CY7C1361C_2009 [CYPRESS]

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM; 9兆位( 256K ×36 / 512K ×18 )流通型SRAM
CY7C1361C_2009
型号: CY7C1361C_2009
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Flow-Through SRAM
9兆位( 256K ×36 / 512K ×18 )流通型SRAM

静态存储器
文件: 总32页 (文件大小:1085K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1361C/CY7C1363C  
9-Mbit (256K x 36/512K x 18)  
Flow-Through SRAM  
Features  
Functional Description  
Supports 100, 133 MHz Bus Operations  
Supports 100 MHz Bus Operations (Automotive)  
256K × 36/512K × 18 Common I/O  
The CY7C1361C/CY7C1363C[1] is a 3.3V, 256K x 36/512K x 18  
synchronous flow-through SRAMs, respectively designed to  
interface with high speed microprocessors with minimum glue  
logic. Maximum access delay from clock rise is 6.5 ns (133 MHz  
version). A 2-bit on-chip counter captures the first address in a  
burst and increments the address automatically for the rest of the  
burst access. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (CE1), depth-expansion Chip  
Enables (CE2 and CE3[2]), Burst Control inputs (ADSC, ADSP,  
and ADV), Write Enables (BWx, and BWE), and Global Write  
(GW). Asynchronous inputs include the Output Enable (OE) and  
the ZZ pin.  
3.3V –5% and +10% Core Power Supply (VDD  
)
2.5V or 3.3V I/O Power Supply (VDDQ  
)
Fast Clock-to-Output Times  
6.5 ns (133-MHz version)  
Provide High Performance 2-1-1-1 Access Rate  
User-selectable Burst Counter supporting Intel® Pentium®  
Interleaved or Linear Burst Sequences  
The CY7C1361C/CY7C1363C enables either interleaved or  
linear burst sequences, selected by the MODE input pin. A HIGH  
selects an interleaved burst sequence, while a LOW selects a  
linear burst sequence. Burst accesses can be initiated with the  
Processor Address Strobe (ADSP) or the cache Controller  
Address Strobe (ADSC) inputs. Address advancement is  
controlled by the Address Advancement (ADV) input.  
Separate Processor and Controller Address Strobes  
Synchronous Self-timed Write  
Asynchronous Output Enable  
Available in Pb-free 100-Pin TQFP Package, Pb-free and non  
Pb-free 119-Ball BGA Package, and 165-Ball FBGA Package  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
TQFP Available with 3-Chip Enable and 2-Chip Enable  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode option  
The CY7C1361C/CY7C1363C operates from a +3.3V core  
power supply while all outputs may operate with either a +2.5 or  
+3.3V supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
Description  
Maximum Access Time  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Operating Current  
250  
180  
mA  
mA  
Maximum CMOS Standby Current  
Commercial/  
Industrial  
40  
40  
Automotive  
60  
mA  
Notes  
1. For best-practices recommendations, refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for A version of TQFP (3 Chip Enable Option) and 165 FBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
Document #: 38-05541 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised August 26, 2009  
[+] Feedback  
CY7C1361C/CY7C1363C  
Logic Block Diagram – CY7C1361C (256K x 36)  
ADDRESS  
REGISTER  
A0, A1,  
A
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ C, DQP  
BYTE  
C
DQ C, DQP  
BYTE  
C
BW  
C
WRITE REGISTER  
OUTPUT  
BUFFERS  
DQ s  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ B, DQP  
BYTE  
B
B
C
D
DQ B, DQP  
BYTE  
B
BW  
B
WRITE REGISTER  
WRITE REGISTER  
DQ A, DQP  
BYTE  
A
DQ A, DQP  
A
BW  
A
WRITE REGISTER  
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1363C (512K x 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ B,DQP B  
WRITE DRIVER  
DQ B,DQP B  
WRITE REGISTER  
BW B  
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ A,DQP A  
WRITE DRIVER  
DQ A,DQP A  
WRITE REGISTER  
BW A  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE  
1
CE2  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
Document #: 38-05541 Rev. *G  
Page 2 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Pin Configurations  
Figure 1. 100-Pin TQFP (3 Chip Enables - A version)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
VSS/DNU  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1363C  
(512K x 18)  
CY7C1361C (A)  
(256K x 36)  
NC  
16  
NC  
VSS  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05541 Rev. *G  
Page 3 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Figure 2. 100-Pin TQFP (2 Chip Enables - AJ Version)  
DQPC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
VSS/DNU  
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS/DNU  
VDD  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
NC  
VSS  
DQD  
NC  
VDD  
ZZ  
CY7C1363C  
(512K x 18)  
CY7C1361C  
(256K x 36)  
NC  
VSS  
VDD  
ZZ  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document #: 38-05541 Rev. *G  
Page 4 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Figure 3. 100- Ball BGA (2 Chip Enables with JTAG)  
CY7C1361C (256K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
ADSP  
B
C
NC/288M  
NC/144M  
CE2  
A
A
A
A
A
A
A
NC/512M  
NC/1G  
ADSC  
VDD  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
OE  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
D
E
F
DQC  
DQB  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
G
H
J
BWC  
VSS  
NC  
ADV  
BWB  
VSS  
NC  
GW  
VDD  
DQD  
VSS  
CLK  
NC  
VSS  
K
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
P
R
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
CY7C1363C (512K x 18)  
2
A
1
3
A
4
5
6
7
VDDQ  
NC/512M  
NC/1G  
NC  
A
B
C
D
E
F
VDDQ  
A
A
ADSP  
NC/288M  
NC/144M  
DQB  
CE2  
A
A
A
ADSC  
VDD  
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPA  
NC  
NC  
DQA  
CE1  
OE  
VDDQ  
DQA  
VDDQ  
G
H
J
NC  
DQB  
NC  
VDD  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
NC  
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
K
L
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
M
N
P
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC/72M  
VDDQ  
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 38-05541 Rev. *G  
Page 5 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Figure 4. 165-Ball FBGA (3 Chip Enable)  
CY7C1361C (256K x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/18M  
A1  
NC/72M  
TDI  
TDO  
A0  
MODE  
NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1363C (512K x 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
3
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
B
C
D
NC  
NC/1G  
NC  
NC  
DQB  
NC  
DQB  
DQB  
DQB  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
VSS  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC/18M  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
TDO  
MODE  
NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05541 Rev. *G  
Page 6 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Address Inputs used to select one of the address locations. Sampled at the rising  
Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2] are sampled  
active. A[1:0] feed the 2-bit counter.  
BWA,BWB  
BWC,BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
Synchronous SRAM. Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
Synchronous global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment  
the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE2 and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is  
HIGH. CE1 is sampled only when a new external address is loaded.  
CE2  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only when  
a new external address is loaded.  
[2]  
CE3  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE2 to select/deselect the device.CE3 is sampled only when a  
new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
Asynchronous When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are  
tristated, and act as input data pins. OE is masked during the first clock of a read cycle when  
emerging from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automat-  
Synchronous ically increments the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is ignored when  
is deasserted HIGH.  
CE1  
ADSC  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.  
Synchronous When asserted LOW, addresses presented to the device are captured in the address  
registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized.  
BWE  
ZZ  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal  
Synchronous must be asserted LOW to conduct a byte write.  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has an internal pull down.  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
DQs  
Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the previous clock rise of  
the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW,  
the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tristate  
condition.The outputs are automatically tristated during the data portion of a write  
sequence, during the first clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.  
DQPX  
Synchronous During write sequences, DQPX is controlled by BWX correspondingly.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD  
or left floating selects interleaved burst sequence. This is a strap pin and should remain  
static during device operation. Mode Pin has an internal pull up.  
VDD  
Power Supply Power supply inputs to the core of the device.  
Document #: 38-05541 Rev. *G  
Page 7 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Pin Definitions (continued)  
Name  
I/O  
Description  
VDDQ  
VSS  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VSSQ  
TDO  
I/O Ground  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the  
Synchronous JTAG feature is not being used, this pin should be left unconnected. This pin is not  
available on TQFP packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being used, this pin can be left floating or connected to VDD through a pull  
up resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous feature is not being used, this pin can be disconnected or connected to VDD. This pin is  
not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being used, this pin must  
be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 18M, 36M, 72M, 144M, 288M, 576M,  
and 1G are address expansion pins and are not internally connected to the die.  
VSS/DNU  
Ground/DNU  
This pin can be connected to Ground or should be left floating.  
Document #: 38-05541 Rev. *G  
Page 8 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Single Write Accesses Initiated by ADSC  
Functional Overview  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3[2] are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133 MHz device).  
The CY7C1361C/CY7C1363C supports secondary cache in  
systems using either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium and i486™ processors.  
The linear burst sequence is suited for processors that use a  
linear burst sequence. The burst order is user-selectable, and is  
determined by sampling the MODE input. Accesses can be  
initiated with either the Processor Address Strobe (ADSP) or the  
Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the memory  
core. The information presented to DQ[A:D] is written into the  
specified address location. Byte writes are allowed. All I/Os are  
tristated when a write is detected, even a byte write. Since this  
is a common I/O device, the asynchronous OE input signal must  
be deasserted and the I/Os must be tristated prior to the presen-  
tation of data to DQs. As a safety precaution, the data lines are  
tristated once a write cycle is detected, regardless of the state of  
OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3[2]) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tristate control. ADSP is ignored if CE1 is  
HIGH.  
Burst Sequences  
The CY7C1361C/CY7C1363C provides an on-chip two-bit  
wraparound burst counter inside the SRAM. The burst counter is  
fed by A[1:0], and can follow either a linear or interleaved burst  
order. The burst order is determined by the state of the MODE  
input. A LOW on MODE will select a linear burst sequence. A  
HIGH on MODE selects an interleaved burst order. Leaving  
MODE unconnected causes the device to default to a interleaved  
burst sequence.  
Single Read Accesses  
Table 1. Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
[2]  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
asserted active and (2) ADSP or ADSC is asserted LOW (if the  
access is initiated by ADSC, the write inputs must be deasserted  
during this first cycle). The address presented to the address  
inputs is latched into the address register and the burst  
counter/control logic and presented to the memory core. If the  
OE input is asserted LOW, the requested data will be available  
at the data outputs a maximum to tCDV after clock rise. ADSP is  
ignored if CE1 is HIGH.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Single Write Accesses Initiated by ADSP  
Table 2. Linear Burst Address Table (MODE = GND)  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3[2] are all asserted active  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX) are ignored during this first clock cycle. If the write  
inputs are asserted active (see Partial Truth Table for Read/Write  
on page 11 for appropriate states that indicate a write) on the  
next clock rise, the appropriate data will be latched and written  
into the device.Byte writes are allowed. All I/Os are tristated  
during a byte write. Since this is a common I/O device, the  
asynchronous OE input signal must be deasserted and the I/Os  
must be tristated prior to the presentation of data to DQs. As a  
safety precaution, the data lines are tristated once a write cycle  
is detected, regardless of the state of OE.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation ‘sleep’ mode. Two clock  
cycles are required to enter into or exit from this ‘sleep’ mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the ‘sleep’ mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the ‘sleep’ mode. CE1, CE2,  
CE3[2], ADSP, and ADSC must remain inactive for the duration  
of tZZREC after the ZZ input returns LOW.  
Document #: 38-05541 Rev. *G  
Page 9 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
ZZ > VDD – 0.2V  
Min  
Max  
50  
Unit  
mA  
mA  
ns  
IDDZZ  
Sleep mode standby current  
Comm/ind’l  
Automotive  
60  
tZZS  
Device operation to ZZ  
ZZ recovery time  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Truth Table  
The Truth Table for CY7C1361C and CY7C1363C follows. [3, 4, 5, 6, 7]  
Address  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ ADSP  
ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
Deselected Cycle, Power Down None  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
X
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Q
L
X
L
L
L
H
H
X
L
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
Sleep Mode, Power-down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L
L
L
H
X
L
Tristate  
D
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
Tristate  
Q
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Next  
L
H
L
Tristate  
Next  
L
Q
Next  
L
H
X
X
L
Tristate  
Next  
L
D
Next  
L
L
D
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
Tristate  
Q
H
L
H
X
X
Tristate  
D
L
D
Notes  
3. X=”Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a  
don't care for the remainder of the write cycle.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05541 Rev. *G  
Page 10 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write follows.[3, 8]  
Function (CY7C1361C)  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Write Byte (A, DQPA)  
L
Write Byte (B, DQPB)  
L
H
L
Write Bytes (B, A, DQPA, DQPB)  
Write Byte (C, DQPC)  
L
L
L
H
H
L
H
L
Write Bytes (C, A, DQPC, DQPA)  
Write Bytes (C, B, DQPC, DQPB)  
Write Bytes (C, B, A, DQPC, DQPB, DQPA)  
Write Byte (D, DQPD)  
L
L
L
L
H
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
Write Bytes (D, A, DQPD, DQPA)  
Write Bytes (D, B, DQPD, DQPA)  
Write Bytes (D, B, A, DQPD, DQPB, DQPA)  
Write Bytes (D, B, DQPD, DQPB)  
Write Bytes (D, B, A, DQPD, DQPC, DQPA)  
Write Bytes (D, C, A, DQPD, DQPB, DQPA)  
Write All Bytes  
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write  
The Truth Table for Read/Write follows.[3, 8]  
GW  
H
BWE  
BWB  
X
BWA  
Function (CY7C1363C)  
Read  
H
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
H
L
Write All Bytes  
L
X
X
Note  
8. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05541 Rev. *G  
Page 11 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Test Access Port (TAP)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Test Clock (TCK)  
The CY7C1361C/CY7C1363C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The TQFP  
package does not offer this functionality. This part operates in  
accordance with IEEE Standard 1149.1-1900, but does not have  
the set of functions required for full 1149.1 compliance. These  
functions from the IEEE specification are excluded because their  
inclusion places an added delay in the critical speed path of the  
SRAM. Note that the TAP controller functions in a manner that  
does not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using JEDEC-standard  
3.3V or 2.5V I/O logic levels.  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The CY7C1361C/CY7C1363C contains a TAP controller,  
instruction register, boundary scan register, bypass register, and  
ID register.  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. TDI is internally pulled  
up and can be unconnected if the TAP is unused in an appli-  
cation. TDI is connected to the most significant bit (MSB) of any  
register. (See TAP Controller Block Diagram.)  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull up resistor. TDO should be  
left unconnected. Upon power up, the device comes up in a reset  
state which does not interfere with the operation of the device.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See TAP Controller State Diagram.)  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
TAP Controller Block Diagram  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
0
Bypass Register  
1
1
CAPTURE-DR  
CAPTURE-IR  
2
1
0
0
0
0
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
SHIFT-DR  
0
SHIFT-IR  
0
.
.
. 2 1  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
TCK  
TAP CONTROLLER  
TM S  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Document #: 38-05541 Rev. *G  
Page 12 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Performing a TAP Reset  
TAP Instruction Set  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail in this section.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these instruc-  
tions are executed.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 12. Upon power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to enable fault  
isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This enables data to be shifted through the  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
SRAM with minimal delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
Boundary Scan Register  
IDCODE  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and enables  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
The 119-Ball BGA Boundary Scan Order on page 18 and  
165-Ball FBGA Boundary Scan Order on page 19 show the order  
in which the bits are connected. Each bit corresponds to one of  
the bumps on the SRAM package. The MSB of the register is  
connected to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in Identification Register Definitions on  
page 16.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the instruc-  
tion register and the TAP controller is in the Capture-DR state, a  
snapshot of data on the inputs and output pins is captured in the  
boundary scan register.  
Document #: 38-05541 Rev. *G  
Page 13 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in tran-  
sition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that will be captured. Re-  
peatable results may not be possible.  
PRELOAD enables an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required - that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
To guarantee that the boundary scan register captures the cor-  
rect value of a signal, the SRAM signal must be stabilized long  
enough to meet the TAP controller's capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK# captured in the boundary scan register.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 38-05541 Rev. *G  
Page 14 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Parameter  
Min  
Max  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Setup to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document #: 38-05541 Rev. *G  
Page 15 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................VSS to 3.3V  
Input rise and fall times....................................................1 ns  
Input timing reference levels........................................... 1.5V  
Output reference levels .................................................. 1.5V  
Test load termination supply voltage .............................. 1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
1.5V  
2.5V TAP AC Output Load Equivalent  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[11]  
Parameter  
Description  
Description  
IOH = –4.0 mA  
OH = –1.0 mA  
Conditions  
VDDQ = 3.3V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH Voltage  
I
VDDQ = 2.5V  
VDDQ = 3.3V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = –100 µA  
V
VDDQ = 2.5V  
V
IOL = 8.0 mA  
IOL = 8.0 mA  
IOL = 100 µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
0.4  
0.4  
V
V
0.2  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
0.2  
V
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
V
VIL  
–0.5  
–0.3  
–5  
V
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1361C  
(256K x36)  
CY7C1363C  
(512K x18)  
Instruction Field  
Description  
Revision Number (31:29)  
Device Depth (28:24)[12]  
000  
000  
Describes the version number.  
Reserved for Internal Use  
01011  
01011  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Cypress Device ID (17:12)  
101001  
000001  
100110  
00000110100  
1
101001  
000001  
010110  
Defines memory type and architecture  
Defines memory type and architecture  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
00000110100 Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
1
Notes  
11. All voltages referenced to V (GND).  
SS  
12. Bit #24 is “1” in the Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05541 Rev. *G  
Page 16 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Scan Register Sizes  
Register Name  
Bit Size (x 36)  
Bit Size (x 18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
71  
71  
32  
71  
71  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05541 Rev. *G  
Page 17 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
119-Ball BGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Bit # ball ID  
Bit #  
ball ID  
Bit #  
ball ID  
1
CLK  
GW  
BWE  
OE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
R6  
T5  
A0  
1
CLK  
GW  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
A0  
A1  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K4  
H4  
2
A1  
2
3
A
3
M4  
BWE  
OE  
R6  
A
4
A
4
F4  
T5  
A
5
ADSC  
ADSP  
ADV  
A
T3  
A
5
B4  
ADSC  
ADSP  
ADV  
A
T3  
A
6
R2  
R3  
P2  
A
6
A4  
R2  
A
7
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
G4  
R3  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
8
C3  
Internal  
Internal  
Internal  
Internal  
P2  
9
A
P1  
9
B3  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
L2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T2  
A
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
N2  
N1  
M2  
L1  
N1  
M2  
DQB  
E7  
L1  
DQB  
K2  
F6  
K2  
DQB  
Internal  
H1  
G2  
E2  
G7  
Internal  
H1  
Internal  
DQB  
H6  
T7  
G2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
K7  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
D1  
H2  
G1  
F2  
L6  
D1  
DQB  
N6  
P7  
N7  
M6  
L7  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
C2  
A2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
B6  
A
A2  
A
E4  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
Internal  
E4  
CE1  
A
B2  
A3  
A
B2  
CE2  
A
L3  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
BWA  
Internal  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
A
Internal  
A6  
A
Internal  
A
B6  
A
Document #: 38-05541 Rev. *G  
Page 18 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
165-Ball FBGA Boundary Scan Order  
CY7C1361C (256K x 36)  
CY7C1363C (512K x 18)  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Bit #  
ball ID  
Bit # ball ID  
Bit #  
ball ID  
1
B6  
B7  
CLK  
GW  
BWE  
OE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
A0  
1
B6  
B7  
CLK  
GW  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
R6  
P6  
A0  
A1  
2
A1  
2
3
A7  
A
3
A7  
BWE  
OE  
R4  
A
4
B8  
A
4
B8  
P4  
A
5
A8  
ADSC  
ADSP  
ADV  
A
A
5
A8  
ADSC  
ADSP  
ADV  
A
R3  
A
6
B9  
A
6
B9  
P3  
A
7
A9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
A9  
R1  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
B10  
Internal  
Internal  
Internal  
Internal  
N1  
9
A
9
A10  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
K2  
J2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
A
Internal  
Internal  
Internal  
C11  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
M2  
M1  
L1  
M1  
L1  
DQB  
K1  
J1  
D11  
K1  
DQB  
E11  
J1  
DQB  
Internal  
G2  
F2  
F11  
Internal  
G2  
Internal  
DQB  
G11  
H11  
F2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
E2  
D2  
G1  
F1  
J10  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
K10  
D2  
DQB  
L10  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
A
A2  
A
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A3  
CE1  
A
R10  
P10  
A
B3  
CE2  
A
A
Internal  
Internal  
A4  
Internal  
Internal  
BWB  
BWA  
CE3  
A
R9  
A
P9  
A
P9  
A
R8  
A
R8  
A
B5  
P8  
A
P8  
A
A6  
P11  
A
P11  
A
Document #: 38-05541 Rev. *G  
Page 19 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Maximum Ratings  
Neutron Soft Error Immunity  
Test  
Conditions  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Parameter Description  
Typ Max* Unit  
LSBU  
LMBU  
SEL  
Logical  
Single-Bit  
Upsets  
25°C  
25°C  
85°C  
361 394 FIT/  
Mb  
Storage Temperature ................................ –65°C to + 150°C  
Ambient Temperature with  
Power Applied ........................................... –55°C to + 125°C  
Logical  
Multi-Bit  
Upsets  
0
0
0.01 FIT/  
Mb  
Supply Voltage on VDD Relative to GND .......–0.5V to + 4.6V  
Supply Voltage on VDDQ Relative to GND..... –0.5V to + VDD  
Single Event  
Latch up  
0.1  
FIT/  
Dev  
DC Voltage Applied to Outputs  
in tri-state.............................................–0.5V to VDDQ + 0.5V  
* No LMBU or SEL events occurred during testing; this column represents a  
DC Input Voltage ...................................0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
2
statistical χ , 95% confidence limit calculation. For more details refer to Appli-  
cation Note AN 54908 “Accelerated Neutron SER Testing and Calculation of  
Terrestrial Failure Rates”  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Latch up Current..................................................... >200 mA  
Operating Range  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
Industrial  
–40°C to +85°C  
Automotive –40°C to +125°C  
[13, 14]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
2.625  
V
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[13]  
Input LOW Voltage[13]  
for 3.3V I/O, IOH = 4.0 mA  
for 2.5V I/O, IOH = 1.0 mA  
for 3.3V I/O, IOL= 8.0 mA  
for 2.5V I/O, IOL= 1.0 mA  
for 3.3V I/O  
V
2.0  
V
0.4  
V
0.4  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
2.0  
1.7  
V
for 2.5V I/O  
V
for 3.3V I/O  
–0.3  
–0.3  
–5  
V
for 2.5V I/O  
0.7  
V
Input Leakage Current  
except ZZ and MODE  
GND VI VDDQ  
5
μA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
μA  
μA  
μA  
μA  
μA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
Output Leakage Current GND < VI < VDDQ, Output Disabled  
–5  
Notes  
13. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
14. T  
: Assumes a linear ramp from 0V to V (min.) within 200ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05541 Rev. *G  
Page 20 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Electrical Characteristics Over the Operating Range (continued)[13, 14]  
Parameter  
Description  
Test Conditions  
Min  
Max  
250  
180  
110  
150  
Unit  
IDD  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
7.5 ns cycle,133 MHz  
10 ns cycle,100 MHz  
All speeds (Comm/Ind’l)  
mA  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN> VIH or VIN < VIL, f = fMAX,  
inputs switching  
mA  
mA  
10 ns cycle,100 MHz  
(Automotive)  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device Deselected,  
All speeds  
40  
mA  
VIN > VDD – 0.3V or VIN < 0.3V,  
Current—CMOS Inputs f = 0, inputs static  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
Max. VDD, Device Deselected,  
VIN > VDDQ – 0.3V or VIN < 0.3V,  
All speeds (Comm/Ind’l)  
100  
120  
mA  
mA  
10 ns cycle,100 MHz  
(Automotive)  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
IN > VIH or VIN < VIL  
f = 0, inputs static  
All speeds (Comm/Ind’l)  
40  
60  
mA  
mA  
V
10 ns cycle,100 MHz  
(Automotive)  
Capacitance[15]  
100 TQFP 119 BGA 165FBGA  
Parameter  
Description  
Test Conditions  
TA = 25°C, f = 1 MHz,  
Unit  
Max.  
Max.  
Max.  
CIN  
Input Capacitance  
5
5
5
5
5
7
5
5
7
pF  
pF  
pF  
V
DD = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
VDDQ = 2.5V  
Input/Output Capaci-  
tance  
Thermal Resistance[15]  
100 TQFP 119 BGA 165 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
testmethodsandproceduresfor  
measuring thermal impedance,  
according to EIA/JESD51  
29.41  
34.1  
14.0  
16.8  
3.0  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6.31  
°C/W  
Figure 5. AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5V  
T
(a)  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note  
15. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05541 Rev. *G  
Page 21 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Switching Characteristics Over the Operating Range[20, 21]  
–133  
–100  
Unit  
Description  
Parameter  
Min  
Max  
Min  
Max  
tPOWER  
Clock  
tCYC  
VDD(Typical) to the first Access[16]  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[17, 18, 19]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.0  
0
2.0  
0
tCLZ  
tCHZ  
Clock to High-Z[17, 18, 19]  
3.5  
3.5  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[17, 18, 19]  
OE HIGH to Output High-Z[17, 18, 19]  
0
0
3.5  
3.5  
Address Setup Before CLK Rise  
ADSP, ADSC Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:D] Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BW[A:D] Hold After CLK Rise  
ADV Hold After CLK Rise  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes  
16. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
can be initiated.  
17. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
18. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
19. This parameter is sampled and not 100% tested.  
20. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
21. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05541 Rev. *G  
Page 22 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Timing Diagrams  
Figure 6. Read Cycle Timing[22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05541 Rev. *G  
Page 23 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Timing Diagrams (continued)  
Figure 7. Write Cycle Timing[22, 23]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Note  
23.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05541 Rev. *G  
Page 24 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Timing Diagrams (continued)  
Figure 8. Read/Write Cycle Timing[22, 24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes  
24. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
25.  
GW is HIGH.  
Document #: 38-05541 Rev. *G  
Page 25 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Timing Diagrams (continued)  
Figure 9. ZZ Mode Timing[26, 27]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
26. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
27. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05541 Rev. *G  
Page 26 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Ordering Information  
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your local  
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/products  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices  
Table 3. Ordering Information  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1361C-133AXC  
CY7C1363C-133AXC  
CY7C1361C-133AJXC  
CY7C1363C-133AJXC  
CY7C1361C-133AXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
lndustrial  
CY7C1363C-133AJXI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(2 Chip Enable)  
100 CY7C1361C-100AXC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
(3 Chip Enable)  
Commercial  
Automotive  
CY7C1361C-100BGC  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
100 CY7C1361C-100AXE  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Document #: 38-05541 Rev. *G  
Page 27 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Package Diagrams (continued)  
Figure 10. 100-Pin TQFP (14X20X1.4 mm)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0° MIN.  
0.20 MAX.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
1.00 REF.  
0.20 MIN.  
51-85050-*B  
DETAIL  
A
Document #: 38-05541 Rev. *G  
Page 28 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Figure 11. 119-Ball BGA (14X22X2.4 mm)  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.75 0.15(119X)  
Ø1.00(3X) REF.  
1
2
3
4
5
6
7
7
6
5
4
3 2 1  
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27  
0.70 REF.  
A
3.81  
12.00  
7.62  
B
14.00 0.20  
0.15(4X)  
30° TYP.  
51-85115-*B  
SEATING PLANE  
C
Document #: 38-05541 Rev. *G  
Page 29 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Figure 12. 165-Ball FBGA (13X15X1.4 mm)  
TOP VIEW  
BOTTOM VIEW  
PIN 1 CORNER  
PIN 1 CORNER  
Ø0.08 M C  
1
2
3
4
5
6
7
8
9
10  
11  
Ø0.25 M C A B  
A
B
-0.06  
+0.14  
Ø0.50 (165X)  
11 10  
9
8
7
6
5
4
3
2
1
C
D
A
B
E
C
D
F
G
E
H
J
F
G
K
H
J
L
M
K
N
P
R
L
M
N
P
R
A
A
1.00  
5.00  
B
13.00 0.10  
10.00  
13.00 0.10  
B
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDEC REFERENCE : MO-216 / ISSUE E  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*B  
Document #: 38-05541 Rev. *G  
Page 30 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Document History Page  
Document Title: CY7C1361C/CY7C1363C 9-Mbit (256K x 36/512K x 18) Flow-Through SRAM  
Document Number: 38-05541  
Submission  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
241690  
278969  
332059  
See ECN  
See ECN  
See ECN  
RKF  
RKF  
PCI  
New data sheet  
*A  
*B  
Changed Boundary Scan order to match the B rev of these devices.  
Removed 117-MHz Speed Bin  
Address expansion pins/balls in the pinouts for all packages are modified  
as per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Changed Device Width (23:18) for 119-BGA from 000001 to 101001  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed IDDZZ from 35 mA to 50 mA  
Changed ISB1 and ISB3 from 40 mA to 110 and 100 mA, respectively  
Modified VOL, VOH test conditions  
Corrected ISB4 Test Condition from (VIN VDD – 0.3V or VIN 0.3V) to  
(VIN VIH or VIN VIL) in the Electrical Characteristics table  
Changed ΘJA and ΘJc for TQFP Package from 25 and 9 °C/W to 29.41  
and 6.13 °C/W  
respectively  
Changed ΘJA and ΘJc for BGA Package from 25 and 6°C/W to 34.1 and  
14.0 °C/W  
respectively  
Changed ΘJA and ΘJc for FBGA Package from 27 and 6 °C/W to 16.8  
and 3.0 °C/W respectively  
Added lead-free information for 100-pin TQFP, 119 BGA and 165 FBGA  
packages  
Updated Ordering Information Table  
*C  
*D  
377095  
408298  
See ECN  
See ECN  
PCI  
Changed ISB2 from 30 to 40 mA  
Modified test condition in note# 14 from VIH < VDD to VIH < VDD  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1  
from “3901 North First Street” to “198 Champion Court”  
Changed tri state to tri-state.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE”  
in the Electrical Characteristics Table.  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Updated the ordering information.  
*E  
*F  
433033  
501793  
See ECN  
See ECN  
NXR  
VKN  
Included Automotive range.  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
*G  
2756340  
08/26/2009  
VKN/AESA Updated template  
Included Soft Error Immunity Data  
Modified Ordering Information table by including parts that are available  
and modified the disclaimer for the Ordering information.  
Document #: 38-05541 Rev. *G  
Page 31 of 32  
[+] Feedback  
CY7C1361C/CY7C1363C  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
© Cypress Semiconductor Corporation, 2004-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-05541 Rev. *G  
Revised August 26, 2009  
Page 32 of 32  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1361V25-117AC

Cache SRAM, 256KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1362A

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150AC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150AC

512KX18 CACHE SRAM, 3.5ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1362A-150ACT

512KX18 CACHE SRAM, 3.5ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1362A-150AI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150AJC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150AJI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150BGC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1362A-150BGC

Cache SRAM, 512KX18, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
ROCHESTER

CY7C1362A-150BGCT

Cache SRAM, 512KX18, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1362A-150BGI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS