CY7C1356C-166AXCT [CYPRESS]

ZBT SRAM, 512KX18, 3.5ns, CMOS, PQFP100,;
CY7C1356C-166AXCT
型号: CY7C1356C-166AXCT
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 512KX18, 3.5ns, CMOS, PQFP100,

时钟 静态存储器 内存集成电路
文件: 总36页 (文件大小:3289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354C  
CY7C1356C  
9-Mbit (256K × 36/512K × 18)  
Pipelined SRAM with NoBL™ Architecture  
9-Mbit (256K  
× 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
Pin-compatible and functionally equivalent to ZBT  
The  
CY7C1354C/CY7C1356C[1]  
are  
3.3 V,  
256K × 36/512K × 18 synchronous pipelined burst SRAMs with  
No Bus Latency™ (NoBL™) logic, respectively. They are  
designed to support unlimited true back-to-back read/write  
operations with no wait states. The CY7C1354C/CY7C1356C  
are equipped with the advanced (NoBL) logic required to enable  
consecutive read/write operations with data being transferred on  
every clock cycle. This feature greatly improves the throughput  
of data in systems that require frequent write/read transitions.  
The CY7C1354C/CY7C1356C are pin compatible and  
functionally equivalent to ZBT devices.  
Supports 250 MHz bus operations with zero wait states  
Available speed grades are 250, 200, and 166 MHz  
Internally self-timed output buffer control to eliminate the need  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte write capability  
Single 3.3 V power supply (VDD  
)
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the clock enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
3.3 V or 2.5 V I/O power supply (VDDQ  
)
Fast clock-to-output times  
2.8 ns (for 250 MHz device)  
Clock enable (CEN) pin to suspend operation  
Synchronous self-timed writes  
Write operations are controlled by the byte write selects  
(BWa–BWd for CY7C1354C and BWa–BWb for CY7C1356C)  
and a write enable (WE) input. All writes are conducted with  
on-chip synchronous self-timed write circuitry.  
Available in Pb-free 100-pin TQFP package, Pb-free, and non  
Pb-free 119-ball BGA package and 165-ball FBGA package  
IEEE 1149.1 JTAG-compatible boundary scan  
Burst capability – linear or interleaved burst order  
“ZZ” sleep mode option and stop clock option  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tristate control. To avoid bus contention, the  
output drivers are synchronously tristated during the data portion  
of a write sequence.  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum access time  
250 MHz  
2.8  
200 MHz  
3.2  
166 MHz Unit  
3.5  
180  
40  
ns  
Maximum operating current  
250  
220  
mA  
mA  
Maximum CMOS standby current  
40  
40  
Note  
1. For best-practices recommendations, refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 38-05538 Rev. *S  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised November 4, 2016  
 
 
 
CY7C1354C  
CY7C1356C  
Logic Block Diagram – CY7C1354C  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
S
E
D
A
T
P
U
T
N
S
P
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
F
E
R
S
S
T
E
E
R
I
DQ s  
DQ P  
DQ P  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
a
a
b
c
A
M
P
BW  
BW  
BW  
b
c
S
T
E
R
S
d
d
S
WE  
E
E
N
G
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1356C  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
O
U
T
U
T
P
U
T
S
P
U
T
D
A
T
E
N
S
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
b
S
T
E
R
S
b
S
N
G
WE  
E
E
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document Number: 38-05538 Rev. *S  
Page 2 of 36  
CY7C1354C  
CY7C1356C  
Contents  
Pin Configurations ...........................................................4  
Pin Definitions ..................................................................7  
Functional Overview ........................................................8  
Single Read Accesses ................................................8  
Burst Read Accesses ..................................................8  
Single Write Accesses .................................................8  
Burst Write Accesses ..................................................9  
Sleep Mode .................................................................9  
Interleaved Burst Address Table .................................9  
Linear Burst Address Table .........................................9  
ZZ Mode Electrical Characteristics ..............................9  
Truth Table ......................................................................10  
Partial Truth Table for Read/Write ................................11  
Partial Truth Table for Read/Write ................................11  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................12  
Disabling the JTAG Feature ......................................12  
Test Access Port (TAP) .............................................12  
PERFORMING A TAP RESET ..................................12  
TAP REGISTERS ......................................................12  
TAP Instruction Set ...................................................12  
TAP Controller State Diagram .......................................14  
TAP Controller Block Diagram ......................................15  
TAP Timing ......................................................................15  
TAP AC Switching Characteristics ...............................16  
3.3 V TAP AC Test Conditions .......................................16  
3.3 V TAP AC Output Load Equivalent .........................16  
2.5 V TAP AC Test Conditions .......................................16  
2.5 V TAP AC Output Load Equivalent .........................16  
TAP DC Electrical Characteristics  
Identification Register Definitions ................................18  
Scan Register Sizes .......................................................18  
Instruction Codes ...........................................................18  
Boundary Scan Exit Order .............................................19  
Boundary Scan Exit Order .............................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Neutron Soft Error Immunity .........................................21  
Electrical Characteristics ...............................................21  
Capacitance ....................................................................22  
Thermal Resistance ........................................................22  
AC Test Loads and Waveforms .....................................23  
Switching Characteristics ..............................................24  
Switching Waveforms ....................................................25  
Ordering Information ......................................................28  
Ordering Code Definitions .........................................28  
Package Diagrams ..........................................................29  
Acronyms ........................................................................32  
Document Conventions .................................................32  
Units of Measure .......................................................32  
Document History Page .................................................33  
Sales, Solutions, and Legal Information ......................36  
Worldwide Sales and Design Support .......................36  
Products ....................................................................36  
PSoC®Solutions .......................................................36  
Cypress Developer Community .................................36  
Technical Support .....................................................36  
and Operating Conditions .............................................17  
Document Number: 38-05538 Rev. *S  
Page 3 of 36  
CY7C1354C  
CY7C1356C  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
CY7C1354C  
(256K × 36)  
SS  
CY7C1356C  
(512K × 18)  
V
V
DD  
NC  
DD  
NC  
V
NC  
V
ZZ  
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQa  
DQa  
DQd  
DQb  
DDQ  
V
V
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document Number: 38-05538 Rev. *S  
Page 4 of 36  
CY7C1354C  
CY7C1356C  
Pin Configurations (continued)  
Figure 2. 119-ball BGA (14 × 22 × 2.4 mm) pinout  
CY7C1354C (256K × 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
NC/18M  
A
A
VDDQ  
A
NC/576M  
NC/1G  
DQc  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
B
C
D
DQPc  
VSS  
NC  
VSS  
DQPb  
DQb  
DQc  
VDDQ  
DQc  
DQc  
DQc  
DQc  
DQc  
VDD  
VSS  
VSS  
CE1  
VSS  
VSS  
DQb  
DQb  
DQb  
DQb  
VDD  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
E
F
OE  
A
G
H
J
BWc  
VSS  
NC  
BWb  
VSS  
NC  
DQc  
WE  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
K
L
M
N
P
CEN  
A1  
VSS  
VSS  
MODE  
A
A0  
NC/144M  
NC  
A
VDD  
A
A
NC/288M  
ZZ  
R
T
NC  
A
NC/72M  
TMS  
NC/36M  
NC  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1356C (512K × 18)  
1
2
3
4
5
6
7
VDDQ  
A
A
NC/18M  
A
A
VDDQ  
A
B
C
D
E
F
NC/576M  
NC/1G  
DQb  
CE2  
A
A
A
NC  
NC  
CE3  
A
ADV/LD  
VDD  
A
A
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
NC  
NC  
DQa  
VDDQ  
CE1  
VDDQ  
DQa  
OE  
A
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQa  
VDD  
DQa  
NC  
VDDQ  
G
H
J
BWb  
VSS  
NC  
WE  
VDD  
NC  
DQb  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
CLK  
NC  
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
NC  
K
L
BWa  
VSS  
VDDQ  
DQb  
DQb  
NC  
VDDQ  
NC  
M
N
P
R
T
CEN  
A1  
VSS  
VSS  
NC  
A
NC  
DQPb  
A
A0  
DQa  
NC/144M  
NC/72M  
VDDQ  
VDD  
NC/36M  
TCK  
NC/288M  
ZZ  
A
A
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document Number: 38-05538 Rev. *S  
Page 5 of 36  
CY7C1354C  
CY7C1356C  
Pin Configurations (continued)  
Figure 3. 165-ball FBGA (13 × 15 × 1.4 mm) pinout  
CY7C1354C (256K × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
DQc  
VSS  
VSS  
NC  
DQb  
DQPb  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
NC  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
K
L
DQd  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
DQPd  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1356C (512K × 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VSS  
VDD  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
K
L
NC  
NC  
DQb  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
NC  
NC  
M
N
P
DQPb  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document Number: 38-05538 Rev. *S  
Page 6 of 36  
CY7C1354C  
CY7C1356C  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0, A1, A  
Input-  
synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK.  
BWa, BWb,  
Input-  
Byte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on  
BWc, BWd synchronous the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc  
and DQPc, BWd controls DQd and DQPd.  
WE  
Input-  
Write enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal  
synchronous must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance/load input used to advance the on-chip address counter or load a new address. When  
synchronous HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address  
can be loaded into the device for an access. After being deselected, ADV/LD should be driven LOW to  
load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is  
only recognized if CEN is active LOW.  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE2 to select/deselect the device.  
Input-  
Output enable, active LOW. Combined with the synchronous logic block inside the device to control the  
asynchronous direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted  
HIGH, I/O pins are tristated, and act as input data pins. OE is masked during the data portion of a Write  
sequence, during the first clock when emerging from a deselected state and when the device has been  
deselected.  
CEN  
DQS  
Input-  
Clock enable input, active LOW. When asserted LOW the clock signal is recognized by the SRAM.  
synchronous When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the device,  
CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by  
addresses during the previous clock rise of the read cycle. The direction of the pins is controlled by OE  
and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When HIGH,  
DQa–DQd are placed in a tristate condition. The outputs are automatically tristated during the data portion  
of a write sequence, during the first clock when emerging from a deselected state, and when the device  
is deselected, regardless of the state of OE.  
DQPX  
MODE  
TDO  
TDI  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQ[a:d]. During write  
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc, and  
DQPd is controlled by BWd.  
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled  
LOW selects the linear burst order. MODE should not change states during operation. When left floating  
MODE will default HIGH, to an interleaved burst order.  
JTAG serial Serial data out to the JTAG circuit. Delivers data on the negative edge of TCK.  
output  
synchronous  
JTAG serial Serial data in to the JTAG circuit. Sampled on the rising edge of TCK.  
input  
synchronous  
TMS  
Test mode This pin controls the test access port state machine. Sampled on the rising edge of TCK.  
select  
synchronous  
Document Number: 38-05538 Rev. *S  
Page 7 of 36  
 
