CY7C145-35JI [CYPRESS]

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy; 8K X 8/9双口静态RAM与SEM , INT , BUSY
CY7C145-35JI
型号: CY7C145-35JI
厂家: CYPRESS    CYPRESS
描述:

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
8K X 8/9双口静态RAM与SEM , INT , BUSY

存储 内存集成电路 静态存储器
文件: 总19页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C144  
fax id: 5205  
CY7C145  
CY7C144  
8K x 8/9 Dual-Port Static RAM  
with Sem, Int, Busy  
are included on the CY7C144/5 to handle situations when mul-  
tiple processors access the same piece of data. Two ports are  
provided permitting independent, asynchronous access for  
reads and writes to any location in memory. The CY7C144/5  
can be utilized as a standalone 64/72-Kbit dual-port static  
RAM or multiple devices can be combined in order to function  
as a 16/18-bit or wider master/slave dual-port static RAM. An  
M/S pin is provided for implementing 16/18-bit or wider mem-  
ory applications without the need for separate master and  
slave devices or additional discrete logic. Application areas  
include interprocessor/multiprocessor designs, communica-  
tions status buffering, and dual-port video/graphics memory.  
Features  
• True Dual-Ported memory cells which allow  
simultaneous reads of the same memory location  
• 8K x 8 organization (CY7C144)  
• 8K x 9 organization (CY7C145)  
• 0.65-micron CMOS for optimum speed/power  
• High-speed access: 15ns  
• Low operating power: I = 160 mA (max.)  
CC  
• Fully asynchronous operation  
• Automatic power-down  
• TTL compatible  
• Master/Slave select pin allows bus width expansion to  
16/18 bits or more  
• Busy arbitration scheme provided  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Available in 68-pin PLCC, 64-pin and 80-pin TQFP  
• Pin compatible and functionally equivalent to  
IDT7005/IDT7015  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable (OE). Two flags,  
BUSYand INT, are provided on each port. BUSY signals that the port  
is trying to access the same location currently being accessed by the  
other port. The interrupt flag (INT) permits communication between  
ports or systems by means of a mail box. The semaphores are used  
to pass a flag, or token, from one port to the other to indicate that a  
shared resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared resource is  
in use. An automatic power-down feature is controlled independently  
on each port by a chip enable (CE) pin or SEM pin.  
Functional Description  
The CY7C144 and CY7C145 are high-speed CMOS 8K x 8  
and 8K x 9 dual-port static RAMs. Various arbitration schemes  
Logic Block Diagram  
R/W  
L
R/W  
R
CE  
OE  
CE  
OE  
L
L
R
R
(7C145) I/O  
I/O (7C145)  
8R  
8L  
I/O  
7L  
I/O  
7R  
I/O  
CONTROL  
I/O  
CONTROL  
I/O  
0L  
I/O  
0R  
[1, 2]  
[1, 2]  
BUSY  
BUSY  
L
R
A
12L  
0L  
A
A
12R  
0R  
MEMORY  
ARRAY  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
A
INTERRUPT  
SEMAPHORE  
ARBITRATION  
CE  
L
CE  
OE  
R
R
OE  
L
R/W  
R/W  
L
R
SEM  
L
SEM  
L
R
[2]  
[2]  
INT  
INT  
R
C144-1  
M/S  
Notes:  
1. BUSY is an output in master mode and an input in slave mode.  
2. Interrupt: push-pull output and requires no pull-up resistor.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
November 1996  
CY7C145  
CY7C144  
Pin Configurations  
68-Pin PLCC  
Top View  
9
8
7
6
5 4 3 2 1 68 6766 65 64 63 62 61  
I/O  
I/O  
I/O  
I/O  
2L  
3L  
4L  
5L  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
A
A
A
2L  
GND  
1L  
I/O  
6L  
I/O  
7L  
0L  
INT  
L
V
CC  
BUSY  
L
CY7C144/5  
GND  
GND  
M/S  
I/O  
I/O  
I/O  
V
0R  
1R  
2R  
BUSY  
R
INT  
21  
22  
23  
24  
25  
26  
R
A
0R  
CC  
I/O  
3R  
4R  
5R  
6R  
A
A
47  
46  
45  
44  
1R  
I/O  
I/O  
I/O  
2R  
A
3R  
A
4R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
C144-2  
64-Pin TQFP  
Top View  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
I/O  
3L  
I/O  
4L  
I/O  
5L  
3L  
2L  
46  
45  
3
4
A
A
1L  
GND  
44  
43  
42  
41  
5
6
7
8
9
0L  
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
L
GND  
M/S  
V
CC  
CY7C144  
GND  
40  
39  
BUSY  
I/O  
0R  
10  
R
I/O  
1R  
38  
37  
36  
INT  
R
11  
12  
13  
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
C144-3  
Notes:  
3. I/O8R on the CY7C145.  
4. I/O8L on the CY7C145.  
2
CY7C145  
CY7C144  
Pin Configurations (continued)  
80-Pin TQFP  
Top View  
NC  
1
2
NC  
60  
59  
I/O  
A
5L  
2L  
I/O  
I/O  
I/O  
A
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
56  
55  
54  
53  
A
A
GND  
I/O  
1L  
0L  
6L  
I/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
CY7C145  
NC  
GND  
I/O  
11  
12  
13  
14  
50  
49  
48  
47  
BUSY  
0R  
R
I/O  
1R  
INT  
R
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
15  
16  
46  
45  
I/O  
3R  
I/O  
4R  
17  
44  
I/O  
5R  
A
18  
19  
20  
4R  
43  
42  
41  
I/O  
6R  
NC  
NC  
NC  
C144-4  
Pin Definitions  
Left Port  
Right Port  
Description  
I/O  
I/O  
Data bus Input/Output  
Address Lines  
0L7L(8L)  
0R7R(8R)  
A
0R12R  
A
0L12L  
CE  
CE  
Chip Enable  
L
R
OE  
OE  
Output Enable  
L
R
R/W  
R/W  
Read/Write Enable  
L
R
SEM  
SEM  
Semaphore Enable. When asserted LOW, allows access to eight sema-  
phores. The three least significant bits of the address lines will determine  
L
R
which semaphore to write or read. The I/O pin is used when writing to a  
0
semaphore. Semaphores are requested by writing a 0 into the respective  
location.  
INT  
INT  
Interrupt Flag. INT is set when right port writes location 1FFE and is  
L
L
R
cleared when left port reads location 1FFE. INT is set when left port writes  
R
location 1FFF and is cleared when right port reads location 1FFF.  
BUSY  
M/S  
BUSY  
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3
CY7C145  
CY7C144  
Selection Guide  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Maximum Access Time (ns)  
15  
25  
35  
55  
Maximum Operating  
Current (mA)  
220  
180  
160  
160  
Maximum Standby  
60  
40  
30  
30  
Current for I  
(mA)  
SB1  
Output Current into Outputs (LOW)............................. 20 mA  
Maximum Ratings  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ..................................... −65°C to +150°C  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage to Ground Potential .................−0.5V to +7.0V  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
V
CC  
DC Voltage Applied to Outputs  
in High Z State.....................................................−0.5V to +7.0V  
5V ± 10%  
5V ± 10%  
[5]  
DC Input Voltage ..............................................−0.5V to +7.0V  
Electrical Characteristics Over the Operating Range  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
Test Conditions  
= Min., I = 4.0 mA  
Min.  
Max.  
Min. Max.  
Unit  
V
V
V
V
2.4  
2.2  
2.4  
2.2  
OH  
OL  
IH  
CC  
CC  
OH  
V
V
V
= Min., I = 4.0 mA  
0.4  
0.4  
V
OL  
V
0.8  
+10  
+10  
220  
0.8  
+10  
+10  
180  
190  
40  
V
IL  
I
I
I
GND < V < V  
CC  
10  
10  
10  
10  
µA  
µA  
mA  
IX  
I
Outputs Disabled, GND < V < V  
CC  
OZ  
CC  
O
V
= Max., I  
= 0 mA  
Com’l  
Ind  
CC  
OUT  
Outputs Disabled  
I
I
I
Standby Current  
(Both Ports TTL Levels)  
CE and CE > V ,  
Com’l  
Ind  
60  
130  
15  
mA  
mA  
mA  
SB1  
SB2  
SB3  
L
R
IH  
[7]  
f = f  
MAX  
50  
Standby Current  
(One Port TTL Level)  
CE or CE > V ,  
Com’l  
Ind  
110  
120  
15  
L
R
IH  
[7]  
f = f  
MAX  
Standby Current  
(Both Ports CMOS Levels) CE and CE > V – 0.2V,  
Both Ports  
Com’l  
Ind  
R
CC  
30  
V
> V – 0.2V  
IN  
CC  
[7]  
or V < 0.2V, f = 0  
IN  
I
Standby Current  
(One Port CMOS Level)  
One Port  
Com’l  
Ind  
125  
100  
115  
mA  
SB4  
CE or CE > V – 0.2V,  
L R CC  
V
> V – 0.2V or  
IN  
CC  
V
< 0.2V, Active  
IN  
[7]  
MAX  
Port Outputs, f = f  
Notes:  
5. Pulse width < 20 ns.  
6.  
7.  
T
f
A is the “instant on” case temperature.  
MAX = 1/tRC = All inputs cycling at f = 1/tRC (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS  
level standby ISB3  
.
4
CY7C145  
CY7C144  
Electrical Characteristics Over the Operating Range (continued)  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
Test Conditions  
= Min., I = 4.0 mA  
Min.  
Max.  
Min.  
Max.  
Unit  
V
V
V
V
V
V
V
2.4  
2.4  
OH  
OL  
IH  
CC  
CC  
OH  
= Min., I = 4.0 mA  
0.4  
0.4  
V
OL  
2.2  
2.2  
V
0.8  
+10  
+10  
160  
180  
30  
0.8  
+10  
+10  
160  
180  
30  
V
IL  
I
I
I
GND < V < V  
CC  
10  
10  
10  
10  
µA  
µA  
mA  
IX  
I
Outputs Disabled, GND < V < V  
CC  
OZ  
CC  
O
V
= Max., I  
= 0 mA  
Com’l  
Ind  
CC  
OUT  
Outputs Disabled  
I
I
I
Standby Current  
(Both Ports TTL Levels)  
CE and CE > V ,  
Com’l  
Ind  
mA  
mA  
mA  
SB1  
SB2  
SB3  
L
R
IH  
[7]  
f = f  
MAX  
40  
40  
Standby Current  
(One Port TTL Level)  
CE or CE > V ,  
Com’l  
Ind  
100  
110  
15  
100  
110  
15  
L
R
IH  
[7]  
f = f  
MAX  
Standby Current  
(Both Ports CMOS Levels) CE and CE > V – 0.2V,  
Both Ports  
Com’l  
Ind  
R
CC  
30  
30  
V
> V – 0.2V  
IN  
CC  
[7]  
or V < 0.2V, f = 0  
IN  
I
Standby Current  
(One Port CMOS Level)  
One Port  
Com’l  
Ind  
90  
90  
mA  
SB4  
CE or CE > V – 0.2V,  
L R CC  
100  
100  
V
> V – 0.2V or  
IN  
CC  
V
< 0.2V, Active  
IN  
[7]  
MAX  
Port Outputs, f = f  
]
Capacitance[8]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
C
C
Input Capacitance  
Output Capacitance  
T = 25°C, f = 1 MHz,  
10  
15  
pF  
pF  
IN  
A
V
= 5.0V  
CC  
OUT  
Note:  
8. Tested initially and after any design or process changes that may affect these parameters.  
5
CY7C145  
CY7C144  
AC Test Loads and Waveforms  
5V  
5V  
R1=893  
R1=893Ω  
R
TH  
=250Ω  
OUTPUT  
OUTPUT  
C=30pF  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2=347Ω  
R2=347Ω  
V
TH  
=1.4V  
(a) Normal Load (Load1)  
(b) Thévenin Equivalent (Load 1)  
(c) Three-State Delay (Load 3)  
C144-5  
C144-6  
C144-7  
ALL INPUT PULSES  
90%  
OUTPUT  
3.0V  
GND  
90%  
10%  
10%  
C = 30 pF  
3 ns  
3 ns  
Load (Load 2)  
C144-8  
C144-9  
[9]  
Switching Characteristics Over the Operating Range  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
READ CYCLE  
tRC  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Read Cycle Time  
15  
25  
3
35  
3
55  
3
ns  
ns  
ns  
t
t
Address to Data Valid  
15  
25  
35  
55  
AA  
Output Hold From Address  
Change  
3
OHA  
t
t
t
t
t
t
t
t
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
10  
25  
15  
35  
20  
55  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACE  
DOE  
[10, 11,12]  
[10, 11,12]  
3
3
0
3
3
0
3
3
0
3
3
0
LZOE  
OE HIGH to High Z  
CE LOW to Low Z  
10  
10  
15  
15  
15  
25  
20  
20  
35  
25  
25  
55  
HZOE  
[10, 11,12]  
[10, 11,12]  
LZCE  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
HZCE  
[12]  
[12]  
PU  
PD  
Notes:  
9. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
OI/IOH and 30-pF load capacitance.  
I
10. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE  
.
11. Test conditions used are Load 3.  
12. This parameter is guaranteed but not tested.  
6
CY7C145  
CY7C144  
[9]  
Switching Characteristics Over the Operating Range (continued)  
7C144-15  
7C145-15  
7C144-25  
7C145-25  
7C144-35  
7C145-35  
7C144-55  
7C145-55  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
t
t
t
t
Write Cycle Time  
15  
12  
12  
2
25  
20  
20  
2
35  
30  
30  
2
55  
45  
45  
2
ns  
ns  
ns  
ns  
WC  
SCE  
AW  
HA  
CE LOW to Write End  
Address Set-Up to Write End  
Address Hold From Write  
End  
t
Address Set-Up to Write  
Start  
0
0
0
0
ns  
SA  
t
t
t
t
t
t
t
Write Pulse Width  
12  
10  
0
20  
15  
0
25  
15  
0
40  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PWE  
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
SD  
HD  
[11,12]  
10  
15  
20  
25  
HZWE  
[11,12]  
R/W HIGH to Low Z  
3
3
3
3
LZWE  
[13]  
Write Pulse to Data Delay  
30  
25  
50  
30  
60  
35  
70  
40  
WDD  
[13]  
Write Data Valid to Read  
Data Valid  
DDD  
[14]  
BUSY TIMING  
t
BUSY LOW from Address  
Match  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
BLA  
t
BUSY HIGH from Address  
Mismatch  
BHA  
t
t
t
t
t
t
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
15  
15  
20  
20  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
BLC  
BHC  
PS  
5
0
5
0
5
0
5
0
R/W LOW after BUSY LOW  
R/W HIGH after BUSY HIGH  
WB  
13  
20  
30  
30  
WH  
BDD  
BUSY HIGH to Data Valid  
15  
25  
35  
55  
[14]  
INTERRUPT TIMING  
t
t
INT Set Time  
15  
15  
25  
25  
25  
25  
35  
35  
ns  
ns  
INS  
INR  
INT Reset Time  
SEMAPHORE TIMING  
t
SEM Flag Update Pulse (OE  
or SEM)  
10  
10  
15  
20  
ns  
SOP  
t
t
SEM Flag Write to ReadTime  
5
5
5
5
5
5
5
5
ns  
ns  
SWRD  
SEM Flag Contention  
Window  
SPS  
Notes:  
13. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.  
14. Test conditions used are Load 2.  
7
CY7C145  
CY7C144  
Switching Waveforms  
[15, 16]  
Read Cycle No. 1 (Either Port Address Access)  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
C144-10  
[15, 17, 18]  
Read Cycle No. 2 (Either Port CE/OE Access)  
SEM or CE  
t
HZCE  
t
ACE  
OE  
t
HZOE  
t
DOE  
t
LZOE  
t
LZCE  
DATA VALID  
DATA OUT  
t
PU  
t
PD  
I
CC  
I
SB  
C144-11  
[19, 20]  
Read Timing with Port-to-Port Delay (M/S=L)  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
SD  
HD  
DATAIN  
VALID  
R
ADDRESS  
L
MATCH  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
C144-12  
Notes:  
15. R/W is HIGH for read cycle.  
16. Device is continuously selected CE = LOW and OE = LOW. This waveform cannot be used for semaphore reads.  
17. Address valid prior to or coincident with CE transition LOW.  
18. CEL = L, SEM = H when accessing RAM. CE = H, SEM = L when accessing semaphores.  
19. BUSY = HIGH for the writing port.  
20. CEL = CER = LOW.  
8
CY7C145  
CY7C144  
Switching Waveforms (continued)  
[21, 22, 23]  
Write Cycle No. 1: OE Three-State Data I/Os (Either Port)  
t
WC  
ADDRESS  
t
SCE  
SEM OR CE  
R/W  
t
t
HA  
AW  
t
PWE  
t
SA  
t
t
SD  
HD  
DATA IN  
OE  
DATA VALID  
t
t
HZOE  
LZOE  
HIGH IMPEDANCE  
[21, 23, 24]  
DATA OUT  
C144-13  
Write Cycle No. 2: R/W Three-State Data I/Os (Either Port)  
t
WC  
ADDRESS  
t
t
HA  
SCE  
SEM OR CE  
R/W  
t
AW  
t
SA  
t
PWE  
t
t
SD  
HD  
DATAVALID  
DATA IN  
t
t
LZWE  
HZWE  
HIGH IMPEDANCE  
DATA OUT  
C144-14  
Notes:  
21. The internal write time of the memory is defined by the overlap of CE or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either  
signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates  
the write.  
22. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and  
data to be placed on the bus for the required tSD. If OE is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply  
and the write pulse can be as short as the specified tPWE  
23. R/W must be HIGH during all address transitions.  
.
24. Data I/O pins enter high impedance when OE is held LOW during write.  
9
CY7C145  
CY7C144  
Switching Waveforms (continued)  
[25]  
Semaphore Read After Write Timing, Either Side  
t
AA  
t
OHA  
A A  
0
VALID ADDRESS  
VALID ADDRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
C144-15  
[26, 27, 28]  
Semaphore Contention  
A A  
0L 2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A A  
0R 2R  
MATCH  
R/W  
R
SEM  
R
C144-16  
Notes:  
25. CE = HIGH for the duration of the above timing (both write and read cycle).  
26. I/O0R = I/O0L = LOW (request semaphore); CER = CEL = HIGH  
27. Semaphores are reset (available to both ports) at cycle start.  
28. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.  
10  
CY7C145  
CY7C144  
Switching Waveforms (continued)  
[20]  
Read with BUSY (M/S=HIGH)  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATAIN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
C144–17  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
C144–18  
11  
CY7C145  
CY7C144  
Switching Waveforms (continued)  
[29]  
Busy Timing Diagram No. 1 (CE Arbitration)  
CE Valid First:  
L
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
C144-19  
CE Valid First:  
R
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
t
t
BHC  
BLC  
BUSY  
L
C144-20  
[29]  
Busy Timing Diagram No. 2 (Address Arbitration)  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
BUSY  
R
R
t
t
BHA  
BLA  
C144-21  
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
C144-22  
Notes:  
29. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted  
12  
CY7C145  
CY7C144  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INT :  
R
t
WC  
ADDRESS  
L
WRITE 1FFF  
[30]  
t
HA  
CE  
L
L
R/W  
INT  
R
[31]  
t
INS  
C144-23  
Right Side Clears INT  
:
R
t
RC  
ADDRESS  
R
READ 1FFF  
CE  
R
[31]  
t
INR  
R/W  
OE  
R
R
INT  
C144-24  
R
Right Side Sets INT :  
L
t
WC  
ADDRESS  
R
WRITE 1FFE  
[30]  
t
HA  
CE  
R
R
R/W  
INT  
L
[31]  
t
INS  
C144-25  
Left Side Clears INT :  
L
t
RC  
ADDRESS  
R
READ 1FFE  
CE  
L
[31]  
t
INR  
R/W  
L
OE  
L
INT  
L
C144-26  
Notes:  
30. tHA depends on which enable pin (CEL or R/WL) is deasserted first.  
31. INS or tINR depends on which enable pin (CEL or R/WL) is asserted last.  
t
13  
CY7C145  
CY7C144  
in master mode are push-pull outputs and do not require pull-up re-  
sistors to operate.  
Architecture  
The CY7C144/5 consists of a an array of 8K words of 8/9 bits  
each of dual-port RAM cells, I/O and address lines, and control  
signals (CE, OE, R/W). These control pins permit indepen-  
dent access for reads or writes to any location in memory. To  
handle simultaneous writes/reads to the same location, a  
BUSY pin is provided on each port. Two interrupt (INT) pins  
can be utilized for port-to-port communication. Two sema-  
phore (SEM) control pins are used for allocating shared re-  
sources. With the M/S pin, the CY7C144/5 can function as  
a Master (BUSY pins are outputs) or as a slave (BUSY pins  
