CY7C1386C-167BGC [CYPRESS]

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM; 18 -MB ( 512K ×36 / 1M ×18 )流水线DCD同步SRAM
CY7C1386C-167BGC
型号: CY7C1386C-167BGC
厂家: CYPRESS    CYPRESS
描述:

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
18 -MB ( 512K ×36 / 1M ×18 )流水线DCD同步SRAM

静态存储器 CD
文件: 总34页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1386C  
CY7C1387C  
18-Mb (512K x 36/1M x 18) Pipelined DCD  
Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
The CY7C1386C/CY7C1387C SRAM integrates 524,288 x 36  
and 1048,576 x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
• Available speed grades are 250, 225, 200 and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (Double-Cycle deselect)  
• Depth expansion without wait state  
• 3.3V –5% and +10% core power supply (VDD  
• 2.5V / 3.3V I/O operation  
address-pipelining Chip Enable (  
), depth-expansion Chip  
CE1  
[2]  
)
Enables (CE and  
), Burst Control inputs (  
,
,
CE3  
2
ADSC ADSP  
), Write Enables (  
, and  
BWX  
), and Global Write  
and  
ADV  
BWE  
(
). Asynchronous inputs include the Output Enable (  
)
OE  
GW  
• Fast clock-to-output times  
and the ZZ pin.  
— 2.6 ns (for 250-MHz device)  
— 2.8 ns (for 225-MHz device)  
— 3.0 ns (for 200-MHz device)  
— 3.4 ns (for 167-MHz device)  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor ( ) or  
ADSP  
) are active. Subsequent  
Address Strobe Controller (  
ADSC  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
ADV  
• Provide high-performance 3-1-1-1 access rate  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
User-selectable burst counter supporting Intel  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
controlled by the byte write control inputs.  
active  
GW  
LOW  
This device incorporates an  
causes all bytes to be written.  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
• Asynchronous output enable  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
and 165-Ball fBGA packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
The CY7C1386C/CY7C1387C operates from a +3.3V core  
power supply while all outputs operate with a +3.3V or a +2.5V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
225 MHz  
2.8  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
2.6  
350  
70  
325  
70  
300  
70  
275  
70  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE and CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in Single Chip Enable.  
3
2
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05239 Rev. *B  
Revised February 26, 2004  
CY7C1386C  
CY7C1387C  
1
Logic Block Diagram – CY7C1386C (512K x 36)  
ADDRESS  
A0,A1,A  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQD,DQP  
D
DQD,DQP  
D
BYTE  
BYTE  
BW  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
BYTE  
WRITE DRIVER  
c,DQPC  
DQ  
BYTE  
WRITE REGISTER  
c,DQPC  
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQPB  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQPB  
B
C
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQA,DQP  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
2
Logic Block Diagram – CY7C1387C (1M x 18)  
ADDRESS  
REGISTER  
A0, A1, A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB , DQP  
BYTE  
WRITE DRIVER  
B
DQB, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
A
OUTPUT  
REGISTERS  
DQs,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQA, DQP  
BYTE  
WRITE DRIVER  
A
B
E
DQA , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05239 Rev. *B  
Page 2 of 34  
CY7C1386C  
CY7C1387C  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
NC  
2
DQC  
3
NC  
NC  
3
VDDQ  
4
5
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
DQC  
6
6
DQC  
7
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
7
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
8
DQC  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQC  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
NC  
CY7C1387C  
(1M x 18)  
CY7C1386C  
(512K X 36)  
NC  
16  
VDD  
ZZ  
VDD  
ZZ  
VSS  
17  
VSS  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
VDDQ  
20  
VSSQ  
21  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
VDDQ  
27  
DQD  
28  
DQD  
29  
NC  
NC  
DQPD  
30  
NC  
NC  
Document #: 38-05239 Rev. *B  
Page 3 of 34  
CY7C1386C  
CY7C1387C  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1386C (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
A
A
VDDQ  
A
B
C
ADSP  
ADSC  
VDD  
NC  
NC  
A
A
A
A
A
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
OE  
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC  
NC  
ZZ  
VDDQ  
CY7C1387C (1M x 18)  
2
A
A
1
3
A
A
4
5
A
A
6
A
A
7
A
B
C
D
E
F
VDDQ  
NC  
NC  
VDDQ  
NC  
NC  
ADSP  
ADSC  
VDD  
A
A
A
A
DQB  
NC  
VDDQ  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
VDDQ  
G
H
J
NC  
DQB  
VDDQ  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05239 Rev. *B  
Page 4 of 34  
CY7C1386C  
CY7C1387C  
Pin Configurations (continued)  
165-ball fBGA (3 Chip Enable)  
CY7C1386C (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1387C (1M x 18)  
1
NC / 288M  
NC  
2
3
CE1  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
4
BWB  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
8
9
10  
11  
A
A
NC  
A
A
CE  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADSC  
OE  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQA  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
A0  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05239 Rev. *B  
Page 5 of 34  
CY7C1386C  
CY7C1387C  
CY7C1386C–Pin Definitions  
BGA  
(1 Chip  
Name  
TQFP  
Enable)  
fBGA  
I/O  
Description  
Address Inputs used to select one of the 512K  
A0, A1 , A 37,36,32,33, P4,N4,A2,  
R6,P6,A2,  
Input-  
34,35,42,43, B2,C2,R2, A10,B2,B10, Synchronous address locations. Sampled at the rising edge of the  
44,45,46,47, 3A,B3,C3, N6,P3,P4,P8,  
48,49,50,81, T3,T4,A5, P9,P10,P11,  
82,99,100 B5,C5,T5, R3,R4,R8,R9,  
CLK if  
or  
is active LOW, and CE , CE ,  
ADSP ADSC  
2
and CE3 [2]are sampled active. A1: A0 are fed1to the  
two-bit counter.  
