CY7C1329H_11 [CYPRESS]

2-Mbit (64 K x 32) Pipelined Sync SRAM 2.5 V/3.3 V I/O operation; 2兆位( 64千×32 )流水线同步SRAM 2.5 V / 3.3 V的I / O操作
CY7C1329H_11
型号: CY7C1329H_11
厂家: CYPRESS    CYPRESS
描述:

2-Mbit (64 K x 32) Pipelined Sync SRAM 2.5 V/3.3 V I/O operation
2兆位( 64千×32 )流水线同步SRAM 2.5 V / 3.3 V的I / O操作

静态存储器
文件: 总20页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1329H  
2-Mbit (64 K × 32) Pipelined Sync SRAM  
2-Mbit (64  
K × 32) Pipelined Sync SRAM  
Features  
Functional Description  
Registered inputs and outputs for pipelined operation  
64 K × 32 common I/O architecture  
3.3 V core power supply  
The CY7C1329H[1] SRAM integrates 64 K × 32 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit counter  
for internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE1), depth-expansion  
Chip Enables (CE2 and CE3), Burst Control inputs (ADSC,  
2.5 V/3.3 V I/O operation  
Fast clock-to-output times  
3.5 ns (for 166-MHz device)  
4.0 ns (for 133-MHz device)  
ADSP,  
ADV), Write Enables (BW[A:D] and BWE), and Global  
and  
Write (GW). Asynchronous inputs include the Output Enable  
(OE) and the ZZ pin.  
Provide high-performance 3-1-1-1 access rate  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
User-selectable burst counter supporting IntelPentium®  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed write  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle. This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as controlled  
Asynchronous output enable  
Offered in JEDEC-standard lead-free 100-pin TQFP package  
“ZZ” Sleep Mode Option  
by the Byte Write control inputs. GW when active  
all bytes to be written.  
causes  
LOW  
The CY7C1329H operates from a +3.3 V core power supply  
while all outputs operate with either a +2.5 V or +3.3 V supply.  
All  
inputs  
and  
outputs  
are  
JEDEC-standard  
JESD8-5-compatible.  
Logic Block Diagram  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D
DQ  
BYTE  
WRITE DRIVER  
D
BW  
D
DQ  
BYTE  
C
DQ  
BYTE  
C
BW  
C
OUTPUT  
BUFFERS  
WRITE DRIVER  
OUTPUT  
REGISTERS  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQ s  
DQ  
B
E
DQ  
B
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BW  
BW  
B
A
DQ  
A
DQ  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Note  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05673 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 27, 2011  
[+] Feedback  
CY7C1329H  
Contents  
Selection Guide ................................................................3  
Pin Configuration .............................................................3  
Pin Definitions ..................................................................4  
Functional Overview ........................................................5  
Single Read Accesses ................................................5  
Single Write Accesses Initiated by ADSP ...................5  
Single Write Accesses Initiated by ADSC ...................5  
Burst Sequences .........................................................5  
Sleep Mode .................................................................5  
Interleaved Burst Address Table  
(MODE = Floating or VDD) ...............................................6  
Linear Burst Address Table (MODE = GND) ..................6  
ZZ Mode Electrical Characteristics .................................6  
Truth Table ........................................................................7  
Truth Table for Read/Write ..............................................8  
Maximum Ratings .............................................................9  
Operating Range ...............................................................9  
Electrical Characteristics .................................................9  
Capacitance ....................................................................10  
Thermal Resistance ........................................................10  
AC Test Loads and Waveforms .....................................10  
Switching Characteristics ..............................................11  
Switching Waveforms ....................................................12  
Ordering Information ......................................................16  
Ordering Code Definitions .........................................16  
Package Diagram ............................................................17  
Acronyms ........................................................................18  
Document Conventions .................................................18  
Units of Measure .......................................................18  
Document History Page .................................................19  
Sales, Solutions, and Legal Information ......................20  
Worldwide Sales and Design Support .......................20  
Products ....................................................................20  
PSoC Solutions .........................................................20  
Document #: 38-05673 Rev. *E  
Page 2 of 20  
[+] Feedback  
CY7C1329H  
Selection Guide  
166 MHz  
3.5  
133 MHz Unit  
Maximum Access Time  
4.0  
225  
40  
ns  
Maximum Operating Current  
Maximum CMOS Standby Current  
240  
mA  
mA  
40  
Pin Configuration  
Figure 1. 100-pin TQFP Pinout  
NC  
DQC  
DQC  
VDDQ  
VSSQ  
DQC  
DQC  
DQC  
DQC  
VSSQ  
VDDQ  
DQC  
DQC  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1329H  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
NC  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
NC  
BYTE D  
BYTE A  
Document #: 38-05673 Rev. *E  
Page 3 of 20  
[+] Feedback  
CY7C1329H  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the 64K address locations. Sampled at the rising edge of the  
A0, A1, A  
Input-  
Synchronous CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A1, A0 feed the 2-bit  
counter.  
BWA,BWB,  
BWC, BWD  
Input-  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct Byte Writes to the SRAM. Sampled  
Synchronous on the rising edge of CLK.  
GW  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global Write  
Synchronous is conducted (All bytes are written, regardless of the values on BW[A:D] and BWE).  
BWE  
CLK  
CE1  
Input-  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
Synchronous LOW to conduct a Byte Write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
CE  
Input-  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
2
Synchronous and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a new  
external address is loaded.  
CE2  
CE3  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
2 is sampled only when a new external address is loaded.  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE3 to select/deselect the device. CE  
Input-  
Synchronous and CE2 to select/deselect the device. Not connected for BGA. Where referenced, CE3 is assumed active  
throughout this document for BGA. CE3 is sampled only when a new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
Asynchronous the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.  
OE is masked during the first clock of a Read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it automat-  
Synchronous ically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, A is captured in the address registers. A , A are also loaded into the burst counter. When  
ADSP  
1
0
and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
ZZ  
Input-  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, A is captured in the address registers. A1, A0 are also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recognized.  
Input-  
ZZ “sleep” Input, active HIGH. This input, when HIGH places the device in a non-time-critical “sleep”  
Asynchronous condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ  
pin has an internal pull-down.  
DQA, DQB  
I/O-  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQC, DQD Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by “A”  
during the previous clock rise of the Read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQ are placed in a tri-state condition.  
VDD  
VSS  
Power Supply Power supply inputs to the core of the device.  
Ground Ground for the core of the device.  
VDDQ  
I/O Power Power supply for the I/O circuitry.  
Supply  
VSSQ  
I/O Ground Ground for the I/O circuitry.  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and should remain static during device operation.  
Mode Pin has an internal pull-up.  
NC  
No Connects. Not internally connected to the die. 4M, 9M, 18M, 72M, 144M, 288M, 576M and 1G are  
address expansion pins and are not internally connected to the die.  
Document #: 38-05673 Rev. *E  
Page 4 of 20  
[+] Feedback  
CY7C1329H  
Write operation is controlled by BWE and BW[A:D] signals. The  
CY7C1329H provides Byte Write capability that is described in  
the Write Cycle Descriptions table. Asserting the Byte Write  
Enable input (BWE) with the selected Byte Write (BW[A:D]) input,  
will selectively write to only the desired bytes. Bytes not selected  
during a Byte Write operation will remain unaltered. A  
synchronous self-timed Write mechanism has been provided to  
simplify the Write operations.  
Functional Overview  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock.  
The CY7C1329H supports secondary cache in systems utilizing  
either a linear or interleaved burst sequence. The interleaved  
burst order supports Pentium and i486processors. The linear  
burst sequence is suited for processors that utilize a linear burst  
sequence. The burst order is user selectable, and is determined  
by sampling the MODE input. Accesses can be initiated with  
either the Processor Address Strobe (ADSP) or the Controller  
Address Strobe (ADSC). Address advancement through the  
burst sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the rest  
of the burst access.  
Because the CY7C1329H is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As a  
safety precaution, DQs are automatically tri-stated whenever a  
Write cycle is detected, regardless of the state of OE.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following conditions  
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted  
HIGH, (3) CE1, CE2, CE3 are all asserted active, and (4) the  
appropriate combination of the Write inputs (GW, BWE, and  
BW[A:D]) are asserted active to conduct a Write to the desired  
byte(s). ADSC-triggered Write accesses require a single clock  
cycle to complete. The address presented to A is loaded into the  
address register and the address advancement logic while being  
delivered to the memory array. The ADV input is ignored during  
this cycle. If a global Write is conducted, the data presented to  
DQ is written into the corresponding address location in the  
memory core. If a Byte Write is conducted, only the selected  
bytes are written. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed Write  
mechanism has been provided to simplify the Write operations.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All Writes are simplified with on-chip synchronous  
self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1 is  
HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored if  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the address  
register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
output registers. At the rising edge of the next clock the data is  
allowed to propagate through the output register and onto the  
data bus within tCO if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state to  
a selected state, its outputs are always tri-stated during the first  
cycle of the access. After the first cycle of the access, the outputs  
are controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by the  
chip select and either ADSP or ADSC signals, its output will  
tri-state immediately.  
Because the CY7C1329H is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ inputs. Doing so will tri-state the output drivers. As a  
safety precaution, DQs are automatically tri-stated whenever a  
Write cycle is detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1329H provides a two-bit wraparound counter, fed by  
A1, A0, that implements either an interleaved or linear burst  
sequence. The interleaved burst sequence is designed  
specifically to support Intel Pentium applications. The linear  
burst sequence is designed to support processors that follow a  
linear burst sequence. The burst sequence is user selectable  
through the MODE input.Asserting ADV LOW at clock rise will  
automatically increment the burst counter to the next address in  
the burst sequence. Both Read and Write burst operations are  
supported.  
Single Write Accesses Initiated by ADSP  
Sleep Mode  
This access is initiated when both of the following conditions are  
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) CE1,  
CE2, CE3 are all asserted active. The address presented to A is  
loaded into the address register and the address advancement  
logic while being delivered to the RAM array. The Write signals  
(GW, BWE, and BW[A:D]) and ADV inputs are ignored during this  
first cycle.  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
CE3, ADSP, and ADSC must remain inactive for the duration of  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQ inputs is written into the corresponding  
address location in the memory array. If GW is HIGH, then the  
tZZREC after the ZZ input returns LOW.  
Document #: 38-05673 Rev. *E  
Page 5 of 20  
[+] Feedback  
CY7C1329H  
Interleaved Burst Address Table  
(MODE = Floating or V )  
Linear Burst Address Table (MODE = GND)  
DD  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
Min  
Max  
40  
Unit  
ZZ > VDD– 0.2 V  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
mA  
ns  
ns  
ns  
ns  
tZZS  
2tCYC  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ Active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
tRZZI  
0
Document #: 38-05673 Rev. *E  
Page 6 of 20  
[+] Feedback  
CY7C1329H  
Truth Table [2, 3, 4, 5, 6, 7]  
Next Cycle  
Unselected  
Address Used  
Address Used  
CE1  
CE2  
CE3  
ZZ  
ADSP ADSC ADV WRITE OE  
None  
None  
None  
H
X
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
Unselected  
None  
None  
L
L
L
L
X
L
L
L
L
L
X
L
X
L
X
H
X
H
X
L
L
L
L
L
H
L
L
L
L
L
L
Unselected  
None  
L
Unselected  
None  
None  
H
H
X
L
Unselected  
None  
None  
X
X
H
H
H
H
H
X
L
Begin Read  
External  
External  
Next  
None  
X
X
X
L
Begin Read  
External  
External  
External  
External  
External  
Next  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
L
L
H
X
L
Next  
L
H
H
H
H
Next  
L
L
H
H
H
Next  
L
L
H
L
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
H
Next  
Next  
X
H
H
X
H
X
X
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
H
X
X
H
X
H
H
X
X
H
H
H
H
H
H
H
H
H
H
H
L
L
H
H
H
L
H
L
Next  
L
H
X
X
L
Begin Write  
Next  
L
Begin Write  
Next  
L
L
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ “Sleep”  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
L
Next  
H
L
Current  
Current  
None  
H
X
Notes  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write Enable signals (BW , BW , BW , BW and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals (BW ,  
)
A
B
C
D
A
BW , BW , BW BWE, GW = H.  
),  
B
C
D
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. CE , CE , and CE are available only in the TQFP package.  
1
2
3
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW  
. Writes may occur only on subsequent clocks after  
[A:D]  
the ADSP or with the assertion of ADSC. As a result,  
for the remainder of the Write cycle.  
must be driven HIGH prior to the start of the Write cycle to allow the outputs to Tri-State. OE is a don't care  
OE  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are Tri-State when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05673 Rev. *E  
Page 7 of 20  
[+] Feedback  
CY7C1329H  
Truth Table for Read/Write [8, 9]  
Function  
GW  
BWE  
BWD  
BWC  
BWB  
BWA  
Read  
H
H
X
X
X
H
H
L
X
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
H
H
H
H
H
H
H
L
H
H
H
H
L
H
L
Write Byte A – DQA  
Write Byte B – DQB  
Write Bytes B, A  
Write Byte C – DQC  
Write Bytes C, A  
Write Bytes C, B  
Write Bytes C, B, A  
Write Byte D – DQD  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
H
L
L
H
H
L
H
L
L
L
H
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
H
L
L
L
L
H
H
L
H
L
L
L
L
L
H
L
L
L
L
Write All Bytes  
X
X
X
X
Notes  
8. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
9. WRITE = L when any one or more Byte Write Enable signals (BW , BW , BW , BW and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals (BW ,  
)
A
B
C
D
A
BW , BW , BW BWE, GW = H.  
),  
B
C
D
Document #: 38-05673 Rev. *E  
Page 8 of 20  
[+] Feedback  
CY7C1329H  
DC Input Voltage ................................ –0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
Storage Temperature ............................... –65 C to +150C  
Latch-up Current ................................................... > 200 mA  
Ambient Temperature with  
Power Applied ......................................... –55 C to +125 C  
Operating Range  
Supply Voltage on VDD Relative to GND .....–0.5 V to +4.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.5 V to +VDD  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
Commercial  
Industrial  
0 °C to +70 °C 3.3 V– 5% / 2.5V–5%to  
–40 °C to +85 °C  
DC Voltage Applied to Outputs  
in Tri-State ........................................–0.5 V to VDDQ + 0.5 V  
+ 10%  
VDD  
Electrical Characteristics  
Over the Operating Range  
Parameter [10, 11]  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
VDD  
3.6  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage [10]  
Input LOW Voltage [10]  
for 3.3 V I/O, IOH = –4.0 mA  
for 2.5 V I/O, IOH = –1.0 mA  
for 3.3 V I/O, IOL = 8.0 mA  
for 2.5 V I/O, IOL = 1.0 mA  
for 3.3 V I/O  
V
2.0  
V
0.4  
V
0.4  
VDD + 0.3 V  
VDD + 0.3 V  
0.8  
V
2.0  
V
for 2.5 V I/O  
1.7  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
V
for 2.5 V I/O  
0.7  
V
InputLeakageCurrentexcept GND VI VDDQ  
ZZ and MODE  
5
A  
Input Current of MODE  
Input = VSS  
Input = VDD  
Input = VSS  
Input = VDD  
–30  
5
A  
A  
Input Current of ZZ  
–5  
A  
30  
5
A  
IOZ  
IDD  
Output Leakage Current  
GND VI VDDQ, Output Disabled  
–5  
A  
VDD Operating Supply  
Current  
VDD = Max, IOUT = 0 mA, 6-ns cycle,166 MHz  
f = fMAX = 1/tCYC  
240  
225  
100  
90  
mA  
mA  
mA  
mA  
7.5-ns cycle,133 MHz  
ISB1  
Automatic CS Power-down VDD = Max,  
Current—TTL Inputs Device Deselected,  
6-ns cycle, 166 MHz  
7.5-ns cycle,133 MHz  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
ISB2  
Automatic CS Power-down VDD = Max,  
Current—CMOS Inputs Device Deselected,  
All speeds  
40  
mA  
VIN 0.3 V or  
VIN > VDDQ – 0.3 V, f = 0  
Notes  
10. Overshoot: V (AC) < V + 1.5 V (Pulse width less than t  
/2), undershoot: V (AC) > –2 V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
11. T  
: Assumes a linear ramp from 0 V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05673 Rev. *E  
Page 9 of 20  
[+] Feedback  
CY7C1329H  
Electrical Characteristics  
Over the Operating Range  
Parameter [10, 11]  
Description  
Automatic CS Power-down VDD = Max,  
Current—CMOS Inputs Device Deselected, or  
Test Conditions  
Min  
Max  
85  
Unit  
mA  
ISB3  
6-ns cycle, 166 MHz  
7.5-ns cycle,133 MHz  
All speeds  
75  
mA  
VIN 0.3 V or  
VIN > VDDQ – 0.3 V,  
f = fMAX = 1/tCYC  
ISB4  
Automatic CS Power-down VDD = Max,  
45  
mA  
Current—TTL Inputs  
Device Deselected,  
VIN VIH or VIN VIL,  
f = 0  
Capacitance  
100-pin TQFP  
Max  
Parameter [12]  
Description  
Test Conditions  
Unit  
CIN  
CCLK  
CI/O  
Input Capacitance  
TA = 25 C, f = 1 MHz, VDD = 3.3 V, VDDQ = 2.5 V  
5
5
5
pF  
pF  
pF  
Clock Input Capacitance  
Input/Output Capacitance  
Thermal Resistance  
100-pin TQFP  
Package  
Parameter [12]  
Description  
Test Conditions  
Unit  
JA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance, per  
EIA/JESD51  
30.32  
C/W  
JC  
Thermal Resistance  
(Junction to Case)  
6.85  
C/W  
AC Test Loads and Waveforms  
Figure 2. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
OUTPUT  
R = 317  
3.3 V  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50  
0
10%  
R = 50  
L
GND  
5 pF  
INCLUDING  
R = 351   
1 ns  
1 ns  
V = 1.5 V  
T
(a)  
JIG AND  
SCOPE  
(b)  
(c)  
2.5 V I/O Test Load  
R = 1667   
2.5 V  
OUTPUT  
R = 50  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50  
0
10%  
L
5 pF  
R =1538   
1 ns  
1 ns  
INCLUDING  
V = 1.25 V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note  
12. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05673 Rev. *E  
Page 10 of 20  
[+] Feedback  
CY7C1329H  
Switching Characteristics  
Over the Operating Range  
166 MHz  
Max  
133 MHz  
Parameter [13, 14]  
Description  
Unit  
Min  
Min  
Max  
tPOWER  
Clock  
tCYC  
VDD(Typical) to the First Access[15]  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
6.0  
2.5  
2.5  
7.5  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
Clock to Low Z [16, 17, 18]  
1.5  
0
3.5  
1.5  
0
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to High Z [16, 17, 18]  
3.5  
3.5  
4.0  
4.5  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low Z [16, 17, 18]  
OE HIGH to Output High Z [16, 17, 18]  
0
0
3.5  
4.0  
Address Set-up before CLK Rise  
ADSC, ADSP Set-up before CLK Rise  
ADV Set-up before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:D] Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
Chip Enable Set-Up before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold after CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC Hold after CLK Rise  
ADV Hold after CLK Rise  
tADVH  
tWEH  
GW, BWE, BW[A:D] Hold after CLK Rise  
Data Input Hold after CLK Rise  
Chip Enable Hold after CLK Rise  
tDH  
tCEH  
Notes  
13. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
14. Test conditions shown in (a) ofFigure 2 on page 10 unless otherwise noted.  
15. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a Read or Write operation  
POWER  
DD  
can be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 2 on page 10. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High Z prior to Low Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
Document #: 38-05673 Rev. *E  
Page 11 of 20  
[+] Feedback  
CY7C1329H  
Switching Waveforms  
Figure 3. Read Cycle Timing [19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BW[A:D]  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
t
CHZ  
OELZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
19. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05673 Rev. *E  
Page 12 of 20  
[+] Feedback  
CY7C1329H  
Switching Waveforms (continued)  
Figure 4. Write Cycle Timing [20, 21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW[A :D]  
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Notes  
20. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
21.  
Full width Write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW  
LOW.  
[A : D]  
Document #: 38-05673 Rev. *E  
Page 13 of 20  
[+] Feedback  
CY7C1329H  
Switching Waveforms (continued)  
Figure 5. Read/Write Cycle Timing [22, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE,  
BW[A:D]  
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes  
22. On this diagram, when CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23. The data bus (Q) remains in High Z following a Write cycle unless an ADSP, ADSC, or ADV cycle is performed.  
24. GW is HIGH.  
Document #: 38-05673 Rev. *E  
Page 14 of 20  
[+] Feedback  
CY7C1329H  
Switching Waveforms (continued)  
Figure 6. ZZ Mode Timing [25, 26]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in High Z when exiting ZZ sleep mode.  
Document #: 38-05673 Rev. *E  
Page 15 of 20  
[+] Feedback  
CY7C1329H  
Ordering Information  
Cypress offers other versions of this type of product in many different configurations and features. The following table contains only  
the list of parts that are currently available.  
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/products or contact your local sales representative.  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the  
office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
133  
CY7C1329H-133AXC  
51-85050 100-pin Thin Quad Flat Pack (14 × 20 × 1.4 mm) Pb-free Commercial  
Ordering Code Definitions  
CY 7 C 1329  
H
- 133  
A
X
C
Temperature Range:  
C = Commercial  
Pb-free  
Package Type:  
AX = 100-pin TQFP  
Speed: 133 MHz  
Process Technology: greater than or equal to 90 nm  
1329 = SCD, 064 K × 32 (2 Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document #: 38-05673 Rev. *E  
Page 16 of 20  
[+] Feedback  
CY7C1329H  
Package Diagram  
Figure 7. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA, 51-85050  
51-85050 *D  
Document #: 38-05673 Rev. *E  
Page 17 of 20  
[+] Feedback  
CY7C1329H  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CE  
chip enable  
Symbol  
°C  
Unit of Measure  
CMOS  
I/O  
complementary metal oxide semiconductor  
input/output  
degree Celsius  
micro Amperes  
micro seconds  
milli Amperes  
milli meter  
milli seconds  
milli Volts  
µA  
µs  
OE  
output enable  
SRAM  
TQFP  
TTL  
static random access memory  
thin quad flat pack  
mA  
mm  
ms  
mV  
mW  
MHz  
ns  
transistor-transistor logic  
milli Watts  
Mega Hertz  
nano seconds  
percent  
%
pF  
pico Farad  
Volts  
V
W
Watts  
Document #: 38-05673 Rev. *E  
Page 18 of 20  
[+] Feedback  
CY7C1329H  
Document History Page  
Document Title: CY7C1329H, 2-Mbit (64 K × 32) Pipelined Sync SRAM  
Document Number: 38-05673  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
347357  
424820  
See ECN  
See ECN  
PCI  
New Data Sheet  
Converted from Preliminary to Final.  
*A  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901  
North First Street” to “198 Champion Court”  
Changed Three-State to Tri-State.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table.  
Modified test condition from VIH < VDD to VIH VDD  
Replaced Package Name column with Package Diagram in the Ordering Infor-  
mation table.  
Updated the Ordering Information Table.  
Replaced Package Diagram of 51-85050 from *A to *B  
*B  
*C  
*D  
*E  
433014  
See ECN  
NXR  
NJY  
NJY  
NJY  
Included 3.3V I/O option  
Updated the Ordering Information table.  
2896585 03/20/2010  
3052882 10/08/2010  
3293640 06/27/2011  
Removed obsolete part numbers from Ordering Information table and updated  
package diagrams.  
Removed obsolete part numbers from Ordering Information table and added  
Ordering definitions.  
Updated Package Diagram.  
Added Acronyms and Units of Measure.  
Updated in new template.  
Document #: 38-05673 Rev. *E  
Page 19 of 20  
[+] Feedback  
CY7C1329H  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2005-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-05673 Rev. *E  
Revised June 27, 2011  
Page 20 of 20  
i486 is a trademark, and Intel and Pentium are registered trademarks, of Intel Corporation. PowerPC is a registered trademark of IBM Corporation. All products and company names mentioned in this  
document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C1329L-100AC

x32 Fast Synchronous SRAM
ETC

CY7C1329L-60AC

x32 Fast Synchronous SRAM
ETC

CY7C1329L-66AC

x32 Fast Synchronous SRAM
ETC

CY7C1329L-75AC

x32 Fast Synchronous SRAM
ETC

CY7C1329_04

64K x 32 Synchronous-Pipelined Cache RAM
CYPRESS

CY7C132BV18

RAM9 QDR-I/DDR-I/QDR-II/DDR- II Errata
CYPRESS

CY7C132BV25

RAM9 QDR-I/DDR-I/QDR-II/DDR- II Errata
CYPRESS

CY7C132CV18

RAM9 QDR-I/DDR-I/QDR-II/DDR- II Errata
CYPRESS

CY7C132_05

2K x 8 Dual-Port Static RAM
CYPRESS

CY7C132_09

2K x 8 Dual-Port Static RAM
CYPRESS

CY7C132_11

2K x 8 Dual-Port Static RAM High speed access: 15 ns
CYPRESS

CY7C132_12

2K x 8 Dual-Port Static RAM
CYPRESS