are inputs). The CY7C144/5 has an automatic power-down  
feature controlled by CE. Each port is provided with its own  
output enable control (OE), which allows data to be read  
from the device.  
Master/Slave  
An M/S pin is provided in order to expand the word width by config-  
uring the device as either a master or a slave. The BUSY output of  
the master is connected to the BUSY input of the slave. This will allow  
the device to interface to a master device with no external compo-  
nents.Writing of slave devices must be delayed until after the BUSY  
input has settled. Otherwise, the slave chip may begin a write cycle  
during a contention situation.When presented a HIGH input, the M/S  
pin allows the device to be used as a master and therefore the BUSY  
line is an output. BUSY can then be used to send the arbitration out-  
come to a slave.  
Semaphore Operation  
The CY7C144/5 provides eight semaphore latches which are  
separate from the dual-port memory locations. Semaphores  
are used to reserve resources that are shared between the two  
ports.The state of the semaphore indicates that a resource is  
in use. For example, if the left port wants to request a given  
resource, it sets a latch by writing a 0 to a semaphore location.  
The left port then verifies its success in setting the latch by  
reading it. After writing to the semaphore, SEM or OE must be  
Functional Description  
Write Operation  
Data must be set up for a duration of t  
before the rising  
SD  
edge of R/W in order to guarantee a valid write. A write op-  
eration is controlled by either the OE pin (see Write Cycle  
No.1 waveform) or the R/W pin (see Write Cycle No. 2 wave-  
form). Data can be written to the device t  
after the OE  
deasserted for t  
before attempting to read the semaphore. The  
HZOE  
SOP  
is deasserted or t  
after the falling edge of R/W. Re-  
semaphore value will be available t  
+ t  
after the rising edge  
HZWE  
SWRD DOE  
quired inputs for non-contention operations are summarized  
in Table 1.  
of the semaphore write. If the left port was successful (reads a 0), it  
assumes control over the shared resource, otherwise (reads a 1) it  
assumes the right port has control and continues to poll the sema-  
phore.When the right side has relinquished control of the semaphore  
(by writing a 1), the left side will succeed in gaining control of the  
semaphore. If the left side no longer requires the semaphore, a 1 is  
written to cancel its request.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must be met before the data is read on the output; oth-  
erwise the data read is not deterministic. Data will be valid on  
the port t  
after the data is presented on the other port.  
DDD  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip enable for the semaphore latches (CE must  
Read Operation  
When reading the device, the user must assert both the OE  
remain HIGH during SEM LOW). A  
represents the semaphore  
0–2  
and CE pins. Data will be available t  
after CE or t  
after  
address. OE and R/W are used in the same manner as a normal  
memory access.When writing or reading a semaphore, the other ad-  
dress pins have no effect.  
ACE  
DOE  
OE are asserted. If the user of the CY7C144/5 wishes to ac-  
cess a semaphore flag, then the SEM pin must be asserted  
instead of the CE pin.  
When writing to the semaphore, only I/O is used. If a 0 is written  
0
to the left port of an unused semaphore, a 1 will appear at the same  
semaphore address on the right port. That semaphore can now only  
be modified by the side showing 0 (the left port in this case). If the left  
port now relinquishes control by writing a 1 to the semaphore, the  
semaphore will be set to 1 for both sides. However, if the right port  
had requested the semaphore (written a 0) while the left port had  
control, the right port would immediately own the semaphore as soon  
as the left port released it. Table 3 shows sample semaphore oper-  
ations.  
Interrupts  
The interrupt flag (INT) permits communications between  
ports.When the left port writes to location 1FFF, the right port’s inter-  
rupt flag (INT ) is set. This flag is cleared when the right port reads  
R
thatsamelocation. Settingthe left port’sinterrupt flag(INT )isaccom-  
L
plished whenthe right port writes to location 1FFE. Thisflagiscleared  
when the left port reads location 1FFE. The message at 1FFF or  
1FFE is user-defined. See Table 2 for input requirements for INT.  
INT and INT are push-pull outputs and do not require pull-up resis-  
R
L
When reading a semaphore, all eight/nine data lines output the  
semaphore value. The read value is latched in an output reg-  
ister to prevent the semaphore from changing state during a  
write from the other port. If both ports attempt to access the  
tors to operate.  
Busy  
The CY7C144/5 provides on-chip arbitration to alleviate simul-  
taneous memory location access (contention). If both ports’  
CEs are asserted and an address match occurs within t of each  
other the Busy logic will determine which port has access. If t is  
violated, one port will definitely gain permission to the location, but it  
is not guaranteed which one. BUSY will be asserted t  
address match or t  
semaphore within t  
of each other, the semaphore will definitely  
SPS  
be obtained by one side or the other, but there is no guarantee which  
side will control the semaphore.  
PS  
PS  
Initialization of the semaphore is not automatic and must be  
reset during initialization program at power-up. All Sema-  
phores on both sides should have a one written into them at  
initialization from both sides to assure that they will be free  
when needed.  
after an  
BLA  
after CE is taken LOW. BUSY and BUSY  
BLC  
L R  
14  
CY7C145  
CY7C144  
Table 1. Non-Contending Read/Write.  
Inputs  
Outputs  
I/O  
CE R/W OE SEM  
Operation  
07/8  
H
H
X
H
X
L
H
L
High Z  
Power-Down  
Data Out  
Read Data in  
Semaphore  
X
H
X
H
X
X
L
High Z  
Data In  
I/O Lines Disabled  
Write to Semaphore  
L
L
L
H
L
L
X
X
H
H
L
Data Out  
Data In  
Read  
Write  
X
Illegal Condition  
Table 2. Interrupt Operation Example (assumes BUSY =BUSY =HIGH).  
L
R
Left Port  
Right Port  
Function  
R/W  
X
CE  
X
OE  
X
A
INT  
L
R/W  
L
CE  
L
OE  
X
A
INT  
X
012  
012  
Set Left INT  
X
1FFE  
X
Reset Left INT  
Set Right INT  
Reset Right INT  
X
L
L
1FFE  
1FFF  
X
H
X
L
L
X
L
L
X
X
X
X
X
X
L
X
X
X
X
X
L
L
1FFF  
H
Table 3. Semaphore Operation Example.  
Function  
I/O  
Left  
I/O  
Right  
Status  
0-7/8  
0-7/8  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
Semaphore free  
Left port writes semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
1
1
0
0
1
1
0
1
1
1
Left port obtains semaphore  
Right side is denied access  
Right port is granted access to semaphore  
No change. Left port is denied access  
Left port obtains semaphore  
No port accessing semaphore address  
Right port obtains semaphore  
No port accessing semaphore  
Left port obtains semaphore  
No port accessing semaphore  
15  
CY7C145  
CY7C144  
Typical DC and AC Characteristics  
NORMALIZED SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
200  
160  
120  
80  
1.4  
1.2  
1.0  
I
CC  
1.2  
I
CC  
1.0  
I
SB3  
0.8  
0.6  
0.4  
I
SB3  
0.8  
V
=5.0V  
CC  
V
V
=5.0V  
=5.0V  
CC  
0.6  
0.4  
T =25°C  
A
IN  
40  
0
0.2  
0.6  
0.2  
0.0  
5.0  
55  
25  
125  
0
1.0  
2.0  
3.0  
4.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
NORMALIZED ACCESS TIME  
vs. AMBIENT TEMPERATURE  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
NORMALIZED ACCESS TIME  
vs. SUPPLY VOLTAGE  
140  
120  
1.6  
1.4  
1.4  
1.3  
1.2  
1.1  
100  
80  
1.2  
1.0  
60  
T =25°C  
A
V
CC  
=5.0V  
1.0  
40  
0.8  
V
=5.0V  
CC  
20  
0
0.9  
0.8  
T =25°C  
A
0.6  
55  
0.0  
1.0  
2.0  
3.0  
4.0  
25  
125  
5.0  
4.0  
4.5  
5.0  
5.5  
6.0  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TYPICAL POWER-ON CURRENT  
vs. SUPPLY VOLTAGE  
TYPICAL ACCESS TIME CHANGE  
vs. OUTPUT LOADING  
NORMALIZED I  
vs. CYCLE TIME  
CC  
1.25  
30.0  
25.0  
1.00  
V
CC  
=5.0V  
T =25°C  
A
V
IN  
=0.5V  
0.75  
0.50  
1.0  
20.0  
15.0  
10.0  
0.75  
0.25  
0.0  
V
=4.5V  
CC  
5.0  
0
T =25°C  
A
0.50  
40  
66  
10  
28  
0
1.0  
2.0  
3.0  
4.0 5.0  
0
200 400 600 800 1000  
CAPACITANCE (pF)  
CYCLE FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
16  
CY7C145  
CY7C144  
Ordering Information  
8K x8 Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C144-15AC  
CY7C144-15JC  
CY7C144-25AC  
CY7C144-25JC  
CY7C144-25AI  
CY7C144-25JI  
CY7C144-35AC  
CY7C144-35JC  
CY7C144-35AI  
CY7C144-35JI  
CY7C144-55AC  
CY7C144-55JC  
CY7C144-55AI  
CY7C144-55JI  
Package Type  
15  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
64-Lead Thin Quad Flat Pack  
Commercial  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
25  
35  
55  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
8K x9 Dual-Port SRAM  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
15  
CY7C145-15AC  
CY7C145-15JC  
CY7C145-25AC  
CY7C145-25JC  
CY7C145-25AI  
CY7C145-25JI  
CY7C145-35AC  
CY7C145-35JC  
CY7C145-35AI  
CY7C145-35JI  
CY7C145-55AC  
CY7C145-55JC  
CY7C145-55AI  
CY7C145-55JI  
A80  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
A80  
J81  
80-Lead Thin Quad Flat Pack  
Commercial  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
25  
35  
55  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
Commercial  
Industrial  
68-Lead Plastic Leaded Chip Carrier  
80-Lead Thin Quad Flat Pack  
68-Lead Plastic Leaded Chip Carrier  
17  
CY7C145  
CY7C144  
Package Diagrams  
64-Pin Thin PlasticQuad Flat Pack A65  
80-PinThin Plastic QuadFlat Pack A80  
18  
CY7C145  
CY7C144  
Package Diagrams (continued)  
68-Lead Plastic Leaded ChipCarrierJ81  
© Cypress Semiconductor Corporation, 1996. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C145-35JIR

Dual-Port SRAM, 8KX9, 35ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C145-35JIT

暂无描述
CYPRESS

CY7C145-35JXC

8K x 8/9 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C145-35JXC

8KX9 DUAL-PORT SRAM, 35ns, PQCC68, LEAD FREE, PLASTIC, LCC-68
ROCHESTER

CY7C145-55AC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-55AI

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-55JC

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-55JCR

Dual-Port SRAM, 8KX9, 55ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C145-55JI

8K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C145-55JIR

Dual-Port SRAM, 8KX9, 55ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C145AV

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C145AV-20JC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS