CY7C0832AV [CYPRESS]

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM; FLEx18⑩ 3.3V 64K / 128K ×36和128K / 256K ×18同步双端口RAM
CY7C0832AV
型号: CY7C0832AV
厂家: CYPRESS    CYPRESS
描述:

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
FLEx18⑩ 3.3V 64K / 128K ×36和128K / 256K ×18同步双端口RAM

文件: 总28页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C093794V CY7C093894V CY7C09289V CY7C09369V CY7C09379V CY7C09389VFLEx18™ 3.3V 64K/128K  
x 36 and 128K/256K x 18  
Synchronous Dual-Port RAM  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
FLEx183.3V64K/128Kx36and128K/256Kx18  
Synchronous Dual-Port RAM  
Functional Description  
Features  
• True dual-ported memory cells that allow simultaneous  
The FLEx18™ family includes 512-Kbit, 1-Mbit, 2-Mbit, 4-Mbit  
and 9-Mbit pipelined, synchronous, true dual-port static RAMs  
that are high-speed, low-power 3.3V CMOS. Two ports are  
provided, permitting independent, simultaneous access to any  
location in memory. The result of writing to the same location  
by more than one port at the same time is undefined. Registers  
on control, address, and data lines allow for minimal set-up  
and hold time.  
During a Read operation, data is registered for decreased  
cycle time. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally (more details to follow). The internal Write pulse width is  
independent of the duration of the R/W input signal. The  
internal Write pulse is self-timed to allow the shortest possible  
cycle times.  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle with chip enables asserted is required  
to reactivate the outputs.  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap-around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
access of the same memory location  
• Synchronous pipelined operation  
• Family of 512-Kbit, 1-Mbit, 2-Mbit, 4-Mbit and 9-Mbit  
devices  
• Pipelined output mode allows fast operation  
• 0.18-micron CMOS for optimum speed and power  
• High-speed clock to data access  
• 3.3V low power  
— Active as low as 225 mA (typ)  
— Standby as low as 55 mA (typ)  
• Mailbox function for message passing  
• Global master reset  
• Separate byte enables on both ports  
• Commercial and industrial temperature ranges  
• IEEE 1149.1-compatible JTAG boundary scan  
• 144-ball FBGA (13 mm × 13 mm) (1.0 mm pitch)  
• 120TQFP (14 mm x 14 mm x 1.4 mm)  
• Lead(Pb)-free packages available  
• Counter wrap around control  
— Internal mask register controls counter wrap-around  
— Counter-interrupt flags to indicate wrap-around  
— Memory block retransmit operation  
• Counter readback on address lines  
• Mask register readback on address lines  
The CY7C0833AV device in this family has limited features.  
Please see Address Counter and Mask Register  
Operations[15] on page 6 for details.  
• Dual Chip Enables on both ports for easy depth  
expansion  
Table 1. Product Selection Guide  
Density  
512-Kbit  
1-Mbit  
2-Mbit  
4-Mbit  
9-Mbit  
(32K x 18)  
(64K x 18)  
(128K x 18)  
(256K x 18)  
(512K x 18)  
Part Number  
CY7C0837AV CY7C0830AV CY7C0831AV CY7C0832AV CY7C0833AV  
Max. Speed (MHz)  
167  
4.0  
225  
167  
4.0  
225  
167  
4.0  
225  
167  
4.0  
225  
133  
4.7  
270  
Max. Access Time - clock to Data (ns)  
Typical operating current (mA)  
Package  
144 FBGA  
120 TQFP  
120 TQFP  
120 TQFP  
144 FBGA  
144 FBGA  
144 FBGA  
144 FBGA  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 38-06059 Rev. *Q  
Revised May 10, 2006  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Logic Block Diagram[1]  
OE  
OE  
R/W  
L
R
R
R/W  
L
B0  
B1  
B0  
B1  
L
L
R
R
CE  
CE  
CE  
CE  
0L  
1L  
0R  
1R  
I/O  
I/O  
9
9
9
9
DQ –DQ  
Control  
Control  
DQ –DQ  
9L  
17L  
8L  
9R  
17R  
DQ –DQ  
DQ –DQ  
0L  
0R  
8R  
Addr.  
Read  
Back  
Addr.  
Read  
Back  
True  
Dual-Ported  
RAM Array  
19  
19  
A0L–A18L  
A0R–A18R  
CNT/MSKR  
Mask Register  
Mask Register  
CNT/MSKL  
ADS  
CNTEN  
ADSL  
Counter/  
Address  
Register  
Counter/  
Address  
Register  
Address  
Decode  
Address  
Decode  
CNTENL  
CNTRSTR  
CLKR  
CNTINTR  
CNTRSTL  
CLKL  
CNTINTL  
Mirror Reg  
Mirror Reg  
TMS  
TDI  
TCK  
Reset  
Logic  
Interrupt  
Logic  
Interrupt  
Logic  
JTAG  
TDO  
MRST  
INTL  
INTR  
Note:  
1. CY7C0837AV has 15 address CY7C0830AV has 16 address bits, CY7C0831AV has 17 address bits, CY7C0832AV has 18 address bits and CY7C0833AV has  
19 address bits.  
Document #: 38-06059 Rev. *Q  
Page 2 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Pin Configurations  
144-ball BGA  
Top View  
CY7C0837AV / CY7C0830AV / CY7C0831AV  
CY7C0832AV / CY7C0833AV  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
DQ17  
DQ16  
DQ14  
DQ12  
DQ10  
DQ9  
DQ9  
DQ10  
DQ12  
DQ14  
DQ16  
DQ17  
R
L
L
L
L
L
L
L
R
R
R
R
R
A0  
L
A1  
L
DQ15  
CE1  
DQ13  
DQ11  
MRST  
NC  
DQ11  
DQ13  
INT  
DQ15  
CE1  
A1  
R
A0  
R
L
L
R
R
R
ADS  
L
ADS  
[7]  
CNTINTL  
[8]  
CNTINTR  
[8]  
L
R
R
A2  
L
A3  
L
INT  
L
A3  
R
A2  
R
R
[6]  
[7]  
[6]  
CE0  
[7]  
CE0  
[7]  
L
R
A4  
L
A5  
L
NC  
NC  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
TMS  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
NC  
A5  
R
A4  
R
A6  
L
A7  
L
B1  
VSS  
VSS  
VSS  
VSS  
VDD  
TCK  
NC  
NC  
B1  
A7  
R
A6  
R
L
L
R
A8  
L
A9  
L
C
NC  
C
A9  
R
A8  
R
L
R
A10  
A11  
L
B0  
NC  
NC  
B0  
A11  
A10  
R
G
H
J
L
L
R
R
A12  
A14  
A13  
OE  
NC  
NC  
OE  
A13  
A12  
A14  
L
L
L
R
R
R
R
A15  
[2]  
A15  
[2]  
RW  
NC  
NC  
RW  
R
L
L
L
R
R
A16  
[3]  
A17  
[4]  
A17  
[4]  
A16  
[3]  
CNT/MSKL  
[6]  
CNTRSTL  
[6]  
CNTRSTR  
[6]  
CNT/MSKR  
[6]  
L
R
TDO  
DQ4  
TDI  
DQ4  
K
L
A18  
[5]  
A18  
[5]  
CNTENL  
[7]  
CNTENR  
[7]  
L
R
NC  
DQ6  
L
DQ2  
L
DQ2  
R
DQ6  
R
NC  
L
R
M
DQ8  
DQ7  
DQ5  
L
DQ3  
DQ1  
L
DQ0  
L
DQ0  
R
DQ1  
R
DQ3  
DQ5  
R
DQ7  
DQ8  
R
L
L
L
R
R
Notes:  
2. Leave this ball unconnected for CY7C0837AV.  
3. Leave this ball unconnected for CY7C0837AV and CY7C0830AV.  
4. Leave this ball unconnected for CY7C0837AV, CY7C0830AV and CY7C0831AV.  
5. Leave this ball unconnected for CY7C0837AV, CY7C0830AV, CY7C0831AV and CY7C0832AV.  
6. These balls are not applicable for CY7C0833AV device. They need to be tied to VDD.  
7. These balls are not applicable for CY7C0833AV device. They need to be tied to VSS.  
8. These balls are not applicable for CY7C0833AV device. They need to be no connected.  
Document #: 38-06059 Rev. *Q  
Page 3 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Pin Configurations (continued)  
120-pin Thin Quad Flat Pack (TQFP)  
Top View  
CY7C0830AV / CY7C0831AV / CY7C0832AV  
A
A
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
2L  
1
A
A
V
V
A
A
A
A
2R  
3R  
3L  
2
V
V
SS  
3
SS  
DD  
4R  
5R  
6R  
7R  
DD  
4
A
A
A
A
CE  
B
4L  
5L  
6L  
5
6
7
8
9
10  
11  
12  
13  
7L  
1L  
0L  
1L  
CE  
1R  
B
B
0R  
1R  
B
OE  
L
OE  
CE  
R
CE  
V
0L  
0R  
DD  
14  
15  
V
V
DD  
SS  
R/W  
V
SS  
R/W  
CLK  
16  
17  
18  
19  
20  
21  
22  
23  
24  
L
L
R
CLK  
MRST  
ADS  
CNTEN  
CNTRST  
CNT/MSK  
R
V
SS  
ADS  
CNTEN  
CNTRST  
L
L
L
L
8L  
9L  
R
R
R
R
CNT/MSK  
A
A
A
A
8R  
9R  
A
A
A
10L  
11L  
12L  
25  
26  
27  
28  
29  
30  
A
A
A
V
V
A
10R  
11R  
12R  
SS  
V
SS  
DD  
13L  
V
A
DD  
13R  
Notes:  
9. Leave this pin unconnected for CY7C0830AV.  
10. Leave this pin unconnected for CY7C0830AV and CY7C0831AV.  
Document #: 38-06059 Rev. *Q  
Page 4 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Pin Definitions  
Left Port  
Right Port  
Description  
[1]  
[1]  
A0L–A18L  
A0R–A18R  
Address Inputs.  
[7]  
[7]  
ADSL  
ADSR  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW  
for the part using the externally supplied address on the address pins and for loading this  
address into the burst address counter.  
[7]  
[7]  
CE0L  
CE1L  
CE0R  
CE1R  
Active LOW Chip Enable Input.  
Active HIGH Chip Enable Input.  
[6]  
[6]  
CLKL  
CNTENL  
CLKR  
CNTENR  
Clock Signal. Maximum clock input rate is fMAX.  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of  
its respective port on each rising edge of CLK. The increment is disabled if ADS or CNTRST  
are asserted LOW.  
Counter Reset Input. Asserting this signal LOW resets to zero the unmasked portion of  
the burst address counter of its respective port. CNTRST is not disabled by asserting ADS  
or CNTEN.  
Address Counter Mask Register Enable Input. Asserting this signal LOW enables access  
to the mask register. When tied HIGH, the mask register is not accessible and the address  
counter operations are enabled based on the status of the counter control signals.  
[7]  
[7]  
[6]  
[6]  
CNTRSTL  
CNTRSTR  
[6]  
[6]  
CNT/MSKL  
CNT/MSKR  
[1]  
[1]  
DQ0L–DQ17L  
OEL  
DQ0R–DQ17R  
OER  
Data Bus Input/Output.  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ  
data pins during Read operations.  
INTL  
INTR  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The  
upper two memory locations can be used for message passing. INTL is asserted LOW when  
the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a  
port is deasserted HIGH when it reads the contents of its mailbox.  
[8]  
[8]  
CNTINTL  
CNTINTR  
Counter Interrupt Output. This pin is asserted LOW when the unmasked portion of the  
counter is incremented to all “1s.”  
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from the dual  
port memory array.  
B0L–B1L  
B0R–B1R  
Byte Select Inputs. Asserting these signals enables Read and Write operations to the  
corresponding bytes of the memory array.  
MRST  
TMS  
Master Reset Input. MRST is an asynchronous input signal and affects both ports.  
Asserting MRST LOW performs all of the reset functions as described in the text. A MRST  
operation is required at power-up.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State  
machine transitions occur on the rising edge of TCK.  
TDI  
TCK  
TDO  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.  
JTAG Test Clock Input.  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally  
three-stated except when captured data is shifted out of the JTAG TAP.  
VSS  
VDD  
Ground Inputs.  
Power Inputs.  
Byte Select Operation  
Control Pin  
Effect  
B0  
B1  
DQ0–8 Byte Control  
DQ9–17 Byte Control  
Document #: 38-06059 Rev. *Q  
Page 5 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
Master Reset  
The FLEx18 family devices undergo a complete reset by  
taking its MRST input LOW. The MRST input can switch  
asynchronously to the clocks. An MRST initializes the internal  
burst counters to zero, and the counter mask registers to all  
ones (completely unmasked). MRST also forces the Mailbox  
Interrupt (INT) flags and the Counter Interrupt (CNTINT) flags  
HIGH. MRST must be performed on the FLEx18 family  
devices after power-up.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only  
by the Mask Load and Mask Reset operations, and by the  
MRST. The mask register defines the counting range of the  
counter register. It divides the counter register into two  
regions: zero or more “0s” in the most significant bits define  
the masked region, one or more “1s” in the least significant bits  
define the unmasked region. Bit 0 may also be “0,” masking  
the least significant counter bit and causing the counter to  
increment by two instead of one.  
The mirror register is used to reload the counter register on  
increment operations (see “retransmit,” below). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and by the MRST instruc-  
tions. Table 3 summarizes the operation of these registers and  
the required input control signals. The MRST control signal is  
asynchronous. All the other control signals in Table 3  
(CNT/MSK, CNTRST, ADS, CNTEN) are synchronized to the  
port’s CLK. All these counter and mask operations are  
independent of the port’s chip enable inputs (CE0 and CE1).  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter will increment on each LOW to HIGH  
transition of that port’s clock signal. This will Read/Write one  
word from/into each successive address location until CNTEN  
s deasserted. The counter can address the entire memory  
array, and will loop back to the start. Counter reset (CNTRST)  
is used to reset the unmasked portion of the burst counter to  
i0s. A counter-mask register is used to control the counter  
wrap.  
Mailbox Interrupts  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports of CY7C0833AV.  
The highest memory location, 7FFFF is the mailbox for the  
right port and 7FFFE is the mailbox for the left port. Table 2  
shows that in order to set the INTR flag, a Write operation by  
the left port to address 7FFFF will assert INTR LOW. At least  
one byte has to be active for a Write to generate an interrupt.  
A valid Read of the 7FFFF location by the right port will reset  
INTR HIGH. At least one byte has to be active in order for a  
Read to reset the interrupt. When one port Writes to the other  
port’s mailbox, the INT of the port that the mailbox belongs to  
is asserted LOW. The INT is reset when the owner (port) of the  
mailbox Reads the contents of the mailbox. The interrupt flag  
is set in a flow-thru mode (i.e., it follows the clock edge of the  
writing port). Also, the flag is reset in a flow-thru mode (i.e., it  
follows the clock edge of the reading port).  
Each port can read the other port’s mailbox without resetting  
the interrupt. And each port can write to its own mailbox  
without setting the interrupt. If an application does not require  
message passing, INT pins should be left open.  
Address Counter and Mask Register Operations[15]  
This section describes the features only apply to  
512Kbit,1Mbit, 2Mbit, and 4Mbit devices. It does not apply to  
9Mbit device. Each port of these devices has a programmable  
burst address counter. The burst counter contains three  
registers: a counter register, a mask register, and a mirror  
register.  
Table 2. Interrupt Operation Example [1, 11, 12, 13, 14, 16]  
FUNCTION  
LEFT PORT  
RIGHT PORT  
R/WL  
CEL  
L
X
X
L
A0L–A18L  
3FFFF  
X
INTL  
X
X
L
H
R/WR  
CER  
X
L
L
X
A0R–A18R  
INTR  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
Set Right INTR Flag  
L
X
X
H
L
X
H
L
X
X
X
3FFFF  
3FFFE  
X
L
H
X
X
L
X
3FFFE  
3FFFF  
L
X
X
X
Notes:  
11. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK  
0
1
and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.  
12. OE is “Don’t Care” for mailbox operation.  
13. At least one of BE0, BE1 must be LOW.  
14. A18x is a NC for CY7C0832AV, therefore the Interrupt Addresses are 3FFFF and 3FFFE. A18x and A17x are NC for CY7C0831AV, therefore the Interrupt  
addresses are 1FFFF and 1FFFE; A18x, A17x and A16x are NC for CY7C0830AV, therefore the Interrupt Addresses are FFFF and FFFE;A18x, A17x, A16x  
and A15x are NC for CY7C0837AV, therefore the Interrupt Addresses are 7FFF and 7FFE.  
15. This section describes the CY7C0832AV, CY7C0831AV, CY7C0830AV and CY7C0837AV having 18, 17, 16 and 15 address bits.  
16. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
Document #: 38-06059 Rev. *Q  
Page 6 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Counter Reset Operation  
memory space. The address counter is then loaded with an  
initial value of 8h. The base address bits (in this case, the 6th  
address through the 16th address) are loaded with an address  
value but do not increment once the counter is configured for  
increment operation. The counter address will start at address  
8h. The counter will increment its internal address value till it  
reaches the mask register value of 3Fh. The counter wraps  
around the memory block to location 8h at the next count.  
CNTINT is issued when the counter reaches its maximum  
value  
All unmasked bits of the counter are reset to “0.” All masked  
bits remain unchanged. The mirror register is loaded with the  
value of the burst counter. A Mask Reset followed by a Counter  
Reset will reset the counter and mirror registers to 00000, as  
will master reset (MRST).  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Counter Hold Operation  
Counter Increment Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
Once the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incre-  
mented. The corresponding bit in the mask register must be  
a “1” for a counter bit to change. The counter register is incre-  
mented by 1 if the least significant bit is unmasked, and by 2  
if it is masked. If all unmasked bits are “1,” the next increment  
will wrap the counter back to the initially loaded value. If an  
Increment results in all the unmasked bits of the counter being  
“1s,” a counter interrupt flag (CNTINT) is asserted. The next  
Increment will return the counter register to its initial value,  
which was stored in the mirror register. The counter address  
can instead be forced to loop to 00000 by externally  
connecting CNTINT to CNTRST.[18] An increment that results  
in one or more of the unmasked bits of the counter being “0”  
will deassert the counter interrupt flag. The example in  
Figure 2 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit “0” as the  
LSB and bit “16” as the MSB. The maximum value the mask  
register can be loaded with is 3FFFFh. Setting the mask  
register to this value allows the counter to access the entire  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all “1s.” It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset  
and Mask Load operations, and by MRST.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. Readback is pipelined; the address will be  
valid tCA2 after the next rising edge of the port’s clock. If  
address readback occurs while the port is enabled (CE0 LOW  
and CE1 HIGH), the data lines (DQs) will be three-stated.  
Figure 1 shows a block diagram of the operation.  
Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port)[16, 17]  
CLK MRST CNT/MSK CNTRST  
ADS CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask  
register to all 1s.  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s.  
H
Load counter with external address value  
presented on address lines.  
H
H
H
L
H
Counter  
Read out counter internal value on address  
lines.  
Readback  
H
H
H
H
H
H
H
H
L
Counter Increment Internally increment address counter value.  
H
Counter Hold  
Constantly hold the address value for  
multiple clock cycles.  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s.  
H
Load mask register with value presented on  
the address lines.  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address  
lines.  
Operation undefined  
H
Notes:  
17. Counter operation and mask register operation is independent of chip enables.  
18. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06059 Rev. *Q  
Page 7 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Retransmit  
operations. Permitted values are of the form 2n – 1 or 2n – 2.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s,” one or more “1s,” or  
one “0.” Thus 3FFFF, 003FE, and 00001 are permitted values,  
but 3F0FF, 003FC, and 00000 are not.  
Retransmit is a feature that allows the Read of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal “mirror register” is  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it wraps back to the initial value stored in  
this “mirror register.” If the counter is continuously configured  
in increment mode, it increments again to its maximum value  
and wraps back to the value initially stored into the “mirror  
register.” Thus, the repeated access of the same data is  
allowed without the need for any external logic.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address will be valid  
tCM2 after the next rising edge of the port’s clock. If mask  
readback occurs while the port is enabled (CE0 LOW and CE1  
HIGH), the data lines (DQs) will be three-stated. Figure 1  
shows a block diagram of the operation.  
Counting by Two  
Mask Reset Operation  
The mask register is reset to all “1s,” which unmasks every bit  
of the counter. Master reset (MRST) also resets the mask  
register to all “1s.”  
When the least significant bit of the mask register is “0,” the  
counter increments by two. This may be used to connect the  
x18 devices as a 36-bit single port SRAM in which the counter  
of one port counts even addresses and the counter of the other  
port counts odd addresses. This even-odd address scheme  
stores one half of the 36-bit data in even memory locations,  
and the other half in odd memory locations.  
Mask Load Operation  
The mask register is loaded with the address value presented  
at the address lines. Not all values permit correct increment  
Document #: 38-06059 Rev. *Q  
Page 8 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
17  
Wrap  
Register  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Wrap  
To  
1
0
Detect  
17  
1
0
Counter  
Figure 1. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06059 Rev. *Q  
Page 9 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1 1  
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[1, 19]  
IEEE 1149.1 Serial Boundary Scan (JTAG)[20]  
Boundary Scan Hierarchy for 9-Mbit Device  
Internally, the CY7C0833AV have two DIEs. Each DIE contain  
all the circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below. The scan chain  
of each DIE are connected serially to form the scan chain of  
the CY7C0833AV as shown in Figure 3. TMS and TCK are  
connected in parallel to each DIE to drive all TAP controllers  
in unison. In many cases, each DIE will be supplied with the  
same instruction. In other cases, it might be useful to supply  
different instructions to each DIE. One example would be  
testing the device ID of one DIE while bypassing the others.  
Each pin of FLEx18 family is typically connected to multiple  
DIEs. For connectivity testing with the EXTEST instruction, it  
is desirable to check the internal connections between DIEs  
as well as the external connections to the package. This can  
be accomplished by merging the netlist of the devices with the  
netlist of the user’s circuit board. To facilitate boundary scan  
testing of the devices, Cypress provides the BSDL file for each  
DIE, the internal netlist of the device, and a description of the  
device scan chain. The user can use these materials to easily  
integrate the devices into the board’s boundary scan  
environment. Further information can be found in the Cypress  
application note Using JTAG Boundary Scan For System in a  
Package (SIP) Dual-Port SRAMs.  
The FLEx18 family devices incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1-compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V I/O logic levels. It is  
composed of three input connections and one output  
connection required by the test logic defined by the standard.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
devices, and may be performed while the device is operating.  
An MRST must be performed on the devices after power-up.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the  
scan chain will output the next bit in the chain twice. For  
example, if the value expected from the chain is 1010101, the  
device will output a 11010101. This extra bit will cause some  
testers to report an erroneous failure for the devices in a scan  
test. Therefore the tester should be configured to never enter  
the PAUSE-DR state.  
Notes:  
19. The “X” in this diagram represents the counter upper bits  
20. Boundary scan is IEEE 1149.1-compatible. See “Performing a Pause/Restart” for deviation from strict 1149.1 compliance  
Document #: 38-06059 Rev. *Q  
Page 10 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
TDO  
TDO  
D2  
TDI  
TDO  
D1  
TDI  
TDI  
Figure 3. Scan Chain for 9Mb Device  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Cypress Device ID (27:12)  
Value  
Description  
0h  
Reserved for version number.  
C090h  
C091h  
C093h  
C094h  
034h  
1
Defines Cypress part number for CY7C0832AV  
Defines Cypress part number for CY7C0831AV  
Defines Cypress part number for CY7C0830AV  
Defines Cypress part number for CY7C0837AV.  
Allows unique identification of the DP family device vendor.  
Indicates the presence of an ID register.  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Table 5. Scan Registers Sizes  
Register Name  
Instruction  
Bit Size  
4
Bypass  
1
Identification  
Boundary Scan  
32  
n[21]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
BYPASS  
IDCODE  
HIGHZ  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state.  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
Resets the non-boundary scan logic. Places BYR between TDI and TDO.  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Notes:  
21. See details in the device BSDL file.  
Document #: 38-06059 Rev. *Q  
Page 11 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Maximum Ratings[22]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage...........................................> 2000V  
(JEDEC JESD22-A114-2000B)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.....................................................> 200 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
Operating Range  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VDD  
3.3V±165 mV  
3.3V±165 mV  
DC Voltage Applied to  
Outputs in High-Z State..........................–0.5V to VDD + 0.5V  
DC Input Voltage...............................–0.5V to VDD + 0.5V[23]  
Electrical Characteristics Over the Operating Range  
-167  
-133  
-100  
Parameter  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
VOH  
Output HIGH Voltage  
2.4  
2.4  
2.4  
V
(VDD = Min., IOH= –4.0 mA)  
VOL  
Output LOW Voltage  
0.4  
0.4  
0.4  
V
(VDD = Min., IOL= +4.0 mA)  
VIH  
VIL  
IOZ  
IIX1  
IIX2  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
Output Leakage Current  
Input Leakage Current Except TDI, TMS, MRST  
Input Leakage Current TDI, TMS, MRST  
2.0  
2.0  
2.0  
V
V
µA  
µA  
0.8  
0.8  
0.8  
10  
10  
–10  
–10  
–0.1  
10 –10  
10 –10  
1.0 –0.1  
10 –10  
10 –10  
1.0 –0.1  
1.0 mA  
mA  
Operating Current for  
CY7C0837AV  
225 300  
225 300  
(VDD = Max., IOUT = 0 mA), Outputs CY7C0830AV  
Disabled  
CY7C0831AV  
CY7C0832AV  
CY7C0833AV  
270 400  
90 115  
200 310 mA  
90 115 mA  
[24]  
ISB1  
Standby Current  
90 115  
160 210  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
[24]  
ISB2  
Standby Current  
160 210  
160 210 mA  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
[24]  
ISB3  
Standby Current  
55  
75  
55  
75  
55  
75  
mA  
(Both Ports CMOS Level)  
CEL and CER VDD – 0.2V, f = 0  
[24]  
ISB4  
Standby Current  
160 210  
160 210  
70 100  
160 210 mA  
70 100 mA  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
ISB5  
Operating Current  
CY7C0833AV  
(VDD = Max, IOUT = 0 mA, f = 0)  
Outputs Disabled  
Notes:  
22. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
23. Pulse width < 20 ns.  
24. I  
, I  
, I  
and I  
are not applicable for CY7C0833AV because it can not be powered down by using chip enable pins.  
SB4  
SB1 SB2 SB3  
Document #: 38-06059 Rev. *Q  
Page 12 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Capacitance [25]  
Part Number  
Parameter  
CIN  
COUT  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
13  
10  
Unit  
pF  
pF  
CY7C0837AV  
CY7C0830AV  
CY7C0831AV  
CY7C0832AV  
TA = 25°C, f = 1 MHz,  
V
DD = 3.3V  
CY7C0833AV  
CIN  
COUT  
Input Capacitance  
Output Capacitance  
22  
20  
pF  
pF  
AC Test Load and Waveforms  
3.3V  
Z0 = 50  
R = 50Ω  
OUTPUT  
R1 = 590 Ω  
OUTPUT  
C = 10 pF  
C = 5 pF  
R2 = 435 Ω  
VTH = 1.5V  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics Over the Operating Range  
-167  
-133  
-100  
CY7C0837AV CY7C0837AV  
CY7C0830AV CY7C0830AV  
CY7C0831AV CY7C0831AV  
CY7C0832AV CY7C0832AV CY7C0833AV CY7C0833AV  
Parameter  
fMAX2  
tCYC2  
Description  
Maximum Operating Frequency  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Min.  
Max.  
167  
Min.  
Max.  
133  
Min.  
Max.  
133  
Min.  
Max.  
100  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
tCH2  
tCL2  
[26]  
tR  
tF  
Clock Rise Time  
Clock Fall Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[26]  
tSA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
Address Set-up Time  
Address Hold Time  
Byte Select Set-up Time  
Byte Select Hold Time  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
NA  
NA  
2.5  
0.6  
3.0  
0.6  
3.0  
0.6  
NA  
NA  
3.0  
0.6  
tHW  
R/W Hold Time  
Notes:  
25. C  
also references C  
.
OUT  
I/O  
26. Except JTAG signals (t and t < 10 ns [max.]).  
r
f
Document #: 38-06059 Rev. *Q  
Page 13 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Characteristics Over the Operating Range (continued)  
-167  
-133  
-100  
CY7C0837AV CY7C0837AV  
CY7C0830AV CY7C0830AV  
CY7C0831AV CY7C0831AV  
CY7C0832AV CY7C0832AV CY7C0833AV CY7C0833AV  
Parameter  
tSD  
tHD  
tSAD  
tHAD  
Description  
Input Data Set-up Time  
Input Data Hold Time  
ADS Set-up Time  
ADS Hold Time  
CNTEN Set-up Time  
CNTEN Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
CNT/MSK Set-up Time  
CNT/MSK Hold Time  
Output Enable to Data Valid  
OE to Low Z  
OE to High Z  
Clock to Data Valid  
Clock to Counter Address Valid  
Min.  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
Max.  
Min.  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
Max.  
Min.  
2.5  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Max.  
Min.  
3.0  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCN  
tHCN  
tSRST  
tHRST  
tSCM  
tHCM  
tOE  
4.0  
4.4  
4.7  
5.0  
[27,28]  
tOLZ  
0
0
0
0
[27,28]  
tOHZ  
4.0  
4.0  
4.0  
4.0  
4.4  
4.4  
4.4  
4.4  
4.7  
4.7  
NA  
NA  
5.0  
5.0  
NA  
NA  
tCD2  
tCA2  
tCM2  
Clock to Mask Register Readback  
Valid  
tDC  
tCKHZ  
tCKLZ  
tSINT  
tRINT  
tSCINT  
tRCINT  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
1.0  
0
1.0  
0
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[27,28]  
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
4.7  
4.7  
7.5  
7.5  
NA  
NA  
5.0  
5.0  
10  
10  
NA  
NA  
[27, 28]  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
6.0  
8.0  
ns  
Master Reset Timing  
tRS  
tRS  
tRSR  
tRSF  
Master Reset Pulse Width  
Master Reset Set-up Time  
Master Reset Recovery Time  
Master Reset to Outputs Inactive  
7.0  
6.0  
6.0  
7.5  
6.0  
7.5  
7.5  
6.0  
7.5  
10  
8.5  
10  
ns  
ns  
ns  
ns  
ns  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
tRSCNTINT  
Master Reset to Counter Interrupt  
Flag Reset Time  
Notes:  
27. This parameter is guaranteed by design, but it is not production tested.  
28. Test conditions used are Load 2.  
Document #: 38-06059 Rev. *Q  
Page 14 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
JTAG Timing and Switching Waveforms  
CY7C0837AV/CY7C0830AV  
CY7C0831AV/CY7C0832AV  
CY7C0833AV  
Parameter  
fJTAG  
tTCYC  
tTH  
Description  
Maximum JTAG TAP Controller Frequency  
Min.  
Max.  
10  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Clock Cycle Time  
TCK Clock HIGH Time  
TCK Clock LOW Time  
100  
40  
40  
10  
10  
10  
10  
tTL  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
30  
ns  
ns  
0
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Document #: 38-06059 Rev. *Q  
Page 15 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms  
Master Reset  
MRST  
tRS  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Read Cycle[11, 29, 30, 31, 32]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE1  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
DATAOUT  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes:  
29. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
30. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
31. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
32. Addresses do not have to be accessed sequentially since ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06059 Rev. *Q  
Page 16 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Bank Select Read[33, 34]  
tCYC2  
tCH2  
tCL2  
CLK  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
Q0  
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
Read-to-Write-to-Read (OE = LOW)[32, 35, 36, 37, 38]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
tSD tHD  
Dn+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSA  
tHA  
tCD2  
tCD2  
tCKHZ  
Qn  
Qn+3  
DATAOUT  
tCKLZ  
READ  
READ  
NO OPERATION  
WRITE  
Notes:  
33. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx18 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
34. ADS = CNTEN= BE0 – BE1 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
35. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
36. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
37. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
0
1
1
38. CE = BE0 – BE1 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, since OE = LOW, the Write operation cannot be  
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06059 Rev. *Q  
Page 17 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[32, 35, 37, 38]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[37]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06059 Rev. *Q  
Page 18 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Write with Address Counter Advance[38]  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
ADDRESS  
Document #: 38-06059 Rev. *Q  
Page 19 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Counter Reset[39, 40]  
tCYC2  
tCH2 tCL2  
CLK  
tHA  
Am  
tSA  
Ap  
An  
ADDRESS  
INTERNAL  
Ax  
Ap  
An  
1
0
Am  
ADDRESS  
tHW  
tSW  
R/W  
ADS  
CNTEN  
CNTRST  
tHRST  
tSRST  
tHD  
D0  
tSD  
DATAIN  
tCD2  
tCD2  
[41]  
DATAOUT  
Q0  
Qn  
Q1  
tCKLZ  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS Am  
ADDRESS An  
Notes:  
39. CE = BE0 – BE1 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
40. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
41. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
Document #: 38-06059 Rev. *Q  
Page 20 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Readback State of Address Counter or Mask Register[42, 43, 44, 45]  
tCYC2  
tCH2 tCL2  
CLK  
tCA2 or tCM2  
tSA  
tHA  
EXTERNAL  
An*  
An  
ADDRESS  
A0–A16  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
tSAD  
tHAD  
ADS  
CNTEN  
tSCN  
tHCN  
tCD2  
tCKHZ  
Qn  
tCKLZ  
DATAOUT  
Qn+1  
Qx-1  
Qn+2  
Qx-2  
Q
n+3  
LOAD  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
EXTERNAL  
ADDRESS  
Notes:  
42. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
43. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
44. Address in input mode. Host can drive address bus after t  
.
CKHZ  
45. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06059 Rev. *Q  
Page 21 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Left_Port (L_Port) Write to Right_Port (R_Port) Read[46, 47, 48]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
L_PORT  
An  
ADDRESS  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
An  
ADDRESS  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes:  
46. CE = OE = ADS = CNTEN = BE0 – BE1 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
47. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data will be Read out.  
CCS  
CYC2  
48. If t  
< minimum specified value, then R_Port will Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If  
CCS  
CD2  
t
> minimum specified value, then R_Port will Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CCS  
CYC2  
CD2  
Document #: 38-06059 Rev. *Q  
Page 22 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
Counter Interrupt and Retransmit[14, 41, 49, 50, 51, 52]  
tCYC2  
tCH2  
tCL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
3FFFE  
tSCINT  
3FFFC  
Last_Loaded  
3FFFD  
3FFFF  
tRCINT  
Last_Loaded +1  
CNTINT  
Notes:  
49. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
50. CNTINT is always driven.  
51. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
52. The mask register assumed to have the value of 3FFFFh.  
Document #: 38-06059 Rev. *Q  
Page 23 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Switching Waveforms (continued)  
MailBox Interrupt Timing[53, 54, 55, 56, 57]  
tCYC2  
tCH2  
tCL2  
CLKL  
tSA tHA  
7FFFF  
L_PORT  
An+1  
An  
An+2  
ADDRESS  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
Am+1  
7FFFF  
Am+3  
Am+4  
ADDRESS  
Table 7. Read/Write and Enable Operation (Any Port)[1, 16, 58, 59, 60]  
Inputs  
Outputs  
OE  
CLK  
CE0  
CE1  
R/W  
DQ0 DQ17  
Operation  
X
H
X
X
High-Z  
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Notes:  
53. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
54. Address “7FFFF” is the mailbox location for R_Port of the 9Mb device.  
55. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
56. At least one byte enable (BE0 – BE1) is required to be active during interrupt operations.  
57. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
58. OE is an asynchronous input signal.  
59. When CE changes state, deselection and Read happen after one cycle of latency.  
60. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06059 Rev. *Q  
Page 24 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Ordering Information  
512K  
×
18 (9-Mbit) 3.3V Synchronous CY7C0833AV Dual-Port SRAM  
Speed  
Package  
Operating  
(MHz)  
Ordering Code  
CY7C0833AV-133BBC  
CY7C0833AV-133BBI  
CY7C0833AV-100BBC  
CY7C0833AV-100BBI  
Name  
BB144  
BB144  
BB144  
BB144  
Package Type  
Range  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
133  
100  
256K  
×
18 (4-Mbit) 3.3V Synchronous CY7C0832AV Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C0832AV-167BBC  
CY7C0832AV-167AC  
CY7C0832AV-133BBC  
CY7C0832AV-133BBI  
CY7C0832AV-133AC  
CY7C0832AV-133AI  
Name  
BB144  
A120  
Package Type  
167  
167  
133  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
BB144  
BB144  
A120  
133  
Commercial  
Industrial  
A120  
128K  
×
18 (2-Mbit) 3.3V Synchronous CY7C0831AV Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB144  
A120  
Package Type  
167  
167  
133  
CY7C0831AV-167BBC  
CY7C0831AV-167AC  
CY7C0831AV-133BBC  
CY7C0831AV-133BBXC  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
BB144  
BW144  
144-ball Lead(Pb)-Free Ball Grid Array 13 mm × 13 mm with  
Commercial  
1.0-mm pitch  
CY7C0831AV-133BBI  
CY7C0831AV-133BBXI  
BB144  
BW144  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
144-ball Lead(Pb)-Free Ball Grid Array 13 mm × 13 mm with  
Industrial  
1.0-mm pitch  
133  
CY7C0831AV-133AC  
CY7C0831AV-133AXC  
CY7C0831AV-133AI  
A120  
AZ0AE  
A120  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
120-pin Lead(Pb)-Free Thin Quad Flat Pack 14 mm x 14 mm  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
Commercial  
Commercial  
Industrial  
64K  
×
18 (1-Mbit) 3.3V Synchronous CY7C0830AV Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C0830AV-167BBC  
CY7C0830AV-167AC  
CY7C0830AV-133BBC  
CY7C0830AV-133BBI  
CY7C0830AV-133AC  
CY7C0830AV-133AI  
Name  
BB144  
A120  
Package Type  
167  
167  
133  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
120-pin Leaded Thin Quad Flat Pack 14 mm x 14 mm  
BB144  
BB144  
A120  
133  
Commercial  
Industrial  
A120  
32K  
×
18 (512-Kbit) 3.3V Synchronous CY7C0837AV Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C0837AV-167BBC  
CY7C0837AV-133BBC  
CY7C0837AV-133BBI  
Name  
BB144  
BB144  
BB144  
Package Type  
167  
133  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Commercial  
144-ball Leaded Ball Grid Array 13 mm × 13 mm with 1.0-mm pitch Industrial  
Document #: 38-06059 Rev. *Q  
Page 25 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Package Diagrams  
144 Leaded FBGA (13 x 13 x 1.6 mm) BB144  
144 Lead(Pb)-free FBGA (13 x 13 x 1.6 mm) BW144  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
+0.10  
Ø0.50 (144X)  
-0.05  
1
2
3
4
5
6
7
8
9
10  
11 12  
12 11 10  
9
8
7
6
5
3
2
1
4
A
B
A
B
C
D
E
C
D
E
F
G
F
G
H
J
H
J
K
K
L
L
M
M
5.50  
A
A
1.00  
13.00 0.10  
B
11.00  
13.00 0.10  
B
0.15(4X)  
DIMENSIONS IN MILLIMETERS  
REFERENCE JEDEC: PUBLICATION 95  
DESIGN GUIDE 4.14D  
PKG. WEIGHT: 0.53 gms  
SEATING PLANE  
C
51-85141-*B  
Document #: 38-06059 Rev. *Q  
Page 26 of 28  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Package Diagrams (continued)  
120-Pin Leaded Thin Quad Flatpack (14 x 14 x 1.4 mm) A120  
120-Pin Lead(Pb)-Free Thin Quad Flatpack (14 x 14 x 1.4 mm) AZ0AE  
51-85100-**  
FLEx18 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may  
be the trademarks of their respective holders.  
Document #: 38-06059 Rev. *Q  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C0837AV  
CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0833AV  
Document History Page  
Document Title: FLEx18™ 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM  
Document Number: 38-06059  
Issue  
Date  
11/27/01  
Orig. of  
REV.  
**  
ECN NO.  
111473  
Change Description of Change  
DSG  
Change from Spec number: 38-01056 to 38-06059  
*A  
111942  
12/21/01  
JFU  
Updated capacitance values  
Updated switching parameters and ISB3  
Updated “Read-to-Write-to-Read (OE Controlled)” waveform  
Revised static discharge voltage  
Revised footnote regarding ISB3  
*B  
113741  
04/02/02  
KRE  
Updated Isb values  
Updated ESD voltage  
Corrected 0853 pins L3 and L12  
*C  
*D  
*E  
*F  
*G  
114704  
115336  
122307  
123636  
126053  
04/24/02  
07/01/02  
12/27/02  
1/27/03  
KRE  
KRE  
RBI  
KRE  
SPN  
Added discussion of Pause/Restart for JTAG boundary scan  
Revised speed offerings for all densities  
Power up requirements added to Maximum Ratings Information  
Revise tcd2, tOE, tOHZ, tCKHZ, tCKLZ for the CY7C0853V to 4.7 ns  
08/11/03  
Separated out 4M and 9M data sheets  
Updated Isb and ICC values  
*H  
*I  
129443  
231993  
11/03/03  
See ECN  
RAZ  
YDT  
Updated Isb and ICC values  
Removed “A particular port can write to a certain location while another port  
is reading that location.” from Functional Description.  
*J  
231813  
See ECN  
WWZ  
Removed x36 devices (CY7C0852/CY7C0851) from this datasheet. Added  
0.5M, 1M and 9M x18 devices to it. Changed title to FLEx18 3.3V  
32K/64K/128K/256K/512K x18 Synchronous Dual-Port RAM. Changed  
datasheet to accommodate the removals and additions. Removed general  
JTAG description. Updated JTAG ID codes for all devices. Added 144FBGA  
package for all devices. Updated selection guide table and moved to the  
front page. Updated block diagram to reflect x18 configuration. Added  
preliminary status back due to the addition of the new devices.  
*K  
*L  
311054  
329111  
See ECN  
See ECN  
RYQ  
SPN  
Minor Change: Correct the revision indicated on the footer.  
Updated Marketing part numbers  
Updated tRSF  
*M  
*N  
330561  
375198  
See ECN  
See ECN  
RUY  
YDT  
Added Byte Select Operation Table  
Removed Preliminary status  
Added ISB5  
Changed tRSCNTINT to 10ns  
*O  
*P  
*Q  
391525  
414109  
461113  
See ECN  
See ECN  
SEE ECN  
SPN  
LIJ  
Updated Counter reset section to reflect what is loaded into the mirror  
register  
Corrected Ordering Codes for 0831 devices in the 133 Mhz speed bin.  
Added CY7C0833AV-133BBI.  
Changed VDDIO to VDD (typo)  
Added lead(Pb)-free parts  
Corrected typo in DC table  
YDT  
Document #: 38-06059 Rev. *Q  
Page 28 of 28  
[+] Feedback  

相关型号:

CY7C0832AV-133AC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-133AI

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-133AXC

FLEx18 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-133AXI

FLEx18 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-133BBC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-133BBC

256KX18 DUAL-PORT SRAM, 4ns, PBGA144, 13 X 13 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-144
ROCHESTER

CY7C0832AV-133BBI

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-167AC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-167AXC

FLEx18 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-167BBC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0832AV-167BBC

256KX18 DUAL-PORT SRAM, 4ns, PBGA144, 13 X 13 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-144
ROCHESTER

CY7C0832BV

FLEx18 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS