CY7C1327L-117AC [CYPRESS]

Cache SRAM, 256KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1327L-117AC
型号: CY7C1327L-117AC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 256KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

静态存储器
文件: 总15页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fax id: 1107  
PRELIMINARY  
CY7C1327  
256K x 18 Synchronous-Pipelined Cache RAM  
Features  
Functional Description  
• Low (1.65 mW) standby power (f=0, L version)  
The CY7C1327 is a 3.3V 256K by 18 synchronous-pipelined  
cache SRAM designed to support zero wait state secondary  
cache with minimal glue logic.  
• Supports 100-MHz bus for Pentium® and PowerPC™  
operations with zero wait states  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. Max-  
imum access delay from the clock rise is 3.5 ns (166-MHz  
device). A 2-bit on-chip wraparound burst counter captures the  
first address in a burst sequence and automatically increments  
the address for the rest of the burst access.  
• Fully registered inputs and outputs for pipelined  
operation  
• 256K x 18 common I/O architecture  
• Single 3.3V power supply  
• Fast clock-to-output times  
— 3.5 ns (for 166-MHz device)  
— 4.0 ns (for 133-MHz device)  
— 4.5 ns (for 117-MHz device)  
— 5.5 ns (for 100-MHz device)  
The CY7C1327 supports either the interleaved burst se-  
quence used by the Intel Pentium processor or a linear burst  
sequence used by processors such as the PowerPC. The burst  
sequence is selected through the MODE pin. Accesses can be  
initiated by asserting either the processor address strobe  
(ADSP) or the controller address strobe (ADSC) at clock rise.  
Address advancement through the burst sequence is con-  
trolled by the ADV input.  
• User-selectable burst counter supporting Intel®  
Pentium interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
Byte write operations are qualified with the two Byte Write Se-  
lect (BW  
) inputs. A Global Write Enable (GW) overrides the  
[0-1]  
• Asynchronous output enable  
byte write inputs and writes data to both bytes. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• JEDEC-standard 100-pin TQFP pinout  
• “ZZ” Sleep Mode option and Stop Clock option  
Three synchronous chip selects (CE , CE , CE ) and an asyn-  
1
2
3
chronous output enable (OE) provide for easy bank selection  
and output three-state control. In order to provide proper data  
during depth expansion, OE is masked during the first clock of  
a read cycle when emerging from a deselected state.  
Logic Block Diagram  
2
(A ,A )  
0
1
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
Q
1
ADSP  
Q
16  
18  
ADDRESS  
REGISTER  
CE  
D
256KX18  
A
[17:0]  
18  
16  
MEMORY  
ARRAY  
GW  
BWE  
DQ[15:8],DP[1]  
D
Q
BW  
1
BYTEWRITE  
REGISTERS  
D
D
Q
Q
DQ[7:0],DP[0]  
BYTEWRITE  
BW  
0
REGISTERS  
18  
18  
CE  
CE  
CE  
1
2
ENABLE  
CE REGISTER  
CLK  
3
D
Q
OUTPUT  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
CLK  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[15:0]  
[1:0]  
Intel and Pentium are registered trademarks of Intel Corporation.  
PowerPC is a trademark of IBM Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
August 24, 1998  
PRELIMINARY  
CY7C1327  
Pin Configuration  
100-Lead TQFP  
NC  
NC  
NC  
VDDQ  
VSS  
NC  
1
2
3
4
5
6
7
8
A10  
NC  
NC  
VDDQ  
VSS  
NC  
DP0  
DQ7  
DQ6  
VSS  
VDDQ  
DQ5  
DQ4  
VSS  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
DQ8  
DQ9  
VSS  
VDDQ  
DQ10  
DQ11  
NC  
VDD  
NC  
VSS  
DQ12  
DQ13  
VDDQ  
VSS  
DQ14  
DQ15  
DP1  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1327  
pinout  
BYTE0  
VDD  
ZZ  
BYTE1  
DQ3  
DQ2  
VDDQ  
VSS  
DQ1  
DQ0  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
Selection Guide  
7C1327-166 7C1327-133 7C1327-117 7C1327-100  
Maximum Access Time (ns)  
3.5  
420  
2.0  
4.0  
375  
2.0  
4.5  
350  
2.0  
5.5  
325  
2.0  
Maximum Operating Current (mA)  
Maximum Standby Current (mA)  
2
PRELIMINARY  
CY7C1327  
Pin Definitions  
Pin Number  
Name  
I/O  
Description  
Address Inputs used to select one of the 256K address locations. Sampled at the  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE  
50–44,81,82,  
99, 100,  
A
Input-  
[17:0]  
Synchronous  
1
2
3
32–37  
are sampled active. A and A feed the 2-bit counter.  
0 1  
96–93  
BW  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes  
to the SRAM. Sampled on the rising edge of CLK.  
[1:0]  
88  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of  
CLK, a global write is conducted (ALL bytes are written, regardless of the values  
on BW  
and BWE).  
[1:0]  
87  
89  
98  
BWE  
CLK  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
1
conjunction with CE and CE to select/deselect the device. ADSP is ignored if  
2 3  
CE is HIGH.  
1
97  
92  
86  
CE  
CE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE and CE to select/deselect the device.  
2
3
1
3
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE and CE to select/deselect the device.  
1
2
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O  
Asynchronous pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins  
are three-stated, and act as input data pins. OE is masked during the first clock of  
a read cycle when emerging from a deselected state.  
83  
84  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it auto-  
matically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK. When assert-  
ed LOW, A  
is captured in the address registers. A and A are also loaded into  
[17:0] 0 1  
the burst counter. When ADSP and ADSC are both asserted, only ADSP is recog-  
nized. ASDP is ignored when CE is deasserted HIGH.  
1
85  
64  
ADSC  
ZZ  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK. When assert-  
ed LOW, A  
is captured in the address registers. A and A are also loaded into  
[17:0] 0 1  
the burst counter. When ADSP and ADSC are both asserted, only ADSP is recog-  
nized.  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical  
Asynchronous “sleep” condition with data integrity preserved.  
29, 28,  
DQ  
DP  
,
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by A during the previous clock rise of the  
[15:0]  
[1:0]  
25–22, 19,  
18, 13, 12,  
9–6, 3, 2, 79,  
78, 75–72,  
69, 68, 63, 62  
59–56, 53, 52  
[17:0]  
read cycle. The direction of the pins is controlled by OE. When OE is asserted  
LOW, the pins behave as outputs. When HIGH, DQ  
a three-state condition.  
and DP  
are placed in  
[15:0]  
[1:0]  
15, 41, 65, 91  
V
Power Supply Power supply inputs to the core of the device. Should be connected to 3.3V power  
supply.  
DD  
17, 40, 67, 90  
V
V
Ground  
Ground for the core of the device. Should be connected to ground of the system.  
Power supply for the I/O circuitry. Should be connected to a 3.3V power supply.  
SS  
4, 11, 20, 27,  
54, 61, 70, 77  
I/O Power  
Supply  
DDQ  
5, 10, 21, 26,  
55, 60, 71, 76  
V
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
Selects burst order. When tied to GND selects linear burst sequence. When tied  
SSQ  
31  
MODE  
Input-  
Static  
to V  
or left floating selects interleaved burst sequence. This is a strap pin and  
DDQ  
should remain static during device operation.  
1, 14, 16, 30, NC  
38, 39, 42, 43,  
-
No Connects.  
49, 51, 66, 80  
3
PRELIMINARY  
CY7C1327  
HIGH, then the write operation is controlled by BWE and  
Introduction  
BW  
signals. The CY7C1327 provides byte write capability  
[1:0]  
Functional Overview  
that is described in the Write Cycle Descriptions table. Assert-  
ing the Byte Write Enable input (BWE) with the selected Byte  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. Max-  
Write (BW , BW ) input will selectively write to only the desired  
0
1
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
imum access delay from the clock rise (t ) is 3.5 ns (166-MHz  
CO  
device). A two-bit on-chip wraparound burst counter captures  
the first address in a burst sequence and automatically incre-  
ments the address for the rest of the burst access.  
Because the CY7C1327 is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
to the DQ –DQ and DP inputs. Doing so will three-state the  
0
15  
The CY7C1327 supports secondary cache in systems utilizing  
either a linear or interleaved burst sequence. The interleaved  
burst order supports Pentium and i486 processors. The linear  
burst sequence is suited for processors that utilize a linear  
burst sequence. The burst order is user selectable, and is de-  
termined by sampling the MODE input. Accesses can be initi-  
ated with either the processor address strobe (ADSP) or the  
controller address strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input.  
output drivers. As a safety precaution, DQ –DQ and DP are  
0
15  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE , CE , CE are all asserted active,  
1
2
3
and (4) the appropriate combination of the write inputs (GW,  
Byte write operations are qualified with the Byte Write Enable  
BWE, and BW , BW ) are asserted active to conduct a write  
0
1
(BWE) and Byte Write Select (BW  
) inputs. A Global Write  
[0-1]  
to the desired byte(s). ADSC triggered write accesses require  
a single clock cycle to complete. The address presented to  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip synchro-  
nous self-timed write circuitry.  
A –A is loaded into the address register and the address  
0
17  
advancement logic while being delivered to the RAM core. The  
ADV input is ignored during this cycle. If a global write is con-  
Three synchronous chip selects (CE , CE , CE ) and an asyn-  
1
2
3
chronous output enable (OE) provide for easy bank selection  
ducted, the data presented to the DQ –DQ and DP are writ-  
0 15  
and output three-state control. ADSP is ignored if CE is  
HIGH.  
ten into the corresponding address location in the RAM core.  
If a byte write is conducted, only the selected bytes are written.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
1
Single Read Accesses  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
Because the CY7C1327 is a common I/O device, the Output  
Enable (OE) must be deasserted HIGH before presenting data  
CE , CE , CE are all asserted active, and (3) the write signals  
1
2
3
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE  
1
to the DQ –DQ and DP inputs. Doing so will three-state the  
0 15  
is HIGH. The address presented to the address inputs  
output drivers. As a safety precaution, DQ –DQ and DP are  
0
15  
(A –A ) is stored into the address advancement logic and the  
0
17  
automatically three-stated whenever a write cycle is detected,  
Address Register while being presented to the memory core.  
The corresponding data is allowed to propagate to the input of  
the Output Registers. At the rising edge of the next clock the  
data is allowed to propagate through the output register and  
onto the data bus within 3.5 ns (166-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately.  
regardless of the state of OE.  
Burst Sequences  
The CY7C1327 provides a two-bit wraparound counter, fed by  
A and A , that implements either an interleaved or linear burst  
0
1
sequence. The interleaved burst sequence is designed specif-  
ically to support Intel Pentium applications. The linear burst  
sequence is designed to support processors that follow a lin-  
ear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
Interleaved Burst Sequence  
First  
Second  
Address  
Third  
Address  
Fourth  
Address  
CE , CE , CE are all asserted active. The address presented  
1
2
3
Address  
to A –A is loaded into the address register and the address  
0
17  
advancement logic while being delivered to the RAM core. The  
write signals (GW, BWE, BW , and BW ) and ADV inputs are  
ignored during this first cycle.  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
0
1
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQ –DQ and DP inputs is written into  
0
15  
the corresponding address location in the RAM core. If GW is  
4
PRELIMINARY  
CY7C1327  
Sleep Mode  
Linear Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ plac-  
es the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected prior to entering the “sleep” mode.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
Ax+1, Ax  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
CE , CE , CE , ADSP, and ADSC must remain inactive for the  
1
2
3
duration of t  
after the ZZ input returns LOW.  
ZZREC  
Cycle Descriptions[1,2,3]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE  
X
1
CE  
X
X
0
CE  
1
ADSP  
X
0
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Write  
X
3
2
1
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
Unselected  
None  
0
X
Unselected  
None  
X
1
0
0
X
Unselected  
None  
X
0
0
1
X
Unselected  
None  
X
0
0
1
X
Begin Read  
External  
External  
Next  
1
0
0
X
Begin Read  
0
1
0
1
read  
read  
read  
read  
read  
read  
read  
read  
read  
write  
write  
write  
write  
write  
write  
write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
Next  
1
0
0
Next  
X
X
1
0
1
Hi-Z  
DQ  
Next  
1
0
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
1
Begin Write  
0
X
0
Continue Write  
Continue Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
1
Next  
X
1
0
Current  
Current  
None  
X
1
1
Suspend Write  
ZZ “sleep”  
Notes:  
X
X
1
X
X
1. X=Don't Care, 1=HIGH, 0=LOW.  
2. Write is defined by BWE, BW[1:0], and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5
PRELIMINARY  
CY7C1327  
Write Cycle Descriptions[1,2,3]  
Function  
GW  
1
BWE  
BW  
X
BW  
X
1
0
Read  
Read  
1
0
0
0
0
X
1
1
1
Write Byte 0 - DQ  
Write Byte 1 - DQ  
Write Both Bytes  
Write Both Bytes  
, DP  
1
1
0
[7:0]  
[0]  
, DP  
1
0
1
[15:8]  
[1]  
1
0
0
0
X
X
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature ..................................... −65°C to +150°C  
Ambient Temperature with  
Power Applied.................................................. −55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage on V Relative to GND.........−0.5V to +4.6V  
[5]  
DD  
Range  
Com’l  
Temperature  
V
DD  
DC Voltage Applied to Outputs  
[4]  
0°C to +70°C  
3.3V 5%/+10%  
in High Z State .....................................−0.5V to V  
+ 0.5V  
+ 0.5V  
DDQ  
[4]  
DC Input Voltage ..................................−0.5V to V  
DDQ  
Notes:  
4. Minimum voltage equals –2.0V for pulse durations of less than 20 ns.  
5. A is the “instant on” case temperature.  
T
6
PRELIMINARY  
CY7C1327  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
3.135  
3.135  
2.4  
Max.  
3.6  
Unit  
V
V
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
CC  
3.6  
V
DDQ  
V
V
V
= Min., I = 4.0 mA  
V
OH  
DD  
DD  
OH  
V
= Min., I = 8.0 mA  
0.4  
V
OL  
OL  
V
2.0  
–0.3  
5  
V
+ 0.3V  
DDQ  
V
IH  
IL  
[4]  
V
Input LOW Voltage  
0.8  
5
V
I
Input Load Current  
GND V V  
µA  
X
I
DDQ  
except ZZ and MODE  
Input Current of MODE Input = V  
Input = V  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
SS  
5
DDQ  
SS  
Input Current of ZZ  
Input = V  
Input = V  
30  
5
DDQ  
I
I
Output Leakage  
Current  
GND V V  
Output Disabled  
5  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
6-ns cycle, 166 MHz  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
420  
375  
350  
325  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
CC  
DD  
DD  
OUT  
CYC  
Current  
= 1/t  
MAX  
I
Automatic CS  
Power-Down  
Current—TTL Inputs  
Max. V , Device Deselected,  
DD  
V
f = f  
SB1  
V or V V  
IN  
IH  
IN  
IL  
30  
= 1/t  
MAX CYC  
25  
25  
I
I
Automatic CS  
Power-Down  
Current—CMOS Inputs f = 0  
Max. V , Device Deselected,  
V
2.5  
500  
SB2  
DD  
0.3V or V > V  
– 0.3V,  
IN  
IN  
DDQ  
L Version  
Automatic CS  
Power-Down  
Current—CMOS Inputs f = f  
Max. V , Device Deselected, or 6-ns cycle, 166 MHz  
V
10  
10  
10  
10  
18  
mA  
mA  
mA  
mA  
mA  
SB3  
DD  
0.3V or V > V  
– 0.3V  
IN  
IN  
CYC  
DDQ  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
= 1/t  
MAX  
I
Automatic CS  
Max. V , Device Deselected,  
DD  
SB4  
Power-Down  
V
V or V V , f = 0  
IN IH IN IL  
Current—TTL Inputs  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Test Conditions  
ZZ > V 0.2V  
Min  
Max  
Unit  
I
Snooze mode  
3
mA  
CCZZ  
DD  
standby current  
I
(L Version)  
Snooze mode  
standby current  
ZZ > V 0.2V  
800  
µA  
ns  
ns  
CCZZ  
DD  
t
Deviceoperationto  
ZZ  
ZZ > V 0.2V  
2t  
CYC  
ZZS  
DD  
t
ZZ recovery time  
ZZ < 0.2V  
2t  
CYC  
ZZREC  
7
PRELIMINARY  
CY7C1327  
Capacitance[6]  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
C
C
C
Input Capacitance  
6
8
8
IN  
A
V
V
= 3.3V,  
DD  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
CLK  
I/O  
= 3.3V  
DDQ  
pF  
AC Test Loads and Waveforms  
R=317  
3.3V  
OUTPUT  
[7]  
OUTPUT  
ALL INPUT PULSES  
Z =50  
0
3.0V  
R =50  
L
5 pF  
R=351  
GND  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
Notes:  
6. Tested initially and after any design or process changes that may affect these parameters.  
7. Input waveform should have a slew rate of 1V/ns.  
8
PRELIMINARY  
CY7C1327  
[8,9,10]  
Switching Characteristics Over the Operating Range  
-166  
-133  
-117  
-100  
Parameter  
Description  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
t
6
7.5  
1.9  
1.9  
2.5  
0.5  
8.5  
2.5  
2.5  
2.5  
0.5  
10  
3.5  
3.5  
2.5  
0.5  
ns  
ns  
ns  
ns  
ns  
CYC  
CH  
t
t
t
t
t
t
t
t
t
Clock HIGH  
1.7  
1.7  
2.0  
0.5  
Clock LOW  
CL  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
AS  
AH  
3.5  
4
4.5  
5.5  
ns  
ns  
ns  
ns  
ns  
CO  
1.5  
2.0  
0.5  
2.0  
2.0  
2.5  
0.5  
2.5  
2.0  
2.5  
0.5  
2.5  
2.0  
2.5  
0.5  
2.5  
DOH  
ADS  
ADH  
WES  
BWE, GW, BW[1:0] Set-Up Before CLK  
Rise  
t
BWE, GW, BW[1:0] Hold After CLK  
Rise  
0.5  
0.5  
0.5  
0.5  
ns  
WEH  
t
t
t
t
t
t
t
t
t
t
t
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADVS  
ADVH  
DS  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip Select Set-Up  
DH  
CES  
CEH  
CHZ  
CLZ  
Chip Select Hold After CLK Rise  
[9, 10]  
Clock to High-Z  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
[9, 10]  
Clock to Low-Z  
0
0
0
0
0
0
0
0
[9, 10]  
OE HIGH to Output High-Z  
3.5  
6
EOHZ  
EOLZ  
EOV  
[9,10]  
OE LOW to Output Low-Z  
[9]  
OE LOW to Output Valid  
3.5  
Notes:  
8. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output  
loading of the specified IOL/IOH and load capacitance. Shown in (a) and (b) of AC test loads.  
9. tCHZ, tCLZ, tEOV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from  
steady-state voltage.  
10. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
9
PRELIMINARY  
CY7C1327  
Switching Waveforms  
Write Cycle Timing  
Single Write  
Burst Write  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADS  
t
ADVS  
t
ADH  
t
t
AS  
ADVH  
WD3  
ADD  
GW  
WE  
WD1  
WD2  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
t
t
CES  
CEH  
CE masks ADSP  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
CE  
2
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data-  
In  
3a  
2a  
2d  
1a  
2b  
2c  
WE is the combination of BWE & BW to define  
x
a write cycle (see Write Cycle Descriptions table).  
= UNDEFINED  
= DON’T CARE  
10  
PRELIMINARY  
CY7C1327  
Switching Waveforms (continued)  
Read Cycle Timing  
Burst Read  
Single Read  
Unselected  
t
t
CYC  
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
t
ADS  
ADSC initiated read  
ADSC  
ADV  
t
ADVS  
t
Suspend Burst  
ADH  
t
t
ADVH  
AS  
ADD  
GW  
WE  
RD3  
RD1  
RD2  
t
AH  
t
WS  
t
WS  
t
WH  
t
t
CES  
CEH  
t
WH  
CE masks ADSP  
1
CE  
CE  
1
2
Unselected with CE  
2
t
t
CES  
t
CEH  
CE  
OE  
3
CES  
t
DOE  
t
CEH  
t
EOHZ  
t
DOH  
t
CO  
Data-  
Out  
2c  
1a  
3a  
2d  
2a  
2b  
t
CLZ  
t
CHZ  
WE is the combination of BWE & BW to define  
x
a write cycle (see Write Cycle Descriptions table).  
= DON’T CARE  
= UNDEFINED  
11  
PRELIMINARY  
CY7C1327  
Switching Waveforms (continued)  
Read/Write Cycle Timing  
Single Read  
Single Write  
Unselected  
Burst Read  
t
CYC  
t
CH  
Pipelined Read  
CLK  
t
t
ADH  
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADS  
t
t
ADVS  
ADH  
t
AS  
t
ADVH  
ADD  
RD1  
WD2  
RD3  
t
AH  
GW  
WE  
t
WS  
t
t
WS  
WH  
t
CES  
t
t
CEH  
WH  
CE masks ADSP  
1
CE  
CE  
1
2
t
CES  
t
CEH  
CE  
3
t
t
DOE  
CES  
t
CEH  
OE  
t
EOHZ  
t
t
DS  
t
DH  
DOH  
See Note.  
2a  
t
EOLZ  
3b  
Out  
3c  
Out  
3a  
Out  
3d  
Data-  
In/Out  
1a  
2a  
In  
Out  
Out  
Out  
t
CO  
WE is the combination of BWE & BW to define  
a write cycle (see Write Cycle Descriptions table).  
t
x
CHZ  
= UNDEFINED  
= DON’T CARE  
Note: Write data forwarded to outputs on read immediately  
following a write.  
12  
PRELIMINARY  
CY7C1327  
Switching Waveforms (continued)  
Pipeline Timing  
t
t
t
CYC  
CL  
CH  
CLK  
t
t
AS  
C
E
F
G
H
B
D
A
ADD  
t
ADH  
ADS  
ADSP  
ADSC  
ADV  
t
t
CEH  
CES  
CE  
1
CE  
t
t
WES  
WEH  
WE  
ADSP ignored  
with CE HIGH  
1
OE  
t
t
CLZ  
Data  
D (E)  
D (F)  
D (H)  
Q(A)  
D (G)  
Q(B)  
Q(C)  
Q(D)  
In/Out  
CDV  
t
DOH  
t
CHZ  
Device originally  
deselected  
WE is the combination of BWE, BWS  
, and GW to define a write cycle (see Write Cycle Description table).  
[1:0]  
CE is the combination of CE and CE . All chip selects need to be active in order to select  
2
3
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DON’T CARE  
13  
PRELIMINARY  
CY7C1327  
Switching Waveforms (continued)  
[11,12]  
ZZ Mode Timing  
CLK  
ADSP  
ADSC  
HIGH  
CE  
1
2
LOW  
CE  
HIGH  
CE  
ZZ  
3
t
ZZS  
I
CC  
I
(active)  
CC  
t
ZZREC  
I
CCZZ  
I/Os  
Three-state  
Notes:  
11. Device must be deselected when entering ZZ mode. See Cycle Description for all possible signal conditions to deselect the device.  
12. I/Os are in three-state when exiting ZZ sleep mode.  
14  
PRELIMINARY  
CY7C1327  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
166  
166  
133  
133  
117  
117  
100  
100  
Ordering Code  
Package Type  
CY7C1327–166AC  
CY7C1327L–166AC  
CY7C1327–133AC  
CY7C1327L–133AC  
CY7C1327–117AC  
CY7C1327L–117AC  
CY7C1327–100AC  
CY7C1327L–100AC  
A101  
A101  
A101  
A101  
A101  
A101  
A101  
A101  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
100-Lead Thin Quad Flat Pack  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Document #: 38-00721  
Package Diagram  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1327L-133AC

Cache SRAM, 256KX18, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS
ETC

CY7C1328A-133AC

Cache SRAM, 256KX18, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1328A-150AC

Cache SRAM, 256KX18, 3.8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1328A-166AC

Cache SRAM, 256KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1328F

4-Mb (256K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1328F-100AC

4-Mb (256K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1328F-100AI

4-Mb (256K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1328F-100AXC

Cache SRAM, 256KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1328F-100AXI

Cache SRAM, 256KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1328F-133AC

4-Mb (256K x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1328F-133AI

4-Mb (256K x 18) Pipelined DCD Sync SRAM
CYPRESS