.
A6,B6,C6,  
R6  
R10,R11  
93,94,95,96 L5,G5,G3, B5,A5,A4,B4  
L3  
Input-  
Byte Write Select Inputs, active LOW. Qualified with  
BWE to conduct byte writes to the SRAM. Sampled on  
the rising edge of CLK.  
BWA,BWB  
BWC,BWD  
Synchronous  
H4  
B7  
Input-  
Global Write Enable Input, active LOW. When  
88  
GW  
Synchronous asserted LOW on the rising edge of CLK, a global write  
is conducted (ALL bytes are written, regardless of the  
values on BWX and BWE).  
87  
89  
98  
M4  
K4  
E4  
A7  
B6  
A3  
Input-  
Byte Write Enable Input, active LOW. Sampled on the  
BWE  
CLK  
Synchronous rising edge of CLK. This signal must be asserted LOW  
to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to  
the device. Also used to increment the burst counter  
when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the  
CE1  
Synchronous rising edge of CLK. Used in conjunction with CE2 and  
CE3[2] to select/deselect the device. ADSP is ignored if  
CE1 is HIGH.  
[2]  
CE2  
97  
92  
-
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the  
Synchronous rising edge of CLK. Used in conjunction with CE1 and  
CE3[2] to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the  
[2]  
CE3  
Synchronous rising edge of CLK. Used in conjunction with CE1 and  
CE to select/deselect the device.  
Not connected for  
BG2A. Where referenced, CE3[2] is assumed active  
throughout this document for BGA.  
86  
F4  
B8  
Input-  
Output Enable, asynchronous input, active LOW.  
OE  
Asynchronous Controls the direction of the I/O pins. When LOW, the  
I/O pins behave as outputs. When deasserted HIGH,  
DQ pins are tri-stated, and act as input data pins. OE is  
masked during the first clock of a read cycle when  
emerging from a deselected state.  
83  
84  
G4  
A4  
A9  
B9  
Input-  
Advance Input signal, sampled on the rising edge of  
ADV  
Synchronous CLK, active LOW. When asserted, it automatically  
increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the  
ADSP  
Synchronous rising edge of CLK, active LOW. When asserted LOW,  
addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
Document #: 38-05239 Rev. *B  
Page 6 of 34  
CY7C1386C  
CY7C1387C  
CY7C1386C–Pin Definitions (continued)  
BGA  
(1 Chip  
Name  
ADSC  
TQFP  
Enable)  
fBGA  
I/O  
Description  
Address Strobe from Controller, sampled on the  
B4  
A8  
Input-  
85  
Synchronous rising edge of CLK, active LOW. When asserted LOW,  
addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
ZZ  
64  
T7  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH  
Asynchronous places the device in a non-time-critical “sleep” condition  
with data integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an internal  
pull-down.  
52,53,56,57, K6,L6,M6, M11,L11,K11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into  
DQs, DQPs  
58,59,62,63, N6,K7,L7, J11,J10,K10, Synchronous an on-chip data register that is triggered by the rising  
68,69,72,73, N7,P7,E6, L10,M10,D10  
74,75,78,79, F6,G6,H6, ,E10,F10,G10  
2,3,6,7,8,9, D7,E7,G7, ,D11,E11,F11,  
12,13,18,19, H7,D1,E1, G11,D1,E1,  
22,23,24,25, G1,H1,E2, F1,G1,D2,E2,  
28,29,51,80, F2,G2,H2, F2,G2,J1,K1,  
edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses  
presented during the previous  
clock rise of the read  
cycle. The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a tri-state  
condition.  
1,30  
K1,L1,N1, L1,M1,J2,K2,  
P1,K2,L2, L2,M2,N11,  
M2,N2,P6, C11,C1,N1  
D6,D2,P2  
VDD  
15,41,65,91 J2,C4,J4, D4,D8,E4,E8, Power Supply Power supply inputs to the core of the device.  
R4,J6  
F4,F8,G4,G8,  
H4,H8,J4,J8,  
K4,K8,L4,L8,  
M4,M8  
VSS  
17,40,67,90 D3,E3,F3, C4,C5,C6,C7,  
H3,K3,M3, C8,D5,D6,D7,  
N3,P3,D5, E5,E6,E7,F5,  
Ground  
Ground for the core of the device.  
E5,F5,H5, F6,F7,G5,G6,  
K5,M5,N5, G7,H2,H5,H6  
P5  
,H7,J5,J6,J7,  
K5,K6,K7,L5,  
L6,L7,M5,M6,  
M7,N4,N8  
VSSQ  
VDDQ  
5,10,21,26,  
55,60,71,76  
-
-
I/O Ground Ground for the I/O circuitry.  
4,11,20,27, A1,F1,J1, C3,C9,D3,D9, I/O Power Sup- Power supply for the I/O circuitry.  
54,61,70,77 M1,U1,A7, E3,E9,F3,F9,  
F7,J7,M7, G3,G9,J3,J9,  
ply  
U7  
K3,K9,L3,L9,  
M3,M9,N3,N9  
MODE  
TDO  
31  
-
R3  
R1  
P7  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear  
burst sequence. When tied to VDD or left floating selects  
interleaved burst sequence. This is a strap pin and  
should remain static during device operation. Mode Pin  
has an internal pull-up.  
U5  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on  
output  
the negative edge of TCK. If the JTAG feature is not  
being utilized, this pin should be disconnected. This pin  
is not available on TQFP packages.  
Synchronous  
Document #: 38-05239 Rev. *B  
Page 7 of 34  
CY7C1386C  
CY7C1387C  
CY7C1386C–Pin Definitions (continued)  
BGA  
(1 Chip  
Name  
TDI  
TQFP  
Enable)  
fBGA  
I/O  
Description  
-
U3  
P5  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the  
input rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected to  
DD. This pin is not available on TQFP packages.  
V
TMS  
-
-
U2  
U4  
R5  
R7  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the  
input rising edge of TCK. If the JTAG feature is not being  
Synchronous utilized, this pin can be disconnected or connected to  
DD. This pin is not available on TQFP packages.  
V
TCK  
NC  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG feature  
is not being utilized, this pin must be connected to VSS  
.
This pin is not available on TQFP packages.  
14,16,66,39, B1,C1,R1, A11,B1,C2,  
-
No Connects. Not internally connected to the die  
38  
T1,T2,J3, C10,H1,H3,  
D4,L4,5J, H9,H10,N2,  
5R,6T,6U, N5,N7,N10,  
B7,C7,R7 P1,A1,B11,  
P2,R2  
CY7C1387C:Pin Definitions  
BGA  
(2-Chip  
Name  
TQFP  
Enable)  
fBGA  
I/O  
Description  
A0, A1 , A 37,36,32,33, P4,N4,A2, R6,P6,A2,  
Input-  
Address Inputs used to select one of the 1M address  
34,35,42,43, B2,C2,R2, A10,A11,B2, Synchronous locations. Sampled at the rising edge of the CLK if  
44,45,46,47, T2,A3,B3, B10,N6,P3,  
48,49,50,80, C3,T3,A5, P4,P8,P9,  
81,82,99, B5,C5,T5, P10,P11,R3,  
or  
is active LOW, and CE , CE , and  
ADSP ADSC  
1
CE3[2] are sampled active. A1: A0 are fed to t2he two-bit  
counter.  
100  
A6,B6,C6, R4,R8,R9,  
R6,T6  
G3,L5  
R10,R11  
B5,A4  
93,94  
Input-  
Byte Write Select Inputs, active LOW. Qualified with  
BWA,BWB  
GW  
Synchronous  
BWE to conduct byte writes to the SRAM. Sampled on  
.
the rising edge of CLK  
H4  
B7  
Input-  
Global Write Enable Input, active LOW. When  
88  
Synchronous asserted LOW on the rising edge of CLK, a global write  
is conducted (ALL bytes are written, regardless of the  
values on BWX and BWE).  
87  
89  
98  
M4  
K4  
E4  
A7  
B6  
A3  
Input-  
Byte Write Enable Input, active LOW. Sampled on the  
BWE  
CLK  
Synchronous rising edge of CLK. This signal must be asserted LOW  
to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to  
the device. Also used to increment the burst counter  
when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the  
CE1  
Synchronous rising edge of CLK. Used in conjunction with CE2 and  
CE3[2] to select/deselect the device. ADSP is ignored if  
CE1 is HIGH.  
[2]  
CE2  
97  
-
B3  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the  
Synchronous rising edge of CLK. Used in conjunction with CE1 and  
CE3[2] to select/deselect the device.  
Document #: 38-05239 Rev. *B  
Page 8 of 34  
CY7C1386C  
CY7C1387C  
CY7C1387C:Pin Definitions (continued)  
BGA  
(2-Chip  
Name  
TQFP  
Enable)  
fBGA  
I/O  
Description  
Chip Enable 3 Input, active LOW. Sampled on the  
92  
-
A6  
Input-  
[2]  
CE3  
Synchronous rising edge of CLK. Used in conjunction with CE1 and  
CE to select/deselect the device.  
Not connected for  
BG2A. Where referenced, CE3[2] is assumed active  
throughout this document for BGA.  
86  
F4  
B8  
Input-  
Output Enable, asynchronous input, active LOW.  
OE  
Asynchronous Controls the direction of the I/O pins. When LOW, the  
I/O pins behave as outputs. When deasserted HIGH,  
DQ pins are tri-stated, and act as input data pins. OE is  
masked during the first clock of a read cycle when  
emerging from a deselected state.  
83  
84  
G4  
A4  
A9  
B9  
Input-  
Advance Input signal, sampled on the rising edge of  
ADV  
Synchronous CLK, active LOW. When asserted, it automatically  
increments the address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled on the  
ADSP  
Synchronous rising edge of CLK, active LOW. When asserted LOW,  
addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
P4  
T7  
A8  
Input-  
Address Strobe from Controller, sampled on the  
85  
64  
ADSC  
Synchronous rising edge of CLK, active LOW. When asserted LOW,  
addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both asserted, only  
ADSP is recognized.  
ZZ  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH  
Asynchronous places the device in a non-time-critical “sleep” condition  
with data integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an internal  
pull-down.  
58,59,62,63, P7,K7,G7, J10,K10,L10,  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into  
DQs, DQPs  
68,69,72,73, E7,F6,H6,  
M10,D11,  
Synchronous an on-chip data register that is triggered by the rising  
edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses  
8,9,12,13,18 L6,N6,D1, E11,F11,G11  
,19,22,23,74 H1,L1,N1, ,J1,K1,L1,M1  
,24  
E2,G2,K2, ,D2,E2,F2,  
M2,D6,P2 G2,C11,N1  
presented during the previous  
clock rise of the read  
cycle. The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a tri-state  
condition.  
VDD  
15,41,65,91 C4,J2,J4, D4,D8,E4,E8 Power Supply Power supply inputs to the core of the device.  
J6,R4  
,F4,F8,G4,  
G8,H4,H8,J4  
,J8,K4,K8,L4  
,L8,M4,M8  
Document #: 38-05239 Rev. *B  
Page 9 of 34  
CY7C1386C  
CY7C1387C  
CY7C1387C:Pin Definitions (continued)  
BGA  
(2-Chip  
Name  
VSS  
TQFP  
Enable)  
fBGA  
I/O  
Description  
Ground for the core of the device.  
17,40,67,90 D3,D5,E5, H2,C4,C5,C6  
E3,F3,F5, ,C7,C8,D5,  
G5,H3,H5, D6,D7,E5,E6  
K3,K5,L3, ,E7,F5,F6,F7  
M3,M5,N3, ,G5,G6,G7,  
N5,P3,P5 H5,H6,H7,J5  
,J6,J7,K5,K6,  
Ground  
K7,L5,L6,L7,  
M5,M6,M7,  
N4,N8  
VSSQ  
VDDQ  
5,10,21,26,  
55,60,71,76  
-
-
I/O Ground  
Ground for the I/O circuitry.  
4,11,20,27, A1,A7,F1, C3,C9,D3,D9 I/O Power Sup- Power supply for the I/O circuitry.  
54,61,70,77 F7,J1,J7, ,E3,E9,F3,F9  
M1,M7,U1, ,G3,G9,J3,J9  
ply  
U7  
,K3,K9,L3,L9  
,M3,M9,N3,  
N9  
MODE  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear  
burst sequence. When tied to VDD or left floating selects  
interleaved burst sequence. This is a strap pin and  
should remain static during device operation. Mode Pin  
has an internal pull-up.  
TDO  
TDI  
-
-
U5  
U3  
P7  
P5  
JTAG serial out- Serial data-out to the JTAG circuit. Delivers data on  
put  
the negative edge of TCK. If the JTAG feature is not  
being utilized, this pin should be left unconnected. This  
pin is not available on TQFP packages.  
Synchronous  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the  
input  
rising edge of TCK. If the JTAG feature is not being uti-  
Synchronous lized, this pin can be left floating or connected to VDD  
through a pull up resistor. This pin is not available on  
TQFP packages.  
TMS  
-
-
U2  
U4  
R5  
R7  
JTAG serial Serial data-In to the JTAG circuit. Sampled on the  
input  
rising edge of TCK. If the JTAG feature is not being uti-  
Synchronous lized, this pin can be disconnected or connected to VDD  
.
This pin is not available on TQFP packages.  
TCK  
NC  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG feature  
is not being utilized, this pin must be connected to VSS  
.
This pin is not available on TQFP packages.  
1,2,3,6,7,14, B1,B7,C1, A5,B1,B4,C1  
16,25,28,29, C7,D2,D4, ,C2,C10,D1,  
30,38,39,51, D7,E1,E6, D10,E1,E10,  
52,53,56,57, H2,F2,G1, F1,F10,G1,  
66,75,78,79, G6,H7,J3, G10,H1,H3,  
-
No Connects. Not internally connected to the die.  
95,96  
J5,K1,K6, H9,H10,J2,  
L4,L2,L7, J11,K2,K11,  
M6,N2,L7, L2,L1,M2,  
P1,P6,R1, M11,N2,N10,  
R5,R7,T1, N5,N7,N11,  
T4,U6  
P1,A1,B11,  
P2,R2  
Document #: 38-05239 Rev. *B  
Page 10 of 34  
CY7C1386C  
CY7C1387C  
The write signals (GW, BWE, and  
ignored during this first cycle.  
) and ADV inputs are  
BWX  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1386C/CY7C1387C supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
then the write operation is controlled by BWE and  
BWX  
signals. The CY7C1386C/CY7C1387C provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
Accesses can  
Strobe (ADSP)  
be initiated with either the Processor Address  
or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1386C/CY7C1387C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQ are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
Single Write Accesses Initiated by ADSC  
self-timed write circuitry.  
synchronous  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
[2]  
Synchronous Chip Selects CE1, CE2, CE3  
and an  
asynchronous Output Enable (OE) provide for easy bank  
output tri-state control.  
is ignored if  
CE1  
selection and  
is HIGH.  
ADSP  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tco if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
write operation will remain unaltered.  
A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Because the CY7C1386C/CY7C1387C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQX are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Burst Sequences  
The CY7C1386C/CY7C1387C is a double-cycle deselect part.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will tri-state  
immediately after the next clock rise.  
The CY7C1386C/CY7C1387CCY7C1387C provides a two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel® Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input. Both  
read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
Document #: 38-05239 Rev. *B  
Page 11 of 34  
CY7C1386C  
CY7C1387C  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
LOW  
.
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ Active to snooze current  
ZZ Inactive to exit snooze current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
60  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
None  
CE2  
X
L
X
L
CE3  
WRITE  
CLK  
DQ  
CE1  
H
L
L
L
L
X
L
L
L
L
L
X
X
H
ZZ ADSP ADSC ADV  
OE  
X
X
X
X
X
X
L
H
X
L
H
L
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Deselect Cycle,Power Down  
Snooze Mode,Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
X
X
H
X
H
X
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
L
L
H
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
X
L-H  
L-H Tri-State  
L-H  
L-H  
None  
None  
None  
None  
X
X
L
None  
X
X
X
L
L
L
H
H
H
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
H
H
H
H
H
X
L
H
H
H
H
H
X
D
Q
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
X
X
X
Q
Next  
Next  
X
X
L
L
H
L
Q
Document #: 38-05239 Rev. *B  
Page 12 of 34  
CY7C1386C  
CY7C1387C  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
Next  
CE2  
X
X
X
X
X
X
X
X
CE3  
X
X
X
X
X
X
X
X
WRITE  
CLK  
L-H Tri-State  
DQ  
CE1  
H
ZZ ADSP ADSC ADV  
OE  
H
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst  
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
H
L
L
H
H
H
H
L
Next  
Next  
X
H
X
X
H
H
X
H
X
X
L
H
L
H
X
X
L-H  
L-H  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
D
D
Q
Current  
Current  
Current  
Current  
Current  
Current  
Q
L-H  
L-H  
D
D
WRITE Cycle,Suspend Burst  
X
X
L
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals , BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
X
after the  
or with the assertion of  
. As a result,  
ADSC  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle  
8.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when  
is  
OE  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Partial Truth Table for Read/Write[5, 9]  
Function (CY7C1386C)  
BWD  
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
BWC  
X
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
BWB  
X
H
H
L
BWA  
X
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
GW  
BWE  
Read  
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte A – ( DQA and DQPA )  
Write Byte B – ( DQB and DQPB )  
Write Bytes B, A  
Write Byte C – ( DQC and DQPC )  
Write Bytes C, A  
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – ( DQD and DQPD )  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
L
H
H
L
L
H
H
L
L
H
H
L
L
X
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
X
Write All Bytes  
X
Truth Table for Read/Write[5]  
Function (CY7C1387C)  
BWB  
X
H
H
L
L
X
BWA  
GW  
BWE  
Read  
Read  
H
H
L
L
L
L
X
X
H
L
H
L
H
H
H
H
L
Write Byte A – ( DQA and DQPA )  
Write Byte B – ( DQB and DQPB )  
Write All Bytes  
Write All Bytes  
X
Document #: 38-05239 Rev. *B  
Page 13 of 34  
CY7C1386C  
CY7C1387C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1386C/CY7C1387C incorporates a serial boundary  
scan test access port (TAP). This port operates in accordance  
with IEEE Standard 1149.1-1990 but does not have the set of  
functions required for full 1149.1 compliance. These functions  
from the IEEE specification are excluded because their  
inclusion places an added delay in the critical speed path of  
the SRAM. Note that the TAP controller functions in a manner  
that does not conflict with the operation of other devices using  
1149.1 fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1386C/CY7C1387C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
Selection  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Document #: 38-05239 Rev. *B  
Page 14 of 34  
CY7C1386C  
CY7C1387C  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
xx-bit-long register, and the x18 configuration has a yy-bit-long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
Identification (ID) Register  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05239 Rev. *B  
Page 15 of 34  
CY7C1386C  
CY7C1387C  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[10, 11]  
Parameter  
Symbol  
Min  
Max  
Units  
Clock  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
Setup Times  
tTCYC  
tTF  
tTH  
100  
ns  
MHz  
ns  
10  
20  
40  
40  
tTL  
ns  
tTDOV  
tTDOX  
ns  
ns  
0
TMS Set-Up to TCK Clock Rise  
TDI Set-Up to TCK Clock Rise  
Capture Set-Up to TCK Rise  
Hold Times  
tTMSS  
tTDIS  
tCS  
10  
10  
10  
ns  
ns  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
tTMSH  
tTDIH  
tCH  
10  
10  
10  
ns  
ns  
ns  
Notes:  
t
t
10. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05239 Rev. *B  
Page 16 of 34  
CY7C1386C  
CY7C1387C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ........ ........................................VSS to 3.3V  
Input rise and fall times...................... ..............................1ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels...............................................VSS to 2.5V  
Input rise and fall time ......................................................1ns  
Input timing reference levels................... ......................1.25V  
Output reference levels .................. ..............................1.25V  
Test load termination supply voltage .................... ........1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 3.3V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Test Conditions  
IOH = -4.0 mA, VDDQ = 3.3V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Units  
V
V
V
V
V
V
V
V
I
I
OH = -1.0 mA, VDDQ = 2.5V  
OH = -100 µA VDDQ = 3.3V  
VDDQ = 2.5V  
IOL = 8.0 mA, VDDQ = 3.3V  
OL = 8.0 mA, VDDQ = 2.5V  
IOL = 100 µA VDDQ = 3.3V  
DDQ = 2.5V  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
0.4  
0.4  
0.2  
0.2  
I
V
V
DDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
V
VDDQ = 2.5V  
VDD + 0.3  
V
V
V
DDQ = 3.3V  
DDQ = 2.5V  
-0.5  
-0.3  
-5  
0.7  
0.7  
5
V
V
µA  
VIL  
Input LOW Voltage  
Input Load Current  
IX  
GND < VIN < VDDQ  
Note:  
12. All voltages referenced to VSS (GND).  
Document #: 38-05239 Rev. *B  
Page 17 of 34  
CY7C1386C  
CY7C1387C  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
CY7C1386C  
CY7C1387C  
010  
Description  
010  
01010  
Describes the version number.  
01010  
Reserved for Internal Use  
Device Width (23:18)  
000110  
100101  
00000110100  
1
000110  
010101  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x18)  
Bit Size(X36)  
Instruction  
3
1
3
1
Bypass  
ID  
32  
72  
32  
72  
Boundary Scan Order  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operations.  
Document #: 38-05239 Rev. *B  
Page 18 of 34  
CY7C1386C  
CY7C1387C  
119-Ball BGA Boundary Scan Order  
CY7C1386C (512K x 36)  
BIT# BALL  
ID  
BIT  
#
BALL ID  
1
2
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
B2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
D6  
D7  
E6  
G6  
H7  
E7  
F6  
G7  
H6  
P4  
3
N4  
4
R6  
5
T5  
6
T3  
7
R2  
8
R3  
9
P2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
P1  
N2  
L2  
K1  
N1  
M2  
L1  
K2  
Not Bonded (Preset to 1)  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T7  
K7  
L6  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
71  
H1  
G2  
E2  
N6  
P7  
K6  
L7  
D1  
H2  
G1  
F2  
M6  
N7  
P6  
B5  
B3  
C5  
C3  
C2  
A2  
T4  
B6  
E1  
D2  
A5  
A3  
E4  
Internal  
L3  
G3  
G5  
L5  
Internal  
Document #: 38-05239 Rev. *B  
Page 19 of 34  
CY7C1386C  
CY7C1387C  
119-Ball BGA Boundary Scan Order  
CY7C1387C (1M x 18)  
BIT# BALL  
ID  
BIT  
#
BALL ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B2  
K4  
H4  
M4  
F4  
2
P4  
3
N4  
4
R6  
5
B4  
A4  
G4  
C6  
A6  
T6  
T5  
6
T3  
7
R2  
8
R3  
9
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Not Bonded (Preset to 0)  
Not  
Not  
Not  
D6  
E7  
F6  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
P2  
N1  
M2  
L1  
G7  
H6  
T7  
K2  
Not Bonded (Preset to 1)  
H1  
K7  
L6  
G2  
E2  
N6  
P7  
Not  
Not  
Not  
Not  
Not  
B5  
B3  
C5  
C3  
C2  
A2  
T2  
D1  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A5  
A3  
E4  
Internal  
Not Bonded (Preset to 0)  
Internal  
G3  
L5  
B6  
Internal  
Document #: 38-05239 Rev. *B  
Page 20 of 34  
CY7C1386C  
CY7C1387C  
165-Ball fBGA Boundary Scan Order  
CY7C1386C (512K x 36)  
BIT#  
BALL  
ID  
BIT#  
BALL  
ID  
1
B6  
B7  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
N1  
L2  
2
3
A7  
4
B8  
5
A8  
6
B9  
7
A9  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
R9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
K2  
J2  
M2  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
A2  
B2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
R8  
P10  
P9  
P8  
P11  
Document #: 38-05239 Rev. *B  
Page 21 of 34  
CY7C1386C  
CY7C1387C  
165-Ball fBGA Boundary Scan Order  
CY7C1387C (1M x 18)  
BIT#  
BALL  
ID  
BIT#  
BALL  
ID  
0
B6  
B7  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
N6  
R6  
1
2
A7  
P6  
3
B8  
R4  
4
A8  
R3  
5
B9  
P4  
6
A9  
P3  
7
B10  
A10  
A11  
Not  
Not  
Not  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
Not  
Not  
Not  
Not  
Not  
R11  
R10  
R9  
R1  
8
Not  
Not  
Not  
Not  
N1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
M1  
L1  
K1  
J1  
Internal  
G2  
F2  
E2  
D2  
Not  
Not  
Not  
Not  
Not  
A2  
B2  
A3  
B3  
R8  
Not  
Not  
A4  
P10  
P9  
P8  
B5  
P11  
A6  
Document #: 38-05239 Rev. *B  
Page 22 of 34  
CY7C1386C  
CY7C1387C  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Industrial  
-40°C to +85°C  
Electrical Characteristics Over the Operating Range[13, 14]  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
V
V
V
µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
DDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
V
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
Input HIGH Voltage[13] VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
2.0  
1.7  
–0.3  
–0.3  
–5  
V
Input LOW Voltage[13]  
V
0.7  
5
Input Load Current ex- GND VI VDDQ  
cept ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5-ns cycle, 200MHz  
6-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200MHz  
6.0-ns cycle, 167 MHz  
All speeds  
350  
325  
300  
275  
120  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-down  
VDD = Max, Device Deselected,  
70  
V
IN 0.3V or VIN > VDDQ – 0.3V,  
Current—CMOS Inputs f = 0  
ISB3  
Automatic CE  
VDD = Max, Device Deselected, or 4.0-ns cycle, 250 MHz  
105  
100  
95  
mA  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200MHz  
6.0-ns cycle, 167 MHz  
Current—CMOS Inputs f = fMAX = 1/tCYC  
85  
Document #: 38-05239 Rev. *B  
Page 23 of 34  
CY7C1386C  
CY7C1387C  
Electrical Characteristics Over the Operating Range[13, 14] (continued)  
Parameter  
ISB4  
Description  
Test Conditions  
VDD = Max, Device Deselected, All Speeds  
VIN VIH or VIN VIL, f = 0  
Min.  
Max.  
80  
Unit  
mA  
Automatic CE  
Power-down  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
< V  
DD\  
14. TPower-up: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
DDQ  
DD  
IH  
DD  
Thermal Resistance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedence, per EIA / JESD51.  
Capacitance[15]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
V
DD = 3.3V.  
CCLK  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
CI/O  
pF  
Notes:  
15. Tested initially and after any design or process change that may affect these parameters  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1ns  
5 pF  
R =1538Ω  
1ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document #: 38-05239 Rev. *B  
Page 24 of 34  
CY7C1386C  
CY7C1387C  
Switching Characteristics Over the Operating Range[20, 21]  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min. Max Min. Max Min. Max Min. Max Unit  
VDD(Typical) to the first Access[16]  
1
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.2  
2.2  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCO  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[17, 18, 19]  
2.6  
2.8  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.3  
Clock to High-Z[17, 18, 19]  
2.6  
2.6  
2.8  
2.8  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
LOW to Output Low-Z[17, 18, 19]  
OE  
tOELZ  
tOEHZ  
Setup Times  
tAS  
tADS  
tADVS  
tWES  
0
0
0
0
OE HIGH to Output High-Z[17, 18, 19]  
2.6  
2.8  
3.0  
3.4  
Address Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
ADSC ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Set-up Before CLK Rise  
GW, BWE, BWX  
tDS  
tCES  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
Hold Times  
tAH  
tADH  
tADVH  
tWEH  
tDH  
Address Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
Hold After CLK Rise  
ADSP ADSC  
ADV Hold After CLK Rise  
,
,
GW BWE BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
tCEH  
Chip Enable Hold After CLK Rise  
Shaded areas contain advance information.  
Notes:  
16. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V ( minimum) initially before a read or write operation  
DD  
POWER  
17. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
18. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
19. This parameter is sampled and not 100% tested.  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05239 Rev. *B  
Page 25 of 34  
CY7C1386C  
CY7C1387C  
Switching Waveforms  
Read Cycle Timing[22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BWX  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05239 Rev. *B  
Page 26 of 34  
CY7C1386C  
CY7C1387C  
Switching Waveforms (continued)  
Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
DON’T CARE  
Single WRITE  
Extended BURST WRITE  
UNDEFINED  
Document #: 38-05239 Rev. *B  
Page 27 of 34  
CY7C1386C  
CY7C1387C  
Switching Waveforms (continued)  
Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
BURST READ  
Back-to-Back  
Single WRITE  
DON’T CARE  
WRITEs  
UNDEFINED  
Note:  
24.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
ADSP or ADSC  
25. GW is HIGH.  
Document #: 38-05239 Rev. *B  
Page 28 of 34  
CY7C1386C  
CY7C1387C  
Switching Waveforms (continued)  
ZZ Mode Timing [26, 27]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode  
Document #: 38-05239 Rev. *B  
Page 29 of 34  
CY7C1386C  
CY7C1387C  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
250  
CY7C1386C-250AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
CY7C1387C-250AC  
3 Chip Enables  
CY7C1386C-250BGC  
CY7C1387C-250BGC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with  
JTAG  
CY7C1386C-250BZC  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm)  
CY7C1387C-250BZC  
3 Chip Enables with JTAG  
225  
200  
167  
CY7C1386C-225AC  
CY7C1387C-225AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Industrial  
CY7C1386C-225AI  
CY7C1387C-225AI  
CY7C1386C-225BGC  
CY7C1387C-225BGC  
CY7C1386C-225BGI  
CY7C1387C-225BGI  
CY7C1386C-225BZC  
CY7C1387C-225BZC  
CY7C1386C-225BZI  
CY7C1387C-225BZI  
CY7C1386C-200AC  
CY7C1387C-200AC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Industrial  
CY7C1386C-200AI  
CY7C1387C-200AI  
CY7C1386C-200BGC  
CY7C1387C-200BGC  
CY7C1386C-200BGI  
CY7C1387C-200BGI  
CY7C1386C-200BZC  
CY7C1387C-200BZC  
CY7C1386C-200BZI  
CY7C1387C-200BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
CY7C1386C-167AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Commercial  
Industrial  
CY7C1387C-167AC  
CY7C1386C-167AI  
CY7C1387C-167AI  
CY7C1386C-167BGC  
CY7C1387C-167BGC  
CY7C1386C-167BG  
ICY7C1387C-167BGI  
CY7C1386C-167BZC  
CY7C1387C-167BGC  
CY7C1386C-167BZI  
CY7C1387C-167BGI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 2 Chip Enables with Commercial  
JTAG  
Industrial  
BB165A 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.2mm) Commercial  
3 Chip Enables with JTAG  
Industrial  
Shaded areas contain advance information.  
Please contact your local sales representative for availability of these parts.  
Document #: 38-05239 Rev. *B  
Page 30 of 34  
CY7C1386C  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05239 Rev. *B  
Page 31 of 34  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1386C  
CY7C1387C  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05239 Rev. *B  
Page 32 of 34  
CY7C1386C  
CY7C1387C  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05239 Rev. *B  
Page 33 of 34  
CY7C1386C  
CY7C1387C  
Document History Page  
Document Title: CY7C1386C/CY7C1387C 18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM  
Document Number: 38-05239  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
116279  
08/29/02  
SKX  
New Data Sheet  
*A  
121542  
11/21/02  
DSG  
Updated package drawings 51-85115 (BG 119) to *B and 51-85122  
(BB165A) to *C.  
*B  
206081  
See ECN  
RKF  
Final Datasheet  
Document #: 38-05239 Rev. *B  
Page 34 of 34  

相关型号:

CY7C1386C-167BGI

Cache SRAM, 512KX36, 3.4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1386C-167BZC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-167BZI

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200AC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200AI

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200BGC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200BGI

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200BZC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-200BZI

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-225AC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-225AI

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386C-225BGC

18-Mb (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS