CY7C1371DV25-133AC [CYPRESS]

ZBT SRAM, 512KX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1371DV25-133AC
型号: CY7C1371DV25-133AC
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 512KX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

静态存储器 内存集成电路
文件: 总31页 (文件大小:724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
18-Mbit (512K x 36/1M x 18) Flow-Through  
SRAM with NoBL™ Architecture  
Functional Description[1]  
Features  
No Bus Latency(NoBL) architecture eliminates  
The CY7C1371DV25/CY7C1373DV25 is a 2.5V, 512K x 36/  
1M x 18 Synchronous Flow-through Burst SRAM designed  
specifically to support unlimited true back-to-back Read/Write  
operations without the insertion of wait states. The  
CY7C1371DV25/CY7C1373DV25 is equipped with the  
advanced No Bus Latency (NoBL) logic required to enable  
consecutive Read/Write operations with data being trans-  
ferred on every clock cycle. This feature dramatically improves  
the throughput of data through the SRAM, especially in  
systems that require frequent Write-Read transitions.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
dead cycles between write and read cycles  
• Can support up to 133-MHz bus operations with zero  
wait states  
— Data is transferred on every clock  
• Pin compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
• Single 2.5V power supply  
• 2.5V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 7.5 ns (for 117-MHz device)  
— 8.5 ns (for 100-MHz device)  
Write operations are controlled by the two or four Byte Write  
Select (BWX) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
• OfferedinJEDEC-standard100TQFP,119-BallBGAand  
165-Ball fBGA packages  
• Three chip enables for simple depth expansion  
• Automatic Power-down feature available using ZZ  
mode or CE deselect  
• JTAG boundary scan for BGA and fBGA packages  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Selection Guide  
133 MHz  
117 MHz  
7.5  
100 MHz  
8.5  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
6.5  
210  
70  
190  
70  
175  
70  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05557 Rev. **  
Revised August 12, 2004  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
1
Logic Block Diagram – CY7C1371DV25 (512K x 36)  
ADDRESS  
A0, A1, A  
A1  
A0  
A1'  
A0'  
REGISTER  
D1  
D0  
Q1  
Q0  
MODE  
C
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1373DV25 (1M x 18)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BW  
A
B
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
BW  
A
B
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05557 Rev. **  
Page 2 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Configurations  
100-lead TQFP  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
1
2
3
4
5
6
7
8
DQPB  
DQB  
DQB  
VDDQ  
VSS  
DQB  
DQB  
DQB  
DQB  
VSS  
VDDQ  
DQB  
DQB  
VSS  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
BYTE C  
BYTE B  
DQC  
DQC  
DQC  
VSS  
VDDQ  
DQC  
DQC  
NC  
VDD  
NC  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQD  
DQD  
DQD  
DQD  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1371DV25  
NC  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
DQPA  
BYTE D  
BYTE A  
Document #: 38-05557 Rev. **  
Page 3 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Configurations (continued)  
100-lead TQFP  
NC  
1
80  
A
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
NC  
NC  
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
DQB  
9
VSS  
10  
VDDQ  
11  
DQB  
12  
DQB  
13  
CY7C1373DV25  
NC  
14  
BYTE A  
VDD  
15  
BYTE B  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQB  
DQB  
DQPB  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
Document #: 38-05557 Rev. **  
Page 4 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA (3 Chip Enables with JTAG)  
CY7C1371DV25 (512K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
A
B
C
NC  
NC  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQPC  
DQC  
DQC  
DQC  
DQC  
VDD  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
A
WE  
VDD  
CLK  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQB  
DQB  
VDDQ  
DQA  
D
E
F
G
H
J
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
NC  
CEN  
A1  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC / 72M  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC / 36M  
NC  
ZZ  
VDDQ  
CY7C1373DV25 (1M x 18)  
2
A
CE2  
A
NC  
DQB  
NC  
1
3
A
A
4
A
5
A
A
6
A
7
A
B
C
D
E
F
G
H
J
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
ADV/LD  
VDD  
NC  
CE3  
A
DQPA  
NC  
A
A
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
NC  
CE1  
OE  
A
DQA  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
WE  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
CEN  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
U
NC  
NC / 72M  
VDDQ  
A
A
TMS  
MODE  
A
TDI  
VDD  
NC / 36M  
TCK  
NC  
A
TDO  
A
A
NC  
NC  
ZZ  
VDDQ  
Document #: 38-05557 Rev. **  
Page 5 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Configurations (continued)  
165-ball fBGA (3 Chip enable with JTAG)  
CY7C1371DV25 (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
NC  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
CE1  
BWC  
BWB  
CE3  
CEN  
WE  
VSS  
VSS  
VSS  
ADV/LD  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
BWD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
DQC  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
NC  
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1373DV25 (1M x 18)  
1
NC / 288M  
NC  
2
A
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
3
4
5
6
7
8
9
10  
11  
A
A
CE1  
BWB  
NC  
CE3  
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
NC  
NC  
NC  
NC  
NC  
VSS  
DQA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
NC  
NC  
NC  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
NC  
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05557 Rev. **  
Page 6 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the  
Synchronous  
rising edge of the CLK. A[1:0] are fed to the two-bit burst counter.  
BWA, BWB  
BWC, BWD  
Input-  
Byte Write Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Synchronous  
Sampled on the rising edge of CLK.  
WE  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is  
Synchronous  
active LOW. This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Advance/Load Input. Used to advance the on-chip address counter or load a new  
address. When HIGH (and CEN is asserted LOW) the internal burst counter is  
advanced. When LOW, a new address can be loaded into the device for an access.  
After being deselected, ADV/LD should be driven LOW in order to load a new  
address.  
Synchronous  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified  
with CEN. CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE2, and CE3 to select/deselect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Combined with the  
synchronous logic block inside the device to control the direction of the I/O pins.  
When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH,  
I/O pins are tri-stated, and act as input data pins. OE is masked during the data  
portion of a write sequence, during the first clock when emerging from a deselected  
state, when the device has been deselected.  
Asynchronous  
CEN  
Input-  
Clock Enable Input, active LOW. When asserted LOW the Clock signal is recog-  
nized by the SRAM. When deasserted HIGH the Clock signal is masked. Since  
deasserting CEN does not deselect the device, CEN can be used to extend the  
previous cycle when required.  
Synchronous  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical  
“sleep” condition with data integrity preserved. During normal operation, this pin can  
be connected to VSS or left floating.  
Asynchronous  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
clock rise of the read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP[A:D] are  
DQs  
Synchronous  
The outputs are automatically tri-stated during the data  
placed in a tri-state condition.  
portion of a write sequence, during the first clock when emerging from a deselected  
state, and when the device is deselected, regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to  
DQPX  
Synchronous  
DQs.  
MODE  
Input Strap Pin  
Mode Input. Selects the burst order of the device.  
When tied to Gnd selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence.  
VDD  
VDDQ  
VSS  
Power Supply  
I/O Power Supply  
Ground  
Power supply inputs to the core of the device.  
Power supply for the I/O circuitry.  
Ground for the device.  
Document #: 38-05557 Rev. **  
Page 7 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Pin Definitions (continued)  
Name  
I/O  
Description  
TDO  
TDI  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not being utilized, this pin should be left unconnected. This pin  
is not available on TQFP packages.  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be left floating or connected to VDD through  
a pull-up resistor. This pin is not available on TQFP packages.  
Synchronous  
TMS  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
Synchronous  
TCK  
NC  
JTAG-Clock  
-
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die.  
36M, 72M, 144M and 288M are address expansion pins and are not internally  
connected to the die.  
Document #: 38-05557 Rev. **  
Page 8 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enable inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
Functional Overview  
The CY7C1371DV25/CY7C1373DV25 is a synchronous  
flow-through burst SRAM designed specifically to eliminate  
wait states during Write-Read transitions. All synchronous  
inputs pass through input registers controlled by the rising  
edge of the clock. The clock signal is qualified with the Clock  
Enable input signal (CEN). If CEN is HIGH, the clock signal is  
not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. Maximum  
access delay from the clock rise (tCDV) is 6.5 ns (133-MHz  
device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct byte write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
DQs and DQPX.  
On the next clock rise the data presented to DQs and DQPX  
(or a subset for byte write operations, see truth table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
The data written during the Write operation is controlled by  
BWX signals. The CY7C1371DV25/CY7C1373DV25 provides  
byte write capability that is described in the truth table.  
Asserting the Write Enable input (WE) with the selected Byte  
Write Select input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations. Byte write  
capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to  
simple byte write operations.  
Because the CY7C1371DV25/CY7C1373DV25 is a common  
I/O device, data should not be driven into the device while the  
outputs are active. The Output Enable (OE) can be deasserted  
HIGH before presenting data to the DQs and DQPX inputs.  
Doing so will tri-state the output drivers. As a safety  
precaution, DQs and DQPX are automatically tri-stated during  
the data portion of a write cycle, regardless of the state of OE.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
Burst Write Accesses  
The CY7C1371DV25/CY7C1373DV25 has an on-chip burst  
counter that allows the user the ability to supply a single  
address and conduct up to four Write operations without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load the initial address, as described in the Single  
Write Access section above. When ADV/LD is driven HIGH on  
the subsequent clock rise, the Chip Enables (CE1, CE2, and  
CE3) and WE inputs are ignored and the burst counter is incre-  
mented. The correct BWX inputs must be driven in each cycle  
of the burst write, in order to write the correct bytes of data.  
Burst Read Accesses  
The CY7C1371DV25/CY7C1373DV25 has an on-chip burst  
counter that allows the user the ability to supply a single  
address and conduct up to four Reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
a new address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
Document #: 38-05557 Rev. **  
Page 9 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Sleep Mode  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
)
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
80  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Truth Table [2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
Deselect Cycle  
Deselect Cycle  
Used CE1 CE2  
ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
CE3  
X
H
X
X
L
X
L
X
L
None  
None  
None  
None  
External  
Next  
External  
Next  
External  
Next  
H
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
L
H
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L->H  
L->H  
L->H  
L->H  
L->H Data Out (Q)  
L->H Data Out (Q)  
L->H  
L->H  
L->H Data In (D)  
L->H Data In (D)  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
X
H
X
H
X
H
X
H
X
L
L
H
H
X
X
X
Tri-State  
Tri-State  
X
L
X
L
X
L
X
L
L
H
NOP/Write Abort (Begin Burst)  
None  
L->H  
Tri-State  
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BW = 0 signifies at least one Byte Write Select is active, BW = Valid signifies that the desired byte write  
X
X
selects are asserted, see truth table for details.  
3. Write is defined by BW , and WE. See truth table for Read/Write.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05557 Rev. **  
Page 10 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Truth Table (continued)[2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
Used CE1 CE2  
ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
Tri-State  
-
CE3  
X
X
Next  
Current  
None  
X
X
X
X
X
X
L
L
H
X
X
X
X
X
H
X
X
X
X
X
L
H
X
L->H  
L->H  
X
X
H
Tri-State  
Partial Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1371DV25)  
Read  
Write No bytes written  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
WE  
H
L
L
L
L
L
L
BWA  
X
H
L
H
H
H
L
BWB  
X
H
H
L
H
H
L
BWC  
BWD  
X
H
H
H
H
L
L
X
H
H
H
L
H
L
Partial Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1373DV25)  
Read  
Write - No bytes written  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
WE  
BWA  
BWB  
X
H
H
H
H
L
L
L
L
X
H
H
H
L
L
Document #: 38-05557 Rev. **  
Page 11 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see figure. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1371DV25/CY7C1373DV25 incorporates a serial  
boundary scan test access port (TAP). This part is fully  
compliant with 1149.1. The TAP operates using  
JEDEC-standard 2.5V I/O logic levels.  
The CY7C1371DV25/CY7C1373DV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
Selection  
Circuitry  
1
1
1
Instruction Register  
31 30 29  
Identification Register  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Selection  
0
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Test Mode Select (TMS)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05557 Rev. **  
Page 12 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
SAMPLE Z  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
SAMPLE/PRELOAD  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
Document #: 38-05557 Rev. **  
Page 13 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
BYPASS  
boundary scan path when multiple devices are connected  
together on a board.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
tTH  
tTL  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
25  
25  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Notes:  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05557 Rev. **  
Page 14 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
2.5V TAP AC Test Conditions  
2.5V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ............................................... .VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[12]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Test Conditions  
Min.  
2.0  
2.1  
Max.  
Unit  
V
V
V
V
V
V
µA  
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = –100 µA, VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA, VDDQ = 2.5V  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
0.4  
0.2  
VDD + 0.3  
0.7  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 2.5V  
1.7  
–0.3  
–5  
VIL  
IX  
Input LOW Voltage  
Input Load Current  
GND < VIN < VDDQ  
5
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05557 Rev. **  
Page 15 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Identification Register Definitions  
CY7C1371DV25 CY7C1373DV25  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[13]  
(512Kx36)  
000  
(1Mx18)  
000  
Description  
Describes the version number  
Reserved for internal use  
01011  
01011  
001001  
100101  
00000110100  
1
001001  
010101  
00000110100  
1
Device Width (23:18)  
Defines memory type and architecture  
Defines width and density  
Allows unique identification of SRAM vendor  
Indicates the presence of an ID register  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Scan Register Sizes  
Register Name  
Bit Size(x36)  
Bit Size(x18)  
Instruction  
Bypass  
ID  
3
1
32  
85  
89  
3
1
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note:  
13. Bit #24 is “1” in the Register Definitions for both 2.5v and 3.3v versions of this device  
Document #: 38-05557 Rev. **  
Page 16 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
119-ball BGA Boundary Scan[14, 15]  
CY7C1371DV25 (1M x 36)  
CY7C1371DV25 (1M x 36)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Notes:  
14. Balls which are NC (No Connect) are pre-set LOW  
15. Bit# 85 is pre-set HIGH  
Document #: 38-05557 Rev. **  
Page 17 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
119-ball BGA Boundary Scan Order[14, 15]  
CY7C1373DV25 (2M x 18)  
CY7C1373DV25 (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Document #: 38-05557 Rev. **  
Page 18 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
165-ball fBGA Boundary Scan Order[14, 16]  
CY7C1371DV25 (1M x 36)  
CY7C1371DV25 (1M x 36)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Note:  
16. Bit# 89 is pre-set HIGH.  
Document #: 38-05557 Rev. **  
Page 19 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
165-ball fBGA Boundary Scan Order[14, 16]  
CY7C1373DV25 (2M x 18)  
CY7C1373DV25 (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Document #: 38-05557 Rev. **  
Page 20 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
VDD/VDDQ  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
2.5V +_ 5%  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[17, 18]  
Parameter  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
IX  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
2.625  
VDD  
Unit  
V
V
V
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
VDD = Min., IOH = 1.0 mA  
VDD = Min., IOL= 1.0 mA  
0.4  
VDD + 0.3V  
Input HIGH Voltage[17] VDDQ = 2.5V  
Input LOW Voltage[17] VDDQ = 2.5V  
Input Load  
Input Current of MODE Input = VSS  
Input = VDD  
Input Current of ZZ  
1.7  
–0.3  
–5  
V
V
0.7  
5
GND VI VDDQ  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
–5  
30  
Input = VSS  
Input = VDD  
–30  
–5  
5
5
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All speeds  
210  
190  
175  
140  
130  
120  
70  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX, inputs switching  
ISB2  
Automatic CE  
Power-down  
VDD = Max, Device Deselected,  
V
IN 0.3V or VIN > VDD – 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
ISB3  
Automatic CE  
VDD = Max, Device Deselected, or 7.5-ns cycle, 133 MHz  
130  
120  
110  
80  
mA  
mA  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All Speeds  
Current—CMOS Inputs f = fMAX, inputs switching  
ISB4  
Automatic CE  
VDD = Max, Device Deselected,  
IN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Power-down  
V
Current—TTL Inputs  
Notes:  
17. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
18. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
Power-up  
DD  
IH  
DD  
DDQ  
Document #: 38-05557 Rev. **  
Page 21 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Thermal Resistance[19]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
testmethodsandproceduresfor  
measuring thermal impedance,  
per EIA / JESD51.  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
Capacitance[19]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
V
DD = 2.5V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
19. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05557 Rev. **  
Page 22 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Switching Characteristics Over the Operating Range[24, 25]  
133 MHz  
117 MHz  
100 MHz  
Parameter  
tPOWER  
Description  
Min.  
1
Max.  
Min.  
1
Max.  
Min.  
1
Max.  
