CY7C1345G-100BGC

更新时间:2024-09-18 01:56:32
品牌:CYPRESS
描述:4-Mbit (128K x 36) Flow-Through Sync SRAM

CY7C1345G-100BGC 概述

4-Mbit (128K x 36) Flow-Through Sync SRAM 4兆位( 128K ×36 )流通型同步SRAM

CY7C1345G-100BGC 数据手册

通过下载CY7C1345G-100BGC数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
CY7C1345G  
PRELIMINARY  
4-Mbit (128K x 36) Flow-Through Sync SRAM  
Features  
Functional Description[1]  
The CY7C1345G is a 131,072 x 36 synchronous cache RAM  
designed to interface with high-speed microprocessors with  
• 128K X 36 common I/O  
• 3.3V –5% and +10% core power supply (VDD  
)
minimum glue logic. Maximum access delay from clock rise is  
6.5 ns (133-MHz version). A 2-bit on-chip counter captures the  
first address in a burst and increments the address automati-  
cally for the rest of the burst access. All synchronous inputs  
are gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
• 2.5V or 3.3V I/O supply (VDDQ  
• Fast clock-to-output times  
— 6.5 ns (133-MHz version)  
— 7.5 ns (117-MHz version)  
— 8.0 ns (100-MHz version)  
)
(
), depth-expansion Chip Enables (CE and  
), Burst  
CE3  
CE1  
Control inputs (  
2
• Provide high-performance 2-1-1-1 access rate  
,
,
), Write Enables  
). Asynchronous  
)
and the ZZ pin  
and  
(
,
BWx  
ADV  
ADSC ADSP  
), and Global Write (  
• User-selectable burst counter supporting Intel®  
GW  
and  
nputs  
BWE  
include the Output Enable  
i
Pentium® interleaved or linear burst sequences  
(
.
OE  
The CY7C1345G allows either interleaved or linear burst  
sequences, selected by the MODE input pin. A HIGH selects  
an interleaved burst sequence, while a LOW selects a linear  
burst sequence. Burst accesses can be initiated with the  
Processor Address Strobe (ADSP) or the cache Controller  
Address Strobe (ADSC) inputs.  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
• Lead-Free 100-pin TQFP and 119-ball BGA packages  
• “ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
) are active. Subsequent  
ADSC  
ADV  
The CY7C1345G operates from a +3.3V core power supply  
while all outputs may operate with either a +2.5 or +3.3V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Logic Block Diagram  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQPD  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Note:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05517 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised October 21, 2004  
CY7C1345G  
PRELIMINARY  
Selection Guide  
133 MHz  
6.5  
117 MHz  
100 MHz  
8.0  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum Standby Current  
7.5  
220  
40  
225  
40  
205  
40  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Pin Configurations  
100-Pin TQFP  
DQPC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
1
DQPB  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
DQB  
DQB  
3
4
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
5
6
7
8
BYTE C  
BYTE B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1345G  
VDD  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
BYTE D  
BYTE A  
Document #: 38-05517 Rev. *A  
Page 2 of 17  
CY7C1345G  
PRELIMINARY  
Pin Configurations (continued)  
119-Ball BGA  
2
1
3
A
4
5
A
6
7
VDDQ  
NC  
A
A
VDDQ  
NC  
A
B
C
D
E
F
ADSP  
CE2  
A
A
A
ADSC  
VDD  
CE3  
A
NC  
A
A
NC  
DQC  
DQC  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQPC  
DQC  
DQC  
DQC  
DQC  
VDD  
DQD  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDD  
DQB  
DQB  
VDDQ  
DQB  
DQB  
VDDQ  
DQA  
CE1  
OE  
G
H
J
BWC  
VSS  
NC  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
K
VSS  
CLK  
NC  
VSS  
DQA  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWE  
A1  
P
R
T
DQD  
NC  
DQPD  
A
VSS  
MODE  
A
A0  
VDD  
A
VSS  
NC  
A
DQPA  
A
DQA  
NC  
NC  
NC  
NC  
NC  
NC  
ZZ  
VDDQ  
NC  
NC  
NC  
VDDQ  
U
Pin Definitions  
Name  
I/O  
Input-  
Description  
Address Inputs used to select one of the 128K address locations. Sampled at the rising edge  
A0, A1, A  
Synchronous of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed  
the 2-bit counter.  
BWA,BWB  
BWC,BWD  
GW  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK.  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global  
Synchronous write is conducted (ALL bytes are written, regardless of the values on BW[A:D] and BWE).  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
BWE  
CLK  
Synchronous asserted LOW to conduct a byte write.  
Input-Clock Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
if CE1 is HIGH. CE1 is sampled only  
when a new external address is loaded.  
CE1  
CE2  
Synchronous CE and CE to select/deselect the device. ADSP is ignored  
2
3
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous CE1 and CE3 to select/deselect the device.CE  
2 is sampled only when a new external address is  
loaded.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
CE3  
OE  
Synchronous and CE2 to select/deselect the device. CE  
3 is sampled only when a new external address is loaded.  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as  
input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected  
state.  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically  
ADV  
Synchronous increments the address in a burst cycle.  
Document #: 38-05517 Rev. *A  
Page 3 of 17  
CY7C1345G  
PRELIMINARY  
Pin Definitions (continued)  
Name  
ADSP  
I/O  
Description  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
Input-  
Synchronous asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are  
also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recog-  
nized. ASDP is ignored when  
CE1 is deasserted HIGH  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
ADSC  
ZZ  
Synchronous asserted LOW, addresses presented to the device are captured in the address registers. A[1:0] are  
also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recog-  
.
nized  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device ina non-time-critical “sleep”  
Input-  
Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
DQs  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by  
DQPA,  
DQPB  
DQPC,  
DQPD  
Synchronous the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified  
by the addresses presented during the previous clock rise of the read cycle. The direction of the  
pins is controlled by  
. When  
OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs  
OE  
and DQP[A:D] are placed in a tri-state condition.  
VDD  
VSS  
Power Supply Power supply inputs to the core of the device.  
Ground  
Ground for the core of the device.  
VDDQ  
I/O Power Power supply for the I/O circuitry.  
Supply  
VSSQ  
I/O Ground Ground for the I/O circuitry.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is a strap pin and should remain static during device  
operation. Mode Pin has an internal pull-up.  
NC  
No Connects. Not Internally connected to the die.  
Functional Overview  
Single Read Accesses  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tC0) is 6.5 ns (133-MHz device).  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
The CY7C1345G supports secondary cache in systems  
utilizing either a linear or interleaved burst sequence. The  
interleaved burst order supports Pentium® and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is  
user-selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
rise. ADSP is ignored if CE1 is HIGH.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1)  
CE1, CE2, CE3 are all asserted  
ADSP is asserted LOW. The addresses  
active, and (2)  
presented are loaded into the address register and the burst  
inputs (  
GW, BWE, and BWx )are ignored during this first clock  
cycle. If the write inputs are asserted active ( see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise,the appropriate data will be latched and  
written into the device.Byte writes are allowed. During byte  
Byte write operations are qualified with the Byte Write Enable  
[A:D]  
(BWE) and Byte Write Select (BW  
) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
BWC  
BWA controls DQA and BWB controls DQB,  
writes,  
controls DQC, and BWD controls DQ .  
D All I/Os are tri-stated  
during a byte write.Since this is a common I/O device, the  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
asynchronous  
OE input signal must be deasserted and the  
I/Os must be tri-stated prior to the presentation of data to DQs.  
As a safety precaution, the data lines are tri-stated once a write  
cycle is detected, regardless of the state of OE.  
selection and output tri-state control. ADSP is ignored if  
is HIGH.  
CE1  
Document #: 38-05517 Rev. *A  
Page 4 of 17  
CY7C1345G  
PRELIMINARY  
Single Write Accesses Initiated by ADSC  
Interleaved Burst Address Table (MODE =  
Floating or VDD  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWx)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
)
First  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Address  
A1, A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQ[D:A] will be  
written into the specified address location. Byte writes are  
allowed. During byte writes, BWA controls DQA, BWB controls  
DQB, BWC controls DQC, and BWD controls DQD. All I/Os are  
tri-stated when a write is detected, even a byte write. Since this  
is a common I/O device, the asynchronous OE input signal  
must be deasserted and the I/Os must be tri-stated prior to the  
presentation of data to DQs. As a safety precaution, the data  
lines are tri-stated once a write cycle is detected, regardless  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1,A0  
Second  
Address  
A1,A0  
Third  
Address  
A1,A0  
Fourth  
Address  
A1,A0  
of the state of OE.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Burst Sequences  
The CY7C1345G provides an on-chip two-bit wraparound  
burst counter inside the SRAM. The burst counter is fed by  
A[1:0], and can follow either a linear or interleaved burst order.  
The burst order is determined by the state of the MODE input.  
A LOW on MODE will select a linear burst sequence. A HIGH  
on MODE will select an interleaved burst order. Leaving  
MODE unconnected will cause the device to default to a inter-  
leaved burst sequence.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Snooze mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
40  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to snooze current  
ZZ Inactive to exit snooze current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05517 Rev. *A  
Page 5 of 17  
CY7C1345G  
PRELIMINARY  
Truth Table[2, 3, 4, 5, 6]  
Address  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle,  
Power-down  
None  
None  
None  
None  
None  
H
L
L
L
X
X
X
X
H
X
X
L
L
L
L
L
X
L
X
X
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H tri-state  
L-H tri-state  
L-H tri-state  
L-H tri-state  
L-H tri-state  
Deselected Cycle,  
Power-down  
L
L
Deselected Cycle,  
Power-down  
X
L
L
Deselected Cycle,  
Power-down  
H
H
Deselected Cycle,  
Power-down  
X
Snooze Mode, Power-down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
None  
External  
External  
External  
External  
External  
Next  
X
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
X
X
X
L
X
X
X
X
X
X
L
X
X
X
L
X
L
X
tri-state  
Q
L-H  
L
L
L
H
X
L
L-H tri-state  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H tri-state  
L-H  
L-H tri-state  
L-H  
L-H tri-state  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H tri-state  
L-H  
L-H tri-state  
Q
H
X
X
L-H  
L-H  
D
D
Write Cycle, Suspend Burst  
L
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals (BW , BW , BW , BW ) and BWE = L or GW= L. WRITE = H when all Byte write enable signals  
A
B
C
D
(BW , BW , BW , BW ), BWE, GW = H.  
A
B
C
D
4. The DQ pins are controlled by the current cycle and the  
signal.  
is asynchronous and is not sampled with the clock.  
OE  
OE  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks  
[A: D]  
after the  
or with the assertion of  
. As a result,  
ADSC  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state.  
is a  
OE  
OE  
ADSP  
don't care for the remainder of the write cycle.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when  
6.  
is  
OE  
OE  
inactive or when the device is deselected, and all data bits behave as output when  
is active (LOW).  
OE  
Document #: 38-05517 Rev. *A  
Page 6 of 17  
CY7C1345G  
PRELIMINARY  
Partial Truth Table for Read/Write[2, 7]  
Function  
Read  
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
GW  
BWE  
H
H
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Write Byte (A, DQPA)  
Write Byte (B, DQPB)  
H
L
Write Bytes (B, A, DQPA, DQPB)  
Write Byte (C, DQPC)  
L
H
H
L
H
L
Write Bytes (C, A, DQPC, DQPA)  
Write Bytes (C, B, DQPC, DQPB)  
Write Bytes (C, B, A, DQPC, DQPB, DQPA)  
Write Byte (D, DQPD)  
L
L
H
L
L
L
H
H
H
H
L
H
H
L
H
L
Write Bytes (D, A, DQPD, DQPA)  
Write Bytes (D, B, DQPD, DQPA)  
Write Bytes (D, B, A, DQPD, DQPB, DQPA)  
Write Bytes (D, B, DQPD, DQPB)  
Write Bytes (D, B, A, DQPD, DQPC, DQPA)  
Write Bytes (D, C, A, DQPD, DQPB, DQPA)  
Write All Bytes  
L
L
H
L
L
L
L
H
H
L
H
L
L
L
L
L
H
L
L
L
L
Write All Bytes  
X
X
X
X
Note:  
7. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
x
Document #: 38-05517 Rev. *A  
Page 7 of 17  
CY7C1345G  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Range  
Temperature]  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in tri-state ............................................ –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V 5%/+10% 2.5V –5%  
to VDD  
Industrial  
–40°C to +85°C  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
[8, 9]  
Electrical Characteristics Over the Operating Range  
CY7C1345F  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
Max.  
3.6  
Unit  
V
3.135  
2.375  
2.4  
VDDQ  
VDD  
V
VOH  
Output HIGH Voltage  
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA  
DDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
V
V
2.0  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[8]  
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
VDDQ = 3.3V  
0.4  
0.4  
V
V
2.0 VDD + 0.3V  
1.7 VDD + 0.3V  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
V
–0.3  
–0.3  
5  
0.8  
0.7  
5
V
V
V
Input Load Current  
(except ZZ and MODE)  
GND VI VDDQ  
µA  
Input Current of MODE  
Input = VSS  
–30  
–5  
µA  
µA  
Input = VDD  
5
Input Current of ZZ  
Input = VSS  
µA  
Input = VDD  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current  
GND VI VDD, Output Disabled  
–5  
µA  
VDD Operating Supply Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX= 1/tCYC  
7.5-ns cycle, 133 MHz  
8.0-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
8.0-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All speeds  
225  
220  
205  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL, f = fMAX  
inputs switching  
,
85  
80  
ISB2  
Automatic CE Power-down  
Current—CMOS Inputs  
Max. VDD, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
40  
ISB3  
Automatic CE Power-down  
Current—CMOS Inputs  
Max. VDD, Device Deselected,  
VIN VDDQ – 0.3V or VIN 0.3V,  
f = fMAX, inputs switching  
7.5-ns cycle, 133 MHz  
8.0-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
75  
70  
65  
45  
mA  
mA  
mA  
mA  
ISB4  
Automatic CE Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, All speeds  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Shaded areas contain advance information.  
Notes:  
8. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
9. T  
: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD.  
Document #: 38-05517 Rev. *A  
Page 8 of 17  
CY7C1345G  
PRELIMINARY  
Thermal Resistance[10]  
Parameter  
ΘJA  
Description  
Test Conditions  
TQFP Package  
BGA Package Unit  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures for  
measuring thermal impedance,  
per EIA / JESD51.  
TBD  
TBD  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
TBD  
TBD  
°C/W  
Capacitance[10]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
TQFP Package BGA Package  
Unit  
CIN  
TA = 25°C, f = 1 MHz,  
DD = 3.3V.  
VDDQ = 3.3V  
5
5
5
5
5
7
pF  
pF  
pF  
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(a)  
2.5V I/O Test Load  
OUTPUT  
(b)  
(c)  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
5 pF  
INCLUDING  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range [15, 16]  
133 MHz  
117 MHz  
100 MHz  
Parameter  
tPOWER  
Description  
VDD(Typical) to the first Access[11]  
Min. Max. Min. Max. Min. Max. Unit  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
8.5  
3.0  
3.0  
10  
4.0  
4.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[12, 13, 14]  
6.5  
7.5  
8.0  
ns  
ns  
ns  
tDOH  
2.0  
0
2.0  
0
2.0  
0
tCLZ  
Notes:  
10. Tested initially and after any design or process change that may affect these parameters.  
11. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
POWER  
DD  
can be initiated.  
12. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
13. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
14. This parameter is sampled and not 100% tested.  
15. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
16. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05517 Rev. *A  
Page 9 of 17  
CY7C1345G  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)[15, 16]  
133 MHz  
117 MHz  
100 MHz  
Parameter  
tCHZ  
Description  
Clock to High-Z[12, 13, 14]  
Min. Max. Min. Max. Min. Max. Unit  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
ns  
ns  
ns  
ns  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[12, 13, 14]  
OE HIGH to Output High-Z[12, 13, 14]  
0
0
0
3.5  
3.5  
3.5  
Address Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
Set-up Before CLK Rise  
GW, BWE, BWx  
tDS  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold After CLK Rise  
,
,
tWEH  
GW BWE BWx Hold After CLK Rise  
ADV Hold After CLK Rise  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Document #: 38-05517 Rev. *A  
Page 10 of 17  
CY7C1345G  
PRELIMINARY  
Timing Diagrams  
Read Cycle Timing[17]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
[A:D]  
CE  
Deselect Cycle  
t
t
CES  
CEH  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst.  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Notes:  
17. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
18.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
x
Document #: 38-05517 Rev. *A  
Page 11 of 17  
CY7C1345G  
PRELIMINARY  
Timing Diagrams (continued)  
Write Cycle Timing[17, 18]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
[A:D]  
CE  
Deselect Cycle  
t
t
CES  
CEH  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst.  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Document #: 38-05517 Rev. *A  
Page 12 of 17  
CY7C1345G  
PRELIMINARY  
Timing Diagrams (continued)  
Read/Write Timing[17, 19, 20]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A:D]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes:  
19.  
20.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
GW is HIGH.  
ADSP or ADSC  
Document #: 38-05517 Rev. *A  
Page 13 of 17  
CY7C1345G  
PRELIMINARY  
Timing Diagrams (continued)  
ZZ Mode Timing [21, 22]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C1345G-133AXC  
CY7C1345G-133BGC  
CY7C1345G-133BGXC  
CY7C1345G-133AXI  
CY7C1345G-133BGI  
CY7C1345G-133BGXI  
CY7C1345G-117AXC  
CY7C1345G-117BGC  
CY7C1345G-117BGXC  
CY7C1345G-117AXI  
CY7C1345G-117BGI  
CY7C1345G-117BGXI  
CY7C1345G-100AXC  
CY7C1345G-100BGC  
CY7C1345G-100BGXC  
CY7C1345G-100AXI  
CY7C1345G-100BGI  
CY7C1345G-100BGXI  
Package Type  
133  
A101  
BG119  
BG119  
A101  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm) Commercial  
119-Ball PBGA (14 x 22 x 2.4mm)  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball PBGA (14 x 22 x 2.4mm)  
Industrial  
BG119  
BG119  
A101  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
117  
100  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm) Commercial  
119-Ball PBGA (14 x 22 x 2.4mm)  
BG119  
BG119  
A101  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball PBGA (14 x 22 x 2.4mm)  
Industrial  
BG119  
BG119  
A101  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm) Commercial  
119-Ball PBGA (14 x 22 x 2.4mm)  
BG119  
BG119  
A101  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
Lead-free 100-Lead Thin Quad Flat Pack (14 x 20 x 1.4mm)  
119-Ball PBGA (14 x 22 x 2.4mm)  
Industrial  
BG119  
BG119  
Lead-free 119-Ball PBGA (14 x 22 x 2.4mm)  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts. Lead-Free BG pkg will be available  
in 2005.  
Notes:  
21. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
22. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05517 Rev. *A  
Page 14 of 17  
CY7C1345G  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05517 Rev. *A  
Page 15 of 17  
PRELIMINARY  
CY7C1345G  
Package Diagrams (continued)  
119-Lead BGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned in this document  
may be the trademarks of their respective holders.  
Document #: 38-05517 Rev. *A  
Page 16 of 17  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1345G  
PRELIMINARY  
Document History Page  
Document Title: CY7C1345G 4-Mbit (128K x 36) Flow-Through Sync SRAM  
Document Number: 38-05517  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
See ECN  
See ECN  
224365  
278513  
RKF  
VBL  
New data sheet  
Deleted 66 MHz  
*A  
Changed TQFP package to lead-free TQFP in Ordering Information section  
Added BG lead-free package  
Document #: 38-05517 Rev. *A  
Page 17 of 17  

CY7C1345G-100BGC 相关器件

型号 制造商 描述 价格 文档
CY7C1345G-100BGCT CYPRESS Cache SRAM, 128KX36, 8ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119 获取价格
CY7C1345G-100BGI CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-100BGXC CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-100BGXI CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117AXC CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117AXI CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117BGC CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117BGI CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117BGXC CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格
CY7C1345G-117BGXI CYPRESS 4-Mbit (128K x 36) Flow-Through Sync SRAM 获取价格

CY7C1345G-100BGC 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6