CY7C1366C-166AXCT [CYPRESS]

SRAM,;
CY7C1366C-166AXCT
型号: CY7C1366C-166AXCT
厂家: CYPRESS    CYPRESS
描述:

SRAM,

静态存储器
文件: 总32页 (文件大小:731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1366C  
CY7C1367C  
9-Mbit (256K × 36/512K × 18)  
Pipelined DCD Sync SRAM  
9-Mbit (256K  
× 36/512K × 18) Pipelined DCD Sync SRAM  
circuitry and a two-bit counter for internal burst operation. All  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered clock input (CLK). The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
chip enable (CE1), depth-expansion chip enables (CE2 and  
Features  
Supports bus operation up to 166 MHz  
Available speed grade is 166 MHz  
CE3[1]), burst control inputs (ADSC, ADSP,  
ADV), write  
and  
Registered inputs and outputs for pipelined operation  
Optimal for performance (double-cycle deselect)  
• Depth expansion without wait state  
enables (BWX, and BWE), and global write (GW). Asynchronous  
inputs include the output enable (OE) and the ZZ pin.  
Addresses and chip enables are registered at rising edge of  
clock when either address strobe processor (ADSP) or address  
strobe controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
advance pin (ADV).  
3.3 V – 5% and + 10% core power supply (VDD  
)
2.5 V/3.3 V I/O power supply (VDDQ  
)
Fast clock-to-output times  
3.5 ns (for 166 MHz device)  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed write cycle.This part supports byte write  
operations (see Pin Definitions on page 6 and Partial Truth Table  
for Read/Write on page 9 for further details). Write cycles can be  
one to four bytes wide as controlled by the byte write control  
Provide high performance 3-1-1-1 access rate  
User-selectable burst counter supporting IntelPentium  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed writes  
inputs. GW  
This  
active  
causes all bytes to be written.  
LOW  
device incorporates an additional pipelined enable register which  
delays turning off the output buffers an additional cycle when a  
deselect is executed. This feature enables depth expansion  
without penalizing system performance.  
Asynchronous output enable  
Available in Pb-free 100-pin TQFP and non Pb-free 119-ball  
BGA package  
The CY7C1366C/CY7C1367C operates from a +3.3 V core  
power supply while all outputs operate with a +3.3 V or a +2.5 V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
IEEE 1149.1 JTAG-compatible boundary scan  
“ZZ” sleep mode option  
For a complete list of related documentation, click here.  
Functional Description  
The CY7C1366C/CY7C1367C SRAM integrates 256K × 36 and  
512K × 18 SRAM cells with advanced synchronous peripheral  
Selection Guide  
Description  
Maximum access time  
166 MHz Unit  
3.5  
180  
40  
ns  
Maximum operating current  
mA  
mA  
Maximum CMOS standby current  
Note  
1. CE is for 100-pin TQFP. 119-ball BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
Document Number: 38-05542 Rev. *N  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 12, 2018  
 
 
 
 
CY7C1366C  
CY7C1367C  
Logic Block Diagram – CY7C1366C  
ADDRESS  
REGISTER  
A0,A1,A  
MODE  
2
A[1:0]  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ D, DQP  
BYTE  
WRITE REGISTER  
D
DQ D, DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ ,DQP  
c
C
DQ  
BYTE  
WRITE REGISTER  
c,DQP C  
MEMORY  
ARRAY  
BYTE  
WRITE DRIVER  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQP B  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQP B  
B
BW  
BW  
B
C
D
DQ A, DQP  
BYTE  
A
DQ A, DQP  
BYTE  
A
A
WRITE DRIVER  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Logic Block Diagram – CY7C1367C  
ADDRESS  
REGISTER  
A0, A1,  
A
2
A[1:0]  
MODE  
ADV  
Q1  
BURST  
CLK  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
BYTE  
WRITE DRIVER  
B , DQP B  
DQ B, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
OUTPUT  
REGISTERS  
DQ s,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQ A, DQP  
BYTE  
A
B
E
DQ  
A , DQP A  
BYTE  
WRITE REGISTER  
BW  
A
WRITE DRIVER  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
CE  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 38-05542 Rev. *N  
Page 2 of 32  
CY7C1366C  
CY7C1367C  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................6  
Functional Overview ........................................................7  
Single Read Accesses ................................................7  
Single Write Accesses Initiated by ADSP ...................8  
Single Write Accesses Initiated by ADSC ...................8  
Burst Sequences .........................................................8  
Sleep Mode .................................................................8  
Interleaved Burst Address Table .................................8  
Linear Burst Address Table .........................................8  
ZZ Mode Electrical Characteristics ..............................8  
Partial Truth Table for Read/Write ..................................9  
Partial Truth Table for Read/Write ..................................9  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................10  
Disabling the JTAG Feature ......................................10  
Test Access Port (TAP) .............................................10  
PERFORMING A TAP RESET ..................................10  
TAP REGISTERS ......................................................10  
TAP Instruction Set ...................................................11  
TAP Controller State Diagram .......................................12  
TAP Controller Block Diagram ......................................13  
TAP Timing ......................................................................13  
TAP AC Switching Characteristics ...............................14  
3.3 V TAP AC Test Conditions .......................................14  
3.3 V TAP AC Output Load Equivalent .........................14  
2.5 V TAP AC Test Conditions .......................................14  
2.5 V TAP AC Output Load Equivalent .........................14  
TAP DC Electrical Characteristics  
Identification Register Definitions ................................16  
Scan Register Sizes .......................................................16  
Identification Codes .......................................................16  
Boundary Scan Order ....................................................17  
Maximum Ratings ...........................................................18  
Operating Range .............................................................18  
Neutron Soft Error Immunity .........................................18  
Electrical Characteristics ...............................................18  
Capacitance ....................................................................19  
Thermal Resistance ........................................................19  
AC Test Loads and Waveforms .....................................20  
Switching Characteristics ..............................................21  
Switching Waveforms ....................................................22  
Ordering Information ......................................................26  
Ordering Code Definitions .........................................26  
Package Diagrams ..........................................................27  
Acronyms ........................................................................28  
Document Conventions .................................................28  
Units of Measure .......................................................28  
Document History Page .................................................29  
Sales, Solutions, and Legal Information ......................32  
Worldwide Sales and Design Support .......................32  
Products ....................................................................32  
PSoC® Solutions ......................................................32  
Cypress Developer Community .................................32  
Technical Support .....................................................32  
and Operating Conditions .............................................15  
Document Number: 38-05542 Rev. *N  
Page 3 of 32  
CY7C1366C  
CY7C1367C  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1367C  
(512K × 18)  
CY7C1366C  
(256K × 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document Number: 38-05542 Rev. *N  
Page 4 of 32  
 
CY7C1366C  
CY7C1367C  
Pin Configurations (continued)  
Figure 2. 119-ball BGA (14 × 22 × 2.4 mm) pinout (2 Chip Enable with JTAG)  
CY7C1366C (256K × 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
ADSC  
VDD  
B
C
NC/288M  
NC/144M  
CE2  
A
A
A
A
A
A
A
NC/576M  
NC/1G  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
CE1  
DQC  
DQB  
VDDQ  
OE  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
P
R
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
Document Number: 38-05542 Rev. *N  
Page 5 of 32  
 
CY7C1366C  
CY7C1367C  
Pin Definitions  
Name  
I/O  
Description  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK  
A0, A1, A  
Input-  
[2]  
synchronous if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1:A0 are fed to the  
two-bit counter.  
BWA,BWB,  
Input-  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled  
BWC,BWD synchronous on the rising edge of CLK.  
GW  
Input-  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a global write  
synchronous is conducted (All bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input- Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
synchronous LOW to conduct a byte write.  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronous and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a  
new external address is loaded.  
CE2  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3[2] to select/deselect the device. CE2 is sampled only when a new external address is loaded.  
[2]  
CE3  
Input- Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE to select/deselect the device.  
CE [2] is assumed  
3
Not connected for BGA. Where referenced,  
2
active throughout this document for BGA.  
CE3 is sampled only when a new external address is loaded.  
OE  
Input-  
Output enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
asynchronous the I/O pins behave as outputs. When deasserted HIGH, DQ pins are tristated, and act as input data  
pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
synchronous automatically increments the address in a burst cycle.  
ADSP  
Input- Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted  
synchronous LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when CE1 is deasserted HIGH.  
ADSC  
ZZ  
Input-  
Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted  
synchronous LOW, addresses presented to the device are captured in the address registers. A1:A0 are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
Input-  
ZZ “sleep” input, active HIGH. When asserted HIGH places the device in a non-time-critical “sleep”  
asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ  
pin has an internal pull-down.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQs,  
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
addresses presented during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX  
are placed in a tristate condition.  
DQPs  
VDD  
Power supply Power supply inputs to the core of the device.  
VSS  
Ground  
Ground for the core of the device.  
VSSQ  
VDDQ  
I/O ground Ground for the I/O circuitry.  
I/O power Power supply for the I/O circuitry.  
supply  
Note  
2. CE is for 100-pin TQFP. 119-ball BGA is offered only in 2 Chip Enable.  
3
Document Number: 38-05542 Rev. *N  
Page 6 of 32  
 
 
CY7C1366C  
CY7C1367C  
Pin Definitions (continued)  
Name  
MODE  
I/O  
Description  
Input-  
static  
Selects burst order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and should remain static during device operation.  
Mode pin has an internal pull-up.  
TDO  
TDI  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG feature is  
output  
not being used, this pin should be disconnected. This pin is not available on TQFP packages.  
synchronous  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
input  
used, this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages.  
synchronous  
TMS  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
input  
used, this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages.  
synchronous  
TCK  
NC  
JTAG-  
clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being used, this pin must be connected  
to VSS. This pin is not available on TQFP packages.  
No connects. Not internally connected to the die.18M, 36M, 72M, 144M, 288M, 576M, and 1G are  
address expansion pins and are not internally connected to the die.  
output tristate control.  
is ignored if  
is  
CE1  
selection and  
HIGH.  
ADSP  
Functional Overview  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1 is  
HIGH. The address presented to the address inputs is stored into  
the address advancement logic and the address register while  
being presented to the memory core. The corresponding data is  
allowed to propagate to the input of the output registers. At the  
rising edge of the next clock the data is allowed to propagate  
through the output register and on the data bus within tco if OE  
is active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its outputs  
are always tristated during the first cycle of the access. After the  
first cycle of the access, the outputs are controlled by the OE  
signal. Consecutive single read cycles are supported.  
The CY7C1366C/CY7C1367C supports secondary cache in  
systems using either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™ processors.  
The linear burst sequence is suited for processors that use a  
linear burst sequence. The burst order is user selectable, and is  
determined by sampling the MODE input. Accesses can be  
initiated with either the processor address strobe (ADSP) or the  
controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BWX) inputs. A global write enable  
(GW) overrides all byte write inputs and writes data to all four  
bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
The CY7C1366C/CY7C1367C is a double-cycle deselect part.  
Once the SRAM is deselected at clock rise by the chip select and  
either ADSP or ADSC signals, its output will tristate immediately  
after the next clock rise.  
[3]  
Synchronous chip selects CE1, CE2, CE3  
and an  
asynchronous output enable (OE) provide for easy bank  
Note  
3. CE is for 100-pin TQFP. 119-ball BGA is offered only in 2 Chip Enable.  
3
Document Number: 38-05542 Rev. *N  
Page 7 of 32  
 
 
CY7C1366C  
CY7C1367C  
Single Write Accesses Initiated by ADSP  
Burst Sequences  
This access is initiated when both of the following conditions are  
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) chip  
select is asserted active. The address presented is loaded into  
the address register and the address advancement logic while  
being delivered to the memory core. The write signals (GW,  
BWE, and BWX) and ADV inputs are ignored during this first  
cycle.  
The CY7C1366C/CY7C1367C provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. The interleaved burst sequence is  
designed specifically to support Intel Pentium applications. The  
linear burst sequence is designed to support processors that  
follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input. Both read and write burst  
operations are supported.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the  
corresponding address location in the memory core. If GW is  
Asserting ADV LOW at clock rise automatically increments the  
burst counter to the next address in the burst sequence. Both  
read and write burst operations are supported.  
HIGH, then the write operation is controlled by BWE and  
BWX  
Sleep Mode  
signals. The CY7C1366C/CY7C1367C provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the byte write enable input (BWE) with the selected  
byte write input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation remain  
unaltered. A synchronous self-timed write mechanism is  
provided to simplify the write operations.  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation ‘sleep’ mode. Two clock  
cycles are required to enter into or exit from this ‘sleep’ mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the ‘sleep’ mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the ‘sleep’ mode. CEs,  
ADSP, and ADSC must remain inactive for the duration of tZZREC  
after the ZZ input returns LOW.  
Because the CY7C1366C/CY7C1367C is a common I/O device,  
the output enable (OE) must be deasserted HIGH before  
presenting data to the DQ inputs. Doing so tristates the output  
drivers. As a safety precaution, DQ are automatically tristated  
whenever a write cycle is detected, regardless of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
Single Write Accesses Initiated by ADSC  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
ADSC write accesses are initiated when the following conditions  
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted  
HIGH, (3) chip select is asserted active, and (4) the appropriate  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
combination of the write inputs (GW, BWE, and  
) are  
BWX  
asserted active to conduct a write to the desired byte(s). ADSC  
triggered write accesses require a single clock cycle to complete.  
The address presented is loaded into the address register and  
the address advancement logic while being delivered to the  
memory core. The ADV input is ignored during this cycle. If a  
global write is conducted, the data presented to the DQX is  
written into the corresponding address location in the memory  
core. If a byte write is conducted, only the selected bytes are  
written. Bytes not selected during a byte write operation remain  
unaltered. A synchronous self-timed write mechanism is  
provided to simplify the write operations.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
Because the CY7C1366C/CY7C1367C is a common I/O device,  
the output enable (OE) must be deasserted HIGH before  
presenting data to the DQX inputs. Doing so tristates the output  
drivers. As a safety precaution, DQX are automatically tristated  
whenever a write cycle is detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
50  
Unit  
mA  
ns  
ZZ > VDD– 0.2 V  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 38-05542 Rev. *N  
Page 8 of 32  
 
CY7C1366C  
CY7C1367C  
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write for CY7C1366C follows. [4, 5]  
Function (CY7C1366C)  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
BWA  
X
H
L
Read  
Read  
X
H
H
L
Write byte A – (DQA and DQPA)  
Write byte B – (DQB and DQPB)  
Write bytes B, A  
L
L
H
L
L
L
Write byte C – (DQC and DQPC)  
Write bytes C, A  
L
H
H
L
H
L
L
L
Write bytes C, B  
L
L
H
L
Write bytes C, B, A  
Write byte D – (DQD and DQPD)  
Write bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write bytes D, B  
L
L
H
L
Write bytes D, B, A  
Write bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write bytes D, C, A  
Write bytes D, C, B  
Write all bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write all bytes  
X
X
X
X
X
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write for CY7C1367C follows. [4, 5]  
Function (CY7C1367C)  
GW  
H
BWE  
BWB  
X
BWA  
X
Read  
Read  
H
L
L
L
L
X
H
H
H
Write byte A – (DQA and DQPA)  
Write byte B – (DQB and DQPB)  
Write all bytes  
H
H
L
H
L
H
H
L
L
Write all bytes  
L
X
X
Notes  
4. All voltages referenced to V (GND).  
SS  
5. This part has a voltage regulator internally; t  
be initiated.  
is the time that the power needs to be supplied above V  
initially before a read or write operation can  
POWER  
DD(minimum)  
Document Number: 38-05542 Rev. *N  
Page 9 of 32  
 
 
CY7C1366C  
CY7C1367C  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
The CY7C1366C incorporates a serial boundary scan test  
access port (TAP) in the BGA package only. The TQFP package  
does not offer this functionality. This part operates in accordance  
with IEEE Standard 1149.1-1900, but does not have the set of  
functions required for full 1149.1 compliance. These functions  
from the IEEE specification are excluded because their inclusion  
places an added delay in the critical speed path of the SRAM.  
Note that the TAP controller functions in a manner that does not  
conflict with the operation of other devices using 1149.1 fully  
compliant TAPs. The TAP operates using JEDEC-standard 3.3 V  
or 2.5 V I/O logic levels.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
enable data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The CY7C1366C contains a TAP controller, instruction register,  
boundary scan register, bypass register, and ID register.  
Instruction Register  
Disabling the JTAG Feature  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 13. Upon power-up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device comes  
up in a reset state which does not interfere with the operation of  
the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to enable  
fault isolation of the board-level serial test data path.  
Test Access Port (TAP)  
Bypass Register  
Test Clock (TCK)  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This enables data to be shifted through the  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
SRAM with minimal delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Data-In (TDI)  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information about  
loading the instruction register, see the TAP Controller State  
Diagram on page 12. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The Boundary Scan Order on page 17 show the order in which  
the bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected to  
TDI and the LSB is connected to TDO.  
Test Data-Out (TDO)  
Identification (ID) Register  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Identification Codes on page 16).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in Identification Register Definitions on  
page 16.  
Document Number: 38-05542 Rev. *N  
Page 10 of 32  
 
CY7C1366C  
CY7C1367C  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a high Z state.  
TAP Instruction Set  
Overview  
SAMPLE/PRELOAD  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in Identification  
Codes on page 16. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail in this section.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK# captured in the boundary scan register.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD enables an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a high Z state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required - that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
IDCODE  
BYPASS  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
Document Number: 38-05542 Rev. *N  
Page 11 of 32  
CY7C1366C  
CY7C1367C  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 38-05542 Rev. *N  
Page 12 of 32  
CY7C1366C  
CY7C1367C  
TAP Controller Block Diagram  
0
0
Bypass Register  
2
1
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
.
.
.
2
1
0
x
.
.
.
.
. 2 1  
0
Boundary Scan Register  
TAP CONTROLLER  
TCK  
TM S  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05542 Rev. *N  
Page 13 of 32  
CY7C1366C  
CY7C1367C  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [6, 7]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK clock cycle time  
TCK clock frequency  
TCK clock HIGH time  
TCK clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK clock LOW to TDO valid  
TCK clock LOW to TDO invalid  
0
10  
ns  
ns  
TMS setup to TCK clock rise  
TDI setup to TCK clock rise  
Capture setup to TCK rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK clock rise  
TDI hold after clock rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after clock rise  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times ...................................................1 ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
Notes  
6.  
7. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CH  
CS  
R
F
Document Number: 38-05542 Rev. *N  
Page 14 of 32  
 
 
 
CY7C1366C  
CY7C1367C  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.3 V ± 0.165 V unless otherwise noted)  
Parameter [8]  
Description  
Conditions  
VDDQ = 3.3 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH voltage  
IOH = –4.0 mA  
IOH = –1.0 mA  
IOH = –100 µA  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH voltage  
Output LOW voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage  
Input load current  
V
0.4  
V
IOL = 8.0 mA  
IOL = 8.0 mA  
IOL = 100 µA  
V
0.4  
V
0.2  
V
0.2  
V
2.0  
1.7  
–0.5  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
VIL  
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Notes  
8. All voltages referenced to V (GND).  
SS  
Document Number: 38-05542 Rev. *N  
Page 15 of 32  
 
CY7C1366C  
CY7C1367C  
Identification Register Definitions  
CY7C1366C  
(256K × 36)  
Instruction Field  
Description  
Revision number (31:29)  
Device depth (28:24) [9]  
000  
01011  
Describes the version number.  
Reserved for Internal Use  
Device width (23:18) 119-ball BGA  
Cypress device ID (17:12)  
101110  
100110  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Cypress JEDEC ID code (11:1)  
ID register presence indicator (0)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Instruction  
3
1
Bypass  
ID  
32  
71  
Boundary scan order (119-ball BGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM outputs to high Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note  
9. Bit #24 is “1” in the Register Definitions for both 2.5 V and 3.3 V versions of this device.  
Document Number: 38-05542 Rev. *N  
Page 16 of 32  
 
 
 
CY7C1366C  
CY7C1367C  
Boundary Scan Order  
119-ball BGA  
CY7C1366C (256K × 36)  
Bit #  
1
Ball ID  
Signal Name  
CLK  
GW  
BWE  
OE  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Ball ID  
P4  
Signal Name  
A0  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
2
N4  
A1  
3
R6  
A
4
T5  
A
5
ADSC  
ADSP  
ADV  
A
T3  
A
6
R2  
A
7
R3  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
8
P2  
9
A
P1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
L2  
K1  
N2  
N1  
M2  
L1  
K2  
Internal  
H1  
G2  
E2  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
D1  
N6  
P7  
N7  
M6  
L7  
H2  
G1  
F2  
E1  
D2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
B6  
C2  
A2  
A
E4  
CE1  
A
B2  
CE2  
A
L3  
BWD  
BWC  
BWB  
BWA  
Internal  
A
G3  
G5  
L5  
A
A
A
Internal  
A
Document Number: 38-05542 Rev. *N  
Page 17 of 32  
 
CY7C1366C  
CY7C1367C  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Range  
Commercial 0 °C to +70 °C  
VDD  
VDDQ  
3.3 V– 5% / 2.5 V – 5% to  
Storage temperature ................................ –65 °C to +150 °C  
+ 10%  
VDD  
Ambient temperature with  
power applied .......................................... –55 °C to +125 °C  
Supply voltage on VDD relative to GND .......–0.5 V to +4.6 V  
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD  
Neutron Soft Error Immunity  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
DC voltage applied to outputs  
in tristate ...........................................–0.5 V to VDDQ + 0.5 V  
LSBU  
LMBU  
SEL  
Logical  
single-bit  
upsets  
25 °C  
25 °C  
85 °C  
361 394 FIT/  
Mb  
DC input voltage .................................0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Logical  
multi-bit  
upsets  
0
0
0.01 FIT/  
Mb  
Static discharge voltage  
(per MIL-STD-883, method 3015) ..........................> 2001 V  
Latch-up current ....................................................> 200 mA  
Single event  
latch-up  
0.1  
FIT/  
Dev  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to  
Application Note AN54908 “Accelerated Neutron SER Testing and Calculation of  
Terrestrial Failure Rates”.  
Electrical Characteristics  
Over the Operating Range  
Parameter [10, 11]  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
3.6  
Unit  
V
VDD  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
2.625  
V
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage [10]  
Input LOW voltage [10]  
for 3.3 V I/O, IOH =4.0 mA  
for 2.5 V I/O, IOH =1.0 mA  
for 3.3 V I/O, IOL=8.0 mA  
for 2.5 V I/O, IOL= 1.0 mA  
for 3.3 V I/O  
V
2.0  
V
0.4  
V
0.4  
V
2.0  
VDD + 0.3  
VDD + 0.3  
0.8  
V
for 2.5 V I/O  
1.7  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
V
for 2.5 V I/O  
0.7  
V
Input leakage current except ZZ GND VI VDDQ  
and MODE  
5
µA  
Input current of MODE  
Input = VSS  
–30  
5
µA  
µA  
µA  
µA  
µA  
Input = VDD  
Input current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
Output leakage current  
GND VI VDDQ, output disabled  
–5  
Notes  
10. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
11. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
V  
.
Power-up  
DD(min)  
IH  
DD  
DDQ  
DD  
Document Number: 38-05542 Rev. *N  
Page 18 of 32  
 
 
 
 
 
 
CY7C1366C  
CY7C1367C  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter [10, 11]  
Description  
Test Conditions  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
Min  
Max  
Unit  
IDD  
VDD operating supply current  
6 ns cycle,  
166 MHz  
180  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE power-down  
current – TTL inputs  
VDD = Max, device deselected, 6 ns cycle,  
110  
40  
mA  
mA  
mA  
mA  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
166 MHz  
Automatic CE power-down  
current – CMOS inputs  
VDD = Max, device deselected, 6 ns cycle,  
VIN 0.3 V or VIN > VDDQ – 0.3 V, 166 MHz  
f = 0  
Automatic CE power-down  
current – CMOS inputs  
VDD = Max, device deselected, or 6 ns cycle,  
VIN 0.3 V or VIN > VDDQ – 0.3 V, 166 MHz  
f = fMAX = 1/tCYC  
100  
40  
Automatic CE power-down  
current – TTL inputs  
VDD = Max, device deselected, 6 ns cycle,  
VIN VIH or VIN VIL,  
f = 0  
166 MHz  
Capacitance  
100-pin TQFP 119-ball BGA  
Parameter [12]  
Description  
Test Conditions  
TA = 25 °C, f = 1 MHz,  
Unit  
Max  
Max  
CIN  
Input capacitance  
5
5
5
5
5
7
pF  
pF  
pF  
VDD = 3.3 V, VDDQ = 2.5 V  
CCLK  
CI/O  
Clock input capacitance  
Input/output capacitance  
Thermal Resistance  
100-pin TQFP 119-ball BGA  
Parameter [12]  
Description  
Test Conditions  
Unit  
Package  
Package  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51.  
29.41  
34.1  
°C/W  
JC  
Thermal resistance  
(junction to case)  
6.31  
14.0  
°C/W  
Note  
12. Tested initially and after any design or process change that may affect these parameters  
Document Number: 38-05542 Rev. *N  
Page 19 of 32  
 
 
 
CY7C1366C  
CY7C1367C  
AC Test Loads and Waveforms  
Figure 3. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
R = 317  
3.3 V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50   
0
10%  
R = 50   
L
GND  
5 pF  
R = 351   
1ns  
1ns  
V = 1.5 V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
2.5 V I/O Test Load  
(b)  
R = 1667   
2.5 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50   
0
10%  
L
5 pF  
R =1538   
1ns  
1ns  
V = 1.25 V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document Number: 38-05542 Rev. *N  
Page 20 of 32  
 
CY7C1366C  
CY7C1367C  
Switching Characteristics  
Over the Operating Range  
-166  
Parameter [13, 14]  
Description  
VDD(typical) to the first access [15]  
Unit  
Min  
Max  
tPOWER  
Clock  
tCYC  
1
ms  
Clock cycle time  
Clock HIGH  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data output valid after CLK rise  
Data output hold after CLK rise  
Clock to low Z [16, 17, 18]  
1.25  
1.25  
1.25  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to high Z [16, 17, 18]  
3.5  
3.5  
tOEV  
OE LOW to output valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to output low Z [16, 17, 18]  
OE HIGH to output high Z [16, 17, 18]  
0
3.5  
Address setup before CLK rise  
ADSC, ADSP setup before CLK rise  
ADV setup before CLK rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX setup before CLK rise  
Data input setup before CLK rise  
Chip enable setup before CLK rise  
tDS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
ADSP, ADSC hold after CLK rise  
ADV hold after CLK rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX hold after CLK rise  
Data input hold after CLK rise  
Chip enable hold after CLK rise  
tDH  
tCEH  
Notes  
13. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
14. Test conditions shown in (a) of Figure 3 on page 20 unless otherwise noted.  
15. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V  
initially before a read or write operation can  
POWER  
DD(minimum)  
be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 3 on page 20. Transition is measured ±200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
Document Number: 38-05542 Rev. *N  
Page 21 of 32  
 
 
 
 
 
 
 
CY7C1366C  
CY7C1367C  
Switching Waveforms  
Figure 4. Read Cycle Timing [19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
Burst continued with  
ADDRESS  
t
t
WEH  
WES  
new base address  
GW, BWE,BW  
X
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
19. In this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 38-05542 Rev. *N  
Page 22 of 32  
 
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
Figure 5. Write Cycle Timing [20, 21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3  
+
2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Single WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Notes  
20. In this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
21.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document Number: 38-05542 Rev. *N  
Page 23 of 32  
 
 
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
Figure 6. Read/Write Cycle Timing [22, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
High-Z  
BURST READ  
Back-to-Back  
WRITEs  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
22. In this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
24. GW is HIGH.  
Document Number: 38-05542 Rev. *N  
Page 24 of 32  
 
 
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
Figure 7. ZZ Mode Timing [25, 26]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05542 Rev. *N  
Page 25 of 32  
 
 
CY7C1366C  
CY7C1367C  
Ordering Information  
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your  
local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary  
page at http://www.cypress.com/products  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
166 CY7C1366C-166AXC  
CY7C1367C-166AXC  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
Ordering Code Definitions  
CY  
7
C 13XX C - 166 A X C  
Temperature Range:  
C = Commercial  
Pb-free  
Package Type:  
A = 100-pin TQFP  
Speed Grade: 166 MHz  
Process Technology: C 90 nm  
Part Identifier: 13XX = 1366 or 1367  
1366 = DCD, 256K × 36 (9Mb)  
1367 = DCD, 512K × 18 (9Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 38-05542 Rev. *N  
Page 26 of 32  
 
 
CY7C1366C  
CY7C1367C  
Package Diagrams  
Figure 8. 100-pin TQFP (16 × 22 × 1.6 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 38-05542 Rev. *N  
Page 27 of 32  
 
CY7C1366C  
CY7C1367C  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CE  
Ball Grid Array  
Chip Enable  
Symbol  
°C  
Unit of Measure  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
nm  
ns  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Input/Output  
I/O  
JEDEC  
JTAG  
LMBU  
LSB  
Joint Electron Devices Engineering Council  
Joint Test Action Group  
Logical Multi-Bit Upsets  
Least Significant Bit  
nanometer  
nanosecond  
ohm  
LSBU  
MSB  
OE  
Logical Single-Bit Upsets  
Most Significant Bit  
%
percent  
Output Enable  
pF  
V
picofarad  
volt  
SEL  
Single Event Latch-up  
Static Random Access Memory  
Test Access Port  
SRAM  
TAP  
W
watt  
TCK  
TMS  
TDI  
Test Clock  
Test Mode Select  
Test Data-In  
TDO  
TQFP  
TTL  
Test Data-Out  
Thin Quad Flat Pack  
Transistor-Transistor Logic  
Document Number: 38-05542 Rev. *N  
Page 28 of 32  
 
 
CY7C1366C  
CY7C1367C  
Document History Page  
Document Title: CY7C1366C/CY7C1367C, 9-Mbit (256K × 36/512K × 18) Pipelined DCD Sync SRAM  
Document Number: 38-05542  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
241690  
278969  
RKF  
RKF  
07/12/2004 New data sheet.  
*A  
10/18/2004 Updated Boundary Scan Order (Changed to match the B rev of these devices).  
Updated Boundary Scan order (Changed to match the B rev of these devices).  
*B  
332059  
PCI  
03/11/2005 Updated Features (Changed frequency from 225 MHz to 250 MHz).  
Updated Selection Guide (Changed frequency from 225 MHz to 250 MHz;  
unshaded 200 MHz and 166 MHz frequency related information).  
Updated Pin Configurations (Address expansion pins/balls in the pinouts for  
all packages are modified as per JEDEC standard).  
Updated Pin Definitions (Added Address Expansion pins).  
Updated Functional Overview (Added ZZ Mode Electrical Characteristics).  
Updated Identification Register Definitions (Splitted Device Width (23:18) into  
two rows; retained the same values for 165-ball FBGA; Changed Device Width  
(23:18) for 119-ball BGA from 000110 to 101110).  
Updated Electrical Characteristics (Changed frequency from 225 MHz to  
250 MHz; unshaded 200 MHz and 166 MHz frequency related information;  
Updated Test Conditions of VOL, VOH parameters; changed maximum value of  
ISB1 parameter from 50 mA to 130 mA, 120 mA, and 110 mA for 250 MHz,  
200 MHz, and 166 MHz; changed maximum value of ISB3 parameter from  
50 mA to 120 mA, 110 mA, and 100 mA for 250 MHz, 200 MHz, and 166 MHz).  
Updated Thermal Resistance (Changed value of JA and JC parameters  
from 25 C/W and 9 C/W to 29.41 C/W and 6.31 C/W respectively for 100-pin  
TQFP Package; changed value of JA andJC parameters from 25 C/W and  
6 C/W to 34.1 C/W and 14.0 C/W respectively for 119-ball BGA Package;  
changed value of JA and JC parameters from 27 C/W and 6 C/W to  
16.8 C/W and 3.0 C/W respectively for 165-ball FBGA Package).  
Updated Switching Characteristics (Changed frequency from 225 MHz to  
250 MHz, unshaded 200 MHz and 166 MHz frequency related information;  
replaced minimum value of tCYC parameter from 4.4 ns to 4.0 ns for 250 MHz  
frequency).  
Updated Ordering Information (Updated part numbers (Added lead-free  
information for 100-pin TQFP, 119-ball BGA and 165-ball FBGA packages)).  
*C  
*D  
377095  
408298  
PCI  
06/10/2005 Updated Electrical Characteristics (Updated Note 11 (Modified Test Condition  
from VIH < VDD to VIH VDD); changed maximum value of ISB2 parameter from  
30 mA to 40 mA).  
RXU  
11/16/2005 Changed address of Cypress Semiconductor Corporation from “3901 North  
First Street” to “198 Champion Court”.  
Changed status from Preliminary to Final.  
Updated Electrical Characteristics (Changed “Input Load Current except ZZ  
and MODE” to “Input Leakage Current except ZZ and MODE” in the description  
of IX parameter).  
Updated Ordering Information (Updated part numbers; replaced Package  
Name column with Package Diagram in the Ordering Information table).  
*E  
*F  
501793  
VKN  
VKN  
09/13/2006 Updated TAP AC Switching Characteristics (Changed minimum value of tTH  
and tTL parameters from 25 ns to 20 ns; changed maximum value of tTDOV  
parameter from 5 ns to 10 ns).  
Updated Maximum Ratings (Added the Maximum Rating for Supply Voltage  
on VDDQ Relative to GND).  
Updated Ordering Information (Updated part numbers).  
2756940  
08/27/2009 Added Neutron Soft Error Immunity.  
Updated Ordering Information (Updated part numbers; and modified the  
disclaimer for the Ordering information).  
Document Number: 38-05542 Rev. *N  
Page 29 of 32  
CY7C1366C  
CY7C1367C  
Document History Page (continued)  
Document Title: CY7C1366C/CY7C1367C, 9-Mbit (256K × 36/512K × 18) Pipelined DCD Sync SRAM  
Document Number: 38-05542  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*G  
3046851  
NJY  
10/04/2010 Updated Ordering Information:  
No change in part numbers.  
Added Ordering Code Definitions.  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *B to *C.  
spec 51-85115 – Changed revision from *B to *C.  
spec 51-85180 – Changed revision from *B to *C.  
Added Acronyms and Units of Measure.  
Minor edits.  
Updated to new template.  
Completing Sunset Review.  
*H  
*I  
3370121  
3613540  
PRIT  
PRIT  
09/13/2011 Updated Package Diagrams  
spec 51-85050 – Changed revision from *C to *D.  
Completing Sunset Review.  
05/10/2012 Updated Features (Removed 250 MHz, 200 MHz frequencies related  
information, removed 165-ball FBGA Package related information).  
Updated Functional Description (Removed the Note “For best-practices  
recommendations, refer to the Cypress application note System Design  
Guidelines on www.cypress.com.” and its reference).  
Updated Selection Guide (Removed 250 MHz, 200 MHz frequencies related  
information).  
Updated Pin Configurations (Updated Figure 2(Removed CY7C1367Crelated  
information), removed 165-ball FBGA Package related information).  
Updated IEEE 1149.1 Serial Boundary Scan (JTAG) (Removed CY7C1367C  
related information).  
Updated Identification Register Definitions (Removed CY7C1367C related  
information).  
Updated Scan Register Sizes (Removed “Bit Size (× 18)” column).  
Updated Boundary Scan Order (Removed CY7C1367C related information).  
Removed Boundary Scan Order (Corresponding to 165-ball FBGA Package).  
Updated Operating Range (Removed Industrial Temperature Range).  
Updated Electrical Characteristics (Removed 250 MHz, 200 MHz frequencies  
related information).  
Updated Capacitance (Removed 165-ball FBGA Package related information).  
Updated Thermal Resistance (Removed 165-ball FBGA Package related  
information).  
Updated Switching Characteristics (Removed 250 MHz, 200 MHz frequencies  
related information).  
Updated Package Diagrams (Removed 165-ball FBGA Package related  
information (spec 51-85180 *C)).  
*J  
3755966  
4539022  
PRIT  
PRIT  
09/26/2012 Updated Package Diagrams:  
spec 51-85115 – Changed revision from *C to *D.  
Completing Sunset Review.  
*K  
10/15/2014 Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *D to *E.  
Removed spec 51-85115 *D.  
Updated to new template.  
Completing Sunset Review.  
*L  
4575272  
PRIT  
11/20/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Document Number: 38-05542 Rev. *N  
Page 30 of 32  
CY7C1366C  
CY7C1367C  
Document History Page (continued)  
Document Title: CY7C1366C/CY7C1367C, 9-Mbit (256K × 36/512K × 18) Pipelined DCD Sync SRAM  
Document Number: 38-05542  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*M  
5515297  
PRIT  
11/09/2016 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *F.  
Updated to new template.  
Completing Sunset Review.  
*N  
6028297  
RMES  
01/12/2018 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-05542 Rev. *N  
Page 31 of 32  
CY7C1366C  
CY7C1367C  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-05542 Rev. *N  
Revised January 12, 2018  
Page 32 of 32  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation.  

相关型号:

CY7C1366C-166AXI

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166AXIT

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1366C-166BGC

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BGI

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BGXC

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BGXI

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BZC

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BZI

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BZXC

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-166BZXI

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1366C-200AXC

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
CYPRESS