Unit  
ms  
[20]  
Clock  
tCYC  
tCH  
Clock Cycle Time  
Clock HIGH  
Clock LOW  
7.5  
2.1  
2.1  
8.5  
2.3  
2.3  
10  
2.5  
2.5  
ns  
ns  
ns  
tCL  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[21, 22, 23]  
6.5  
7.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
Clock to High-Z[21, 22, 23]  
4.0  
3.2  
4.0  
3.4  
5.0  
3.8  
tOEV  
OE LOW to Output Valid  
OE LOW to Output Low-Z[21, 22, 23]  
OE HIGH to Output High-Z[21, 22, 23]  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
tALS  
tWES  
tCENS  
tDS  
tCES  
0
0
0
4.0  
4.0  
5.0  
Address Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
WE, BWX Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
Hold Times  
tAH  
tALH  
tWEH  
tCENH  
tDH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tCEH  
Notes:  
20. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
21. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
22. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
23. This parameter is sampled and not 100% tested.  
24. Timing reference level is 1.25V when V  
= 2.5V.  
DDQ  
25. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05557 Rev. **  
Page 23 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Switching Waveforms  
Read/Write Waveforms[26, 27, 28]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
26.  
27. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
28. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1= Interleaved). Burst operations are optional.  
3
Document #: 38-05557 Rev. **  
Page 24 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Switching Waveforms (continued)  
NOP, STALL AND DESELECT Cycles[26, 27, 29]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
29. The Ignore Clock Edge or Stall cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 38-05557 Rev. **  
Page 25 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing[30, 31]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
30. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
31. DQs are in high-Z when exiting ZZ sleep mode.  
4
Document #: 38-05557 Rev. **  
Page 26 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Part and Package Type  
133  
CY7C1371DV25-133AC  
CY7C1373DV25-133AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
Commercial  
3 Chip Enables  
CY7C1371DV25-133AI  
CY7C1373DV25-133AI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
CY7C1371DV25-133BGC  
CY7C1373DV25-133BGC  
CY7C1371DV25-133BGI  
CY7C1373DV25-133BGI  
CY7C1371DV25-133BZC  
CY7C1373DV25-133BZC  
CY7C1371DV25-133BZI  
CY7C1373DV25-133BZI  
CY7C1371DV25-117AC  
CY7C1373DV25-117AC  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
Industrial  
Commercial  
Industrial  
117  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
CY7C1371DV25-117AI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
CY7C1373DV25-117AI  
CY7C1371DV25-117BGC  
CY7C1373DV25-117BGC  
CY7C1371DV25-117BGI  
CY7C1373DV25-117BGI  
CY7C1371DV25-117BZC  
CY7C1373DV25-117BZC  
CY7C1371DV25-117BZI  
CY7C1373DV25-117BZI  
CY7C1371DV25-100AC  
CY7C1373DV25-100AC  
CY7C1371DV25-100AI  
CY7C1373DV25-100AI  
CY7C1371DV25-100BGC  
CY7C1373DV25-100BGC  
CY7C1371DV25-100BGI  
ICY7C1373DV25-100BGI  
CY7C1371DV25-100BZC  
CY7C1373DV25-100BZC  
CY7C1371DV25-100BZI  
CY7C1373DV25-100BZI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
Industrial  
Commercial  
Industrial  
100  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and Commercial  
JTAG  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and  
JTAG  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm) Commercial  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
Industrial  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Document #: 38-05557 Rev. **  
Page 27 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05557 Rev. **  
Page 28 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05557 Rev. **  
Page 29 of 31  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technologies. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05557 Rev. **  
Page 30 of 31  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1371DV25  
CY7C1373DV25  
PRELIMINARY  
Document History Page  
Document Title: CY7C1371DV25/CY7C1373DV25 18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL™ Archi-  
tecture (Preliminary)  
Document Number: 38-05557  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
**  
254513  
See ECN  
RKF  
New Data Sheet  
Document #: 38-05557 Rev. **  
Page 31 of 31  

相关型号:

CY7C1371DV25-133AXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133AXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BGC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BGI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BGXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BGXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BZC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BZI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BZXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV25-133BZXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1371DV33

18-Mbit (512 K x 36) Flow-Through SRAM with NoBL™ Architecture
CYPRESS

CY7C1371DV33-133AXI

18-Mbit (512 K x 36) Flow-Through SRAM with NoBL™ Architecture
CYPRESS