CY7C038V-15AXC [CYPRESS]

3.3V 32K/64K x 16/18 Dual-Port Static RAM; 3.3V 32K / 64K X 16/18双端口静态RAM
CY7C038V-15AXC
型号: CY7C038V-15AXC
厂家: CYPRESS    CYPRESS
描述:

3.3V 32K/64K x 16/18 Dual-Port Static RAM
3.3V 32K / 64K X 16/18双端口静态RAM

存储 内存集成电路 静态存储器
文件: 总18页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Pb  
CY7C027V/028V  
CY7C037V/038V  
LEAD-FREE  
3.3V 32K/64K x 16/18 Dual-Port Static RAM  
• Fully asynchronous operation  
• Automatic power-down  
• Expandable data bus to 32/36 bits or more using Mas-  
ter/Slave chip select when using more than one device  
Features  
• True Dual-Ported memory cells which allow  
simultaneous access of the same memory location  
• 32K x 16 organization (CY7C027V)  
• 64K x 16 organization (CY7C028V)  
• 32K x 18 organization (CY7C037V)  
• 64K x 18 organization (CY7C038V)  
• 0.35-micron CMOS for optimum speed/power  
• High-speed access: 15/20/25 ns  
• Low operating power  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Separate upper-byte and lower-byte control  
• Dual Chip Enables  
• Pin select for Master or Slave  
Active: ICC = 115 mA (typical)  
• Commercial and Industrial temperature ranges  
• 100-pin Lead(Pb)-free TQFP and 100-pin TQFP  
Standby: ISB3 = 10 µA (typical)  
Logic Block Diagram  
R/W  
R/W  
UB  
L
R
R
UB  
L
CE  
CE  
CE  
CE  
0L  
1L  
0R  
1R  
CE  
CE  
R
L
LB  
LB  
R
L
OE  
OE  
R
L
8/9  
8/9  
[1]  
[1]  
I/O  
–I/O  
[2]  
I/O  
–I/O  
8/9L  
15/17L  
8/9L  
15/17R  
[2]  
8/9  
8/9  
I/O  
Control  
I/O  
Control  
I/O –I/O  
I/O –I/O  
0L  
7/8L  
0L  
7/8R  
15/16  
15/16  
[3]  
–A  
A
A
–A[3]  
A
A
Address  
Decode  
Address  
Decode  
True Dual-Ported  
0L 14/15L  
0R  
14/15R  
RAM Array  
15/16  
15/16  
–A[3]  
[3]  
–A  
0L 14/15L  
0R  
14/15R  
CE  
CE  
Interrupt  
Semaphore  
Arbitration  
L
R
OE  
OE  
L
R
R/W  
R/W  
L
R
SEM  
SEM  
L
R
[4]  
[4]  
BUSY  
BUSY  
INT  
UB  
L
R
R
R
R
INT  
L
UB  
L
LB  
M/S  
LB  
L
Notes:  
1. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
8
15  
9
17  
2. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
0
7
0
8
3. A –A for 32K; A –A for 64K devices.  
0
14  
0
15  
4. BUSY is an output in master mode and an input in slave mode.  
Cypress Semiconductor Corporation  
Document #: 38-06078 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised September 20, 2004  
CY7C027V/028V  
CY7C037V/038V  
Pin Configurations  
100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A9R  
2
A10R  
A11R  
A12R  
A13R  
A14R  
A15R [5]  
NC  
3
4
5
6
[5]  
A15L  
NC  
7
8
NC  
9
NC  
LBL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
LBR  
UBL  
UBR  
CE0L  
CE1L  
SEML  
VCC  
CE0R  
CE1R  
SEMR  
GND  
CY7C028V (64K x 16)  
CY7C027V (32K x 16)  
R/WL  
OEL  
R/WR  
OER  
GND  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
GND  
GND  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Note:  
5. This pin is NC for CY7C027V.  
Document #: 38-06078 Rev. *A  
Page 2 of 18  
CY7C027V/028V  
CY7C037V/038V  
Pin Configurations (continued)  
100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A8R  
2
A9R  
A11L  
3
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
LBR  
A12L  
4
A13L  
5
A14L  
6
[6] A15L  
LBL  
7
[6]  
8
UBL  
9
CE0L  
CE1L  
SEML  
R/WL  
OEL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UBR  
CE0R  
CE1R  
SEMR  
R/WR  
GND  
OER  
GND  
CY7C038V (64K x 18)  
CY7C037V (32K x 18)  
VCC  
GND  
I/O17L  
I/O16L  
GND  
I/O17R  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O16R  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C037V/038V CY7C037V/038V CY7C037V/038V  
-15  
-20  
-25  
Unit  
ns  
Maximum Access Time  
15  
20  
25  
Typical Operating Current  
125  
35  
120  
35  
115  
30  
mA  
mA  
µA  
Typical Standby Current for ISB1 (Both ports TTL level)  
Typical Standby Current for ISB3 (Both ports CMOS level)  
10 µA  
10 µA  
10 µA  
Note:  
6. This pin is NC for CY7C037V.  
Document #: 38-06078 Rev. *A  
Page 3 of 18  
CY7C027V/028V  
CY7C037V/038V  
Pin Definitions  
Left Port  
CE0L, CE1L  
R/WL  
Right Port  
CE0R, CE1R  
Description  
Chip Enable (CE is LOW when CE0 VIL and CE1 VIH)  
R/WR  
Read/Write Enable  
OEL  
OER  
Output Enable  
A
0L–A15L  
A0R–A15R  
I/O0R–I/O17R  
SEMR  
UBR  
Address (A0–A14 for 32K; A0–A15 for 64K devices)  
I/O0L–I/O17L  
SEML  
UBL  
Data Bus Input/Output (I/O0–I/O15 for x16 devices; I/O0–I/O17 for x18)  
Semaphore Enable  
Upper Byte Select (I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices)  
LBL  
LBR  
Lower Byte Select (I/O0–I/O7 for x16 devices; I/O0–I/O8 for x18 devices)  
INTL  
INTR  
Interrupt Flag  
Busy Flag  
BUSYL  
M/S  
BUSYR  
Master or Slave Select  
Power  
VCC  
GND  
NC  
Ground  
No Connect  
shared latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared resource is  
in use. An automatic power-down feature is controlled independently  
Architecture  
The CY7C027V/028V and CY7037V/038V consist of an array  
of 32K and 64K words of 16 and 18 bits each of dual-port RAM  
cells, I/O and address lines, and control signals (CE, OE, R/W).  
These control pins permit independent access for reads or writes to  
any location in memory. To handle simultaneous writes/reads to the  
same location, a BUSY pin is provided on each port. Two interrupt  
(INT) pins can be utilized for port-to-port communication. Two sema-  
phore (SEM) control pins are used for allocating shared resources.  
With the M/S pin, the devices can function as a master (BUSY pins  
are outputs) or as a slave (BUSY pins are inputs). The devices also  
have an automatic power-down feature controlled by CE. Each port  
is provided with its own output enable control (OE), which allows data  
to be read from the device.  
on each port by a chip select (CE) pin.  
The CY7C027V/028V and CY7037V/038V are available in  
100-pin Thin Quad Plastic Flatpacks (TQFP).  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is con-  
trolled by either the R/W pin (see Write Cycle No. 1 waveform) or the  
CE pin (see Write Cycle No. 2 waveform). Required inputs for  
non-contention operations are summarized in Table 1.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output; other-  
wise the data read is not deterministic. Data will be valid on the  
port tDDD after the data is presented on the other port.  
Functional Description  
The CY7C027V/028V and CY7037V/038V are low-power  
CMOS 32K, 64K x 16/18 dual-port static RAMs. Various arbi-  
tration schemes are included on the devices to handle situa-  
tions when multiple processors access the same piece of data.  
Two ports are provided, permitting independent, asynchro-  
nous access for reads and writes to any location in memory.  
The devices can be utilized as stand-alone 16/18-bit dual-port  
static RAMs or multiple devices can be combined in order to  
function as a 32/36-bit or wider master/slave dual-port static  
RAM. An M/S pin is provided for implementing 32/36-bit or  
wider memory applications without the need for separate mas-  
ter and slave devices or additional discrete logic. Application  
areas include interprocessor/multiprocessor designs, commu-  
nications status buffering, and dual-port video/graphics mem-  
ory.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after OE is  
asserted. If the user wishes to access a semaphore flag, then the  
SEM pin must be asserted instead of the CE pin, and OE must also  
be asserted.  
Interrupts  
The upper two memory locations may be used for message  
passing. The highest memory location (7FFF for the  
CY7C027V/37V, FFFF for the CY7C028V/38V) is the mailbox  
for the right port and the second-highest memory location  
(7FFE for the CY7C027V/37V, FFFE for the CY7C028V/38V)  
is the mailbox for the left port. When one port writes to the  
other port’s mailbox, an interrupt is generated to the owner.  
The interrupt is reset when the owner reads the contents of the  
mailbox. The message is user defined.  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable (OE). Two flags are  
provided on each port (BUSY and INT). BUSY signals that the port is  
trying to access the same location currently being accessed by the  
other port. The interrupt flag (INT) permits communication between  
ports or systems by means of a mail box. The semaphores are used  
to pass a flag, or token, from one port to the other to indicate that a  
shared resource is in use. The semaphore logic is comprised of eight  
Each port can read the other port’s mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Document #: 38-06078 Rev. *A  
Page 4 of 18  
CY7C027V/028V  
CY7C037V/038V  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it.  
left port wants to request a given resource, it sets a latch by  
writing a zero to a semaphore location. The left port then ver-  
ifies its success in setting the latch by reading it. After writing  
to the semaphore, SEMor OE must be deasserted for tSOP before  
attempting to read the semaphore. The semaphore value will be  
available tSWRD + tDOE after the rising edge of the semaphore write.  
If the left port was successful (reads a zero), it assumes control of the  
shared resource, otherwise (reads a one) it assumes the right port  
has control and continues to poll the semaphore. When the right side  
has relinquished control of the semaphore (by writing a one), the left  
side will succeed in gaining control of the semaphore. If the left side  
no longer requires the semaphore, a one is written to cancel its re-  
quest.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
Busy  
The CY7C027V/028V and CY7037V/038V provide on-chip ar-  
bitration to resolve simultaneous memory location access  
(contention). If both ports’ CEs are asserted and an address  
match occurs within tPS of each other, the busy logic will determine  
which port has access. If tPS is violated, one port will definitely gain  
permission to the location, but it is not predictable which port will get  
that permission. BUSY will be asserted tBLA after an address match  
or tBLC after CE is taken LOW.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE must  
remain HIGH during SEM LOW). A0–2 represents the semaphore  
address. OE and R/W are used in the same manner as a normal  
memory access. When writing or reading a semaphore, the other  
address pins have no effect.  
Master/Slave  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one will appear at  
the same semaphore address on the right port. That semaphore can  
now only be modified by the side showing zero (the left port in this  
case). If the left port now relinquishes control by writing a one to the  
semaphore, the semaphore will be set to one for both sides. Howev-  
er, if the right port had requested the semaphore (written a zero) while  
the left port had control, the right port would immediately own the  
semaphore as soon as the left port released it. Table 3 shows sam-  
ple semaphore operations.  
A M/S pin is provided in order to expand the word width by configur-  
ing the device as either a master or a slave. The BUSY output of the  
master is connected to the BUSY input of the slave. This will allow the  
device to interface to a master device with no external components.  
Writing to slave devices must be delayed until after the BUSY input  
has settled (tBLC or tBLA), otherwise, the slave chip may begin a write  
cycle during a contention situation. When tied HIGH, the M/S pin al-  
lows the device to be used as a master and, therefore, the BUSY line  
is an output. BUSY can then be used to send the arbitration outcome  
to a slave.  
When reading a semaphore, all sixteen/eighteen data lines  
output the semaphore value. The read value is latched in an  
output register to prevent the semaphore from changing state  
during a write from the other port. If both ports attempt to  
access the semaphore within tSPS of each other, the semaphore  
will definitely be obtained by one side or the other, but there is no  
guarantee which side will control the semaphore.  
Semaphore Operation  
The CY7C027V/028V and CY7037V/038V provide eight  
semaphore latches, which are separate from the dual-port  
memory locations. Semaphores are used to reserve resources  
that are shared between the two ports.The state of the sema-  
phore indicates that a resource is in use. For example, if the  
Document #: 38-06078 Rev. *A  
Page 5 of 18  
CY7C027V/028V  
CY7C037V/038V  
DC Input Voltage[7] .................................. –0.5V to VCC+0.5V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage.......................................... > 1100V  
Latch-up Current.................................................... > 200 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................–65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................–55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
Range  
Commercial  
Industrial[8]  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VCC  
DC Voltage Applied to  
Outputs in High-Z State............................–0.5V to VCC+0.5V  
3.3V ± 300 mV  
3.3V ± 300 mV  
Electrical Characteristics Over the Operating Range  
CY7C037V/038V  
-20  
-15  
-25  
Parameter  
Description  
Output HIGH Voltage  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
VOH  
2.4  
2.4  
2.4  
V
(VCC=Min., IOH= –4.0 mA)  
VOL  
VIH  
VIL  
IIX  
Output LOW Voltage (VCC=Min., IOH= +4.0 mA)  
Input HIGH Voltage  
0.4  
0.4  
0.4  
V
2.2  
2.2  
2.2  
V
Input LOW Voltage  
0.8  
5
0.8  
5
0.8  
V
Input Leakage Current  
5  
5  
5  
5
10  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
mA  
mA  
IOZ  
ICC  
Output Leakage Current  
–10  
10 –10  
125 185  
10  
–10  
Operating Current (VCC=Max. IOUT=0 Com’l.  
mA) Outputs Disabled  
Ind.[8]  
120 175  
140 195  
115 165  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current (Both Ports TTL  
Level) CEL & CER VIH, f=fMAX  
Com’l.  
Ind.[8]  
35  
50  
35  
45  
75  
85  
10  
10  
70  
80  
45  
55  
30  
65  
10  
60  
40  
95  
Standby Current (One Port TTL Level) Com’l.  
80 120  
10 250  
75 105  
110  
120  
250  
250  
95  
CEL | CER VIH, f=fMAX  
Ind.[8]  
Com’l.  
Ind.[8]  
Standby Current (Both Ports CMOS  
Level) CEL & CER VCC0.2V, f=0  
250  
80  
Standby Current (One Port CMOS Lev- Com’l.  
[9]  
el) CEL | CER VIH, f=fMAX  
Ind.[8]  
105  
Capacitance[10]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
Unit  
CIN  
TA = 25°C, f = 1 MHz,  
CC = 3.3V  
10  
10  
pF  
pF  
V
COUT  
Notes:  
7. Pulse width < 20 ns.  
8. Industrial parts are available in CY7C028V and CY7C038V only.  
9.  
f
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I  
.
MAX  
RC  
RC  
SB3  
10. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06078 Rev. *A  
Page 6 of 18  
CY7C027V/028V  
CY7C037V/038V  
AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250Ω  
R1 = 590Ω  
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 590Ω  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 435Ω  
R2 = 435Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(b) Thévenin Equivalent (Load 1)  
(Used for tLZ, tHZ, tHZWE, & tLZWE  
including scope and jig)  
ALL INPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Switching Characteristics Over the Operating Range[11]  
CY7C037V/038V  
-20  
-15  
-25  
Parameter  
Description  
Read Cycle Time  
Min.  
15  
Max.  
Min.  
Max.  
Min.  
25  
3
Max.  
Unit  
Read Cycle  
tRC  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE LOW to Low Z  
15  
20  
25  
tOHA  
3
3
[12]  
tACE  
tDOE  
tLZOE  
15  
10  
20  
12  
25  
13  
[13, 14, 15]  
[13, 14, 15]  
3
3
0
3
3
0
3
3
0
tHZOE  
OE HIGH to High Z  
10  
10  
12  
12  
15  
15  
[13, 14, 15]  
tLZCE  
CE LOW to Low Z  
[13, 14, 15]  
tHZCE  
CE HIGH to High Z  
[15]  
[15]  
tPU  
tPD  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
15  
15  
20  
20  
25  
25  
[12]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
15  
12  
12  
0
20  
16  
16  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[12]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
[12]  
tSA  
0
0
0
tPWE  
12  
10  
17  
12  
22  
15  
tSD  
Data Set-Up to Write End  
Notes:  
11. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
/I and 30-pF load capacitance.  
I
OI OH  
12. To access RAM, CE=L, UB=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire t  
time.  
SCE  
13. At any given temperature and voltage condition for any given device, t  
14. Test conditions used are Load 2.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
15. This parameter is guaranteed by design, but it is not production tested. For information on port-to-port delay through RAM cells from writing port to reading  
port, refer to Read Timing with Busy waveform.  
Document #: 38-06078 Rev. *A  
Page 7 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Characteristics Over the Operating Range[11](continued)  
CY7C037V/038V  
-20  
-15  
-25  
Parameter  
tHD  
tHZWE  
Description  
Data Hold From Write End  
R/W LOW to High Z  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
0
0
0
[14, 15]  
[14 ,15]  
10  
12  
15  
ns  
tLZWE  
R/W HIGH to Low Z  
3
3
3
ns  
[41]  
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
30  
25  
40  
30  
50  
35  
ns  
[41]  
tDDD  
Busy Timing[16]  
tBLA  
ns  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
15  
15  
15  
15  
20  
20  
20  
16  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBHA  
tBLC  
tBHC  
tPS  
5
0
5
0
5
0
tWB  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
tWH  
13  
15  
17  
[18]  
tBDD  
Interrupt Timing[16]  
15  
20  
25  
tINS  
INT Set Time  
15  
15  
20  
20  
20  
20  
ns  
ns  
tINR  
INT Reset Time  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
10  
5
12  
5
ns  
ns  
ns  
ns  
5
5
5
tSAA  
15  
20  
25  
Data Retention Mode  
Timing  
The CY7C027V/028V and CY7037V/038V are designed with  
battery backup in mind. Data retention voltage and supply cur-  
rent are guaranteed over temperature. The following rules en-  
sure data retention:  
Data Retention Mode  
3.0V  
V
CC  
3.0V  
V
CC  
> 2.0V  
t
RC  
1. Chip enable (CE) must be held HIGH during data retention, with-  
in VCC to VCC – 0.2V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC – 0.2V and 70% of VCC  
during the power-up and power-down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the min-  
imum operating voltage (3.0 volts).  
Parameter  
Test Conditions[19]  
Max.  
Unit  
ICCDR1  
@ VCCDR = 2V  
50  
µA  
16. For information on port-to-port delay through RAM cells from writing port  
to reading port, refer to Read Timing with Busy waveform.  
17. Test conditions used are Load 1.  
18.  
t
isacalculatedparameterandisthegreateroft  
–t  
(actual)ort t  
BDD  
WDD PWE  
DDD SD  
(actual).  
19. CE = V , V = GND to V , T = 25° C. This parameter is guaranteed  
CC  
in  
CC  
A
but not tested.  
Document #: 38-06078 Rev. *A  
Page 8 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[20, 21, 22]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[20, 23, 24]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Read Cycle No. 3 (Either Port)[20, 22, 23, 24]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
UB or LB  
t
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
DATA OUT  
Notes:  
20. R/W is HIGH for read cycles.  
21. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
22. OE = V .  
IL  
23. Address valid prior to or coincident with CE transition LOW.  
24. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IH  
IH  
IL  
Document #: 38-06078 Rev. *A  
Page 9 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms(continued)  
Write Cycle No. 1: R/W Controlled Timing[25, 26, 27, 28]  
t
WC  
ADDRESS  
OE  
[31]  
t
HZOE  
t
AW  
[29,30]  
CE  
[28]  
PWE  
t
t
t
HA  
SA  
R/W  
DATAOUT  
DATA IN  
[31]  
HZWE  
t
t
LZWE  
NOTE 32  
NOTE 32  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing[25, 26, 27, 33]  
t
WC  
ADDRESS  
t
AW  
[29,30]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
25. R/W must be HIGH during all address transitions.  
26. A write occurs during the overlap (t or t  
) of a LOW CE or SEM and a LOW UB or LB.  
PWE  
SCE  
27.  
t
is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
28. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data to be placed on  
PWE  
HZWE SD  
the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t  
.
SD  
PWE  
29. To access RAM, CE = V , SEM = V  
.
IL  
IH  
30. To access upper byte, CE = V , UB = V , SEM = V .  
IL  
IL  
IH  
To access lower byte, CE = V , LB = V , SEM = V .  
IL  
IL  
IH  
31. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
32. During this period, the I/O pins are in the output state, and input signals must not be applied.  
33. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
Document #: 38-06078 Rev. *A  
Page 10 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms(continued)  
Semaphore Read After Write Timing, Either Side[34]  
t
t
OHA  
SAA  
A0–A  
VALID ADRESS  
VALID ADRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[35, 36, 37]  
A
0L  
–A  
2L  
MATCH  
R/W  
L
SEM  
–A  
L
t
SPS  
A
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes:  
34. CE = HIGH for the duration of the above timing (both write and read cycle).  
35. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
36. Semaphores are reset (available to both ports) at cycle start.  
37. If t is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
SPS  
Document #: 38-06078 Rev. *A  
Page 11 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms(continued)  
Timing Diagram of Read with BUSY (M/S=HIGH)[38]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
38. CE = CE = LOW.  
L
R
Document #: 38-06078 Rev. *A  
Page 12 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms(continued)  
Busy Timing Diagram No. 1 (CE Arbitration)[39]  
CELValid First:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER ValidFirst:  
ADDRESS  
ADDRESS MATCH  
L,R  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
Busy Timing Diagram No. 2 (Address Arbitration)[39]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
39. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
PS  
Document #: 38-06078 Rev. *A  
Page 13 of 18  
CY7C027V/028V  
CY7C037V/038V  
Switching Waveforms(continued)  
Interrupt Timing Diagrams  
Left Side Sets INT :  
R
t
WC  
ADDRESS  
WRITE 7FFF (FFFF for CY7C028V/38V)  
[40]  
L
t
HA  
CE  
L
R/W  
INT  
L
R
[41]  
t
INS  
Right Side Clears INT :  
R
t
RC  
READ 7FFF  
(FFFF for CY7C028V/38V)  
ADDRESS  
R
CE  
R
[41]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right Side Sets INTL  
t
WC  
ADDRESS  
WRITE 7FFE (FFFE for CY7C028V/38V)  
[40]  
R
t
HA  
CE  
R
R
R/W  
INT  
L
[41]  
INS  
t
Left Side Clears INT :  
L
t
RC  
READ 7FFE  
(FFFF for CY7C028V/38V)  
ADDRESS  
CE  
R
L
[41]  
t
INR  
R/W  
L
OE  
INT  
L
L
Notes:  
40.  
41.  
t
depends on which enable pin (CE or R/W ) is deasserted first.  
HA L L  
t
or t depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR  
L
L
Document #: 38-06078 Rev. *A  
Page 14 of 18  
CY7C027V/028V  
CY7C037V/038V  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
I/O9I/O17  
High Z  
I/O0I/O8  
High Z  
Operation  
Deselected: Power-Down  
Deselected: Power-Down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
High Z  
High Z  
L
Data In  
High Z  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
H
L
X
X
H
X
X
X
H
X
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data Out  
Data Out  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
L
L
X
L
X
X
H
H
L
Data In  
Data In  
Write DIN0 into Semaphore Flag  
L
L
X
X
X
X
L
X
L
L
L
Not Allowed  
Not Allowed  
X
Table 2. Interrupt Operation Example (assumes BUSYL=BUSYR=HIGH)[42]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
A0L–14L  
7FFF  
X
INTL R/WR CER  
OER  
X
A0R–14R  
X
INTR  
L[44]  
H[43]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
X
L
7FFF  
7FFE  
X
X
X
L[43]  
H[44]  
X
L
7FFE  
X
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O17 Left I/O0I/O17 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Left port writes 1 to semaphore  
Notes:  
42.  
A
and A  
,FFFF/FFFE for the CY7C028V/038V.  
0L–15L  
0R–15R  
43. If BUSY =L, then no change.  
R
44. If BUSY =L, then no change.  
L
Document #: 38-06078 Rev. *A  
Page 15 of 18  
CY7C027V/028V  
CY7C037V/038V  
Ordering Information  
32K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C027V-15AC  
Name  
A100  
A100  
A100  
A100  
A100  
A100  
Package Type  
15  
20  
25  
100-Pin Thin Quad Flat Pack  
Commercial  
CY7C027V-15AXC  
CY7C027V-20AC  
CY7C027V-20AXC  
CY7C027V-25AC  
CY7C027V-25AXC  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead Free Thin Quad Flat Pack  
64K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C028V-15AC  
Package Type  
15  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
100-Pin Thin Quad Flat Pack  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
CY7C028V-15AXC  
CY7C028V-20AC  
CY7C028V-20AXC  
CY7C028V-20AI  
CY7C028V-20AXI  
CY7C028V-25AC  
CY7C028V-25AXC  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
25  
Commercial  
Commercial  
100-Pin Lead Free Thin Quad Flat Pack  
32K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C037V-15AC  
Name  
A100  
A100  
A100  
A100  
A100  
A100  
Package Type  
100-Pin Thin Quad Flat Pack  
15  
20  
25  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
CY7C037V-15AXC  
CY7C037V-20AC  
CY7C037V-20AXC  
CY7C037V-25AC  
CY7C037V-25AXC  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead Free Thin Quad Flat Pack  
64K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C038V-15AC  
Package Type  
15  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
100-Pin Thin Quad Flat Pack  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
CY7C038V-15AXC  
CY7C038V-20AC  
CY7C038V-20AXC  
CY7C038V-20AI  
CY7C038V-20AXI  
CY7C038V-25AC  
CY7C038V-25AXC  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
25  
Commercial  
Commercial  
100-Pin Lead Free Thin Quad Flat Pack  
Document #: 38-06078 Rev. *A  
Page 16 of 18  
CY7C027V/028V  
CY7C037V/038V  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
100-Pin Lead(Pb)-Free Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-*B  
All product and company information mentioned in this document are trademarks of their respective holders.  
Document #: 38-06078 Rev. *A  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C027V/028V  
CY7C037V/038V  
Document History Page  
Document Title: CY7C027V/CY7C028V/CY7C037V/CY7C038V 3.3V 32K/64K x 16/18 Dual Port Static RAM  
Document Number: 38-06078  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
**  
237626  
6/30/04  
YDT  
JHX  
Converted data sheet from old spec 38-00670 to conform with new data  
sheet. Removed cross information from features section  
*A  
259110  
See ECN  
Added Lead(Pb)-Free packaging information.  
Document #: 38-06078 Rev. *A  
Page 18 of 18  

相关型号:

CY7C038V-20AC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C038V-20AI

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C038V-20AXC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C038V-20AXI

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C038V-25AC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C038V-25AI

Dual-Port SRAM, 64KX18, 25ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C038V-25AXC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C0430BV

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C0430BV-100BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C0430BV-100BGI

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C0430BV-100BGIT

Four-Port SRAM, 64KX18, 5ns, CMOS, PBGA272, 27 X 27 MM, 2.33 MM HEIGHT, 1.27 MM PITCH, PLASTIC, BGA-272
CYPRESS

CY7C0430BV-133BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS