CY14B256LA-ZS45XI [CYPRESS]

256 Kbit (32K x 8) nvSRAM; 256千位( 32K ×8 )的nvSRAM
CY14B256LA-ZS45XI
型号: CY14B256LA-ZS45XI
厂家: CYPRESS    CYPRESS
描述:

256 Kbit (32K x 8) nvSRAM
256千位( 32K ×8 )的nvSRAM

静态存储器
文件: 总21页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY14B256LA  
256 Kbit (32K x 8) nvSRAM  
Features  
Functional Description  
25 ns and 45 ns Access Times  
The Cypress CY14B256LA is a fast static RAM, with a nonvol-  
atile element in each memory cell. The memory is organized as  
32K bytes of 8 bits each. The embedded nonvolatile elements  
incorporate QuantumTrap technology, producing the world’s  
most reliable nonvolatile memory. The SRAM provides infinite  
read and write cycles, while independent nonvolatile data  
resides in the highly reliable QuantumTrap cell. Data transfers  
from the SRAM to the nonvolatile elements (the STORE  
operation) takes place automatically at power down. On power  
up, data is restored to the SRAM (the RECALL operation) from  
the nonvolatile memory. Both the STORE and RECALL opera-  
tions are also available under software control.  
Internally Organized as 32K x 8 (CY14B256LA)  
Hands off Automatic STORE on Power Down with only a Small  
Capacitor  
STORE to QuantumTrap Nonvolatile Elements Initiated by  
Software, Device Pin, or AutoStore on Power Down  
RECALL to SRAM Initiated by Software or Power Up  
Infinite Read, Write, and Recall Cycles  
1 Million STORE Cycles to QuantumTrap  
20 year Data Retention  
Single 3V +20% to -10% Operation  
Industrial Temperature  
44-Pin TSOP - II, 48-Pin SSOP, and 32-Pin SOIC Packages  
Pb-free and RoHS Compliance  
Cypress Semiconductor Corporation  
Document Number: 001-54707 Rev. *B  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised December 08, 2009  
[+] Feedback  
CY14B256LA  
Contents  
Features ...............................................................................1  
Functional Description .......................................................1  
Contents ..............................................................................2  
Pinouts ................................................................................3  
Device Operation ................................................................5  
SRAM Read .........................................................................5  
SRAM Write .........................................................................5  
AutoStore Operation ..........................................................5  
Hardware STORE Operation ..............................................5  
Hardware RECALL (Power Up) ..........................................6  
Software STORE .................................................................6  
Software RECALL ...............................................................6  
Preventing AutoStore .........................................................7  
Data Protection ...................................................................7  
Noise Considerations .........................................................7  
Best Practices .....................................................................8  
Maximum Ratings ...............................................................9  
Operating Range .................................................................9  
DC Electrical Characteristics ............................................9  
AC Test Conditions ..........................................................10  
Data Retention and Endurance .......................................10  
Capacitance ......................................................................10  
Thermal Resistance ..........................................................10  
AC Switching Characteristics .........................................11  
AutoStore/Power Up RECALL .........................................13  
Software Controlled STORE/RECALL Cycle ..................14  
Hardware STORE Cycle ...................................................15  
Truth Table For SRAM Operations ..................................16  
Part Numbering Nomenclature ........................................16  
Ordering Information ........................................................17  
Package Diagrams ............................................................18  
Document History Page ...................................................20  
Sales, Solutions, and Legal Information ........................20  
Worldwide Sales and Design Support .........................20  
Products ......................................................................20  
Document Number: 001-54707 Rev. *B  
Page2  
[+] Feedback  
CY14B256LA  
Pinouts  
Figure 1. Pin Diagram - 44 Pin TSOP II/48 Pin SSOP  
V
NC  
NC  
1
2
3
CAP  
44  
43  
42  
41  
HSB  
NC  
48  
47  
V
CC  
1
2
3
[5]  
NC  
A
NC  
[4]  
14  
A
NC  
46  
45  
44  
43  
42  
0
HSB  
WE  
[3]  
A
12  
A
1
4
4
NC  
A
7
[2]  
5
6
7
8
A
2
A
13  
5
NC  
NC  
NC  
40  
39  
A
6
[1]  
[1]  
A
8
A
9
A
3
6
A
5
A
7
8
38  
37  
36  
35  
34  
4
NC  
A
41  
40  
NC  
A
CE  
OE  
DQ  
4
9
11  
DQ  
44 - TSOP II  
9
0
1
7
48 - SSOP  
NC  
NC  
NC  
10  
11  
12  
13  
14  
39  
NC  
NC  
NC  
(x8)  
DQ  
10  
11  
12  
DQ  
V
(x8)  
6
38  
37  
36  
V
CC  
SS  
Top View  
not to scale)  
Top View  
not to scale)  
V
V
V
33  
32  
31  
SS  
SS  
CC  
V
SS  
(
(
DQ  
DQ  
13  
14  
15  
16  
17  
18  
DQ  
NC  
2
3
5
NC  
NC  
35  
DQ  
V
NC  
DQ0  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4
34  
33  
32  
31  
WE  
A
5
30  
29  
28  
27  
26  
25  
24  
23  
DQ6  
OE  
CAP  
A
3
A
2
A
14  
A
6
A
A
10  
13  
12  
A
1
A
7
30  
29  
28  
27  
26  
25  
CE  
DQ7  
A
A
0
A
19  
20  
21  
22  
8
A
11  
DQ1  
DQ2  
NC  
A
9
DQ5  
DQ4  
DQ3  
A
10  
NC  
NC  
NC  
NC  
NC  
V
CC  
Figure 2. Pin Diagram - 32-Pin SOIC  
32 - SOIC  
(x8)  
Top View  
not to scale)  
(
Notes  
1. Address expansion for 1 Mbit. NC pin not connected to die  
2. Address expansion for 2 Mbit. NC pin not connected to die.  
3. Address expansion for 4 Mbit. NC pin not connected to die.  
4. Address expansion for 8 Mbit. NC pin not connected to die.  
5. Address expansion for 16 Mbit. NC pin not connected to die.  
Document Number: 001-54707 Rev. *B  
Page3  
[+] Feedback  
CY14B256LA  
Table 1. Pin Definitions  
Pin Name  
I/O Type  
Description  
A0 – A14  
Input  
Address Inputs Used to Select One of the 32,768 bytes of the nvSRAM.  
DQ0 – DQ7 Input/Output Bidirectional Data I/O Lines. Used as input or output lines depending on operation.  
WE  
Input  
Write Enable Input, Active LOW. When the chip is enabled and WE is LOW, data on the I/O pins is written  
to the specific address location.  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. I/O pins are tristated on deasserting OE HIGH.  
VSS  
VCC  
Ground  
Ground for the Device. Must be connected to the ground of the system.  
Power Supply Inputs to the Device. 3.0V +20%, –10%  
Power  
Supply  
Input/Output Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull up  
resistor keeps this pin HIGH if not connected (connection optional). After each STORE operation HSB is  
driven HIGH for short time with standard output high current.  
HSB  
VCAP  
NC  
Power  
Supply  
AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
No Connect No Connect. This pin is not connected to the die.  
Document Number: 001-54707 Rev. *B  
Page4  
[+] Feedback  
CY14B256LA  
Figure 3 shows the proper connection of the storage capacitor  
(VCAP) for automatic STORE operation. Refer to DC Electrical  
Characteristics on page 9 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. Place a  
pull up on WE to hold it inactive during power up. This pull up is  
only effective if the WE signal is tristate during power up. Many  
MPUs tristate their controls on power up. This must be verified  
when using the pull up. When the nvSRAM comes out of  
power-on-recall, the MPU must be active or the WE held inactive  
until the MPU comes out of reset.  
Device Operation  
The CY14B256LA nvSRAM is made up of two functional  
components paired in the same physical cell. They are an SRAM  
memory cell and a nonvolatile QuantumTrap cell. The SRAM  
memory cell operates as a standard fast static RAM. Data in the  
SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B256LA supports infinite reads and writes similar to a  
typical SRAM. In addition, it provides infinite RECALL operations  
from the nonvolatile cells and up to 1 million STORE operations.  
Refer to the Truth Table For SRAM Operations on page 16 for a  
complete description of read and write modes.  
To reduce unnecessary nonvolatile stores, AutoStore and  
Hardware STORE operations are ignored unless at least one  
write operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
SRAM Read  
Figure 3. AutoStore Mode  
The CY14B256LA performs a read cycle when CE and OE are  
LOW and WE and HSB are HIGH. The address specified on pins  
A0-14 determines which of the 32,768 data bytes each are  
accessed. When the read is initiated by an address transition,  
the outputs are valid after a delay of tAA (read cycle 1). If the read  
VCC  
0.1uF  
is initiated by CE or OE, the outputs are valid at tACE or at tDOE  
,
whichever is later (read cycle 2). The data output repeatedly  
responds to address changes within the tAA access time without  
the need for transitions on any control input pins. This remains  
valid until another address change or until CE or OE is brought  
HIGH, or WE or HSB is brought LOW.  
VCC  
WE  
VCAP  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–7 are  
written into the memory if the data is valid tSD before the end of  
a WE-controlled write or before the end of a CE-controlled write.  
Keep OE HIGH during the entire write cycle to avoid data bus  
contention on common I/O lines. If OE is left LOW, internal  
circuitry turns off the output buffers tHZWE after WE goes LOW.  
VCAP  
VSS  
Hardware STORE Operation  
The CY14B256LA provides the HSB pin to control and  
acknowledge the STORE operations. Use the HSB pin to  
request a Hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14B256LA conditionally initiates a STORE  
operation after tDELAY. An actual STORE cycle only begins if a  
write to the SRAM has taken place since the last STORE or  
RECALL cycle. The HSB pin also acts as an open drain driver  
that is internally driven LOW to indicate a busy condition when  
the STORE (initiated by any means) is in progress.  
AutoStore Operation  
The CY14B256LA stores data to the nvSRAM using one of the  
following three storage operations: Hardware STORE activated  
by HSB; Software STORE activated by an address sequence;  
AutoStore on device power down. The AutoStore operation is a  
unique feature of QuantumTrap technology and is enabled by  
default on the CY14B256LA.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14B256LA. But any SRAM read and write cycles  
are inhibited until HSB is returned HIGH by MPU or other  
external source.  
Note If the capacitor is not connected to VCAP pin, AutoStore  
must be disabled using the soft sequence specified in Preventing  
AutoStore on page 7. In case AutoStore is enabled without a  
capacitor on VCAP pin, the device attempts an AutoStore  
operation without sufficient charge to complete the Store. This  
may corrupt the data stored in nvSRAM.  
Document Number: 001-54707 Rev. *B  
Page5  
[+] Feedback  
CY14B256LA  
During any STORE operation, regardless of how it is initiated,  
the CY14B256LA continues to drive the HSB pin LOW, releasing  
it only when the STORE is complete. Upon completion of the  
STORE operation, the CY14B256LA remains disabled until the  
HSB pin returns HIGH. Leave the HSB unconnected if it is not  
used.  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads, with WE kept HIGH for all the six READ  
sequences. After the sixth address in the sequence is entered,  
the STORE cycle commences and the chip is disabled. HSB is  
driven LOW. After the tSTORE cycle time is fulfilled, the SRAM is  
activated again for the read and write operation.  
Hardware RECALL (Power Up)  
Software RECALL  
During power up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the sense voltage of VSWITCH, a RECALL  
cycle is automatically initiated and takes tHRECALL to complete.  
During this time, HSB is driven low by the HSB driver.  
Data is transferred from nonvolatile memory to the SRAM by a  
software address sequence. A Software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the Software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed:  
Software STORE  
1. Read Address 0x0E38 Valid READ  
2. Read Address 0x31C7 Valid READ  
3. Read Address 0x03E0 Valid READ  
4. Read Address 0x3C1F Valid READ  
5. Read Address 0x303F Valid READ  
6. Read Address 0x0C63 Initiate RECALL Cycle  
Data is transferred from SRAM to the nonvolatile memory by a  
software address sequence. The CY14B256LA Software  
STORE cycle is initiated by executing sequential CE controlled  
read cycles from six specific address locations in exact order.  
During the STORE cycle an erase of the previous nonvolatile  
data is first performed, followed by a program of the nonvolatile  
elements. After a STORE cycle is initiated, further input and  
output are disabled until the cycle is completed.  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared. Next, the nonvolatile information is transferred into the  
SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the nonvolatile elements.  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
To initiate the Software STORE cycle, the following read  
sequence must be performed:  
1. Read Address 0x0E38 Valid READ  
2. Read Address 0x31C7 Valid READ  
3. Read Address 0x03E0 Valid READ  
4. Read Address 0x3C1F Valid READ  
5. Read Address 0x303F Valid READ  
6. Read Address 0x0FC0 Initiate STORE Cycle  
Table 2. Mode Selection  
[6]  
A14 - A0  
Mode  
I/O  
Power  
Standby  
Active  
CE  
WE  
OE  
H
X
X
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High-Z  
Output Data  
Input Data  
L
L
L
H
L
L
X
L
Active  
Active[7]  
H
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Disable  
Notes  
6. While there are 15 address lines on the CY14B256LA, only the lower 14 are used to control software modes.  
7. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
Document Number: 001-54707 Rev. *B  
Page6  
[+] Feedback  
CY14B256LA  
Table 2. Mode Selection (continued)  
[6]  
A14 - A0  
Mode  
I/O  
Power  
CE  
WE  
OE  
L
H
L
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active[7]  
[7]  
L
L
H
H
L
L
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
STORE  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High-Z  
Active ICC2  
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
Recall  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High-Z  
Active[7]  
If the AutoStore function is disabled or reenabled, a manual  
STORE operation (Hardware or Software) must be issued to  
save the AutoStore state through subsequent power down  
cycles. The part comes from the factory with AutoStore enabled.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the Software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
Data Protection  
The CY14B256LA protects data from corruption during low  
voltage conditions by inhibiting all externally initiated STORE  
and write operations. The low voltage condition is detected when  
1. Read address 0x0E38 Valid READ  
2. Read address 0x31C7 Valid READ  
3. Read address 0x03E0 Valid READ  
4. Read address 0x3C1F Valid READ  
5. Read address 0x303F Valid READ  
6. Read address 0x0B45 AutoStore Disable  
V
CC is less than VSWITCH. If the CY14B256LA is in a write mode  
(both CE and WE are LOW) at power up, after a RECALL or  
STORE, the write is inhibited until the SRAM is enabled after  
tLZHSB (HSB to output active). This protects against inadvertent  
writes during power up or brown out conditions.  
The AutoStore is reenabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the Software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
Noise Considerations  
Refer to CY application note AN1064.  
1. Read address 0x0E38 Valid READ  
2. Read address 0x31C7 Valid READ  
3. Read address 0x03E0 Valid READ  
4. Read address 0x3C1F Valid READ  
5. Read address 0x303F Valid READ  
6. Read address 0x0B46 AutoStore Enable  
Document Number: 001-54707 Rev. *B  
Page7  
[+] Feedback  
CY14B256LA  
Power up boot firmware routines should rewrite the nvSRAM  
into the desired state (for example, autostore enabled). While  
the nvSRAM is shipped in a preset state, best practice is to  
again rewrite the nvSRAM into the desired state as a safeguard  
against events that might flip the bit inadvertently such as  
program bugs and incoming inspection routines.  
Best Practices  
nvSRAM products have been used effectively for over 15 years.  
While ease-of-use is one of the product’s main system values,  
experience gained working with hundreds of applications has  
resulted in the following suggestions as best practices:  
The VCAP value specified in this data sheet includes a minimum  
and a maximum value size. Best practice is to meet this  
requirement and not exceed the maximum VCAP value because  
the nvSRAM internal algorithm calculates VCAP charge and  
discharge time based on this max VCAP value. Customers that  
want to use a larger VCAP value to make sure there is extra store  
charge and store time should discuss their VCAP size selection  
withCypresstounderstandanyimpactontheVCAP voltagelevel  
at the end of a tRECALL period.  
ThenonvolatilecellsinthisnvSRAMproductaredeliveredfrom  
Cypress with 0x00 written in all cells. Incoming inspection  
routines at customer or contract manufacturer’s sites  
sometimes reprogram these values. Final NV patterns are  
typically repeating patterns of AA, 55, 00, FF, A5, or 5A. End  
product’s firmware should not assume an NV array is in a set  
programmed state. Routines that check memory content  
values to determine first time system configuration, cold or  
warm boot status, and so on should always program a unique  
NV pattern (that is, complex 4-byte pattern of 46 E6 49 53 hex  
or more random bytes) as part of the final system manufac-  
turing test to ensure these system routines work consistently.  
Document Number: 001-54707 Rev. *B  
Page8  
[+] Feedback  
CY14B256LA  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package Power Dissipation  
Capability (TA = 25°C) ................................................... 1.0W  
Storage Temperature ................................. –65°C to +150°C  
Maximum Accumulated Storage Time:  
Surface Mount Pb Soldering  
Temperature (3 Seconds).......................................... +260°C  
DC Output Current (1 output at a time, 1s duration).... 15 mA  
At 150°C Ambient Temperature........................ 1000h  
At 85°C Ambient Temperature..................... 20 Years  
Ambient Temperature with Power Applied.. –55°C to +150°C  
Supply Voltage on VCC Relative to GND ..........–0.5V to 4.1V  
Voltage Applied to Outputs in  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Latch Up Current ................................................... > 200 mA  
Operating Range  
Range  
Industrial  
Ambient Temperature  
VCC  
High-Z State........................................... –0.5V to VCC + 0.5V  
Input Voltage.............................................–0.5V to Vcc+0.5V  
–40°C to +85°C  
2.7V to 3.6V  
Transient Voltage (<20 ns) on  
Any Pin to Ground Potential ..................2.0V to VCC + 2.0V  
DC Electrical Characteristics  
Over the Operating Range (VCC = 2.7V to 3.6V)  
Parameter  
VCC  
Description  
Power Supply  
Average VCC Current tRC = 25 ns  
RC = 45 ns  
Values obtained without output loads (IOUT = 0 mA)  
Average VCC Current All Inputs Don’t Care, VCC = Max  
during STORE Average current for duration tSTORE  
AverageVCC Currentat All I/P cycling at CMOS levels.  
RC= 200 ns, Values obtained without output loads (IOUT = 0 mA).  
VCC (Typ), 25°C  
Test Conditions  
Min  
Typ[8]  
Max  
Unit  
2.7  
3.0  
3.6  
V
ICC1  
70  
52  
mA  
mA  
t
ICC2  
ICC3  
10  
mA  
mA  
35  
t
ICC4  
ISB  
Average VCAP Current All Inputs Don’t Care. Average current for duration tSTORE  
during AutoStore Cycle  
5
5
mA  
mA  
VCC Standby Current CE > (VCC – 0.2V). VIN < 0.2V or > (VCC – 0.2V).  
Standby current level after nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
[9]  
IIX  
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(except HSB)  
–1  
–100  
–1  
+1  
+1  
+1  
μA  
μA  
μA  
V
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(for HSB)  
IOZ  
VIH  
Off-State Output  
Leakage Current  
VCC = Max, VSS < VOUT < VCC, CE or OE > VIH or WE < VIL  
Input HIGH Voltage  
2.0  
VCC  
0.5  
+
VIL  
Input LOW Voltage  
Vss – 0.5  
2.4  
0.8  
V
V
VOH  
VOL  
VCAP  
Output HIGH Voltage IOUT = –2 mA  
Output LOW Voltage  
Storage Capacitor  
IOUT = 4 mA  
0.4  
V
Between VCAP pin and VSS, 5V Rated  
61  
68  
180  
μF  
Notes  
8. Typical values are at 25°C, V = V (Typ). Not 100% tested.  
CC  
CC  
9. The HSB pin has I  
= -2 uA for V of 2.4V when both active high and low drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
Document Number: 001-54707 Rev. *B  
Page9  
[+] Feedback  
CY14B256LA  
Data Retention and Endurance  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATAR  
NVC  
Data Retention  
Nonvolatile STORE Operations  
1,000  
Capacitance  
Parameter[10]  
Description  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = VCC (Typ)  
Max  
7
Unit  
pF  
CIN  
Input Capacitance  
V
COUT  
Output Capacitance  
7
pF  
Thermal Resistance  
Parameter[10]  
Description  
Test Conditions  
48-SSOP 44-TSOP II 32-SOIC Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures for  
measuring thermal impedance, in  
accordance with EIA/JESD51.  
37.47  
31.11  
41.55  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
24.71  
5.56  
24.43  
°C/W  
Figure 4. AC Test Loads  
577Ω  
R1  
for tri-state specs  
577Ω  
3.0V  
3.0V  
OUTPUT  
R1  
OUTPUT  
R2  
789Ω  
R2  
789Ω  
5 pF  
30 pF  
AC Test Conditions  
Input Pulse Levels....................................................0V to 3V  
Input Rise and Fall Times (10% - 90%)........................ <3 ns  
Input and Output Timing Reference Levels.................... 1.5V  
Note  
10. These parameters are guaranteed by design and are not tested.  
Document Number: 001-54707 Rev. *B  
Page10  
[+] Feedback  
CY14B256LA  
AC Switching Characteristics  
Parameters  
25 ns  
45 ns  
Description  
Unit  
Max  
Cypress  
Parameters  
Alt  
Min  
Max  
Min  
Parameters  
SRAM Read Cycle  
tACE  
tACS  
Chip Enable Access Time  
Read Cycle Time  
25  
45  
ns  
ns  
[11]  
tRC  
tAA  
tOE  
tOH  
tLZ  
25  
45  
tRC  
[12]  
Address Access Time  
25  
12  
45  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
tDOE  
[12]  
3
3
3
3
tOHA  
[10, 13]  
tLZCE  
[10, 13]  
tHZ  
tOLZ  
tOHZ  
tPA  
10  
10  
25  
15  
15  
45  
tHZCE  
[10, 13]  
0
0
0
0
tLZOE  
[10, 13]  
tHZOE  
[10]  
tPU  
[10]  
tPS  
tPD  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tHD  
tAW  
tSA  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
Write Cycle Time  
Write Pulse Width  
25  
20  
20  
10  
0
20  
0
0
45  
30  
30  
15  
0
30  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable To End of Write  
Data Setup to End of Write  
Data Hold After End of Write  
Address Setup to End of Write  
Address Setup to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
tHA  
tWR  
tWZ  
[10, 13,14]  
10  
15  
tHZWE  
[10, 13]  
tOW  
Output Active after End of Write  
3
3
ns  
tLZWE  
Switching Waveforms  
Figure 5. SRAM Read Cycle #1: Address Controlled [11, 12, 15]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Notes  
11. WE must be HIGH during SRAM read cycles.  
12. Device is continuously selected with CE and OE LOW.  
13. Measured ±200 mV from steady state output voltage.  
14. If WE is low when CE goes low, the outputs remain in the high impedance state.  
15. HSB must remain HIGH during READ and WRITE cycles.  
Document Number: 001-54707 Rev. *B  
Page11  
[+] Feedback  
CY14B256LA  
Figure 6. SRAM Read Cycle #2: CE and OE Controlled [11, 15]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tLZOE  
High Impedance  
Standby  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Figure 7. SRAM Write Cycle #1: WE Controlled [14, 15, 16]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Figure 8. SRAM Write Cycle #2: CE Controlled [14, 15, 16]  
tWC  
Address Valid  
Address  
tSA  
tSCE  
tHA  
CE  
tPWE  
WE  
tHD  
tSD  
Input Data Valid  
Data Input  
High Impedance  
Data Output  
Note  
16. CE or WE must be > V during address transitions.  
IH  
Document Number: 001-54707 Rev. *B  
Page12  
[+] Feedback  
CY14B256LA  
AutoStore/Power Up RECALL  
CY14B256LA  
Parameters  
Description  
Unit  
Min  
Max  
[17]  
Power Up RECALL Duration  
STORE Cycle Duration  
20  
ms  
ms  
ns  
V
tHRECALL  
[18]  
8
tSTORE  
[19]  
Time Allowed to Complete SRAM Write Cycle  
Low Voltage Trigger Level  
25  
tDELAY  
VSWITCH  
2.65  
[10]  
VCC Rise Time  
150  
µs  
V
tVCCRISE  
[10]  
HSB Output Disable Voltage  
1.9  
VHDIS  
[10]  
tLZHSB  
HSB To Output Active Time  
HSB High Active Time  
5
µs  
ns  
[10]  
tHHHD  
500  
Switching Waveforms  
Figure 9. AutoStore or Power Up RECALL[20]  
VCC  
VSWITCH  
VHDIS  
18  
18  
VVCCRISE  
tSTORE  
tSTORE  
21  
Note  
Note  
Note  
tHHHD  
tHHHD  
HSB OUT  
AutoStore  
tDELAY  
tLZHSB  
tLZHSB  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
POWER-UP  
RECALL  
BROWN  
OUT  
AutoStore  
POWER  
DOWN  
AutoStore  
POWER-UP  
RECALL  
Notes  
17. t  
starts from the time V rises above V  
SWITCH.  
HRECALL  
CC  
18. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
19. On a Hardware Store and AutoStore initiation, SRAM write operation continues to be enabled for time t  
.
DELAY  
20. Read and Write cycles are ignored during STORE, RECALL, and while V is below V  
CC  
SWITCH.  
21. HSB pin is driven high to V only by internal 100 k  
Ω resistor, HSB driver is disabled.  
CC  
Document Number: 001-54707 Rev. *B  
Page13  
[+] Feedback  
CY14B256LA  
Software Controlled STORE/RECALL Cycle  
25 ns  
45 ns  
Unit  
Parameters[22, 23]  
Description  
Min  
Max  
Min  
Max  
tRC  
STORE/RECALL Initiation Cycle Time  
Address Setup Time  
25  
45  
ns  
ns  
ns  
ns  
tSA  
0
20  
0
0
30  
0
tCW  
Clock Pulse Width  
tHA  
Address Hold Time  
tRECALL  
RECALL Duration  
200  
200  
µs  
Switching Waveforms  
Figure 10. CE and OE Controlled Software STORE/RECALL Cycle[23]  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
24  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 11. Autostore Enable / Disable Cycle  
tRC  
tRC  
Address  
CE  
Address #1  
Address #6  
tCW  
tSA  
tCW  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tSS  
tHZCE  
24  
Note  
tLZCE  
tDELAY  
DQ (DATA)  
Notes  
22. The software sequence is clocked with CE controlled or OE controlled reads.  
23. The six consecutive addresses must be read in the order listed in Table 2 on page 6. WE must be HIGH during all six consecutive cycles.  
24. DQ output data at the sixth read may be invalid since the output is disabled at t  
time.  
DELAY  
Document Number: 001-54707 Rev. *B  
Page14  
[+] Feedback  
CY14B256LA  
Hardware STORE Cycle  
CY14B256LA  
Parameters  
Description  
Unit  
Min  
Max  
tDHSB  
tPHSB  
HSB To Output Active Time when write latch not set  
Hardware STORE Pulse Width  
25  
ns  
ns  
μs  
15  
[25, 26]  
tSS  
Soft Sequence Processing Time  
100  
Switching Waveforms  
Figure 12. Hardware STORE Cycle[18]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
HSB pin is driven high to VCC only by Internal  
100kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 13. Soft Sequence Processing[25, 26]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
25. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
26. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
Document Number: 001-54707 Rev. *B  
Page15  
[+] Feedback  
CY14B256LA  
Truth Table For SRAM Operations  
HSB must remain HIGH for SRAM operations.  
Table 3. Truth Table  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs  
Mode  
Deselect/Power down  
Read  
Power  
High-Z  
Standby  
H
L
Data Out (DQ0–DQ7);  
High-Z  
Active  
Active  
Active  
L
H
H
Output Disabled  
Write  
L
L
X
Data in (DQ0–DQ7);  
Part Numbering Nomenclature  
CY 14 B 256 L A-ZS 25 X I T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
I - Industrial (-40 to 85oC)  
Pb-Free  
Speed:  
25 - 25 ns  
45 - 45 ns  
Package:  
ZS - 44 TSOP II  
SP - 48 SSOP  
SZ - 32 SOIC  
Die revision:  
Blank - No Rev  
A - 1st Rev  
Data Bus:  
L - x8  
Density:  
256 - 256 Kb  
Voltage:  
B - 3.0V  
14 - nvSRAM  
Cypress  
Document Number: 001-54707 Rev. *B  
Page16  
[+] Feedback  
CY14B256LA  
Ordering Information  
Speed  
(ns)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
25  
CY14B256LA-ZS25XIT  
CY14B256LA-ZS25XI  
CY14B256LA-SP25XIT  
CY14B256LA-SP25XI  
CY14B256LA-SZ25XIT  
CY14B256LA-SZ25XI  
CY14B256LA-ZS45XIT  
CY14B256LA-ZS45XI  
CY14B256LA-SP45XIT  
CY14B256LA-SP45XI  
CY14B256LA-SZ45XIT  
CY14B256LA-SZ45XI  
51-85087  
51-85087  
51-85061  
51-85061  
51-85127  
51-85127  
51-85087  
51-85087  
51-85061  
51-85061  
51-85127  
51-85127  
44-pin TSOP II  
44-pin TSOP II  
48-pin SSOP  
48-pin SSOP  
32-pin SOIC  
32-pin SOIC  
44-pin TSOP II  
44-pin TSOP II  
48-pin SSOP  
48-pin SSOP  
32-pin SOIC  
32-pin SOIC  
Industrial  
45  
All the above parts are Pb-free.  
Document Number: 001-54707 Rev. *B  
Page17  
[+] Feedback  
CY14B256LA  
Package Diagrams  
Figure 14. 44-Pin TSOP II (51-85087)  
51-85087 *B  
Document Number: 001-54707 Rev. *B  
Page18  
[+] Feedback  
CY14B256LA  
Package Diagrams (continued)  
Figure 15. 48-Pin SSOP (51-85061)  
51-85061 *C  
Document Number: 001-54707 Rev. *B  
Page19  
[+] Feedback  
CY14B256LA  
Package Diagrams (continued)  
Figure 16. 32-Pin SOIC (51-85127)  
PIN 1 ID  
16  
1
MIN.  
MAX.  
DIMENSIONS IN INCHES[MM]  
REFERENCE JEDEC MO-119  
0.292[7.416]  
0.299[7.594]  
0.405[10.287]  
0.419[10.642]  
PART #  
17  
32  
S32.3 STANDARD PKG.  
SZ32.3 LEAD FREE PKG.  
SEATING PLANE  
0.810[20.574]  
0.822[20.878]  
0.090[2.286]  
0.100[2.540]  
0.004[0.101]  
0.050[1.270]  
TYP.  
0.006[0.152]  
0.012[0.304]  
0.026[0.660]  
0.032[0.812]  
0.021[0.533]  
0.041[1.041]  
0.004[0.101]  
0.0100[0.254]  
0.014[0.355]  
0.020[0.508]  
51-85127 *B  
Document Number: 001-54707 Rev. *B  
Page20  
[+] Feedback  
CY14B256LA  
Document History Page  
Document Title: CY14B256LA 256 Kbit (32K x 8) nvSRAM  
Document Number: 001- 54707  
Orig. of  
Change  
Submission  
Date  
Rev. ECN No.  
Description of Change  
**  
2746918 GVCH/AESA  
2772059 GVCH/PYRS  
07/31/2009  
09/30/2009  
New Data Sheet  
*A  
Updated Software STORE, RECALL and Autostore Enable, Disable soft se-  
quence  
*B  
2829117  
GVCH  
12/16/09  
Updated STORE cycles to QuantumTrap from 200K to 1 Million  
Updtaed 48-pin SSOP package diagram  
Added Contents. Moved to external web  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-54707 Rev. *B  
Revised December 08, 2009  
Page 21  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY14B256LA-ZS45XIT

256 Kbit (32K x 8) nvSRAM
CYPRESS

CY14B256LA_11

256-Kbit (32 K × 8) nvSRAM
CYPRESS

CY14B256LA_12

256-Kbit (32 K × 8) nvSRAM
CYPRESS

CY14B256L_09

256 Kbit (32K x 8) nvSRAM
CYPRESS

CY14B256P

256-Kbit (32 K × 8) Serial (SPI) with nvSRAM Real Time Clock
CYPRESS

CY14B256P-SFXI

256-Kbit (32 K × 8) Serial (SPI) with nvSRAM Real Time Clock
CYPRESS

CY14B256P-SFXIT

256-Kbit (32 K × 8) Serial (SPI) with nvSRAM Real Time Clock
CYPRESS

CY14B256PA

256-Kbit (32 K x 8) SPI nvSRAM with Real Time Clock Infinite read, write, and RECALL cycles
CYPRESS

CY14B256PA-SFXI

256-Kbit (32 K x 8) SPI nvSRAM with Real Time Clock Infinite read, write, and RECALL cycles
CYPRESS

CY14B256PA-SFXIT

256-Kbit (32 K x 8) SPI nvSRAM with Real Time Clock Infinite read, write, and RECALL cycles
CYPRESS

CY14B256P_1106

256-Kbit (32 K x 8) Serial (SPI) nvSRAM with Real Time Clock
CYPRESS

CY14B256P_13

256-Kbit (32 K x 8) Serial (SPI) nvSRAM with Real Time Clock
CYPRESS