CY7C1354C  
CY7C1356C  
Pin Definitions (continued)  
Pin Name  
TCK  
I/O Type  
Pin Description  
JTAG-clock Clock input to the JTAG circuitry.  
VDD  
Power supply Power supply inputs to the core of the device.  
VDDQ  
I/O power Power supply for the I/O circuitry.  
supply  
VSS  
NC  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects. This pin is not connected to the die.  
NC/18M,  
NC/36M,  
NC/72M,  
NC/144M,  
NC/288M,  
NC/576M,  
NC/1G  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M, 288M,  
576M, and 1G densities.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time-critical “sleep” condition with  
asynchronous data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
register and to the data bus within 2.8 ns (250 MHz device)  
Functional Overview  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW for the device to drive out  
the requested data. During the second clock, a subsequent  
operation (read/write/deselect) can be initiated. Deselecting the  
device is also pipelined. Therefore, when the SRAM is  
deselected at clock rise by one of the chip enable signals, its  
output tristates following the next clock rise.  
The CY7C1354C/CY7C1356C are synchronous-pipelined burst  
NoBL SRAMs designed specifically to eliminate wait states  
during write/read transitions. All synchronous inputs pass  
through input registers controlled by the rising edge of the clock.  
The clock signal is qualified with the clock enable input signal  
(CEN). If CEN is HIGH, the clock signal is not recognized and all  
internal states are maintained. All synchronous operations are  
qualified with CEN. All data outputs pass through output registers  
controlled by the rising edge of the clock. Maximum access delay  
from the clock rise (tCO) is 2.8 ns (250 MHz device).  
Burst Read Accesses  
The CY7C1354C/CY7C1356C have an on-chip burst counter  
that enables the user the ability to supply a single address and  
conduct up to four reads without reasserting the address inputs.  
ADV/LD must be driven LOW to load a new address into the  
SRAM, as described in Single Read Accesses. The sequence of  
the burst counter is determined by the MODE input signal. A  
LOW input on MODE selects a linear burst mode, a HIGH selects  
an interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and wrap around when incremented  
sufficiently. A HIGH input on ADV/LD increments the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (read or write) is maintained throughout the  
burst sequence.  
Accesses can be initiated by asserting all three chip enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If clock  
enable (CEN) is active LOW and ADV/LD is asserted LOW, the  
address presented to the device will be latched. The access can  
either be a read or write operation, depending on the status of  
the write enable (WE). BW[d:a] can be used to conduct byte write  
operations.  
Write operations are qualified by the write enable (WE). All writes  
are simplified with on-chip synchronous self-timed write circuitry.  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
should be driven LOW once the device has been deselected to  
load a new address for the next operation.  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, and (3) the write signal WE is  
asserted LOW. The address presented to A0–A16 is loaded into  
the address register. The write signals are latched into the  
control logic block.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, (3) the write enable input signal  
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
address register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and enables the requested data to propagate to the  
input of the output register. At the rising edge of the next clock  
the requested data is allowed to propagate through the output  
On the subsequent clock rise the data lines are automatically  
tristated regardless of the state of the OE input signal. This  
enables the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354C and DQa,b/DQPa,b for  
CY7C1356C). In addition, the address for the subsequent  
Document Number: 38-05538 Rev. *S  
Page 8 of 36  
 
 
CY7C1354C  
CY7C1356C  
access (read/write/deselect) is latched into the address register  
if the appropriate control signals are asserted.  
driven in each cycle of the burst write to write the correct bytes  
of data.  
On the next clock rise the data presented to DQ  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354C and DQa,b/DQPa,b  
and DfQoPr  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation ‘sleep’ mode. Two clock  
cycles are required to enter into or exit from this ‘sleep’ mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
CY7C1356C or a subset for byte write operations, see the table  
Partial Truth Table for Read/Write on page 11 for details) inputs  
is latched into the device and the write is complete.  
The data written during the write operation is controlled by BW  
(BWa,b,c,d for CY7C1354C and BWa,b for CY7C1356C) signals.  
The CY7C1354C/CY7C1356C provides byte write capability that  
is described in the Write Cycle Description table. Asserting the  
write enable input (WE) with the selected byte write select (BW)  
input will selectively write to only the desired bytes. Bytes not  
selected during a byte write operation remain unaltered. A  
synchronous self-timed write mechanism is provided to simplify  
the write operations. Byte write capability is included to greatly  
simplify read/modify/write sequences, which can be reduced to  
simple byte write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Because the CY7C1354C/CY7C1356C are common I/O  
devices, data should not be driven into the device while the  
outputs are active. The output enable (OE) can be deasserted  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
HIGH before presenting data to the DQ  
and  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354C and DQa,b/DQPa,bDfQoPr  
CY7C1356C) inputs. Doing so will tristate the output drivers. As  
a safety precaution, DQ  
(DQa,b,c,d/DQPa,b,c,d for  
and DQP  
CY7C1354C and DQa,b/DQPa,b for CY7C1356C) are  
automatically tristated during the data portion of a write cycle,  
regardless of the state of OE.  
Linear Burst Address Table  
Burst Write Accesses  
(MODE = GND)  
The CY7C1354C/CY7C1356C has an on-chip burst counter that  
enables the user the ability to supply a single address and  
conduct up to four write operations without reasserting the  
address inputs. ADV/LD must be driven LOW to load the initial  
address, as described in Single Write Accesses on page 8.  
When ADV/LD is driven HIGH on the subsequent clock rise, the  
chip enables (CE1, CE2, and CE3) and WE inputs are ignored  
and the burst counter is incremented. The correct BW (BWa,b,c,d  
for CY7C1354C and BWa,b for CY7C1356C) inputs must be  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
50  
Unit  
mA  
ns  
ZZ VDD 0.2 V  
tZZS  
ZZ VDD 0.2 V  
ZZ 0.2 V  
2tCYC  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 38-05538 Rev. *S  
Page 9 of 36  
CY7C1354C  
CY7C1356C  
Truth Table  
The Truth Table for CY7C1354C/CY7C1356C follows. [2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
Used  
CE ZZ ADV/LD WE BWx OE CEN CLK  
DQ  
Deselect cycle  
None  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L–H  
L–H  
Tri-state  
Tri-state  
Continue deselect cycle  
Read cycle (begin burst)  
Read cycle (continue burst)  
NOP/dummy read (begin burst)  
Dummy read (continue burst)  
Write cycle (begin burst)  
Write cycle (continue burst)  
NOP/WRITE ABORT (begin burst)  
WRITE ABORT (continue burst)  
IGNORE CLOCK EDGE (stall)  
SLEEP MODE  
External  
Next  
L–H Data out (Q)  
L–H Data out (Q)  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L–H  
L–H  
Tri-state  
Tri-state  
X
L
H
L
External  
Next  
L–H Data in (D)  
L–H Data in (D)  
X
L
H
L
X
L
L
None  
H
H
X
X
L–H  
L–H  
L–H  
X
Tri-state  
Tri-state  
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-state  
Notes  
2. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BW = L signifies at least one byte write select is active, BW = valid signifies  
X
X
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
3. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
6. CEN = H inserts wait states.  
7. Device will power up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = tri-state when OE is  
X
inactive or when the device is deselected, and DQs = data when OE is active.  
Document Number: 38-05538 Rev. *S  
Page 10 of 36  
 
 
 
 
CY7C1354C  
CY7C1356C  
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write for CY7C1354C follows. [9, 10, 11, 12]  
Function (CY7C1354C)  
WE  
BWd  
BWc  
BWb  
BWa  
Read  
H
X
X
X
H
H
L
X
Write– no bytes written  
Write byte a –(DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write bytes b, a  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
L
H
L
H
L
L
Write byte c –(DQc and DQPc)  
Write bytes c, a  
H
H
L
H
L
L
Write bytes c, b  
L
H
L
Write bytes c, b, a  
L
L
Write byte d –(DQd and DQPd)  
Write bytes d, a  
H
H
H
H
L
H
H
L
H
L
L
Write bytes d, b  
L
H
L
Write bytes d, b, a  
L
L
Write bytes d, c  
L
H
H
L
H
L
Write bytes d, c, a  
L
L
Write bytes d, c, b  
L
L
H
L
Write all bytes  
L
L
L
Partial Truth Table for Read/Write  
The Partial Truth Table for Read/Write for CY7C1356C follows. [9, 10, 11, 12]  
Function (CY7C1356C)  
WE  
H
L
BWb  
BWa  
x
Read  
x
H
H
L
Write – no bytes written  
Write byte a (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write both bytes  
H
L
L
L
H
L
L
L
Notes  
9. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BWx = valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
10. Write is defined by WE and BWX. See Write Cycle Description table for details.  
11. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
12. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05538 Rev. *S  
Page 11 of 36  
 
 
 
 
CY7C1354C  
CY7C1356C  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1354C/CY7C1356C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The TQFP  
package does not offer this functionality. This part operates in  
accordance with IEEE Standard 1149.1-1900, but does not have  
the set of functions required for full 1149.1 compliance. These  
functions from the IEEE specification are excluded because their  
inclusion places an added delay in the critical speed path of the  
SRAM. Note that the TAP controller functions in a manner that  
does not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using JEDEC-standard  
3.3 V or 2.5 V I/O logic levels.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
enable data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 15. Upon power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
The CY7C1354C/CY7C1356C contains a TAP controller,  
instruction register, boundary scan register, bypass register, and  
ID register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor. TDO  
should be left unconnected. Upon power-up, the device comes  
up in a reset state which does not interfere with the operation of  
the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to enable  
fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This enables data to be shifted through the  
Test Access Port (TAP)  
SRAM with minimal delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Mode Select (TMS)  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The Boundary Scan Exit Order on page 19 and Boundary Scan  
Exit Order on page 20 show the order in which the bits are  
connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see TAP Controller State  
Diagram on page 14. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in Identification Register Definitions on  
page 18.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Instruction Codes on page 18).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
TAP Instruction Set  
Performing a TAP Reset  
Overview  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the Instruction  
Document Number: 38-05538 Rev. *S  
Page 12 of 36  
CY7C1354C  
CY7C1356C  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail in this section.  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK# captured in the boundary scan register.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a high Z state.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD enables an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and enables  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required - that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
Reserved  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 38-05538 Rev. *S  
Page 13 of 36  
CY7C1354C  
CY7C1356C  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 38-05538 Rev. *S  
Page 14 of 36  
CY7C1354C  
CY7C1356C  
TAP Controller Block Diagram  
0
0
Bypass Register  
2
1
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29 .  
Identification Register  
TDI  
TDO  
.
.
2
1
0
x
.
.
.
.
. 2 1  
0
Boundary Scan Register  
TCK  
TAP CONTROLLER  
TM S  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05538 Rev. *S  
Page 15 of 36  
CY7C1354C  
CY7C1356C  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [13, 14]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK clock cycle time  
TCK clock frequency  
TCK clock HIGH time  
TCK clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK clock LOW to TDO valid  
TCK clock LOW to TDO invalid  
0
10  
ns  
ns  
TMS setup to TCK clock rise  
TDI setup to TCK clock rise  
Capture setup to TCK rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK clock rise  
TDI hold after clock rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after clock rise  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times ...................................................1 ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
Notes  
13. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
14. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 38-05538 Rev. *S  
Page 16 of 36  
 
CY7C1354C  
CY7C1356C  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.3 V ± 0.165 V unless otherwise noted)  
Parameter [15]  
Description  
Test Conditions  
IOH = –4.0 mA, VDDQ = 3.3 V  
IOH = –1.0 mA, VDDQ = 2.5 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH voltage  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH voltage  
Output LOW voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage  
Input load current  
IOH = –100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
VDDQ = 3.3 V  
V
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
0.4  
V
V
0.4  
V
0.2  
V
0.2  
V
2.0  
1.7  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
15. All voltages referenced to V (GND).  
SS  
Document Number: 38-05538 Rev. *S  
Page 17 of 36  
 
CY7C1354C  
CY7C1356C  
Identification Register Definitions  
Instruction Field  
Revision number (31:29)  
Cypress device ID (28:12) [16]  
Cypress JEDEC ID (11:1)  
ID register presence (0)  
CY7C1354C  
CY7C1356C  
Description  
Reserved for version number.  
000  
01011001000100110  
00000110100  
1
000  
01011001000010110 Reserved for future use.  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Bit Size (× 18)  
Instruction  
Bypass  
ID  
3
3
1
1
32  
69  
69  
32  
69  
69  
Boundary scan order (119-ball BGA package)  
Boundary scan order (165-ball FBGA package)  
Instruction Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures the input/output ring contents. Places the boundary scan register between the TDI  
and TDO. Forces all SRAM outputs to high Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the input/output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the input/output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect the SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Note  
16. Bit #24 is “1” in the Register Definitions for both 2.5 V and 3.3 V versions of this device.  
Document Number: 38-05538 Rev. *S  
Page 18 of 36  
 
CY7C1354C  
CY7C1356C  
Boundary Scan Exit Order  
(256K × 36)  
Bit #  
1
119-ball ID  
K4  
165-ball ID  
B6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
119-ball ID  
B5  
165-ball ID  
R9  
2
H4  
M4  
F4  
B7  
A5  
P9  
3
A7  
C6  
R8  
4
B8  
A6  
P8  
5
B4  
A8  
P4  
R6  
6
G4  
C3  
B3  
A9  
N4  
P6  
7
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
R6  
R4  
8
T5  
P4  
9
D6  
H7  
G6  
E6  
T3  
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
R2  
P3  
R3  
R1  
P2  
N1  
D7  
E7  
P1  
L2  
L2  
K2  
F6  
K1  
J2  
G7  
H6  
T7  
N2  
M2  
M1  
L1  
N1  
M2  
L1  
K7  
K1  
L6  
K2  
J1  
N6  
P7  
Not Bonded (Preset to 1) Not Bonded (Preset to 1)  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
C2  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
N7  
M6  
L7  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
K6  
P6  
T4  
A3  
C5  
Document Number: 38-05538 Rev. *S  
Page 19 of 36  
 
CY7C1354C  
CY7C1356C  
Boundary Scan Exit Order  
(512K × 18)  
Bit #  
1
119-ball ID  
165-ball ID  
B6  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
119-ball ID  
165-ball ID  
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
T2  
R6  
T5  
T3  
R2  
R3  
R4  
P4  
R3  
P3  
R1  
2
B7  
3
A7  
4
B8  
5
A8  
6
A9  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
7
B10  
A10  
A11  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
P2  
N1  
M2  
L1  
N1  
M1  
L1  
K1  
J1  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
K2  
Not Bonded (Preset to 1) Not Bonded (Preset to 1)  
H1  
G2  
E2  
D1  
G2  
F2  
E2  
D2  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
N6  
P7  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
C2  
A2  
E4  
B2  
B2  
A2  
A3  
B3  
T6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R11  
R10  
P10  
R9  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
G3  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
P9  
L5  
R8  
B6  
P8  
R6  
P6  
Document Number: 38-05538 Rev. *S  
Page 20 of 36  
 
CY7C1354C  
CY7C1356C  
Maximum Ratings  
Operating Range  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0 °C to +70 °C  
–40 °C to +85 °C  
Commercial  
Industrial  
3.3 V– 5% / 2.5 V – 5% to  
Storage temperature ................................ –65 °C to +150 °C  
+ 10%  
VDD  
Ambient temperature with  
power applied .......................................... –55 °C to +125 °C  
Neutron Soft Error Immunity  
Supply voltage on VDD relative to GND .......–0.5 V to +4.6 V  
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD  
DC to outputs in tri-state ...................–0.5 V to VDDQ + 0.5 V  
DC input voltage .................................0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
LSBU  
LMBU  
SEL  
Logical  
single-bit  
upsets  
25 °C  
25 °C  
85 °C  
320 368  
FIT/  
Mb  
Static discharge voltage  
(per MIL-STD-883, method 3015) ..........................> 2001 V  
Logical  
multi-bit  
upsets  
0
0
0.01 FIT/  
Mb  
Latch-up current ....................................................> 200 mA  
Single event  
latch-up  
0.1  
FIT/  
Dev  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to Application  
Note AN 54908 “Accelerated Neutron SER Testing and Calculation of Terrestrial  
Failure Rates”.  
Electrical Characteristics  
Over the Operating Range  
Parameter [17, 18]  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
VDD  
3.6  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage [19]  
for 3.3 V I/O, IOH =4.0 mA  
for 2.5 V I/O, IOH =1.0 mA  
for 3.3 V I/O, IOL=8.0 mA  
for 2.5 V I/O, IOL=1.0 mA  
for 3.3 V I/O  
V
2.0  
0.4  
V
V
0.4  
V
2.0  
VDD + 0.3 V  
V
for 2.5 V I/O  
1.7  
V
DD + 0.3 V  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5 V I/O  
V
Input leakage current except ZZ GND VI VDDQ  
and MODE  
A  
Input current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
Input = VDD  
Input current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
Output leakage current  
GND VI VDDQ, output disabled  
–5  
Notes  
17. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
18. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
<V  
.
Power-up  
(min)  
IH  
DD  
DDQ  
DD  
DD  
19. Tested initially and after any design or process changes that may affect these parameters.  
Document Number: 38-05538 Rev. *S  
Page 21 of 36  
 
 
 
 
 
 
CY7C1354C  
CY7C1356C  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter [17, 18]  
Description  
Test Conditions  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
Min  
Max  
Unit  
IDD  
VDD operating supply  
4 ns cycle,  
250 MHz  
250  
mA  
5 ns cycle,  
200 MHz  
220  
180  
130  
120  
110  
40  
mA  
mA  
mA  
mA  
mA  
mA  
6 ns cycle,  
166 MHz  
ISB1  
Automatic CE power-down  
current — TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
4 ns cycle,  
250 MHz  
5 ns cycle,  
200 MHz  
6 ns cycle,  
166 MHz  
ISB2  
Automatic CE power-down  
current — CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, grades  
f = 0  
All speed  
ISB3  
Automatic CE power-down  
current — CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, 250 MHz  
f = fMAX = 1/tCYC  
4 ns cycle,  
120  
110  
100  
40  
mA  
mA  
mA  
mA  
5 ns cycle,  
200 MHz  
6 ns cycle,  
166 MHz  
ISB4  
Automatic CE power-down  
current — TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL, f = 0  
All speed  
grades  
Capacitance  
100-pin TQFP 119-ball BGA 165-ballFBGA  
Parameter [20]  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
CIN  
Input capacitance  
TA = 25 C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
pF  
pF  
pF  
V
DD = 3.3 V, VDDQ = 2.5 V  
CCLK  
CI/O  
Clock input capacitance  
Input/output capacitance  
Thermal Resistance  
100-pin TQFP 119-ball BGA 165-ballFBGA  
Parameter [20]  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
JA  
Thermal resistance  
(junction to ambient)  
Test  
conditions  
follow  
29.41  
34.1  
16.8  
°C/W  
standard test methods and  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
JC  
Thermal resistance  
(junction to case)  
6.13  
14.0  
3.0  
°C/W  
Note  
20. Tested initially and after any design or process changes that may affect these parameters.  
Document Number: 38-05538 Rev. *S  
Page 22 of 36  
 
 
CY7C1354C  
CY7C1356C  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
R = 317  
3.3 V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
R = 50   
10%  
L
GND  
5 pF  
R = 351   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5 V  
T
(a)  
(b)  
(c)  
2.5 V I/O Test Load  
R = 1667   
2.5 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
10%  
L
GND  
5 pF  
R = 1538   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25 V  
T
(a)  
(b)  
(c)  
Document Number: 38-05538 Rev. *S  
Page 23 of 36  
 
CY7C1354C  
CY7C1356C  
Switching Characteristics  
Over the Operating Range  
-250  
-200  
-166  
Unit  
Max  
Parameter [21, 22]  
Description  
Min  
Max  
Min  
Max  
Min  
[23]  
tPower  
VCC(typical)tothefirstaccessreador  
write  
1
1
1
ms  
Clock  
tCYC  
Clock cycle time  
4.0  
250  
5
200  
6
166  
ns  
MHz  
ns  
FMAX  
tCH  
Maximum operating frequency  
Clock HIGH  
1.8  
1.8  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
tEOV  
OE LOW to output valid  
Clock to low Z [24, 25, 26]  
2.8  
3.2  
3.5  
ns  
tCLZ  
1.25  
1.5  
1.5  
ns  
Output Times  
tCO  
Data output valid after CLK rise  
OE LOW to output valid  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data output hold after CLK rise  
Clock to high Z [24, 25, 26]  
Clock to low Z [24, 25, 26]  
OE HIGH to output high Z [24, 25, 26]  
OE LOW to output low Z [24, 25, 26]  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
tCHZ  
2.8  
3.2  
3.5  
tCLZ  
tEOHZ  
tEOLZ  
Setup Times  
tAS  
2.8  
3.2  
3.5  
0
0
0
Address setup before CLK rise  
Data input setup before CLK rise  
CEN setup before CLK rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
WE, BWx setup before CLK rise  
ADV/LD setup before CLK rise  
Chip select setup  
tALS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
Data input hold after CLK rise  
CEN hold after CLK rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
tALH  
WE BW hold after CLK rise  
,
x
ADV/LD hold after CLK rise  
tCEH  
Chip select hold after CLK rise  
Notes  
21. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
22. Test conditions shown in (a) of Figure 4 on page 23 unless otherwise noted.  
23. This part has a voltage regulator internally; t is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be initiated.  
power  
DD  
24. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
25. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
EOHZ  
EOLZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system conditions.  
26. This parameter is sampled and not 100% tested.  
Document Number: 38-05538 Rev. *S  
Page 24 of 36  
 
 
 
 
 
 
CY7C1354C  
CY7C1356C  
Switching Waveforms  
Figure 5. Read/Write Timing [27, 28, 29]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS  
CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
27. For this waveform ZZ is tied low.  
28. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
29. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document Number: 38-05538 Rev. *S  
Page 25 of 36  
 
CY7C1354C  
CY7C1356C  
Switching Waveforms (continued)  
Figure 6. NOP, STALL, and DESELECT Cycles [30, 31, 32]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Notes  
30. For this waveform ZZ is tied low.  
31. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
32. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.  
Document Number: 38-05538 Rev. *S  
Page 26 of 36  
 
 
 
CY7C1354C  
CY7C1356C  
Switching Waveforms (continued)  
Figure 7. ZZ Mode Timing [33, 34]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
33. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
34. I/Os are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05538 Rev. *S  
Page 27 of 36  
 
 
CY7C1354C  
CY7C1356C  
Ordering Information  
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your local  
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/products  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
166 CY7C1354C-166AXC  
CY7C1356C-166AXC  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
CY7C1354C-166AXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Industrial  
CY7C1356C-166AXI  
200 CY7C1354C-200AXC  
CY7C1354C-200AXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
Industrial  
250 CY7C1356C-250AXC  
Commercial  
Ordering Code Definitions  
CY  
7
C
135X  
C
XXX XX  
X
X
-
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
Pb-free  
Package Type: XX = A or BG  
A = 100-pin TQFP  
BG = 119-ball BGA  
Speed Grade:  
XXX = 166 MHz or 200 MHz or 250 MHz  
Process Technology 90 nm  
135X = 1354 or 1356  
1354 = PL, 256Kb × 36 (9Mb)  
1356 = PL, 512Kb × 18 (9Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 38-05538 Rev. *S  
Page 28 of 36  
 
 
CY7C1354C  
CY7C1356C  
Package Diagrams  
Figure 8. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *F  
Document Number: 38-05538 Rev. *S  
Page 29 of 36  
 
CY7C1354C  
CY7C1356C  
Package Diagrams (continued)  
Figure 9. 119-ball PBGA (14 × 22 × 2.4 mm) BG119 Package Outline, 51-85115  
51-85115 *D  
Document Number: 38-05538 Rev. *S  
Page 30 of 36  
CY7C1354C  
CY7C1356C  
Package Diagrams (continued)  
Figure 10. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180  
51-85180 *G  
Document Number: 38-05538 Rev. *S  
Page 31 of 36  
CY7C1354C  
CY7C1356C  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CMOS  
CE  
Ball Grid Array  
Symbol  
°C  
Unit of Measure  
Complementary Metal Oxide Semiconductor  
Chip Enable  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
CEN  
EIA  
Clock Enable  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Input/Output  
FBGA  
I/O  
JEDEC  
JTAG  
LMBU  
LSB  
Joint Electron Devices Engineering Council  
Joint Test Action Group  
Logical Multi-Bit Upsets  
Least Significant Bit  
Logical Single-Bit Upsets  
Most Significant Bit  
No Bus Latency  
nanosecond  
ohm  
%
percent  
pF  
V
picofarad  
volt  
LSBU  
MSB  
NoBL  
OE  
W
watt  
Output Enable  
SEL  
Single Event Latch-up  
Static Random Access Memory  
Test Access Port  
SRAM  
TAP  
TCK  
TDI  
Test Clock  
Test Data-In  
TDO  
TMS  
TQFP  
TTL  
Test Data-Out  
Test Mode Select  
Thin Quad Flat Pack  
Transistor-Transistor Logic  
Write Enable  
WE  
Document Number: 38-05538 Rev. *S  
Page 32 of 36  
 
 
CY7C1354C  
CY7C1356C  
Document History Page  
Document Title: CY7C1354C/CY7C1356C, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05538  
Submission  
Date  
Orig. of  
Change  
Revision  
ECN  
Description of Change  
**  
242032  
278130  
See ECN  
See ECN  
RKF  
RKF  
New data sheet.  
*A  
Updated Boundary Scan Exit Order (To match the B Rev of these devices).  
Updated Boundary Scan Exit Order (To match the B Rev of these devices).  
Updated Ordering Information:  
Updated part numbers.  
Added “Lead-free BG and BZ packages (Ordering Code: BGX, BZX) will be  
available in 2005.” at the end of the comment below the table.  
*B  
*C  
284431  
320834  
See ECN  
See ECN  
VBL  
PCI  
Updated Electrical Characteristics:  
Updated maximum value of ISB1 and ISB3 parameters as follows.  
I
SB1: 225 MHz -> 130 mA, 200 MHz -> 120 mA, 167 MHz -> 110 mA  
ISB3: 225 MHz -> 120 mA, 200 MHz -> 110 mA, 167 MHz -> 100 mA  
Updated Ordering Information:  
Updated part numbers.  
Changed status from Preliminary to Final.  
Replaced “225 MHz” with “250 MHz” in all instances across the document.  
Updated Selection Guide:  
Unshaded 250 MHz, 200 MHz, and 166 MHz speed bins related information.  
Updated Pin Definitions:  
Modified address expansion as per JEDEC Standard in all instances across  
the document.  
Updated Electrical Characteristics:  
Unshaded 250 MHz, 200 MHz, and 166 MHz speed bins related information.  
Updated details in “Test Conditions” column corresponding to VOL and VOH  
parameters.  
Updated Thermal Resistance:  
Changed value of JA parameter corresponding to 100-pin TQFP Package  
from 25 °C/W to 29.41 °C/W.  
Changed value of JC parameter corresponding to 100-pin TQFP Package  
from 9 °C/W to 6.13 °C/W.  
Changed value of JA parameter corresponding to 119-ball BGA Packagefrom  
25 °C/W to 34.1 °C/W.  
Changed value of JC parameter corresponding to 119-ball BGA Packagefrom  
6 °C/W to 14 °C/W.  
Changed value of JA parameter corresponding to 165-ball FBGA Package  
from 27 °C/W to 16.8 °C/W.  
Changed value of JC parameter corresponding to 165-ball FBGA Package  
from 6 °C/W to 3 °C/W.  
Updated Switching Characteristics:  
Unshaded 250 MHz, 200 MHz, and 166 MHz speed bins related information.  
Updated Ordering Information:  
Updated part numbers.  
*D  
*E  
351895  
377095  
See ECN  
See ECN  
PCI  
PCI  
Updated Electrical Characteristics:  
Changed maximum value of ISB2 parameter from 35 mA to 40 mA.  
Updated Ordering Information:  
Updated part numbers.  
Updated Electrical Characteristics:  
Updated Note 18 (Replaced “VDDQ < VDD” with “VDDQ VDD”).  
Document Number: 38-05538 Rev. *S  
Page 33 of 36  
CY7C1354C  
CY7C1356C  
Document History Page (continued)  
Document Title: CY7C1354C/CY7C1356C, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05538  
Submission  
Date  
Orig. of  
Change  
Revision  
ECN  
Description of Change  
*F  
408298  
See ECN  
RXU  
Changed address of Cypress Semiconductor Corporation in page 1 from “3901  
North First Street” to “198 Champion Court”.  
Replaced “three-state” with “tri-state” in all instances across the document.  
Updated Electrical Characteristics:  
Replaced “Input Load” with “Input Leakage Current except ZZ and MODE” in  
“Description” column corresponding to IX parameter.  
Updated Ordering Information:  
Updated part numbers.  
Removed “Package Name” column.  
Added “Package Diagram” column.  
*G  
501793  
See ECN  
VKN  
Updated Maximum Ratings:  
Added “Supply Voltage on VDDQ Relative to GND” and its rating.  
Updated Switching Characteristics:  
Changed minimum value of tTH, and tTL parameters from 25 ns to 20 ns.  
Changed maximum value of tTDOV parameter from 5 ns to 10 ns.  
Updated Ordering Information:  
Updated part numbers.  
*H  
*I  
2756340  
3033272  
08/26/2009 VKN/AESA Included Neutron Soft Error Immunity.  
Updated Ordering Information:  
Modified the disclaimer for the Ordering information.  
Updated part numbers.  
Updated to new template.  
09/19/2010  
NJY  
Added Ordering Code Definitions under Ordering Information.  
Updated Package Diagrams.  
Added Acronyms and Units of Measure.  
Minor edits.  
Updated to new template.  
*J  
3052882  
3186089  
10/08/2010  
03/02/2011  
NJY  
NJY  
Updated Ordering Information:  
Removed obsolete part numbers.  
*K  
Updated Ordering Information:  
Updated part numbers.  
Updated Package Diagrams.  
*L  
*M  
*N  
3210400  
3385314  
3754982  
03/30/2011  
09/29/2011  
09/25/2012  
NJY  
PRIT  
PRIT  
Updated Ordering Information:  
Removed pruned part “CY7C1354C-200BGC”.  
No technical updates.  
Completing Sunset Review.  
Updated Package Diagrams (spec 51-85115 (Changed revision from *C to *D),  
(spec 51-85180 (Changed revision from *C to *F)).  
*O  
*P  
3861238  
4537527  
01/10/2013  
10/14/2014  
PRIT  
PRIT  
Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *D to *E.  
Updated to new template.  
Completing Sunset Review.  
*Q  
*R  
4574263  
4974141  
11/19/2014  
10/19/2015  
PRIT  
PRIT  
Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Ordering Information:  
Removed pruned part CY7C1354C-250AXC.  
Updated Package Diagrams:  
spec 51-85180 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-05538 Rev. *S  
Page 34 of 36  
CY7C1354C  
CY7C1356C  
Document History Page (continued)  
Document Title: CY7C1354C/CY7C1356C, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05538  
Submission  
Date  
Orig. of  
Change  
Revision  
ECN  
Description of Change  
Updated Package Diagrams:  
*S  
5509821  
11/04/2016  
PRIT  
spec 51-85050 – Changed revision from *E to *F.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-05538 Rev. *S  
Page 35 of 36  
CY7C1354C  
CY7C1356C  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Lighting & Power Control  
Memory  
cypress.com/support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-05538 Rev. *S  
Revised November 4, 2016  
Page 36 of 36  
No Bus Latency and NoBL are trademarks of Cypress Semiconductor Corporation.  

相关型号:

CY7C1356C-166AXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166AXIT

ZBT SRAM, 512KX18, 3.5ns, CMOS, PQFP100,
CYPRESS

CY7C1356C-166BGC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BGCT

ZBT SRAM, 512KX18, 3.5ns, CMOS, PBGA119, (14 X 22 X 2.4) MM, PLASTIC, BGA-119
CYPRESS

CY7C1356C-166BGI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BGXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BGXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BZC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BZI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BZXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-166BZXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1356C-200AXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS