CY7C1371D-100BZC [CYPRESS]

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture; 18兆位( 512K ×36 / 1M ×18 )流通型SRAM与NoBLTM架构
CY7C1371D-100BZC
型号: CY7C1371D-100BZC
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
18兆位( 512K ×36 / 1M ×18 )流通型SRAM与NoBLTM架构

静态存储器
文件: 总30页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CY7C1371D  
CY7C1373D  
18-Mbit (512K x 36/1M x 18) Flow-Through  
SRAM with NoBL™ Architecture  
Functional Description[1]  
Features  
No Bus Latency(NoBL) architecture eliminates  
The CY7C1371D/CY7C1373D is a 3.3V, 512K x 36/1 Mbit x  
18 Synchronous Flow-through Burst SRAM designed specifi-  
cally to support unlimited true back-to-back Read/Write opera-  
tions without the insertion of wait states. The CY7C1371D/  
CY7C1373D is equipped with the advanced No Bus Latency  
(NoBL) logic required to enable consecutive Read/Write  
operations with data being transferred on every clock cycle.  
This feature dramatically improves the throughput of data  
through the SRAM, especially in systems that require frequent  
Write-Read transitions.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
Write operations are controlled by the two or four Byte Write  
Select (BWX) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
dead cycles between write and read cycles  
• Can support up to 133-MHz bus operations with zero  
wait states  
— Data is transferred on every clock  
• Pin-compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
• 3.3V/2.5V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 8.5 ns (for 100-MHz device)  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
• OfferedinJEDEC-standardlead-free100TQFP, 119-ball  
BGA and 165-ball fBGA packages  
• Three chip enables for simple depth expansion  
• Automatic Power-down feature available using ZZ  
mode or CE deselect  
• JTAG boundary scan for BGA and fBGA packages  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
210  
70  
175  
70  
mA  
mA  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05556 Rev. *A  
Revised November 3, 2004  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
1
Logic Block Diagram – CY7C1371D (512K x 36)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
F
E
R
S
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1373D (1 Mbit x 18)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BW  
A
B
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
BW  
A
B
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05556 Rev. *A  
Page 2 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Configurations  
100-lead TQFP  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
DQPB  
DQB  
DQB  
VDDQ  
VSS  
DQC  
DQB  
BYTE C  
BYTE B  
DQB  
DQC  
DQC  
DQC  
VSS  
VDDQ  
DQC  
DQC  
NC  
VDD  
NC  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQD  
DQD  
DQD  
DQD  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
DQB  
DQB  
VSS  
VDDQ  
DQB  
DQB  
VSS  
NC  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1371D  
DQA  
DQA  
BYTE D  
BYTE A  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 38-05556 Rev. *A  
Page 3 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Configurations (continued)  
100-lead TQFP  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
NC  
NC  
VDDQ  
VSS  
NC  
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
DQB  
8
DQB  
9
VSS  
10  
VDDQ  
11  
DQB  
12  
DQB  
13  
CY7C1373D  
NC  
14  
BYTE A  
NC  
VDD  
15  
BYTE B  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQB  
DQB  
DQPB  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
Document #: 38-05556 Rev. *A  
Page 4 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Configurations (continued)  
119-ball BGA (3 Chip Enables with JTAG)  
CY7C1371D (512K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
A
B
C
NC  
NC  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQPC  
DQC  
DQC  
DQC  
DQC  
VDD  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
A
WE  
VDD  
CLK  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQB  
DQB  
VDDQ  
DQA  
D
E
F
G
H
J
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
NC  
CEN  
A1  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC / 72M  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC / 36M  
NC  
ZZ  
VDDQ  
CY7C1373D (1 Mbit x 18)  
2
A
CE2  
A
NC  
DQB  
NC  
1
3
A
A
4
A
5
A
A
6
A
7
A
B
C
D
E
F
G
H
J
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
ADV/LD  
VDD  
NC  
CE3  
A
DQPA  
NC  
A
A
VSS  
VSS  
VSS  
BWB  
VSS  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
NC  
CE1  
OE  
A
DQA  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
WE  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
CEN  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
U
NC  
NC / 72M  
VDDQ  
A
A
TMS  
MODE  
A
TDI  
VDD  
NC / 36M  
TCK  
NC  
A
TDO  
A
A
NC  
NC  
ZZ  
VDDQ  
Document #: 38-05556 Rev. *A  
Page 5 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Configurations (continued)  
165-ball fBGA (3 Chip enable with JTAG)  
CY7C1371D (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
A
A
NC  
DQC  
DQC  
DQC  
DQC  
NC  
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
CE1  
BWC  
BWB  
CE3  
CEN  
WE  
VSS  
VSS  
VSS  
ADV/LD  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
BWD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
DQC  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
NC  
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1373D (1 Mbit x 18)  
1
NC / 288M  
NC  
2
A
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
3
4
5
6
7
8
9
10  
11  
A
A
CE1  
BWB  
NC  
CE3  
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
A
B
C
D
E
F
G
H
J
K
L
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
NC  
NC  
NC  
NC  
NC  
VSS  
DQA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
NC  
NC  
NC  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
NC  
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
NC  
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05556 Rev. *A  
Page 6 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the  
Synchronous  
rising edge of the CLK. A[1:0] are fed to the two-bit burst counter.  
BWA, BWB  
BWC, BWD  
Input-  
Byte Write Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Synchronous  
Sampled on the rising edge of CLK.  
Input-  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is  
WE  
Synchronous  
active LOW. This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Advance/Load Input. Used to advance the on-chip address counter or load a new  
address. When HIGH (and CEN is asserted LOW) the internal burst counter is  
advanced. When LOW, a new address can be loaded into the device for an access.  
After being deselected, ADV/LD should be driven LOW in order to load a new  
address.  
Synchronous  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified  
with CEN. CLK is only recognized if CEN is active LOW.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE2 and CE3 to select/deselect the device.  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous  
conjunction with CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, asynchronous input, active LOW. Combined with the  
synchronous logic block inside the device to control the direction of the I/O pins.  
When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH,  
I/O pins are tri-stated, and act as input data pins. OE is masked during the data  
portion of a write sequence, during the first clock when emerging from a deselected  
state, when the device has been deselected.  
Asynchronous  
CEN  
Input-  
Clock Enable Input, active LOW. When asserted LOW the Clock signal is recog-  
nized by the SRAM. When deasserted HIGH the Clock signal is masked. Since  
deasserting CEN does not deselect the device, CEN can be used to extend the  
previous cycle when required.  
Synchronous  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical  
“sleep” condition with data integrity preserved. During normal operation, this pin can  
be connected to VSS or left floating.  
Asynchronous  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
clock rise of the read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP[A:D] are  
placed in a tri-state condition.The outputs are automatically tri-stated during the data  
portion of a write sequence, during the first clock when emerging from a deselected  
state, and when the device is deselected, regardless of the state of OE.  
DQs  
Synchronous  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to  
DQPX  
Synchronous  
DQs.  
MODE  
Input Strap Pin  
Mode Input. Selects the burst order of the device.  
When tied to Gnd selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence.  
VDD  
VDDQ  
VSS  
Power Supply  
I/O Power Supply  
Ground  
Power supply inputs to the core of the device.  
Power supply for the I/O circuitry.  
Ground for the device.  
TDO  
JTAG serial output  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not being utilized, this pin should be left unconnected. This pin  
is not available on TQFP packages.  
Synchronous  
Document #: 38-05556 Rev. *A  
Page 7 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Pin Definitions (continued)  
Name  
I/O  
Description  
TDI  
JTAG serial input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be left floating or connected to VDD through  
a pull up resistor. This pin is not available on TQFP packages.  
Synchronous  
TMS  
JTAG serial input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 36 Mbit, 72 Mbit, 144 Mbit and  
288 Mbit are address expansion pins and are not internally connected to the die.  
Burst Read Accesses  
The CY7C1371D/CY7C1373D has an on-chip burst counter  
Functional Overview  
The CY7C1371D/CY7C1373D is a synchronous flow-through  
burst SRAM designed specifically to eliminate wait states  
during Write-Read transitions. All synchronous inputs pass  
through input registers controlled by the rising edge of the  
clock. The clock signal is qualified with the Clock Enable input  
signal (CEN). If CEN is HIGH, the clock signal is not recog-  
nized and all internal states are maintained. All synchronous  
operations are qualified with CEN. Maximum access delay  
from the clock rise (tCDV) is 6.5 ns (133-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct byte write operations.  
that allows the user the ability to supply a single address and  
conduct up to four Reads without reasserting the address  
inputs. ADV/LD must be driven LOW in order to load a new  
address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the burst  
sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enable inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
DQs and DQPX.  
On the next clock rise the data presented to DQs and DQPX  
(or a subset for byte write operations, see truth table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
The data written during the Write operation is controlled by  
BWX signals. The CY7C1371D/CY7C1373D provides byte  
write capability that is described in the truth table. Asserting  
the Write Enable input (WE) with the selected Byte Write  
Select input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations. Byte write  
capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to  
simple byte write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
Because the CY7C1371D/CY7C1373D is a common I/O  
device, data should not be driven into the device while the  
outputs are active. The Output Enable (OE) can be deasserted  
HIGH before presenting data to the DQs and DQPX inputs.  
Document #: 38-05556 Rev. *A  
Page 8 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Doing so will tri-state the output drivers. As a safety  
precaution, DQs and DQPX are automatically tri-stated during  
the data portion of a write cycle, regardless of the state of OE.  
Linear Burst Address Table (MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Burst Write Accesses  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The CY7C1371D/CY7C1373D has an on-chip burst counter  
that allows the user the ability to supply a single address and  
conduct up to four Write operations without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
the initial address, as described in the Single Write Access  
section above. When ADV/LD is driven HIGH on the subse-  
quent clock rise, the Chip Enables (CE1, CE2, and CE3) and  
WE inputs are ignored and the burst counter is incremented.  
The correct BWX inputs must be driven in each cycle of the  
burst write, in order to write the correct bytes of data.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Second  
Address  
A1: A0  
Third  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
tZZREC  
tZZI  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max.  
80  
2tCYC  
Unit  
mA  
ns  
ns  
ns  
2tCYC  
0
2tCYC  
tRZZI  
ns  
Truth Table [ 2, 3, 4, 5, 6, 7, 8]  
Address  
Used  
None  
None  
None  
None  
Operation  
Deselect Cycle  
Deselect Cycle  
CE1 CE2  
ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
CE3  
X
H
X
X
L
X
L
X
H
X
X
X
L
X
X
L
X
H
X
H
X
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
H
H
L
L
L
L
L
L
L
L
L->H  
L->H  
L->H  
L->H  
L->H Data Out (Q)  
L->H Data Out (Q)  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
External  
Next  
X
L
NOP/Dummy Read (Begin Burst) External  
L->H  
L->H  
Tri-State  
Tri-State  
Dummy Read (Continue Burst)  
Next  
X
H
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BW = 0 signifies at least one Byte Write Select is active, BW = Valid signifies that the desired byte write  
X
X
selects are asserted, see truth table for details.  
3. Write is defined by BW , and WE. See truth table for Read/Write.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 38-05556 Rev. *A  
Page 9 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Truth Table (continued)[ 2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
Used  
External  
Next  
CE1 CE2  
ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
CE3  
L
X
L
X
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/Write Abort (Begin Burst)  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
L
X
L
H
X
H
X
X
X
L
L
L
L
L
H
L
H
L
H
X
X
L
X
L
X
X
X
L
L
H
H
X
X
X
X
X
X
X
X
L
L
L
L
H
X
L->H Data In (D)  
L->H Data In (D)  
L->H  
L->H  
L->H  
X
None  
Next  
Current  
None  
Tri-State  
Tri-State  
X
X
X
X
X
Tri-State  
Partial Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1371D)  
Read  
Write No bytes written  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
WE  
H
L
L
L
L
L
L
BWA  
X
H
L
H
H
H
L
BWB  
X
H
H
L
H
H
L
BWC  
BWD  
X
H
H
H
H
L
L
X
H
H
H
L
H
L
Partial Truth Table for Read/Write[2, 3,9]  
Function (CY7C1373D)  
Read  
Write - No bytes written  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
WE  
BWA  
BWB  
X
H
H
H
H
L
L
L
L
X
H
H
H
L
L
The CY7C1371D/CY7C1373D contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1371D/CY7C1373D incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The  
TAPoperates using JEDEC-standard 3.3V or 2.5V I/O logic  
levels.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05556 Rev. *A  
Page 10 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
TAP Controller State Diagram  
TAP Controller Block Diagram  
TEST-LOGIC  
1
0
RESET  
0
Bypass Register  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
1
1
CAPTURE-DR  
CAPTURE-IR  
Circuitr  
y
.
.
.
2
1
0
0
0
SHIFT-DR  
0
SHIFT-IR  
0
x
.
.
.
.
. 2 1 0  
1
1
Boundary Scan Register  
TAP CONTROLLER  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
TCK  
TMS  
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
Performing a TAP Reset  
1
0
1
0
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Test Access Port (TAP)  
TAP Registers  
Test Clock (TCK)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see figure. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
Document #: 38-05556 Rev. *A  
Page 11 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
EXTEST  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Reserved  
IDCODE  
These instructions are not implemented but are reserved for  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
future use. Do not use these instructions.  
Document #: 38-05556 Rev. *A  
Page 12 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
tTH  
tTL  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
5
25  
25  
ns  
ns  
ns  
0
5
5
5
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Notes:  
10. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05556 Rev. *A  
Page 13 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ............................................... .VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels........................................ .1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA  
OH = –1.0 mA  
Description  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
I
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
0.2  
I
OL = 1.0 mA  
Output LOW Voltage IOL = 100 µA  
VDDQ = 2.5V  
0.2  
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
–0.5  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
VIL  
Input LOW Voltage  
VDDQ = 2.5V  
0.7  
5
IX  
Input Load Current  
GND < VIN < VDDQ  
µA  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05556 Rev. *A  
Page 14 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Identification Register Definitions  
CY7C1371D  
CY7C1373D  
(1 MbitX18)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(512KX36)  
Description  
Describes the version number  
Reserved for internal use  
Defines memory type and architecture  
Defines width and density  
000  
01011  
001001  
100101  
00000110100  
1
000  
01011  
001001  
010101  
Device Width (23:18)  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
00000110100 Allows unique identification of SRAM vendor  
1
Indicates the presence of an ID register  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
Bypass  
ID  
3
1
32  
85  
89  
3
1
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
SAMPLE/PRELOAD  
011  
100  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05556 Rev. *A  
Page 15 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
119-ball BGA Boundary Scan[13, 14]  
CY7C1371D (1 Mbit x 36)  
CY7C1371D (1 Mbit x 36)  
Bit #  
1
2
3
4
5
6
7
8
Ball ID  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Notes:  
13. Balls which are NC (No Connect) are pre-set LOW  
14. Bit# 85 is pre-set HIGH  
Document #: 38-05556 Rev. *A  
Page 16 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
119-ball BGA Boundary Scan Order[13, 14]  
CY7C1373D (2M x 18)  
Ball ID  
CY7C1373D (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
B6  
D4  
B4  
F4  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
N2  
P2  
R3  
T1  
R1  
T2  
L3  
R2  
T3  
L4  
N4  
P4  
H4  
T4  
T5  
T6  
R5  
L5  
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
K6  
P7  
N6  
L6  
K7  
J5  
H6  
G7  
F6  
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
M4  
A5  
K4  
E4  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Internal  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
2K  
L1  
M2  
N1  
P1  
K1  
L2  
Document #: 38-05556 Rev. *A  
Page 17 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
165-ball fBGA Boundary Scan Order[13, 15]  
CY7C1371D (1 Mbit x 36)  
Ball ID  
CY7C1371D (1 Mbit x 36)  
Bit #  
1
2
3
4
5
6
7
8
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Note:  
15. Bit# 89 is Pre-set HIGH.  
Document #: 38-05556 Rev. *A  
Page 18 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
165-ball fBGA Boundary Scan Order[13, 15]  
CY7C1373D (2M x 18)  
Ball ID  
CY7C1373D (2M x 18)  
Bit #  
1
2
3
4
5
6
7
8
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Ball ID  
A9  
B9  
C10  
A8  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
G1  
D2  
E2  
F2  
G2  
H1  
H3  
J1  
K1  
L1  
M1  
J2  
Bit #  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
K2  
L2  
M2  
N1  
N2  
P1  
R1  
R2  
P3  
R3  
P2  
R4  
P4  
N5  
P6  
R6  
Internal  
N6  
N7  
10N  
P11  
P8  
R8  
R9  
P9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Document #: 38-05556 Rev. *A  
Page 19 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(Above which the useful life may be impaired. For user guide-  
(per MIL-STD-883, Method 3015)  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
DC Voltage Applied to Outputs  
to VDD  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[16, 17]  
Parameter  
VDD  
VDDQ  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
VDD  
Unit  
V
V
V
V
V
V
V
V
VDDQ = 3.3V  
VDDQ = 2.5V  
2.625  
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
2.0  
0.4  
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
Input HIGH Voltage[16] VDDQ = 3.3V  
VDDQ = 2.5V  
2.0  
1.7  
–0.3  
–0.3  
–5  
V
V
V
Input LOW Voltage[16]  
VDDQ = 3.3V  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load  
Input Current of MODE Input = VSS  
Input = VDD  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
–5  
30  
Input Current of ZZ  
Input = VSS  
Input = VDD  
–30  
5
IDD  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
210  
175  
140  
120  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX, inputs switching  
ISB2  
Automatic CE  
VDD = Max, Device Deselected,  
All speeds  
70  
mA  
Power-down  
V
IN 0.3V or VIN > VDD – 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
ISB3  
Automatic CE  
VDD = Max, Device Deselected, or 7.5-ns cycle, 133 MHz  
130  
110  
mA  
mA  
Power-down  
V
IN 0.3V or VIN > VDDQ – 0.3V  
10-ns cycle, 100 MHz  
Current—CMOS Inputs f = fMAX, inputs switching  
ISB4  
Automatic CE  
VDD = Max, Device Deselected,  
IN VDD – 0.3V or VIN 0.3V, f =  
0, inputs static  
All Speeds  
80  
mA  
Power-down  
V
Current—TTL Inputs  
Notes:  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
DDQ DD  
Power-up  
DD  
IH  
DD  
Document #: 38-05556 Rev. *A  
Page 20 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Thermal Resistance[18]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
testmethodsandproceduresfor  
measuring thermal impedance,  
per EIA / JESD51.  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
Capacitance[18]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
CCLK  
CI/O  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
V
DD = 3.3V  
V
DDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
1ns  
5 pF  
R = 351Ω  
1ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1ns  
1ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
18. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05556 Rev. *A  
Page 21 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Switching Characteristics Over the Operating Range[23, 24]  
133 MHz  
100 MHz  
Parameter  
tPOWER  
Description  
Min.  
1
Max.  
Min.  
1
Max.  
Unit  
ms  
[19]  
Clock  
tCYC  
tCH  
Clock Cycle Time  
Clock HIGH  
Clock LOW  
7.5  
2.1  
2.1  
10  
2.5  
2.5  
ns  
ns  
ns  
tCL  
Output Times  
tCDV  
tDOH  
tCLZ  
tCHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[20, 21, 22]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.0  
2.0  
2.0  
Clock to High-Z[20, 21, 22]  
4.0  
3.2  
5.0  
3.8  
tOEV  
OE LOW to Output Valid  
OE LOW to Output Low-Z[20, 21, 22]  
OE HIGH to Output High-Z[20, 21, 22]  
tOELZ  
tOEHZ  
Setup Times  
tAS  
tALS  
tWES  
tCENS  
tDS  
tCES  
0
0
4.0  
5.0  
Address Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
WE, BWX Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
Hold Times  
tAH  
tALH  
tWEH  
tCENH  
tDH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tCEH  
Notes:  
19. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
20. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
22. This parameter is sampled and not 100% tested.  
23. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05556 Rev. *A  
Page 22 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Switching Waveforms  
Read/Write Waveforms[25, 26, 27]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
25.  
26. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
27. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
3
Document #: 38-05556 Rev. *A  
Page 23 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Switching Waveforms (continued)  
NOP, STALL AND DESELECT Cycles[25, 26, 28]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
28. The Ignore Clock Edge or Stall cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 38-05556 Rev. *A  
Page 24 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Switching Waveforms (continued)  
ZZ Mode Timing[29, 30]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
29. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
4
Document #: 38-05556 Rev. *A  
Page 25 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
Part and Package Type  
133  
CY7C1371D-133AXC  
CY7C1373D-133AXC  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm) Commercial  
3 Chip Enables  
CY7C1371D-133AXI  
CY7C1373D-133AXI  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
CY7C1371D-133BGC  
CY7C1373D-133BGC  
CY7C1371D-133BGI  
CY7C1373D-133BGI  
CY7C1371D-133BZC  
CY7C1373D-133BZC  
CY7C1371D-133BZI  
CY7C1373D-133BZI  
CY7C1371D-133BGXC  
CY7C1373D-133BGXC  
CY7C1371D-133BGXI  
CY7C1373D-133BGXI  
CY7C1371D-133BZXC  
CY7C1373D-133BZXC  
CY7C1371D-133BZXI  
CY7C1373D-133BZXI  
CY7C1371D-100AXC  
CY7C1373D-100AXC  
CY7C1371D-100AXI  
CY7C1373D-100AXI  
CY7C1371D-100BGC  
CY7C1373D-100BGC  
CY7C1371D-100BGI  
ICY7C1373D-100BGI  
CY7C1371D-100BZC  
CY7C1373D-100BZC  
CY7C1371D-100BZI  
CY7C1373D-100BZI  
CY7C1371D-100BGXC  
CY7C1373D-100BGXC  
CY7C1371D-100BGXI  
ICY7C1373D-100BGXI  
CY7C1371D-100BZXC  
CY7C1373D-100BZXC  
CY7C1371D-100BZXI  
CY7C1373D-100BZXI  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG Commercial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG  
Industrial  
Commercial  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables Commercial  
and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables  
and JTAG  
Industrial  
Commercial  
Industrial  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm)3 Chip Enables and JTAG  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm)3 Chip Enables and JTAG  
100  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm) Commercial  
3 Chip Enables  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
3 Chip Enables  
Industrial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG Commercial  
BG119 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables and JTAG  
Industrial  
Commercial  
Industrial  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BB165D 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4mm)  
3 Chip Enables and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables Commercial  
and JTAG  
BG119 Lead-Free 119-ball (14 x 22 x 2.4 mm) BGA 3 Chip Enables  
and JTAG  
Industrial  
Commercial  
Industrial  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm) 3 Chip Enables and JTAG  
BB165D Lead-Free 165-ball Fine-Pitch Ball Grid Array (13 x 15 x  
1.4mm) 3 Chip Enables and JTAG  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts. Lead-free BG packages (Ordering Code:  
BGX) will be available in 2005.  
Document #: 38-05556 Rev. *A  
Page 26 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
SEE DETAIL  
A
(ꢀX)  
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05556 Rev. *A  
Page 27 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05556 Rev. *A  
Page 28 of 30  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. i486 is a trademark, and Intel and Pentium  
are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All product and company names  
mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05556 Rev. *A  
Page 29 of 30  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
PRELIMINARY  
CY7C1371D  
CY7C1373D  
Document History Page  
Document Title: CY7C1371D/CY7C1373D 18-Mbit (512K x 36/1 Mbit x 18) Flow-Through SRAM with NoBL™ Architecture  
Document Number: 38-05556  
Orig. of  
REV. ECN NO. Issue Date Change  
Description of Change  
**  
254513  
See ECN  
RKF  
New data sheet  
*A  
288531  
See ECN  
SYT  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 117 Mhz Speed Bin  
Added lead-free information for 100-Pin TQFP , 119 BGA and 165 FBGA  
Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering Infor-  
mation  
Document #: 38-05556 Rev. *A  
Page 30 of 30  

相关型号:

CY7C1371D-100BZCT

ZBT SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, FBGA-165
CYPRESS

CY7C1371D-100BZI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-100BZIT

ZBT SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, FBGA-165
CYPRESS

CY7C1371D-100BZXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-100BZXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-133AXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-133AXCT

ZBT SRAM, 512KX36, 6.5ns, CMOS, PQFP100
CYPRESS

CY7C1371D-133AXI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-133BGC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-133BGCT

ZBT SRAM, 512KX36, 6.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
CYPRESS

CY7C1371D-133BGI

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS

CY7C1371D-133BGXC

18-Mbit (512K x 36/1M x 18) Flow-Through SRAM with NoBLTM Architecture
CYPRESS