25°C  
IN = 5.0V  
V
0.75  
0.50  
1.0  
20.0  
15.0  
10.0  
0.75  
0.25  
0.0  
VCC = 4.5V  
TA = 25°C  
5.0  
0
0.50  
40  
CYCLE FREQUENCY (MHz)  
10  
28  
66  
0
1.0  
2.0  
3.0  
4.0 5.0  
0
200 400 600 800 1000  
CAPACITANCE (pF)  
SUPPLY VOLTAGE (V)  
Document #: 38-06034 Rev. *C  
Page 16 of 20  
CY7C144  
CY7C145  
Ordering Information  
8K x8 Dual-Port SRAM  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
15  
CY7C144-15AC  
CY7C144-15AXC  
CY7C144-15JC  
CY7C144-15JXC  
CY7C144-15AI  
CY7C144-15AXI  
CY7C144-25AC  
CY7C144-25AXC  
CY7C144-25JC  
CY7C144-25AI  
CY7C144-25JI  
CY7C144-35AC  
CY7C144-35JC  
CY7C144-35AI  
CY7C144-35JI  
CY7C144-55AC  
CY7C144-55AXC  
CY7C144-55JC  
CY7C144-55JXC  
CY7C144-55AI  
CY7C144-55JI  
A65  
A65  
J81  
J81  
A65  
A65  
A65  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
A65  
J81  
J81  
A65  
J81  
64-Lead Thin Quad Flat Pack  
Commercial  
64-Lead Pb-Free Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
68-Lead Pb-Free Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Industrial  
64-Lead Pb-Free Thin Quad Flat Pack  
64-Lead Thin Quad Flat Pack  
25  
Commercial  
64-Lead Pb-Free Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
35  
55  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Commercial  
64-Lead Pb-Free Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
68-Lead Pb-Free Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
8K x9 Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
80-Lead Thin Quad Flat Pack  
15  
CY7C145-15AC  
CY7C145-15AXC  
CY7C145-15JC  
CY7C145-25AC  
CY7C145-25JC  
CY7C145-25AI  
CY7C145-25JI  
CY7C145-35AC  
CY7C145-35JC  
CY7C145-35JXC  
CY7C145-35AI  
CY7C145-35JI  
CY7C145-55AC  
CY7C145-55JC  
CY7C145-55AI  
CY7C145-55JI  
A80  
A80  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
Commercial  
80-Lead Pb-Free Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
25  
35  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
Commercial  
68-Lead Plastic Leaded Chip Carrier  
68-Lead Pb-Free Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
55  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
Document #: 38-06034 Rev. *C  
Page 17 of 20  
CY7C144  
CY7C145  
Package Diagrams  
64-Lead Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
64-Lead Pb-Free Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
51-85046-*B  
Document #: 38-06034 Rev. *C  
Page 18 of 20  
CY7C144  
CY7C145  
Package Diagrams (continued)  
80-Pin Thin Plastic Quad Flat Pack A80  
80-Pin Pb-Free Thin Plastic Quad Flat Pack A80  
51-85065-*B  
68-Lead Plastic Leaded Chip Carrier J81  
68-Lead Pb-Free Plastic Leaded Chip Carrier J81  
51-85005-*A  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-06034 Rev. *C  
Page 19 of 20  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C144  
CY7C145  
Document History Page  
Document Title: CY7C145, CY7C144 8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy  
Document Number: 38-06034  
Issue  
Orig. of  
Change  
REV.  
**  
ECN NO. Date  
Description of Change  
110175  
122285  
236752  
09/29/01  
SZV  
RBI  
Change from Spec number: 38-00163 to 38-06034  
*A  
*B  
12/27/02  
See ECN  
Power up requirements added to Maximum Ratings Information  
YDT  
Removed cross information from features section, added CY7C144-15AI to  
ordering information section  
*C  
393320  
See ECN  
YIM  
Added Pb-Free Logo  
Added Pb-Free parts to ordering information:  
CY7C144-15AXC, CY7C144-15JXC, CY7C144-15AXI, CY7C144-25AXC,  
CY7C144-55AXC, CY7C144-55JXC, CY7C145-15AXC, CY7C145-35JXC  
Document #: 38-06034 Rev. *C  
Page 20 of 20  

相关型号:

CY7C145-15AC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-15ACT

暂无描述
CYPRESS

CY7C145-15AXC

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C145-15AXCT

Multi-Port SRAM, 8KX9, 15ns, CMOS, PQFP80
CYPRESS

CY7C145-15JC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-15JCT

Dual-Port SRAM, 8KX9, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C145-25AC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-25AC

8KX9 DUAL-PORT SRAM, 25ns, PQFP80, PLASTIC, LCC-80
ROCHESTER

CY7C145-25AI

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-25JC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-25JCR

Dual-Port SRAM, 8KX9, 25ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C145-25JCT

Dual-Port SRAM, 8KX9, 25ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS