BCM20733 [CYPRESS]

Single-Chip Bluetooth Transceiver Wireless Input Devices;
BCM20733
型号: BCM20733
厂家: CYPRESS    CYPRESS
描述:

Single-Chip Bluetooth Transceiver Wireless Input Devices

无线
文件: 总67页 (文件大小:7237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW20733  
Single-Chip Bluetooth Transceiver  
Wireless Input Devices  
The Cypress CYW20733 is a Bluetooth 3.0 + EDR compliant, stand-alone baseband processor with an integrated 2.4 GHz trans-  
ceiver. The device is ideal for applications in wireless input devices including game controllers, keyboards, and joysticks. Built-in  
firmware adheres to the Bluetooth Human Interface Device (HID) profile and Bluetooth Device ID profile specifications. The  
CYW20733 radio has been designed to provide low power, low cost, and robust communications for applications operating in the  
globally available 2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification 3.0 + EDR. The single-  
chip Bluetooth transceiver is a monolithic component implemented in a standard digital CMOS process and requires minimal exter-  
nal components to make a fully compliant Bluetooth device. The CYW20733 is available in three package options: a 81-pin, 8 mm ×  
8 mm FBGA, a 121-pin, 9 mm × 9 mm FBGA, and a 56-pin, 7 mm x 7 mm QFN.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
CYW20733  
BCM20733  
BCM20733A3KFB1G  
BCM20733A3KFB2G  
BCM20733A3KML1G  
CYW20733A3KFB1G  
CYW20733A3KFB2G  
CYW20733A3KML1G  
Features  
Integrated LDO to reduce BOM cost  
Bluetooth specification 3.0 + EDR compatible  
Bluetooth HID profile version 1.1 compliant  
Bluetooth Device ID profile version 1.3 compliant  
Supports AFH  
On-chip support for serial peripheral interface (master and  
slave modes)  
Broadcom Serial Communications Interface (compatible  
with Philips® I2C slaves)  
Two independent half-duplex PCM/I2S interfaces  
Real-time clock supported with 32.768 kHz oscillator  
Excellent receiver sensitivity  
Programmable output power control meets Class 2 or  
Class 3 requirements  
On-chip support for common keyboard and mouse inter-  
faces eliminates external processor  
On-chip PA with a maximum output power of +10dBm with-  
out external component  
Infrared (IR) modulator  
IR learning  
Integrated ARM7TDMI-S™-based microprocessor core  
On-chip power on reset (POR)  
Integrated 200 mW filterless Class-D audio amplifier  
Triac control  
On-chip software control power management unit  
Three package types available:  
Triggered Broadcom Fast Connect  
One I/O capable of sinking 100 mA for high- current drive  
applications  
81-pin FBGA package (8 mm × 8 mm)  
121-pin FBGA package (9 mm × 9 mm)  
56-pin QFN package (7 mm x 7 mm)  
RoHS compliant  
Programmable key scan matrix interface, up to 8 × 20 key-  
scanning matrix  
Three-axis quadrature signal decoder  
Applications  
Game controllers  
Point-of-sale (POS) input devices  
Remote controls  
Wireless pointing devices: mice, trackballs  
Wireless keyboards  
Joysticks  
Home automation  
3D glasses  
Cypress Semiconductor Corporation  
Document No. 002-14859 Rev. *R  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 21, 2016  
CYW20733  
Figure 1. Functional Block Diagram  
Muxed on GPIO  
Tx  
Tx RTSN  
RTSN  
CTSN  
SCK  
MISO  
SDA/  
MOSI  
1.2V  
VDDC  
Rx  
CTSN Rx  
Speaker  
VSS,  
VDDO, 28 ADC  
VDDC  
WDT  
BSC/SPI  
Master  
Interface  
(BSC is I2C-  
compat)  
Inputs  
Digital  
Audio  
Block  
1.2V  
POR  
Class-D  
Driver  
3V  
Test  
UART  
Periph  
UART  
Processing  
Unit  
(ARM7)  
Speaker  
Out  
CT ɇ ѐ  
ADC  
1.2V VDDC  
Domain  
MIA  
POR  
1.62V -3.6V  
System Bus  
32 kHz  
LPCLK  
1.2V  
LDO  
Peripheral  
Interface  
Block  
I/O Ring  
Control  
Registers  
384K  
ROM  
80K  
RAM  
1.2V  
LDO  
CTRL  
Volt. Trans  
24 MHz  
Power  
RF Control  
and Data  
32 kHz  
LPCLK  
I/O Ring Bus  
3-Axis  
Bluetooth  
Baseband  
Core  
2.4 GHz  
Radio  
GPIO  
Control/  
Status  
IR  
Mod.  
and  
Keyboard  
Mouse  
Signal  
SPI  
M/S  
Matrix  
Scanner  
w/FIFO  
PMU  
PWM  
24 MHz  
Learning  
Registers  
Controller  
RF I/O  
T/R  
Switch  
Frequency  
Synthesizer  
WAKE  
IR  
I/O  
8 x 20 6 quadrature inputs  
Scan (3 pair) + Hi -current  
Matrix Driver Controls  
÷ 4  
AutoCal  
57 GPIO  
128 kHz  
LPCLK  
1.2V VDDRF  
Domain  
128 kHz  
LPO  
28 ADC  
Inputs  
VDDO Domain  
High  
Sink IO  
57 GPIO Pins  
Ref Xtal  
32 kHz Xtal (opƟonal)  
Document No. 002-14859 Rev. *R  
Page 2 of 67  
CYW20733  
Contents  
1.14 Infrared Modulator ..............................................18  
1.15 Infrared Learning ................................................19  
1.16 Shutter Control for 3D Glasses ..........................19  
1.17 Triac Control .......................................................20  
1.Functional Description ....................................... 4  
1.1 Integrated Radio Transceiver .............................. 4  
1.1.1 Transmitter Path ...................................... 4  
1.1.2 Receiver Path .......................................... 4  
1.1.3 Local Oscillator ........................................ 4  
1.1.4 Calibration ............................................... 4  
1.1.5 Internal LDO Regulator ............................ 4  
1.18 Cypress Proprietary Control Signalling  
and Triggered Broadcom Fast Connect .............20  
1.19 Integrated Filterless Class-D Audio Amplifier .....20  
1.20 High-Current I/O .................................................21  
1.2 Microprocessor Unit ............................................ 5  
1.2.1 EEPROM Interface .................................. 5  
1.2.2 Serial Flash Interface ............................... 5  
1.21 Power Management Unit ....................................22  
1.21.1 RF Power Management ..........................22  
1.21.2 Host Controller Power Management ......22  
1.21.3 BBC Power Management .......................22  
1.2.3 Internal Reset .......................................... 5  
1.2.4 External Reset ......................................... 6  
1.3 Bluetooth Baseband Core ................................... 6  
1.3.1 Frequency Hopping Generator ................ 6  
1.3.2 E0 Encryption .......................................... 6  
1.3.3 Link Control Layer ................................... 6  
1.3.4 Adaptive Frequency Hopping .................. 6  
2.Pin Assignments............................................... 23  
2.1 Ball Maps ...........................................................29  
2.1.1 81-Pin FBGA Ball Map ...........................29  
2.1.2 121-Pin FBGA Ball Map .........................31  
2.1.3 56-Pin QFN Diagram ..............................32  
1.3.5 Bluetooth Version 3.0 Features ............... 6  
1.3.6 Test Mode Support .................................. 7  
3.Specifications.................................................... 33  
3.1 Electrical Characteristics ....................................33  
3.2 RF Specifications ...............................................37  
1.4 Peripheral Transport Unit (PTU) ......................... 7  
1.4.1 Broadcom Serial Control Interface .......... 7  
1.4.2 UART Interface ........................................ 8  
1.5 PCM Interface ..................................................... 9  
1.5.1 System Diagram ...................................... 9  
3.3 Timing and AC Characteristics ...........................39  
3.3.1 UART Timing ..........................................39  
1.5.2 Slot Mapping .......................................... 10  
1.5.3 Frame Synchronization .......................... 10  
1.5.4 Data Formatting ..................................... 10  
3.3.2 SPI Timing ..............................................40  
3.3.3 BSC Interface Timing .............................41  
3.3.4 PCM Interface Timing .............................43  
3.3.5 I2S Timing ...............................................48  
1.6 I2S Interface ...................................................... 10  
1.7 Clock Frequencies ............................................ 10  
1.7.1 Crystal Oscillator ................................... 10  
4.Mechanical Information.................................... 53  
4.0.1 Tape Reel and Packaging  
1.8 GPIO Port .......................................................... 12  
Specifications .........................................56  
1.9 Keyboard Scanner ............................................ 12  
1.9.1 Theory of Operation ............................... 13  
5.Ordering Information........................................ 62  
6.IoT Resources ................................................... 62  
1.10 Mouse Quadrature Signal Decoder ................... 13  
1.10.1 Theory of Operation ............................... 13  
A.Acronyms and Abbreviations.......................... 62  
Document History........................................................... 64  
Sales, Solutions, and Legal Information ...................... 67  
1.11 ADC Port ........................................................... 13  
1.12 PWM ................................................................. 14  
1.13 Serial Peripheral Interface ................................. 15  
Document No. 002-14859 Rev. *R  
Page 3 of 67  
CYW20733  
1. Functional Description  
1.1 Integrated Radio Transceiver  
The CYW20733 has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless systems. It has  
been designed to provide low power, low cost, robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. It is fully compliant with Bluetooth Radio Specification 3.0 + EDR and meets or exceeds the requirements to  
provide the highest communication link quality of service.  
1.1.1 Transmitter Path  
The CYW20733 features a fully integrated zero IF transmitter. The baseband transmit data is GFSK modulated in the modem block  
and upconverted to the 2.4 GHz ISM band. The transmit path consists of signal filtering,  
I/Q upconversion, output power amplification, and RF filtering. It also incorporates the /4-DQPSK and 8-DPSK modulation schemes,  
which support the 2 Mbps and 3 Mbps enhanced data rates, respectively.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4-DQPSK, and  
8-DPSK signals. The fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the  
transmitted signal and is much more stable than direct VCO modulation schemes.  
Power Amplifier  
The integrated power amplifier (PA) for the CYW20733 can transmit at a maximum power of +4 dBm for class 2 operation. The transmit  
power levels are for basic rate and EDR. Due to the linear nature of the PA, combined with some integrated filtering, no external filters  
are required for meeting Bluetooth and regulatory harmonic and spurious requirements.  
The CYW20733 internal PAcan deliver a maximum output power of +10 dBm for basic rate and +8 dBm for EDR with a flexible supply  
range of 2.5V to 3.0V.  
1.1.2 Receiver Path  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology with built-in out-of-band attenuation  
enables the CYW20733 to be used in most applications without off-chip filtering.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the CYW20733 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller  
to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
1.1.3 Local Oscillator  
The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels. The LO  
subblock employs an architecture for high immunity to LO pulling during PA operation. The CYW20733 uses an internal RF and IF  
loop filter.  
1.1.4 Calibration  
The CYW20733 radio transceiver features an automated calibration scheme that is self-contained in the radio. No user interaction is  
required during normal operation or during manufacturing to provide the optimal performance. Calibration will optimize the gain and  
phase performance of all the major blocks within the radio to within 2% of optimal conditions. Calibrated blocks include filters, the  
matching networks between key components, and key gain blocks. The calibration process corrects for both process and temperature  
variations. It occurs transparently during normal operation and the setting time of the hops and will calibrate for temperature variations  
as the device cools and heats during normal operation in its environment.  
1.1.5 Internal LDO Regulator  
To reduce the external BOM, the CYW20733 has an integrated 1.2V LDO regulator to provide power to the digital and RF circuits and  
system components. The 1.2V LDO regulator operates from a 1.62V to 3.63V input supply with a 60 mA maximum load current.  
In noisy environments, a ferrite bead may be needed between the digital and RF supply pins to isolate noise coupling and suppress  
noise into the RF circuits.  
Note: Always place the decoupling capacitors near the pins as close together as possible.  
Document No. 002-14859 Rev. *R  
Page 4 of 67  
CYW20733  
1.2 Microprocessor Unit  
The CYW20733 microprocessor unit (µPU) runs software from the link control (LC) layer up to the Human Interface Device (HID). The  
microprocessor is based on an ARM7™ 32-bit RISC processor with embedded ICE-RT debug and JTAG interface units. The µPU  
has 320 KB of ROM for program storage and boot-up, 80 KB of RAM for scratch-pad data, and patch RAM code.  
The internal boot ROM allows for flexibility during power-on reset to enable the same device to be used in various configurations,  
including UART, and with an external serial EEPROM or with an external flash memory. At power-up, the lower layer protocol stack  
is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes and feature additions. The device can  
also support the integration of user applications.  
1.2.1 EEPROM Interface  
The CYW20733 provides the BSC (Broadcom Serial Control) master interface; the BSC is programmed by the CPU to generate four  
different types of BSC transfers on the bus: read-only, write-only, combined read/write, and combined write/read. BSC supports both  
low-speed and fast mode devices. The BSC is compatible with a Philips® I2C slave device, except that master arbitration (multiple  
I2C masters contending for the bus) is not supported. Native support for Microchip® 24LC128, Microchip 24AA128, and STMicroelec-  
tronics® M24128-BR is included.  
The EEPROM can contain customer application configuration information, including: application code, configuration data, patches,  
pairing information, BD_ADDR, baud rate, SDP service record, and file system information used for code.  
1.2.2 Serial Flash Interface  
The CYW20733 includes an SPI master controller that can be used to access serial flash memory. The SPI master contains an AHB  
slave interface, transmit and receive FIFOs, and the SPI core PHY logic.  
Devices natively supported include the following:  
Atmel® AT25BCM512B  
MXIC MX25V512ZUI-20G  
1.2.3 Internal Reset  
The CYW20733 has an integrated power-on reset circuit that resets all circuits to a known power-on state.  
Figure 1. Internal Reset Timing  
VDDO POR delay  
~ 2 ms  
VDDO  
VDDO POR threshold  
VDDO POR  
VDDC POR threshold  
VDDC  
VDDC POR delay  
~ 2 ms  
VDDC POR  
Crystal  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and firmware boot.  
Crystal Enable  
Document No. 002-14859 Rev. *R  
Page 5 of 67  
CYW20733  
1.2.4 External Reset  
An external active-low reset signal, RESET_N, can be used to put the CYW20733 in the reset state. The RESET_N pin has an internal  
pull-up resistor and, in most applications, it does not require that anything be connected to it. RESET_N should only be released after  
the VDDO supply voltage level has been stabilized.  
Figure 2. External Reset Timing  
Pulse width  
>20 µs  
Crystal  
RESET_N  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and firmware boot.  
Crystal Enable  
1.3 Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high-performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and routing of data for all connections. It also buffers data that passes through it,  
handles data flow control, schedules ACL TX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages data  
into baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these  
functions, it independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase reliability and security of the TX/  
RX data before sending over the air:  
Receive Functions: Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data de-whitening.  
Transmit Functions: Data framing, FEC generation, HEC generation, CRC generation, link key generation, data encryption, and  
data whitening.  
1.3.1 Frequency Hopping Generator  
The frequency hopping sequence generator selects the correct hopping channel number depending on the link controller state,  
Bluetooth clock, and the device address.  
1.3.2 E0 Encryption  
The encryption key and the encryption engine are implemented using dedicated hardware to reduce software complexity and provide  
minimal intervention.  
1.3.3 Link Control Layer  
The Link Control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the Link Control Unit  
(LCU). This layer consists of the command controller, which takes commands from the software, and other controllers that are  
activated or configured by the command controller to perform the link control tasks. Each task performs in a different state in the  
Bluetooth link controller. STANDBY and CONNECTION are the two major states. In addition, there are five substates: page, page  
scan, inquiry, inquiry scan, and sniff.  
1.3.4 Adaptive Frequency Hopping  
The CYW20733 gathers link quality statistics on a channel-by-channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined using both RF and baseband signal processing to provide a more accurate frequency-hop  
map.  
1.3.5 Bluetooth Version 3.0 Features  
The CYW20733 is fully compliant with the Bluetooth 3.0 standard, including the following options:  
Document No. 002-14859 Rev. *R  
Page 6 of 67  
CYW20733  
Enhanced power control  
HCI read, encryption key size command  
The CYW20733 supports all of the new Bluetooth version 2.1 features:  
Extended inquiry response  
Sniff subrating  
Encryption pause and resume  
Secure simple pairing  
Link supervision timeout changed event  
Erroneous data reporting  
Non-automatically flushable packet boundary flag  
Security Mode 4  
1.3.6 Test Mode Support  
The CYW20733 fully supports Bluetooth Test Mode, as described in Part 1 of the Bluetooth System Version 2.1 specification. This  
includes the transmitter tests, normal and delayed loopback tests, and reduced hopping sequence.  
In addition to the standard Bluetooth test mode, the device supports enhanced testing features to simplify RF debugging and qualifi-  
cation and type approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
Simplified type approval measurements (Japan)  
Aid in transmitter performance analysis  
Fixed frequency constant receiver mode  
Receiver output directed to I/O pin  
Direct BER measurements using standard RF test equipment  
Facilitated spurious emissions testing for receive mode  
Fixed frequency constant transmission  
8-bit fixed pattern or PRBS-9  
Modulated signal measurements with standard RF test equipment  
Connectionless transmitter test  
Hopping or fixed frequency  
Multiple packet types  
Multiple data patterns  
Connectionless receiver test  
1.4 Peripheral Transport Unit (PTU)  
1.4.1 Broadcom Serial Control Interface  
The CYW20733 provides a 2-pin master BSC interface that can be used to retrieve configuration information from an external  
EEPROM or to communicate with peripherals such as track-ball or touch-pad modules, and motion tracking ICs used in mouse  
devices. The BSC interface is compatible with I2C slave devices. The BSC does not support multimaster capability or flexible wait-  
state insertion by either master or slave devices.  
Listed below are the transfer clock rates supported by the BSC:  
100 kHz  
400 kHz  
800 kHz (Not a standard I2C-compatible speed.)  
Document No. 002-14859 Rev. *R  
Page 7 of 67  
CYW20733  
4 MHz maximum (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
The following transfer types are supported by the BSC:  
Read (up to 127 bytes can be read)  
Write (up to 127 bytes can be written)  
Read-then-Write (Up to 127 bytes can be read, and up to 127 bytes can be written.)  
Write-then-Read (Up to 127 bytes can be written, and up to 127 bytes can be read.)  
Hardware controls the transfers, requiring minimal firmware setup and supervision.  
The clock pin (SCL) and data pin (SDA) are both open-drain I/O pins. Pull-up resistors external to the CYW20733 are required on  
both SCL and SDA for proper operation.  
1.4.2 UART Interface  
The UART physical interface is a standard, 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 1.5  
Mbps. During initial boot, UART speeds may be limited to 750 kbps. The baud rate may be selected via a vendor-specific UART HCI  
command. The CYW20733 has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support enhanced data rates. The  
interface supports the Bluetooth 3.0 UART HCI (H4) specification. The default baud rate for H4 is 115.2 kbaud.  
The UART clock is 24 MHz. The baud rate of the CYW20733 UART is controlled by two values. The first is a UART clock divisor (also  
called the DLBR register) that divides the UART clock by an integer multiple of 16. The second is a baud rate adjustment (also called  
the DHBR register) that is used to specify a number of UART clock cycles to stuff in the first or second half of each bit time. Up to  
eight UART cycles can be inserted into the first half of each bit time, and up to eight UART clock cycles can be inserted into the end  
of each bit time.  
When setting the baud rate manually, the UART clock divisor is an 8-bit value that is stored as 256 minus the chosen divisor. For  
example, a divisor of 13 is stored as 256 – 13 = 243 = 0xF3.  
The baud rate adjustment is also an 8-bit value, of which the four MSBs are the number of additional clock cycles to insert in the first  
half of each bit time, and the four LSBs are the number of clock cycles to insert in the second half of each bit time. If either of these  
two values is over eight, it is rounded to eight.  
To compute the baud rate, the calculation is expressed as:  
24 MHz ÷ ((16 × UART clock divisor) + total inserted 24-MHz clock cycles)  
Table 2 contains example values to generate common baud rates.  
Table 2. Common Baud Rate Examples  
Baud Rate Adjustment  
High Nibble Low Nibble  
DesiredBaudRate UART Clock Divi-  
(bps) sor  
Actual Baud Rate  
(bps)  
Error  
(%)  
1500000  
0xFF  
0xFF  
0xFD  
0xFA  
0xF3  
0xE6  
0xD9  
0xCC  
0xB2  
0x98  
0x64  
0x00  
0x05  
0x02  
0x04  
0x00  
0x00  
0x01  
0x00  
0x01  
0x00  
0x02  
0x00  
0x05  
0x02  
0x04  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x02  
1500000  
923077  
461538  
230769  
115385  
57692  
38400  
28846  
19200  
14423  
9600  
0.00  
0.16  
0.16  
0.16  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
921600  
460800  
230400  
115200  
57600  
38400  
28800  
19200  
14400  
9600  
Normally, the UART baud rate is set by a configuration record downloaded after reset. Support for changing the baud rate during  
normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud  
rate registers.  
The CYW20733 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%.  
Peripheral UART Interface  
The CYW20733 has a second UART that may be used to interface to other peripherals. This peripheral UART is accessed through  
the optional I/O ports, which can be configured individually and separately for each functional pin as shown in Table 3.  
Document No. 002-14859 Rev. *R  
Page 8 of 67  
CYW20733  
Table 3. CYW20733 Peripheral UART  
Pin Name  
pUART_TX  
pUART_RX  
pUART_CTS_N  
pUART_RTS_N  
Configured pin name  
P0  
P2  
P3  
P7  
P1  
P6  
P5  
P4  
P24  
P31  
P32  
P25  
P33  
P34  
P35  
P30  
1.5 PCM Interface  
The CYW20733 PCM interface can connect to linear PCM codec devices in master or slave mode. In master mode, the device  
generates the PCM_BCLK and PCM_SYNC signals. In slave mode, these signals are provided by another master on the PCM  
interface as inputs to the device.  
The channels can be configured to either transmit or receive, but they must be assigned to different time slots. The two half-duplex  
channels cannot be combined to form a single full-duplex channel.  
1.5.1 System Diagram  
Figure 3 shows options for connecting the device to a PCM codec device as a master or a slave.  
Figure 3. PCM Interface with Linear PCM Codec  
PCM_IN  
PCM_OUT  
PCM Codec  
(Master)  
CYW20733  
(Slave)  
PCM_BCLK  
PCM_SYNC  
PCM Interface Slave Mode  
PCM_IN  
PCM_OUT  
PCM_BCLK  
PCM_SYNC  
PCM Codec  
(Slave)  
CYW20733  
(Master)  
PCM Interface Master Mode  
PCM_IN  
PCM_OUT  
PCM_BCLK  
PCM_SYNC  
PCM Codec  
(Hybrid)  
CYW20733  
(Hybrid)  
PCM Interface Hybrid Mode  
Document No. 002-14859 Rev. *R  
Page 9 of 67  
CYW20733  
1.5.2 Slot Mapping  
Table 4. PCM Interface Time-Slotting Scheme  
Audio Sample Rate  
Time-Slotting Scheme  
8 kHz  
The number of slots depends on the selected interface rate, as follows:  
Interface rate  
1281  
Slot  
2562  
5124  
10248  
204816  
16 kHz  
The number of slots depends on the selected interface rate, as follows:  
Interface rate  
2561  
Slot  
5122  
10244  
20488  
The PCM data output driver tri-states its output on unused slots to allow other devices to share the same PCM interface signals. The  
data output driver tristates its output after the falling edge of the PCM clock during the last bit of the slot.  
1.5.3 Frame Synchronization  
The device supports both short and long frame synchronization types in both master and slave configurations. In short frame synchro-  
nization mode, the frame synchronization signal is an active-high pulse at the 8 kHz audio frame rate (which is a single bit period in  
width) and synchronized to the rising edge of the bit clock. The PCM slave expects PCM_SYNC to be high on the falling edge of the  
bit clock and the first bit of the first slot to start at the next rising edge of the clock. In the long frame synchronization mode, the frame  
synchronization signal is an active-high pulse at the 8 kHz audio frame rate. However, the duration is 3-bit periods, and the pulse  
starts coincident with the first bit of the first slot.  
1.5.4 Data Formatting  
The device can be configured to generate and accept several different data formats. The device uses 13 of the 16 bits in each PCM  
frame. The location and order of these 13 bits is configurable to support various data formats on the PCM interface. The remaining  
three bits are ignored on the input and may be filled with zeros, ones, a sign bit, or a programmed value on the output. The default  
format is 13-bit two’s complement data, left justified, and clocked most significant bit first.  
2
1.6 I S Interface  
The I2S interface supports up to two half-duplex channels. The channels can be configured to either transmit or receive, but they must  
be assigned to different time slots (left or right). The two half-duplex channels cannot be combined to form a single full-duplex channel.  
The I2S interface is capable of operating in either slave or master mode. The device supports a 16-bit data width with 8-kHz and 16-  
kHz frame rates.  
1.7 Clock Frequencies  
The CYW20733 is set with a crystal frequency of 24 MHz.  
1.7.1 Crystal Oscillator  
The crystal oscillator requires a crystal with an accuracy of ±20 ppm as defined by the Bluetooth specification. Two external load  
capacitors in the 5 pF to 30 pF range are required to work with the crystal oscillator. The selection of the load capacitors is crystal  
dependent. Table 5 shows the recommended crystal specification.  
Document No. 002-14859 Rev. *R  
Page 10 of 67  
CYW20733  
Figure 4. Recommended Oscillator Configuration—12 pF Load Crystal  
Table 5. Reference Crystal Electrical Specifications  
Parameter Conditions  
Min  
Typ  
Max  
Unit  
Input signal amplitude  
400  
2000  
mVp-p  
Nominal frequency  
Oscillation mode  
24.000  
MHz  
Fundamental  
Frequency tolerance  
Tolerance stability over temp  
Equivalent series resistance  
Load capacitance  
@25°C  
±10  
ppm  
ppm  
@0°C to +70°C  
±10  
50  
12  
pF  
Operating temperature range  
Storage temperature range  
Drive level  
0
+70  
+125  
200  
±10  
2
°C  
–40  
°C  
W  
ppm/year  
pF  
Aging  
Shunt capacitance  
HID Peripheral Block  
The peripheral blocks of the CYW20733 all run from a single 128-kHz low-power RC oscillator. The oscillator can be turned on at the  
request of any of the peripherals. If a peripheral is not enabled, it shall not assert its clock request line.  
The keyboard scanner is a special case in that it may drop its clock request line even when enabled and then reassert the clock  
request line if a key-press is detected.  
Real-Time Clock and 32 kHz Crystal Oscillator  
The CYW20733 has a 48-bit counter that can be configured to be clocked directly from a 32.768 kHz or 32.000 kHz crystal oscillator.  
The real-time clock counter value is accessible via firmware.  
Figure 5 shows the 32 kHz crystal (XTAL) oscillator with external components, and Table 6 lists the oscillator’s characteristics. It is a  
standard Pierce oscillator using a comparator with hysteresis on the output to create a single-ended digital output. The hysteresis was  
added to eliminate any chatter when the input is around the threshold of the comparator and is ~100 mV. This circuit can be operated  
with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at a similar frequency. The default component values are:  
R1 = 10 M, C1 = C2 = ~10 pF. The values of C1 and C2 are used to fine-tune the oscillator.  
Document No. 002-14859 Rev. *R  
Page 11 of 67  
CYW20733  
Figure 5. 32-kHz Oscillator Block Diagram  
C2  
32.768 kHz  
R1  
XTAL  
C1  
Table 6. XTAL Oscillator Characteristics  
Parameter Symbol  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Output frequency  
Foscout  
32.768  
kHz  
Frequency tolerance  
Crystal  
dependent  
100  
ppm  
Start-up time  
Tstartup  
Pdrv  
500  
ms  
XTAL drive level  
For crystal  
selection  
0.5  
W  
XTAL series resistance  
XTAL shunt capacitance  
Rseries  
Cshunt  
For crystal  
selection  
70  
k  
For crystal  
selection  
1.3  
pF  
1.8 GPIO Port  
The CYW20733 has 40 general-purpose I/Os (GPIOs) in the 81-pin package and 58 GPIOs in the 121-pin package. All GPIOs support  
programmable pull-ups and are capable of driving up to 8 mA at 3.3V or 4 mA at 1.8V, except P26, P27, P28, and P29, which are  
capable of driving up to 16 mA at 3.3V or 8 mA at 1.8V. GPIO P57 is capable of sinking 100 mA for VDDIO = 3.0V and 60 mA for  
VDDIO = 1.62V.  
Port 0–Port 1, Port 8–Port 18, Port 20–Port 23, and Port 28–Port 38  
All of these pins can be programmed as ADC inputs.  
Port 26–Port 29  
P[26:29] consist of four pins. All pins are capable of sinking up to 16 mA for LEDs. These pins also have the PWM function, which  
can be used for LED dimming.  
1.9 Keyboard Scanner  
The keyboard scanner is designed to autonomously sample keys and store them into buffer registers without the need for the host  
microcontroller to intervene. The scanner has the following features:  
Ability to turn off its clock if no keys are pressed.  
Sequential scanning of up to 160 keys in an 8 × 20 matrix.  
Programmable number of columns from 1 to 20.  
Programmable number of rows from 1 to 8.  
16-byte key-code buffer (can be augmented by firmware).  
128 kHz clock—allows scanning of full 160-key matrix in about 1.2 ms.  
N-key rollover with selective 2-key lockout if ghost is detected.  
Keys are buffered until host microcontroller has a chance to read it, or until overflow occurs.  
Document No. 002-14859 Rev. *R  
Page 12 of 67  
CYW20733  
Hardware debouncing and noise/glitch filtering.  
Low-power consumption. Single-digit µA-level sleep current.  
1.9.1 Theory of Operation  
The key scan block is controlled by a state machine with the following states:  
Idle  
The state machine begins in the idle state. In this state, all column outputs are driven high. If any key is pressed, a transition occurs  
on one of the row inputs. This transition causes the 128 kHz clock to be enabled (if it is not already enabled by another peripheral)  
and the state machine to enter the scan state. Also in this state, an 8-bit row-hit register and an 8-bit key-index counter is reset to 0.  
Scan  
In the scan state, a row counter counts from 0 up to a programmable number of rows minus 1. After the last row is reached, the row  
counter is reset and the column counter is incremented. This cycle repeats until the row and column counters are both at their  
respective terminal count values. At that point, the state machine moves into the Scan-End state.  
As the keys are being scanned, the key-index counter is incremented. This counter is the value compared to the modifier key codes  
stored, or in the key-code buffer if the key is not a modifier key. It can be used by the microprocessor as an index into a lookup table  
of usage codes.  
Also, as the nth row is scanned, the row-hit register is ORed with the current 8-bit row input values if the current column contains two  
or more row hits. During the scan of any column, if a key is detected at the current row, and the row-hit register indicates that a hit  
was detected in that same row on a previous column, then a ghost condition may have occurred, and a bit in the status register is set  
to indicate this.  
Scan End  
This state determines whether any keys were detected while in the scan state. If yes, the state machine returns to the scan state. If  
no, the state machine returns to the idle state, and the 128 kHz clock request signal is made inactive.  
The microcontroller can poll the key status register.  
1.10 Mouse Quadrature Signal Decoder  
The mouse signal decoder is designed to autonomously sample two quadrature signals commonly generated by an optomechanical  
mouse. The decoder has the following features:  
Three pairs of inputs for X, Y, and Z (typical scroll wheel) axis signals. Each axis has two options:  
For the X axis, choose P2 or P32 as X0 and P3 or P33 as X1.  
For the Y axis, choose P4 or P34 as Y0 and P5 or P35 as Y1.  
For the Z axis, choose P6 or P36 as Z0 and P7 or P37 as Z1.  
Control of up to four external high-current GPIOs to power external optoelectronics:  
Turn-on and turn-off time can be staggered for each HC-GPIO to avoid simultaneous switching of high currents and having multiple  
high-current devices on at the same time.  
Sample time can be staggered for each axis.  
Sense of the control signal can be active high or active low.  
Control signal can be tristated for off condition or driven high or low, as appropriate.  
1.10.1 Theory of Operation  
The mouse decoder block has four 10-bit PWMs for controlling external quadrature devices and sampling the quadrature inputs at its  
core.  
The GPIO signals may be used to control such items as LEDs, external ICs that may emulate quadrature signals, photodiodes, and  
photodetectors.  
1.11 ADC Port  
The CYW20733 contains a 16-bit ADC.  
Additionally:  
There are 28 analog input channels. All channels are multiplexed on various GPIOs.  
There is a built-in reference with bandgap-based reference modes.  
The maximum conversion rate is 187 kHz.  
There is a rail-to-rail input swing.  
Document No. 002-14859 Rev. *R  
Page 13 of 67  
CYW20733  
The ADC consists of an analog ADC core that performs the actual analog-to-digital conversion and digital hardware that processes  
the output of the ADC core into valid ADC output samples. Directed by the firmware, the digital hardware also controls the input  
multiplexers that select the ADC input signal (Vinp) and the ADC reference signals (Vref).  
Table 7. Sampling Rate and Effective Number of Bits  
Effective Number of Bits (ENOB)  
Mode  
Sampling Rate (kHz)  
Latencya (μs)  
Minimum  
Typical  
0
1
2
3
4
10.4  
10.2  
9.7  
13.0  
12.6  
12.0  
11.5  
10.0  
5.859  
171  
85  
21  
11  
5
11.7  
46.875  
93.75  
187  
9.3  
7.9  
a. Settling time of the ADC and filter after switching channels.  
1.12 PWM  
The CYW20733 has four internal PWMs. The PWM module consists of the following:  
PWM1–4  
Each of the four PWM channels, PWM1–4, contains the following registers:  
10-bit initial value register (read/write)  
10-bit toggle register (read/write)  
10-bit PWM counter value register (read)  
PWM configuration register shared among PWM1–4 (read/write). This 12-bit register is used:  
To configure each PWM channel  
To select the clock of each PWM channel  
To change the phase of each PWM channel  
Figure 6 on page 15 shows the structure of one PWM.  
Document No. 002-14859 Rev. *R  
Page 14 of 67  
CYW20733  
Figure 6. PWM Block Diagram  
pwm_cfg_adr register  
pwm#_init_val_adr register  
10  
pwm#_togg_val_adr register  
10  
pwm#_cntr_adr  
10  
cntr value is ARM readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
10'H3FF  
pwm_togg_val_adr  
10'Hx  
10'H000  
pwm_out  
1.13 Serial Peripheral Interface  
The CYW20733 has two independent SPI interfaces. One is a master-only interface (SPI_1) and the other (SPI_2) can be either a  
master or a slave. Each interface has a 64-byte transmit buffer and a 64-byte receive buffer. To support more flexibility for user  
applications, the CYW20733 has optional I/O ports that can be configured individually and separately for each functional pin, as shown  
in Table 8. The CYW20733 acts as an SPI master device that supports 1.8V or 3.3V SPI slaves. The CYW20733 can also act as an  
SPI slave device that supports a 1.8V or 3.3V SPI master.  
Note: SPI voltage depends on VDDO/VDDM; therefore, it defines the type of devices that can be supported.  
Table 8. CYW20733 First SPI Set (Master Mode)  
Pin Name  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_CSa  
Configured Pin Name  
SCL  
SDA  
P24  
P26  
P32b  
P39  
P33b  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
b. Default for serial flash.  
Document No. 002-14859 Rev. *R  
Page 15 of 67  
CYW20733  
Table 9. CYW20733 Second SPI Set (Master Mode)  
Configuration SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_CSa  
1
p3  
p0  
p1  
2
p3  
p0  
p5  
3
p3  
p4  
p1  
4
p3  
p4  
p5  
5
p3  
p27  
p27  
p38  
p38  
p0  
p1  
6
p3  
p5  
7
p3  
p1  
8
p3  
p5  
9
p7  
p1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
p7  
p0  
p5  
p7  
p4  
p1  
p7  
p4  
p5  
p7  
p27  
p27  
p38  
p38  
p0  
p1  
p7  
p5  
p7  
p1  
p7  
p5  
p24  
p24  
p24  
P24  
p36  
p36  
p36  
P36  
p25  
p25  
p25  
P25  
p25  
p25  
p25  
p25  
p4  
p27  
P38  
p0  
p4  
p27  
P38  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
Document No. 002-14859 Rev. *R  
Page 16 of 67  
CYW20733  
Table 10. CYW20733 Second SPI Set (Slave Mode)  
Configuration SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_CS  
1
p3  
p0  
p1  
p6  
2
p3  
p0  
p1  
p2  
3
p3  
p0  
p5  
p6  
4
p3  
p0  
p5  
p2  
5
p3  
p0  
p25  
p25  
p1  
p6  
6
p3  
p0  
p2  
7
p3  
p4  
p6  
8
p3  
p4  
p1  
p2  
9
p3  
p4  
p5  
p6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
p3  
p4  
p5  
p2  
p3  
p4  
p25  
p25  
p1  
p6  
p3  
p4  
p2  
p7  
p0  
p2  
p7  
p0  
p1  
p6  
p7  
p0  
p5  
p6  
p7  
p0  
p5  
p2  
p7  
p0  
p25  
p25  
p1  
p2  
p7  
p0  
p6  
p7  
p4  
p6  
p7  
p4  
p1  
p2  
p7  
p4  
p5  
p6  
p7  
p4  
p5  
p2  
p7  
p4  
p25  
p25  
p1  
p2  
p7  
p4  
p6  
p24  
p24  
p24  
p24  
p24  
p24  
P24  
p24  
P24  
p24  
p24  
p24  
p24  
p24  
p24  
P24  
p24  
P24  
p24  
p24  
p24  
p27  
p27  
p27  
p27  
p27  
p27  
P27  
p27  
P27  
p33  
p33  
p33  
p33  
p33  
p33  
P33  
p33  
P33  
p38  
p38  
p38  
p26  
p32  
p39  
p26  
p32  
p39  
P26  
p32  
P39  
p26  
p32  
p39  
p26  
p32  
p39  
P26  
p32  
P39  
p26  
p32  
p39  
p1  
p1  
p5  
p5  
p5  
P25  
p25  
P25  
p1  
p1  
p1  
p5  
p5  
p5  
P25  
p25  
P25  
p1  
p1  
p1  
Document No. 002-14859 Rev. *R  
Page 17 of 67  
CYW20733  
Table 10. CYW20733 Second SPI Set (Slave Mode) (Cont.)  
Configuration SPI_CLK SPI_MOSI  
SPI_MISO  
SPI_CS  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
p24  
p24  
p24  
P24  
p24  
P24  
p36  
p36  
p36  
p36  
p36  
p36  
P36  
p36  
P36  
p36  
p36  
p36  
p36  
p36  
p36  
P36  
p36  
P36  
p36  
p36  
p36  
p36  
p36  
p36  
P36  
p36  
P36  
p38  
p38  
p38  
P38  
p38  
P38  
p27  
p27  
p27  
p27  
p27  
p27  
P27  
p27  
P27  
p33  
p33  
p33  
p33  
p33  
p33  
P33  
p33  
P33  
p38  
p38  
p38  
p38  
p38  
p38  
P38  
p38  
P38  
p5  
p26  
p32  
p39  
P26  
p32  
P39  
p26  
p32  
p39  
p26  
p32  
p39  
P26  
p32  
P39  
p26  
p32  
p39  
p26  
p32  
p39  
P26  
p32  
P39  
p26  
p32  
p39  
p26  
p32  
p39  
P26  
p32  
P39  
p5  
p5  
P25  
p25  
P25  
p1  
p1  
p1  
p5  
p5  
p5  
P25  
p25  
P25  
p1  
p1  
p1  
p5  
p5  
p5  
P25  
p25  
P25  
p1  
p1  
p1  
p5  
p5  
p5  
P25  
p25  
P25  
1.14 Infrared Modulator  
The CYW20733 includes hardware support for infrared TX. The hardware can transmit both modulated and unmodulated waveforms.  
For modulated waveforms, hardware inserts the desired carrier frequency into all IR transmissions. IR TX can be sourced from  
firmware-supplied descriptors, a programmable bit, or the peripheral UART transmitter.  
If descriptors are used, they include IR on/off state and the duration between 1–32767 µsec. The CYW20733 IR TX firmware driver  
inserts this information in a hardware FIFO and makes sure that all descriptors are played out without an underrun glitch. See Figure 7.  
Document No. 002-14859 Rev. *R  
Page 18 of 67  
CYW20733  
Figure 7. Infrared TX  
VCC  
R1  
InfraredLD  
D1  
U1  
CYW20733  
R2  
IR TX  
Q1  
1.15 Infrared Learning  
The CYW20733 includes hardware support for infrared learning. The hardware can detect both modulated and unmodulated signals.  
For modulated signals, the CYW20733 can detect carrier frequencies between  
10–500 kHz and the duration that the signal is present or absent. The CYW20733 firmware driver supports further analysis and  
compression of a learned signal. A learned signal can then be played back through the CYW20733 IR TX subsystem. See Figure 8.  
Figure 8. Infrared RX  
VCC  
U3  
CYW20733  
D2  
Photodiode  
IR RX  
1.16 Shutter Control for 3D Glasses  
The CYW20733, combined with the CYW20702, provides full system support for 3D glasses on televisions. The CYW20702 gets  
frame synchronization signals from the TV, converts them into proprietary timing control messages, then passes the messages to the  
CYW20733. The CYW20733 uses these messages to synchronize the shutter control for the 3D glasses with the television frames.  
Document No. 002-14859 Rev. *R  
Page 19 of 67  
CYW20733  
The CYW20733 can provide up to four synchronized control signals for left and right eye shutter control. These four lines can output  
pulses with microsecond resolution for on and off timing. The total cycle time can be set for any period up to 65535 msec. The pulses  
are synchronized to each other for left and right eye shutters.  
The CYW20733 seamlessly adjusts the timing of the control signals based on control messages from the CYW20702, ensuring that  
the 3D glasses remain synchronized to the TV display frame.  
3D hardware control on the CYW20733 works independently of the rest of the system. The CYW20733 negotiates sniff with the  
CYW20702 and, except for sniff resynchronization periods, most of the CYW20733 circuitry remains in a low power state while the  
3D glasses subsystem continues to provide shutter timing and control pulses. This significantly reduces total system power  
consumption.  
1.17 Triac Control  
The CYW20733 includes hardware support for zero-crossing detection and trigger control for up to four triacs. The CYW20733 detects  
zero-crossing on the AC zero detection line and uses that to provide a pulse that is offset from the zero crossing. This allows the  
CYW20733 to be used in dimmer applications, as well as any other applications that require a control signal that is offset from an  
input event.  
The zero-crossing hardware includes an option to suppress glitches. See Figure .  
Figure 9. Triac Control (TBD)  
1.18 Cypress Proprietary Control Signalling and Triggered Broadcom Fast Connect  
Cypress Proprietary Control Signaling (BPCS) and Triggered Broadcom Fast Connect (TBFC) are Cypress-proprietary baseband  
(ACL) suspension and low-latency reconnection mechanisms that reestablish the baseband connection with the peer controller that  
also supports BPCS/TBFC.  
The CYW20733 uses BPCS primitives to allow a Human Interface Device (HID) to suspend all RF traffic after a configurable idle  
period with no reportable activity. To conserve power, it can then enter one of its low power states while still logically remaining  
connected at the L2CAP and HID layers with the peer device. When an event requires the HID to deliver a report to the peer device,  
the CYW20733 uses the TBFC and BPCS mechanisms to reestablish the baseband connection and immediately resume L2CAP  
traffic, greatly reducing latency between the event and delivery of the report to the peer device.  
To achieve power savings and low latencies that cannot be achieved using long sniff intervals, certain applications may make use of  
the CYW20733 Broadcom Fast Connect (BFC) mechanism, which will eliminate the need to maintain an RF link, while still being able  
to establish ACL and L2CAP connections much faster than regular methods.  
1.19 Integrated Filterless Class-D Audio Amplifier  
The CYW20733 has an integrated speaker driver that includes both the digital path and an internal audio amplifier. The digital audio  
path includes a FIFO, LPF, rate adapter, and PWM modulator. The output of the PWM modulator drives an on-chip class-D high  
efficiency audio amplifier as shown in the figure below.  
Document No. 002-14859 Rev. *R  
Page 20 of 67  
CYW20733  
Figure 10. Class-D Block Diagram  
667 kHz or 1.33 MHz  
PWM Modulator  
150 kHz  
From FIFO  
To Class-D  
audio amplifier  
16  
22  
16  
Hi-Fi Rate  
Adapter  
ΔΣ-  
16 LPF  
M
MOD.  
8 kHz  
128 kHz  
256 kHz  
352.8 kHz  
705.6 kHz  
768 kHz  
16 kHz  
M = 160 or 320  
22.05 kHz  
44.1 kHz  
48 kHz  
AP Interface  
3
The on-chip Class-D audio amplifier is designed to drive up to 200 mW into an 8load and has a range of 20 Hz to 20 kHz, covering  
the entire audio spectrum. The amplifier is designed to deliver maximum dynamic range and power efficiency while minimizing  
quiescent current. The amplifier has two nonoverlapping switch drivers and a pair of MOSFET power switches for bridge-tie load. The  
digital Class-D modulator converts the audio input to a PWM signal that drives the switch driver. The modulator bitstream is retimed  
by a low-jitter 24/48 MHz clock at the input of the nonoverlapping switch drivers, used to prevent large crowbar currents during  
switching. A large W/L aspect ratio of the power transistor is used to minimize the on-resistance of the devices for improved efficiency.  
The integrated audio amplifier requires a 3.0V regulated power supply. The required LDO characteristic is shown in Table 11.  
Table 11. LDO Requirement for the Integrated Audio Amplifier  
Parameter  
Condition  
Minimum  
Typical  
Maximum  
Unit  
Output voltage  
2.9  
3.1  
V
Output load current  
200  
40  
mA rms  
mV  
Load regulation  
Vin = 2.9V and load current = 200 mA –  
Power supply rejection ration (PSRR)  
Output impedance  
60  
dB  
20  
1.5  
m  
Output spot noise  
At 1 kHz  
Vrms/  
sqrt (Hz)  
Output noise  
50  
Vrms  
1.20 High-Current I/O  
The CYW20733 has one high-current I/O pin (GPIO P57) capable of sinking up to 100 mA with a maximum output voltage of 0.4V  
(VDDIO = 3.0V). For VDDIO = 1.62V, GPIO P57 is limited to sinking up to 60 mA. This pin can be used for LEDs, motors, or other  
high current devices. This pin can also be used as a GPIO if high current sink capability is not required. An example usage for driving  
a motor/vibrator is shown in Figure 11.  
Document No. 002-14859 Rev. *R  
Page 21 of 67  
CYW20733  
Figure 11. Motor/Vibrator Circuit  
D1  
VCC  
MA2S111  
U1  
CYW20733  
MG1  
1
1
2
P57  
2
Motor  
C1  
10 uF  
1.21 Power Management Unit  
The Power Management Unit (PMU) provides power management features that can be invoked by software through power  
management registers or packet handling in the baseband core.  
1.21.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver, which then processes the power-down functions accordingly.  
1.21.2 Host Controller Power Management  
Power is automatically managed by the firmware based on input device activity. As a power-saving task, the firmware controls the  
disabling of the on-chip regulator when in Deep-sleep mode.  
1.21.3 BBC Power Management  
There are several low-power operations for the BBC:  
Physical layer packet handling turns RF on and off dynamically within packet TX and RX.  
Bluetooth-specified low-power connection sniff mode. While in these low-power connection modes, the CYW20733 runs on the  
Low-Power Oscillator (LPO) and wakes up after a predefined time period.  
The CYW20733 automatically adjusts its power dissipation based on user activity. The following power modes are supported:  
Active mode  
Idle mode  
Suspend mode  
Power-down mode  
HIDOFF mode  
The CYW20733 transitions to the next lower state after a programmable period of user inactivity. Busy mode is immediately entered  
when user activity resumes.  
HIDOFF mode is one of the power modes in which the core is powered down and only supervisory circuits running directly from the  
battery retain power.  
Document No. 002-14859 Rev. *R  
Page 22 of 67  
CYW20733  
2. Pin Assignments  
Table 12. Pin Descriptions  
Pin Number  
Power Do-  
main  
Pin Name  
I/O  
Description  
81-pin  
FBGA  
121-pin  
FBGA  
56-pin  
QFN  
Radio I/O  
D1  
RF Power Supplies  
E1  
9
RFP  
I/O  
VDDTF  
RF antenna port  
B1  
C1  
6
VDDIF  
I
I
I
I
I
VDDIF  
IFPLL power supply  
RF front-end supply  
VCO, LOGEN supply  
RFPLL and crystal oscillator supply  
PA supply  
E1  
F1  
G1  
H1  
D1  
11  
12  
13  
7
VDDLNA  
VDDRF  
VDDPX  
VDDTF  
VDDLNA  
VDDRF  
VDDPX  
VDDTF  
F1  
G1  
C1  
Power Supplies  
A3, J7  
A2, L7  
B4, A8, E11  
L8  
5
VDDC  
I
I
I
I
I
VDDC  
Baseband core supply  
I/O pad and core supply  
I/O pad supply  
A7  
54  
28  
VDDO  
VDDO  
J6  
VDDM  
VDD1P2  
VDDSP  
VDDM  
VDD1P2  
VDDSP  
L3  
Speaker differential clock conversion power supply  
Speaker analog power supply  
K10, L10  
Ground  
C2, D2, E2, F2, F8, H7, G7, F7, Center VSS  
G2, E3, F3, H3, H6, G6, H5, G5, paddle  
J3, E4, E5, E6, F5, H4, G4, J3,  
I
VSS  
Ground  
E7  
H3, G3, K2, J2,  
H2, G2, F2, E2,  
D2  
K3  
VSS1P2  
VSSSP  
I
I
Speaker differential clock conversion ground  
Speaker analog ground  
J9, J10, J11  
Clock Generator and Crystal Interface  
J1  
K1  
16  
XTALI  
I
VDDRF  
Crystal oscillator input. See “Crystal Oscillator”  
on page 10 for options.  
J2  
L1  
15  
XTALO  
TP1  
O
I
VDDPX  
VDDPX  
Crystal oscillator output.  
C2  
XTAL divide by 2.  
Connect to GND if main XTAL = 24 MHz.  
H1  
B4  
J1  
14  
RES  
O
I
VDDPX  
VDDPX  
External calibration resistor, 15 kat 1%  
A3  
XTALI32K  
Low-power oscillator (LPO) input.  
Alternate function:  
P39 (FBGA-81 only)  
D5  
B3  
XTALO32K  
O
VDDPX  
LPO output.  
Alternate function:  
P38 (FBGA-81 only)  
Core  
B2  
C3  
B2  
L2  
2
RESET_N  
TMC  
I/O PU VDDO  
Active-low system reset with open-drain output  
and internal pull-up resistor.  
G3  
H2  
1
I
I
VDDO  
VDDM  
Device test mode control.  
Connect to GND for all applications.  
17  
TMA  
ARM JTAG debug mode control.  
Connect to GND for all applications.  
Speaker  
L11  
K11  
AMPLP  
AMPLN  
O
O
VDDSP  
VDDSP  
Speaker driver positive output  
Speaker driver negative output  
Document No. 002-14859 Rev. *R  
Page 23 of 67  
CYW20733  
Table 12. Pin Descriptions (Cont.)  
Pin Number  
Power Do-  
main  
Pin Name  
I/O  
Description  
81-pin  
FBGA  
121-pin  
FBGA  
56-pin  
QFN  
PCM2/I2S  
G5  
G4  
F4  
F5  
J8  
J7  
K7  
K8  
24  
23  
22  
25  
PCM_SYNC  
PCM_CLK  
PCM_IN  
I/O, PD VDDM  
I/O, PD VDDM  
Frame synchronization for PCM interface.  
Alternate function:  
I2S word select  
Clock for PCM interface.  
Alternate function:  
I2S clock  
I, PU  
VDDM  
Data input for PCM interface.  
Alternate function:  
I2S data input  
PCM_OUT  
O, PD VDDM  
Data output for PCM interface.  
Alternate function:  
I2S data output  
UART  
J4  
K6  
L6  
L5  
K5  
20  
21  
19  
18  
UART_RXD  
UART_TXD  
I
VDDM  
UART serial input – Serial data input for the HCI  
UART interface.  
J5  
O, PU VDDM  
UART serial output – Serial data output for the HCI  
UART interface.  
H4  
H5  
UART_RTS_N O, PU VDDM  
UART_CTS_N I, PU VDDM  
Request to send (RTS) for HCI UART interface.  
Leave unconnected if not used.  
Cleartosend(CTS)for HCIUARTinterface. Leave  
unconnected if not used.  
BSC  
H6  
L9  
K9  
26  
27  
SDA  
SCL  
I/O, PU VDDM  
I/O, PU VDDM  
Data signal for an external I2C device.  
Alternate function:  
SPI_1: MOSI (master only)  
H7  
Clock signal for an external I2C device.  
Alternate function:  
SPI_1: SPI_CLK (master only)  
LDO Regulator Power Supplies  
A2  
A1  
A1  
B1  
3
4
LDOIN  
I
LDOIN  
Battery input supply for the LDO  
LDO output  
LDOOUT  
O
LDOOUT  
Document No. 002-14859 Rev. *R  
Page 24 of 67  
CYW20733  
Table 13. GPIO Pin Descriptionsa  
Pin Number  
Default Di-  
rection  
POR  
State  
Power  
Domain  
Pin Name  
Alternate Function Description  
81-pin 121-pin 56-pin  
FBGA FBGA QFN  
H8  
H9  
29  
P0  
Input  
Floating  
VDDO  
GPIO: P0  
Keyboard scan input (row): KSI0  
A/D converter input 29  
Peripheral UART: puart_tx  
SPI_2: MOSI (master and slave)  
IR_RX  
60Hz_main  
Note: Not available during TMC = 1.  
J8  
G9  
31  
P1  
Input  
Floating  
VDDO  
GPIO: P1  
Keyboard scan input (row): KSI1  
A/D converter input 28  
Peripheral UART: puart_rts  
SPI_2: MISO (master and slave)  
IR_TX  
J9  
H10  
H11  
G10  
30  
32  
34  
P2  
P3  
P4  
Input  
Input  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
GPIO: P2  
Keyboard scan input (row): KSI2  
Quadrature: QDX0  
Peripheral UART: puart_rx  
SPI_2: SPI_CS (slave only)  
H9  
G8  
GPIO: P3  
Keyboard scan input (row): KSI3  
Quadrature: QDX1  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P4  
Keyboard scan input (row): KSI4  
Quadrature: QDY0  
Peripheral UART: puart_rx  
SPI_2: MOSI (master and slave)  
IR_TX  
G9  
F8  
F10  
F11  
33  
35  
P5  
P6  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P5  
Keyboard scan input (row): KSI5  
Quadrature: QDY1  
Peripheral UART: puart_tx  
SPI_2: MISO (master and slave)  
GPIO: P6  
Keyboard scan input (row): KSI6  
Quadrature: QDZ0  
Peripheral UART: puart_rts  
SPI_2: SPI_CS (slave only)  
60Hz_main  
F9  
E8  
E10  
D11  
36  
37  
P7  
P8  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P7  
Keyboard scan input (row): KSI7  
Quadrature: QDZ1  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P8  
Keyboard scan output (column): KSO0  
A/D converter input 27  
External T/R switch control: ~tx_pd  
Document No. 002-14859 Rev. *R  
Page 25 of 67  
CYW20733  
Table 13. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
POR  
State  
Power  
Domain  
Pin Name  
Alternate Function Description  
81-pin 121-pin 56-pin  
FBGA  
FBGA  
QFN  
E9  
D10  
38  
P9  
Input  
Floating  
VDDO  
GPIO: P9  
Keyboard scan output (column): KSO1  
A/D converter input 26  
External T/R switch control: tx_pd  
D8  
E9  
39  
P10  
Input  
Floating  
VDDO  
GPIO: P10  
Keyboard scan output (column): KSO2  
A/D converter input 25  
External PA ramp control: ~PA_Ramp  
D9  
C9  
C8  
C11  
C10  
B11  
41  
40  
43  
P11  
P12  
P13  
Input  
Input  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
GPIO: P11  
Keyboard scan output (column): KSO3  
A/D converter input 24  
GPIO: P12  
Keyboard scan output (column): KSO4  
A/D converter input 23  
GPIO: P13  
Keyboard scan output (column): KSO5  
A/D converter input 22  
External PA ramp control: ~PA_Ramp  
Triac control 3  
B9  
A9  
B10  
A11  
44  
42  
P14  
P15  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P14  
Keyboard scan output (column): KSO6  
A/D converter input 21  
External T/R switch control: ~tx_pd  
Triac control 4  
GPIO: P15  
Keyboard scan output (column): KSO7  
A/D converter input 20  
IR_RX  
60Hz_main  
B7  
B8  
C7  
G7  
F7  
D7  
A9  
A10  
B9  
C9  
D9  
E8  
P16  
P17  
P18  
P19  
P20  
P21  
Input  
Input  
Input  
Input  
Input  
Input  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P16  
Keyboard scan output (column): KSO8  
A/D converter input 19  
GPIO: P17  
Keyboard scan output (column): KSO9  
A/D converter input 18  
GPIO: P18  
Keyboard scan output (column): KSO10  
A/D converter input 17  
GPIO: P19  
Keyboard scan output (column): KSO11  
GPIO: P20  
Keyboard scan output (column): KSO12  
A/D converter input 15  
GPIO: P21  
Keyboard scan output (column): KSO13  
A/D converter input 14  
Triac control 3  
Document No. 002-14859 Rev. *R  
Page 26 of 67  
CYW20733  
Table 13. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
POR  
State  
Power  
Domain  
Pin Name  
Alternate Function Description  
81-pin 121-pin 56-pin  
FBGA FBGA QFN  
A8  
G8  
P22  
Input  
Floating  
VDDO  
GPIO: P22  
Keyboard scan output (column): KSO14  
A/D converter input 13  
Triac control 4  
D6  
G6  
C6  
F9  
P23  
P24  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P23  
Keyboard scan output (column): KSO15  
A/D converter input 12  
45  
GPIO: P24  
Keyboard scan output (column): KSO16  
SPI_2: SPI_CLK (master and slave)  
SPI_1: MISO (master only)  
Peripheral UART: puart_tx  
F6  
A4  
D8  
A5  
46  
56  
P25  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P25  
Keyboard scan output (column): KSO17  
SPI_2: MISO (master and slave)  
Peripheral UART: puart_rx  
P26  
PWM0  
GPIO: P26  
Keyboard scan output (column): KSO18  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Optical control output: QOC0  
Triac control 1  
Current: 16 mA sink  
B3  
C3  
B5  
A4  
55  
P27  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P27  
PWM1  
Keyboard scan output (column): KSO19  
SPI_2: MOSI (master and slave)  
Optical control output: QOC1  
Triac control 2  
Current: 16 mA sink  
P28  
PWM2  
GPIO: P28  
Optical control output: QOC2  
A/D converter input 11  
LED1  
Current: 16 mA sink  
D3  
C4  
P29  
PWM3  
Input  
Floating  
VDDO  
GPIO: P29  
Optical control output: QOC3  
A/D converter input 10  
LED2  
Current: 16 mA sink  
C6  
B6  
C8  
B8  
47  
P30  
P31  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P30  
A/D converter input 9  
Pairing button pin in default FW  
Peripheral UART: puart_rts  
GPIO: P31  
A/D converter input 8  
EEPROM WP pin in default FW  
Peripheral UART: puart_tx  
Document No. 002-14859 Rev. *R  
Page 27 of 67  
CYW20733  
Table 13. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
POR  
State  
Power  
Domain  
Pin Name  
Alternate Function Description  
81-pin 121-pin 56-pin  
FBGA FBGA QFN  
A6  
B7  
48  
P32  
Input  
Floating  
VDDO  
GPIO: P32  
A/D converter input 7  
Quadrature: QDX0  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Auxiliary clock output: ACLK0  
Peripheral UART: puart_tx  
C4  
C5  
B6  
C7  
53  
P33  
P34  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P33  
A/D converter input 6  
Quadrature: QDX1  
SPI_2: MOSI (slave only)  
Auxiliary clock output: ACLK1  
Peripheral UART: puart_rx  
GPIO: P34  
A/D converter input 5  
Quadrature: QDY0  
Peripheral UART: puart_rx  
External T/R switch control: tx_pd  
B5  
A5  
D7  
A7  
49  
50  
P35  
P36  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P35  
A/D converter input 4  
Quadrature: QDY1  
Peripheral UART: puart_cts  
GPIO: P36  
A/D converter input 3  
Quadrature: QDZ0  
SPI_2: SPI_CLK (master and slave)  
Auxiliary Clock Output: ACLK0  
Battery detect pin in default FW  
External T/R switch control: ~tx_pd  
D4  
A6  
P37  
Input  
Floating  
VDDO  
GPIO: P37  
A/D converter input 2  
Quadrature: QDZ1  
SPI_2: MISO (slave only)  
Auxiliary clock output: ACLK1  
D5  
B4  
C5  
D4  
51  
52  
P38  
P39  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
GPIO: P38  
A/D converter input 1  
SPI_2: MOSI (master and slave)  
IR_TX  
XTALO32K (FBGA-81 only)  
GPIO: P39  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Infrared control: IR_RX  
External PA ramp control: PA_Ramp  
60Hz_main  
XTALI32K (FBGA-81 only)  
H8  
P40  
Input  
Floating  
VDDO  
GPIO: P40  
pcm2_clk  
Document No. 002-14859 Rev. *R  
Page 28 of 67  
CYW20733  
Table 13. GPIO Pin Descriptionsa (Cont.)  
Pin Number  
Default Di-  
rection  
POR  
State  
Power  
Domain  
Pin Name  
Alternate Function Description  
81-pin 121-pin 56-pin  
FBGA FBGA QFN  
K4  
P41  
P42  
P43  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
GPIO: P41  
pcm2_sync  
F6  
J5  
Input  
Input  
GPIO: P42  
pcm2_di  
GPIO: P43  
pcm2_do  
J4  
P44  
P45  
P46  
P47  
P48  
P49  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P44  
GPIO: P45  
GPIO: P46  
GPIO: P47  
GPIO: P48  
GPIO: P49  
GPIO: P50  
GPIO: P51  
GPIO: P52  
GPIO: P53  
GPIO: P54  
GPIO: P55  
GPIO: P56  
J6  
L4  
E7  
E6  
D6  
E5  
D5  
F4  
F3  
E4  
E3  
D3  
G11  
GPIO: P57  
PWM3  
a. During power-on reset, all inputs are disabled.  
2.1 Ball Maps  
This section presents the CYW20733 ball maps.  
2.1.1 81-Pin FBGA Ball Map  
Figure 12 shows the 81-pin FBGA package ball map.  
Document No. 002-14859 Rev. *R  
Page 29 of 67  
CYW20733  
Figure 12. 81-Pin FBGA Ball Map  
1
2
3
4
5
6
7
8
9
P26  
PWM0  
LDOOUT  
LDOIN  
VDDC  
P36  
P32  
VDDO  
P22  
P15  
A
B
C
D
E
F
A
P27  
PWM1  
P39/  
XTALI32K  
VDDIF  
VDDTF  
RFP  
RESET_N  
VSS  
P35  
P34  
P31  
P30  
P23  
VSS  
P25  
P24  
SDA  
P16  
P18  
P21  
VSS  
P20  
P19  
SCL  
P17  
P13  
P10  
P8  
P14  
B
P28  
PWM2  
P33  
P37  
P12  
C
P29  
PWM3  
P38/  
XTALO32K  
VSS  
P11  
D
VDDLNA  
VDDRF  
VDDPX  
RES  
VSS  
VSS  
VSS  
VSS  
VSS  
P9  
E
PCM_  
OUT  
VSS  
PCM_IN  
P6  
P7  
F
PCM_  
CLK  
PCM_  
SYNC  
VSS  
TMC  
VSS  
P4  
P5  
G
H
J
G
UART_  
RTS_N  
UART_  
CTS_N  
TMA  
P0  
P3  
H
UART_  
RXD  
UART_  
TXD  
XTALI  
XTALO  
VSS  
VDDM  
VDDC  
P1  
P2  
J
1
2
3
4
5
6
7
8
9
Document No. 002-14859 Rev. *R  
Page 30 of 67  
CYW20733  
2.1.2 121-Pin FBGA Ball Map  
Figure 13 shows the 121-pin FBGA package ball map.  
Figure 13. 121-Pin FBGA Ball Map  
1
2
3
4
5
6
7
8
9
10  
11  
P28  
PWM2  
P26  
PWM0  
LDOIN  
VDDC  
XTALI32K  
P37  
P36  
VDDO  
P16  
P17  
P15  
A
B
C
D
E
F
A
P27  
PWM1  
LDOOUT  
VDDIF  
VDDTF  
RFP  
TMC  
TP1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
XTALO32K  
RESET_N  
P56  
VDDO  
P33  
P23  
P49  
P48  
P42  
VSS  
VSS  
P45  
P32  
P34  
P31  
P30  
P25  
P21  
VSS  
P22  
P40  
P18  
P19  
P20  
P10  
P24  
P1  
P14  
P12  
P9  
P13  
B
P29  
PWM3  
P38  
P51  
P50  
VSS  
VSS  
VSS  
P43  
P11  
C
P39  
P54  
P52  
VSS  
VSS  
P44  
P41  
P35  
P8  
D
P55  
P47  
P7  
VDDO  
E
VDDLNA  
VDDRF  
VDDPX  
RES  
P53  
VSS  
P5  
P6  
F
VSS  
VSS  
P4  
P57  
G
H
J
G
VSS  
VSS  
P0  
P2  
P3  
H
PCM_  
SYNC  
VSS  
PCM_CLK  
PCM_IN  
VSSSP  
SCL  
VSSSP  
VDDSP  
VSSSP  
J
UART_  
CTS_N  
UART_  
RXD  
XTALI  
VSS1P2  
PCM_OUT  
AMPLN  
K
L
K
UART_  
RTS_N  
UART_  
TXD  
XTALO  
TMA  
VDD1P2  
P46  
VDDC  
VDDM  
SDA  
VDDSP  
AMPLP  
L
1
2
3
4
5
6
7
8
9
10  
11  
Document No. 002-14859 Rev. *R  
Page 31 of 67  
CYW20733  
2.1.3 56-Pin QFN Diagram  
Figure 14 shows the 56-pin QFN package.  
Figure 14. 56-Pin QFN Diagram  
TMC  
RESET_N  
LDOIN  
LDOOUT  
VDDC  
VDDIF  
VDDTF  
NC  
P15  
P11  
P12  
P10  
P9  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
3
4
5
P8  
6
P7  
7
P6  
8
RFP  
P4  
9
NC  
P5  
10  
11  
12  
13  
14  
VDDLNA  
VDDRF  
VDDPX  
RES  
P3  
P1  
P2  
P0  
Document No. 002-14859 Rev. *R  
Page 32 of 67  
CYW20733  
3. Specifications  
3.1 Electrical Characteristics  
Table 14 shows the maximum electrical rating for voltages referenced to the VDD pin.  
Table 14. Maximum Electrical Rating  
Rating  
Symbol  
Value  
Unit  
V
DC supply voltage for RF domain  
1.32  
1.4  
3.8  
3.8  
3.8  
1.4  
3.3  
DC supply voltage for Core domain  
DC supply voltage for VDDM domain (UART/I2C)  
DC supply voltage for VDDO domain  
DC supply voltage for LDOIN  
V
V
V
V
DC supply voltage for VDDLNA  
DC supply voltage for VDDTF  
V
V
Voltage on input or output pin  
VSS – 0.3 to VDD + 0.3  
0 to +70  
V
Operating ambient temperature range  
Storage temperature range  
Topr  
Tstg  
°C  
°C  
–40 to +125  
Table 15 shows the power supply characteristics for the range TJ = 0 to 125°C.  
Table 15. Power Supply  
Parameter  
Minimuma  
Typical  
Maximuma  
Unit  
DC supply voltage for RF  
DC supply voltage for Core  
1.14  
1.2  
1.26  
1.26  
3.63  
3.63  
3.63  
1.26  
3.3  
V
V
V
V
V
V
V
1.14  
1.62  
1.62  
1.62  
1.14  
1.14  
1.2  
DC supply voltage for VDDM (UART/I2C)  
DC supply voltage for VDDO  
DC supply voltage for LDOIN  
DC supply voltage for VDDLNA  
DC supply voltage for VDDTF  
1.2b  
1.2b  
a. Overall performance degrades beyond minimum and maximum supply voltages.  
b. 1.2V for Class 2 output with internal VREG.  
Table 16 shows the digital level characteristics for the LDO (VSS = 0V).  
Table 16. LDO Regulator Electrical Specifications  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input voltage range  
1.62  
3.63  
V
Default output voltage  
Output voltage  
1.2  
V
Range  
0.88  
1.32  
80  
V
Step size  
40  
mV  
Accuracy at any step  
–5  
+5  
%
Load current  
60  
mA  
Line regulation  
Load regulation  
Vin from 1.62 to 3.63V, Iload = 30 mA  
–0.5  
0.5  
0.15  
%VO/V  
%VO/mA  
I
load from 1 µA to 30 mA, Vin = 3.3V,  
0.1  
Bonding R = 0.3  
Quiescent current  
No load @Vin = 3.3V  
*Current limit enabled  
6a  
12a  
200  
µA  
nA  
Power-down current  
Vin = 3.3V, worst@70°C  
a. Includes the bandgap quiescent current.  
Document No. 002-14859 Rev. *R  
Page 33 of 67  
CYW20733  
Table 17. ADC Specifications  
Parameter  
ADC Characteristics  
Number of Input channels  
Channel switching rate  
Input signal range  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
0
28  
fch  
Vinp  
187  
3.63  
kHz  
V
Reference settling time  
Input resistance  
7.5  
s  
Rinp  
Single-ended, input range of 0–1.2V  
680  
1.84  
3
k  
M  
M  
pF  
Single-ended, input range of 0–2.4V  
Single-ended, input range of 0–3.6V  
Input capacitance  
Conversion rate  
Resolution  
Cinp  
fC  
5
5.859  
187  
kHz  
bits  
bits  
R
16  
Effective number of bits  
In guaranteed performance range  
See Table 7  
on page 14  
Absolutevoltagemeasurement  
error  
Integral nonlinearity1  
Differential nonlinearity1  
Notes:  
Using on-chip ADC firmware driver  
±2  
%
INL  
In guaranteed performance range  
In guaranteed performance range  
–1  
–1  
1
1
LSB1  
LSB1  
DNL  
1. LSBs are expressed at the 10-bit level.  
Table 18. Integrated Audio Amplifier Electrical Specifications  
Parameter Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
2.9  
3.0  
3.1  
1.32  
V
Digital supply voltage  
Quiescent current  
Power down current  
Output power  
1.08  
1.2  
2
V
Zero digital input  
mA  
A  
mW  
%
0.5  
240  
70  
68  
40  
RL = 8  
200  
Maximum efficiency  
Dynamic range (DR)  
At 200 mW output power  
At –60 dBFs input  
At 200 mW output power  
65  
dB  
dB  
Signal-to-noise plus distortion ratio  
(SNDR)  
Table 19. Digital Levela  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input low voltage  
VIL  
0.4  
V
Input high voltage  
VIH  
VIL  
0.75 × VDDO  
V
Input low voltage (VDDO = 1.62V)  
Input high voltage (VDDO = 1.62V)  
Output low voltageb  
0.4  
V
VIH  
VOL  
VOH  
CIN  
1.2  
V
0.4  
V
Output high voltageb  
VDDO – 0.4  
V
Input capacitance (VDDMEM domain)  
0.12  
pF  
a. This table is also applicable to VDDMEM domain.  
b. At the specified drive current for the pad.  
Document No. 002-14859 Rev. *R  
Page 34 of 67  
CYW20733  
Table 20. Current Consumption, Class 1a  
Operational Mode  
Conditions  
Typ  
Unit  
mA  
Receive (1 Mbps)  
Transmit (1 Mbps)  
Peak current level during reception of a basic-rate packet.  
28.2  
Peak current level during the transmission of a basic-rate packet: GFSK  
output power = 10 dBm.  
63.1  
mA  
Receive (EDR)  
Transmit (EDR)  
Peak current level during the reception of a 2 or 3 Mbps rate packet.  
28.6  
mA  
mA  
Peak current level during the transmission of a 2 or 3 Mbps rate packet: EDR 63.7  
output power = 8 dBm.  
Average Current  
DM1/DH1 (RX)  
Average current during basic rate maximum throughput connection, which 24.3  
includes only this packet type.  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DM5/DH5 (RX)  
3DH1 (RX)  
Average current during basic rate maximum throughput connection, which 26.3  
includes only this packet type.  
Average current during extended data rate maximum throughput connection 24.9  
which includes only this packet type.  
3DH5 (RX)  
Averagecurrentduringextended dataratemaximumthroughputconnection, 26.4  
which includes only this packet type.  
DM1/DH1 (TX)  
DM5/DH5 (TX)  
3DH1 (TX)  
Average current during basic rate maximum throughput connection, which 29.6  
includes only this packet type.  
Average current during basic rate maximum throughput connection, which 47.2  
includes only this packet type.  
Averagecurrentduringextended dataratemaximumthroughputconnection, 29.7  
which includes only this packet type.  
3DH5 (TX)  
Averagecurrentduringextended dataratemaximumthroughputconnection, 44.8  
which includes only this packet type.  
Paging  
23.7  
290  
mA  
Sniff slave (495 ms)  
Based on one attempt and no timeout parameter. Quality connection that  
rarely requires more than minimum packet exchange. Sniff master follows  
the optimal sniff protocol of the CYW20702 master.  
A  
Sniff slave (22.5 ms)  
Sniff slave (11.25 ms)  
2.57  
4.93  
mA  
mA  
a. Current consumption measurements are taken at LDOIN. LDOIN = VDDIO = 2.6V, VDDPA = 3.0V.  
Document No. 002-14859 Rev. *R  
Page 35 of 67  
CYW20733  
Table 21. Current Consumption, Class 2 (0 dBm)a  
Operational Mode  
Conditions  
Typ  
Unit  
mA  
Receive (1 Mbps)  
Transmit (1 Mbps)  
Peak current level during the reception of a basic-rate packet.  
29.0  
Peak current level during the transmission of a basic-rate packet: GFSK  
output power = 0 dBm.  
39.3  
mA  
Receive (EDR)  
Transmit (EDR)  
Peak current level during the reception of a 2 or 3 Mbps rate packet.  
30.5  
mA  
mA  
Peak current level during the transmission of a 2 or 3 Mbps rate packet: EDR 39.3  
output power = 0 dBm.  
Average Current  
DM1/DH1 (RX)  
Average current during basic rate maximum throughput connection, which 22.1  
includes only this packet type.  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DM5/DH5 (RX)  
3DH1 (RX)  
Average current during basic rate maximum throughput connection, which 25.8  
includes only this packet type.  
Averagecurrentduring extendeddataratemaximumthroughputconnection, 22.8  
which includes only this packet type.  
3DH5 (RX)  
Averagecurrentduring extendeddataratemaximumthroughputconnection, 24.7  
which includes only this packet type.  
DM1/DH1 (TX)  
DM5/DH5 (TX)  
3DH1 (TX)  
Average current during basic rate maximum throughput connection, which 22.0  
includes only this packet type.  
Average current during basic rate maximum throughput connection, which 30.9  
includes only this packet type.  
Averagecurrentduring extendeddataratemaximumthroughputconnection, 22.1  
which includes only this packet type.  
3DH5 (TX)  
Averagecurrentduring extendeddataratemaximumthroughputconnection, 31.6  
which includes only this packet type.  
Paging  
22.9  
240  
mA  
Sniff slave (495 ms)  
Based on one attempt and no timeout parameter. Quality connection that  
rarely requires more than minimum packet exchange. Sniff master follows  
optimal sniff protocol of CYW20702 master.  
A  
Sniff slave (22.5 ms)  
Sniff slave (11.25 ms)  
2.27  
4.46  
mA  
mA  
a. Current consumption measurements are taken at LDOIN. LDOIN = VDDIO = 2.6V, VDDPA = 1.2V.  
Document No. 002-14859 Rev. *R  
Page 36 of 67  
CYW20733  
Table 22. Current Consumption  
Operational Mode  
Sleep  
Conditions  
Typ  
Unit  
A  
Internal LPO is in use.  
46.5  
HIDOFF  
1.1  
A  
Inquiry scan (1.28 sec.)  
Page Scan (R1)  
Periodic scan rate is R1 (1.28 seconds).  
Periodic scan rate is R1 (1.28 seconds).  
540  
490  
940  
A  
A  
Inquiry Scan + Page Scan (R1)  
Both inquiry and page scans are interlaced together at a  
periodic scan rate of 1.28 seconds.  
A  
3.2 RF Specifications  
Table 23. Receiver RF Specificationsa,b  
Parameter  
Conditions  
Minimum Typical c Maximum  
Unit  
General  
Frequency range  
RX sensitivity d  
2402  
2480  
–85  
–85  
–81  
–20  
–20  
MHz  
GFSK, 0.1% BER, 1 Mbps  
/4-DQPSK, 0.01% BER, 2 Mbps  
8-DPSK, 0.01% BER, 3 Mbps  
GFSK, 1 Mbps  
–89  
–91  
–86  
dBm  
dBm  
dBm  
dBm  
dBm  
Maximum input  
Maximum input  
/4-DQPSK, 8-DPSK, 2/3 Mbps  
Interference Performance  
C/I cochannel  
GFSK, 0.1% BER  
11  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I > 3 MHz adjacent channel  
C/I image channel  
GFSK, 0.1% BER  
0
GFSK, 0.1% BER  
–30.0  
–40.0  
–9.0  
–20.0  
13  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
C/I 1 MHz adjacent to image channel  
C/I cochannel  
GFSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
/4-DQPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I > 3 MHz adjacent channel  
C/I image channel  
0
–30.0  
–40.0  
–7.0  
–20.0  
21  
C/I 1 MHz adjacent to image channel  
C/I cochannel  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I > 3 MHz adjacent channel  
C/I image channel  
5
–25.0  
–33.0  
0
C/I 1 MHz adjacent to image channel  
–13.0  
Out-of-Band Blocking Performance (CW) e  
30–2000 MHz  
0.1% BER  
0.1% BER  
0.1% BER  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
–27  
3000 MHz–12.75 GHz  
–10.0  
Intermodulation Performance f  
BT, f = 5 MHz  
–39.0  
dBm  
Document No. 002-14859 Rev. *R  
Page 37 of 67  
CYW20733  
Table 23. Receiver RF Specificationsa,b (Cont.)  
Parameter  
Conditions  
Minimum Typical c Maximum  
Unit  
Spurious Emissions g  
30 MHz to 1 GHz  
–57  
–47  
dBm  
dBm  
1 GHz to 12.75 GHz  
a. All specifications are single ended. Unused inputs are left open.  
b. All specifications, except typical, are for commercial temperatures.  
c. Typical operating conditions are 1.22V operating voltage and 25°C ambient temperature.  
d. The receiver sensitivity is measured at a BER of 0.1% on the device interface.  
e. Meets this specification using front-end band-pass filter.  
f. f0 = –64 dBm Bluetooth-modulated signal, f1 = –39 dBm sine wave, f2 = –39 dBm Bluetooth-modulated signal, f0 = 2f1 – f2, and |f2 – f1| = n × 1 MHz, where  
n is 3, 4, or 5. For the typical case, n = 5.  
g. Includes baseband radiated emissions.  
Table 24. Transmitter RF Specifications a,b  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
General  
Frequency range  
2402  
2480  
MHz  
Class1: GFSK Tx powercd  
Class1: EDR Tx powerde  
Class 2: GFSK Tx powerd  
Power control step  
6.5  
4.5  
–0.5  
2
10  
8
6
dBm  
dBm  
dBm  
dB  
3
4
Modulation Accuracy  
/4-DQPSK frequency stability  
/4-DQPSK RMS DEVM  
/4-QPSK peak DEVM  
/4-DQPSK 99% DEVM  
8-DPSK frequency stability  
8-DPSK RMS DEVM  
8-DPSK peak DEVM  
–10  
10  
20  
35  
30  
10  
13  
25  
20  
kHz  
%
%
%
–10  
kHz  
%
%
8-DPSK 99% DEVM  
%
In-Band Spurious Emissions  
+500 kHz  
–20  
–26  
–20  
–40  
dBc  
dBc  
dBm  
dBm  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
|M – N| > 2.5 MHz  
Out-of-Band Spurious Emissions  
30 MHz to 1 GHz  
–36.0 f  
–30.0 f, g  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
–47.0  
a. All specifications are for commercial temperatures.  
b. All specifications are single-ended. Unused inputs are left open.  
c. +10 dBm output for GFSK measured with VDDTF = 2.9 V.  
d. Power output is measured at the device without a front-end band-pass filter.  
e. +8 dBm output for EDR measured with VDDTF = 2.9 V.  
f. Maximum value is the value required for Bluetooth qualification.  
g. Meets this specification using a front-end band-pass filter.  
Document No. 002-14859 Rev. *R  
Page 38 of 67  
CYW20733  
3.3 Timing and AC Characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the following timing diagrams.  
3.3.1 UART Timing  
Table 25. UART Timing Specifications  
Reference  
Characteristics  
Min  
Max  
Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
24  
10  
2
Baud out  
cycles  
Setup time, UART_CTS_N high before midpoint of  
stop bit  
ns  
Delay time, midpoint of stop bit to UART_RTS_N  
high  
Baud out  
cycles  
Figure 15. UART Timing  
UART_CTS_N  
UART_TXD  
1
2
Midpoint of  
STOP bit  
UART_RXD  
3
UART_RTS_N  
Document No. 002-14859 Rev. *R  
Page 39 of 67  
CYW20733  
3.3.2 SPI Timing  
Figure 16. SPI Timing Diagram  
5
6
CS  
SCLK  
Mode 1  
SCLK  
Mode 3  
2
1
MSB  
LSB  
LSB  
MOSI  
MISO  
4
3
Invalid bit  
MSB  
Table 26. SPI1 Timing Values—SCLK = 12 MHz and VDDM = 1.8Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max  
Unit  
1
Output setup time, from MOSI  
Tds_mo  
23  
ns  
data valid to sample edge of SCLK  
2
3
4
Output hold time, from sample  
edge of SCLK to MOSI data update  
Tdh_mo  
Tds_mi  
Tdh_mi  
60  
ns  
ns  
ns  
Input setup time, from MISO data valid to  
sample edge of SCLK  
TBD  
TBD  
Input hold time, from sample  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
Time from first SCLK edge to CS deassert  
Tsu_cs  
Thd_cs  
½ SCLK period – 1  
½ SCLK period  
ns  
ns  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 12 MHz. The speed can be adjusted to as low as 400  
Hz by configuring the firmware.  
b. Typical timing based on 20 pF//1 Mload and SCLK = 12 MHz.  
c. CS timing is firmware controlled.  
Document No. 002-14859 Rev. *R  
Page 40 of 67  
CYW20733  
Table 27. SPI1 Timing Values—SCLK = 12 MHz and VDDM = 3.3Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max Unit  
1
Output setup time, from MOSI data valid to  
sample edge of SCLK  
Tds_mo  
34  
ns  
ns  
ns  
ns  
2
3
4
Output hold time, from sample  
edge of SCLK to MOSI data update  
Tdh_mo  
Tds_mi  
Tdh_mi  
49  
Input setup time, from MISO  
data valid to sample edge of SCLK  
TBD  
TBD  
Input hold time, from sample  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
Time from first SCLK edge to CS deassert  
Tsu_cs  
Thd_cs  
½ SCLK period – 1  
½ SCLK period  
ns  
ns  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 12 MHz. The speed can be adjusted to as low as  
400 Hz by configuring the firmware.  
b. Typical timing based on 20 pF//1 Mload and SCLK = 12 MHz.  
c. CS timing is firmware controlled.  
Table 28. SPI2 Timing Values—SCLK = 6 MHz and VDDM = 3.3Va  
Reference  
Characteristics  
Symbol  
Min  
Typicalb  
Max Unit  
1
Output setup time, from MOSI  
Tds_mo  
67  
ns  
data valid to sample edge of SCLK  
2
3
4
Output hold time, from sample  
edge of SCLK to MOSI data update  
Tdh_mo  
Tds_mi  
Tdh_mi  
99  
ns  
ns  
ns  
Input setup time, from MISO  
data valid to sample edge of SCLK  
TBD  
TBD  
Input hold time, from sample  
edge of SCLK to MISO data update  
5c  
6c  
Time from CS assert to first SCLK edge  
Time from first SCLK edge to CS deassert  
Tsu_cs  
Thd_cs  
½ SCLK period – 1  
½ SCLK period  
ns  
ns  
a. The SCLK period is based on the limitation of Tds_mi. SCLK is designed for a maximum speed of 6 MHz. The speed can be adjusted to as low as 400  
Hz by configuring the firmware.  
b. Typical timing based on 20 pF//1 Mload and SCLK = 6 MHz.  
c. CS timing is firmware controlled in master mode and can be adjusted as required in slave mode.  
3.3.3 BSC Interface Timing  
The specifications in Table 29 and Table 30 on page 43 reference Figure 17 on page 43.  
Table 29. BSC Interface Timing Specifications (up to 1 MHz)  
Reference  
Characteristics  
Min  
Max  
Unit  
1
Clock frequency  
100  
400  
800  
1000  
kHz  
2
3
4
5
6
7
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
ns  
ns  
ns  
ns  
ns  
ns  
Clock high time  
Data input hold timea  
Data input setup time  
100  
Document No. 002-14859 Rev. *R  
Page 41 of 67  
CYW20733  
Table 29. BSC Interface Timing Specifications (up to 1 MHz)  
Reference Characteristics  
Min  
Max  
Unit  
ns  
8
STOP condition setup time  
Output valid from clock  
Bus free timeb  
280  
9
400  
ns  
10  
650  
ns  
a. As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP  
conditions.  
b. Time that the CBUS must be free before a new transaction can start.  
Document No. 002-14859 Rev. *R  
Page 42 of 67  
CYW20733  
Table 30. BSC Interface Timing Specification (1 MHz through 4 MHz)  
Reference Characteristics  
Min  
Max  
Unit  
1
Clock frequencya  
1.000  
4.000  
MHz  
2
3
4
START condition setup time  
START condition hold time  
Clock low timeb  
233  
66  
ns  
ns  
ns  
½ SCL period  
½ SCL period  
5
Clock high timeb  
ns  
6
7
Data input hold timec  
Data input setup timed  
0
ns  
ns  
33.4  
8
STOP condition setup time  
Output valid from clock  
Bus free timee  
233  
ns  
ns  
ns  
9
150  
10  
650  
2
a. Maximum speed is achieved without clock stretching. Strict timing parameter adherence for modes beyond I C fast mode may require that the total  
capacitance of the SDA and SCL traces be very similar so that signal transition times are very similar.  
b. Programmable by firmware. Use 50% of period for overclocking frequencies greater than 2.400 MHz. Can be asymmetric (65/35 duty) for modest  
overclocking—up to 2.400 MHz.  
c. As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP  
conditions.  
d. Depends on the degree of overclocking. Application-specific programmability of the hardware block can affect this parameter.  
e. Time that CBUS must be free before a new transaction can start.  
Figure 17. BSC Interface Timing Diagram  
1
5
SCL  
2
8
6
4
3
7
SDA  
IN  
10  
9
SDA  
OUT  
3.3.4 PCM Interface Timing  
The following is a list of the PCM interface timing diagrams.  
PCM Electrical Timing SlaveShort Frame Sync  
PCM Electrical Timing Master—Short Frame Sync  
PCM Electrical Timing Burst (Slave Rx Only)—Short Frame Sync  
Document No. 002-14859 Rev. *R  
Page 43 of 67  
CYW20733  
PCM Electrical Timing Slave—Long Frame Sync  
PCM Electrical Timing Master—Long Frame Sync  
PCM Electrical Timing Burst (Slave Rx Only)—Long Frame Sync  
Note: The TX and RX timings are combined on the same diagram. The CYW20733 can only either transmit or receive in a given slot.  
PCM Electrical Timing SlaveShort Frame Sync  
Figure 18. PCM Electrical Timing Slave—Short Frame Sync Diagram  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
Bit 15 (Previous Frame)  
Bit 15 (Previous Frame)  
High impedance  
8
Bit 0  
6
7
Bit 0  
PCM_IN  
Table 31. PCM Electrical Timing Slave—Short Frame Sync Characteristics  
Reference Characteristics Minimum  
Typical  
Maximum  
Unit  
1
PCM bit clock frequency  
12  
MHz  
2
3
4
5
6
7
8
9
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC setup time  
PCM_SYNC hold time  
PCM_OUT delay  
41  
41  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
0
25  
PCM_IN setup  
8
PCM_IN hold  
8
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
Document No. 002-14859 Rev. *R  
Page 44 of 67  
CYW20733  
PCM Electrical Timing Master—Short Frame Sync  
Figure 19. PCM Electrical Timing Master—Short Frame Sync Diagram  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High impedance  
7
Bit 15 (Previous Frame)  
Bit 15 (Previous Frame)  
Bit 0  
Bit 0  
5
6
PCM_IN  
Table 32. Values of PCM Electrical Timing Master—Short Frame Sync Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
12  
2
3
4
5
6
7
8
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
PCM Electrical Timing Burst (Slave Rx Only)—Short Frame Sync  
Figure 20. PCM Electrical Timing Burst (Slave Rx-Only)—Short Frame Sync Diagram  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
6
7
Bit 15 (previous frame)  
Bit 0  
PCM_IN  
Document No. 002-14859 Rev. *R  
Page 45 of 67  
CYW20733  
Table 33. Values of PCM Electrical Timing Burst (Slave Rx-Only)—Short Frame Sync Characteristics  
Reference Characteristics Minimum Typical Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
24  
2
3
4
5
6
7
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC setup time  
PCM_SYNC hold time  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
PCM Electrical Timing Slave—Long Frame Sync  
Figure 21. PCM Electrical Timing Slave—Long Frame Sync Diagram  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
9
Bit 0  
Bit 0  
High impedance  
PCM_OUT  
Bit 1  
6
8
7
Bit 1  
PCM_IN  
Table 34. Values of PCM Electrical Timing Slave—Long Frame Sync Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
1
PCM bit clock frequency  
12  
MHz  
ns  
2
3
4
5
6
7
8
9
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC setup time  
PCM_SYNC hold time  
PCM_OUT delay  
41  
41  
8
ns  
ns  
8
ns  
0
25  
ns  
PCM_IN setup  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
Document No. 002-14859 Rev. *R  
Page 46 of 67  
CYW20733  
PCM Electrical Timing Master—Long Frame Sync  
Figure 22. PCM Electrical Timing Master—Long Frame Sync Diagram  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High impedance  
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
7
6
PCM_IN  
Table 35. Values of PCM Electrical Timing Master—Long Frame Sync Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
1
PCM bit clock frequency  
12  
MHz  
ns  
2
3
4
5
6
7
8
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit  
period to PCM_OUT becoming high impedance  
0
25  
ns  
PCM Electrical Timing Burst (Slave Rx Only)—Long Frame Sync  
Figure 23. PCM Electrical Timing Burst (Slave Rx-Only)—Long Frame Sync Diagram  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
7
6
Bit 0  
Bit 1  
PCM_IN  
Document No. 002-14859 Rev. *R  
Page 47 of 67  
CYW20733  
Table 36. Values of PCM Electrical Timing Burst (Slave Rx Only)—Long Frame Sync Characteristics  
Reference Characteristics Minimum Typical Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
24  
2
3
4
5
6
7
PCM bit clock low time  
PCM bit clock high time  
PCM_SYNC setup time  
PCM_SYNC hold time  
PCM_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
8
ns  
PCM_IN hold  
8
ns  
3.3.5 I2S Timing  
The following is a list of the I2S timing diagrams.  
I2S Electrical Timing Slave—Short Frame WS  
I2S Electrical Timing Master—Short Frame WS  
I2S Electrical Timing Burst (Slave Rx Only)—Short Frame WS  
I2S Electrical Timing Slave—Long Frame WS  
I2S Electrical Timing Master—Long Frame WS  
I2S Electrical Timing Burst (Slave Rx Only)—Long Frame WS  
Note: The TX and RX timings are combined on the same diagram. The CYW20733 can only either transmit or receive in a given slot.  
I2S Electrical Timing Slave—Short Frame WS  
Figure 24. I2S Electrical Timing Slave Short Frame WS Diagram  
1
2
3
I2S_BCLK  
4
I2S_WS  
Bit 15 (previous frame)  
Bit 15 (previous frame)  
I2S_OUT  
Bit 0  
5
7
6
Bit 0  
I2S_IN  
Table 37. Values of I2S Electrical Timing Slave—Short Frame WS Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
1
I2S bit clock frequency  
12  
MHz  
ns  
2
3
4
5
I2S bit clock low time  
I2S bit clock high time  
I2S_WS setup time  
I2S_OUT delay  
41  
41  
8
ns  
ns  
0
25  
ns  
Document No. 002-14859 Rev. *R  
Page 48 of 67  
CYW20733  
Table 37. Values of I2S Electrical Timing Slave—Short Frame WS Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
ns  
6
I2S_IN setup  
I2S_IN hold  
8
8
7
ns  
I2S Electrical Timing Master—Short Frame WS  
Figure 25. I2S Electrical Timing MasterShort Frame WS Diagram  
1
2
3
I2S_BCLK  
4
I2S_WS  
I2S_OUT  
Bit 15 (previous frame)  
Bit 15 (previous frame)  
Bit 0  
Bit 0  
5
7
6
I2S_IN  
Table 38. Values of I2S Electrical Timing Master—Short Frame WS Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
MHz  
ns  
1
I2S bit clock frequency  
12  
2
3
4
5
6
7
I2S bit clock low time  
I2S bit clock high time  
I2S_WS delay  
41  
41  
0
ns  
25  
25  
ns  
I2S_OUT delay  
I2S_IN setup  
0
ns  
8
ns  
I2S_IN hold  
8
ns  
Document No. 002-14859 Rev. *R  
Page 49 of 67  
CYW20733  
I2S Electrical Timing Burst (Slave Rx Only)—Short Frame WS  
Figure 26. I2S Electrical Timing Burst (Slave Rx Only) Short Frame WS Diagram  
1
2
3
I2S_BCLK  
I2S_WS  
4
6
5
Bit 15 (previous frame)  
Bit 0  
I2S_IN  
Table 39. Values of I2S Electrical Timing Burst (Slave Rx-Only)—Short Frame WS Characteristics  
Reference Characteristics Minimum Typical Maximum  
Unit  
1
I2S bit clock frequency  
24  
MHz  
2
3
4
5
6
I2S bit clock low time  
I2S bit clock high time  
I2S_WS setup time  
I2S_IN setup  
20.8  
20.8  
8
ns  
ns  
ns  
ns  
ns  
8
I2S_IN hold  
8
I2S Electrical Timing Slave—Long Frame WS  
Figure 27. I2S Electrical Timing SlaveLong Frame WS Diagram  
1
2
3
I2S_BCLK  
4
I2S_WS  
I2S_OUT  
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
7
6
I2S_IN  
Document No. 002-14859 Rev. *R  
Page 50 of 67  
CYW20733  
Table 40. Values of I2S Electrical Timing Slave—Long Frame WS Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
MHz  
ns  
1
I2S bit clock frequency  
12  
2
3
4
5
6
7
I2S bit clock low time  
I2S bit clock high time  
I2S_WS setup time  
I2S_OUT delay  
41  
41  
8
ns  
ns  
0
25  
ns  
I2S_IN setup  
8
ns  
I2S_IN hold  
8
ns  
I2S Electrical Timing Master—Long Frame WS  
Figure 28. I2S Electrical Timing MasterLong Frame WS Diagram  
1
2
3
I2S_BCLK  
4
I2S_WS  
I2S_OUT  
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
7
6
I2S_IN  
Table 41. Values of I2S Electrical Timing Master—Long Frame WS Characteristics  
Reference Characteristics Minimum Typical  
Maximum  
Unit  
MHz  
ns  
1
I2S bit clock frequency  
12  
2
3
4
5
6
7
I2S bit clock low time  
I2S bit clock high time  
I2S_WS delay  
41  
41  
0
ns  
25  
25  
ns  
I2S_OUT delay  
I2S_IN setup  
0
ns  
8
ns  
I2S_IN hold  
8
ns  
Document No. 002-14859 Rev. *R  
Page 51 of 67  
CYW20733  
I2S Electrical Timing Burst (Slave Rx Only)—Long Frame WS  
Figure 29. I2S Electrical Timing Burst (Slave Rx Only) — Long Frame WS Diagram  
1
2
3
I2S_BCLK  
I2S_WS  
4
6
5
Bit 0  
Bit 1  
I2S_IN  
Table 42. Values of I2S Electrical Timing Burst (Slave Rx Only)—Long Frame WS Characteristics  
Reference Characteristics Minimum Typical Maximum  
Unit  
MHz  
ns  
1
I2S bit clock frequency  
24  
2
3
4
5
6
I2S bit clock low time  
I2S bit clock high time  
I2S_WS setup time  
I2S_IN setup  
20.8  
20.8  
8
ns  
ns  
8
ns  
I2S_IN hold  
8
ns  
Document No. 002-14859 Rev. *R  
Page 52 of 67  
CYW20733  
4. Mechanical Information  
Figure 30. 81-Pin FBGA  
Document No. 002-14859 Rev. *R  
Page 53 of 67  
CYW20733  
Figure 31. 121-Pin FBGA  
Document No. 002-14859 Rev. *R  
Page 54 of 67  
CYW20733  
Figure 32. 56-Pin QFN  
Document No. 002-14859 Rev. *R  
Page 55 of 67  
CYW20733  
4.0.1 Tape Reel and Packaging Specifications  
Table 43. CYW20733 8 × 8 × 1.0 mm FBGA 81-Pin Tape Reel Specifications  
Quantity per reel  
Reel diameter  
Hub diameter  
Tape width  
2500 pieces  
13 inches  
7 inches  
16 mm  
Tape pitch  
12 mm  
Table 44. CYW20733 9 x 9 x 1.0 mm FBGA 121-Pin Tape Reel Specifications  
Quantity per reel  
Reel diameter  
Hub diameter  
Tape width  
1500 pieces  
13 inches  
4 inches  
16 mm  
Tape pitch  
12 mm  
Table 45. CYW20733 7 x 7 x 1.0 mm QFN 56-Pin Tape Reel Specifications  
Quantity per reel  
Reel diameter  
Hub diameter  
Tape width  
2500 pieces  
13 inches  
7 inches  
16 mm  
Tape pitch  
12 mm  
Document No. 002-14859 Rev. *R  
Page 56 of 67  
CYW20733  
Figure 33. CYW20733 Reel/Labeling/Packaging Specification  
Reel Specifications:  
(6'ꢀ:DUQLQJꢀ  
0RLVWXUHꢀ6HQVLWLYLW\ꢀ6WLFNHUꢀ  
(Per MSL Labeling  
Specification – P-PDE-1051)  
ꢀ&\SUHVVꢀ%DUFRGHꢀ/DEHOꢀ  
(Per Standard Barcode Label  
Specification – P-PDE-1101)  
Device Orientation/Mix Lot Number:  
(DFKꢀ5HHOꢀPD\ꢀFRQWDLQꢀXSꢀWRꢀWKUHHꢀLQGLYLGXDOꢀORWꢀQXPEHUVꢀZLWKLQꢀꢁꢂꢀZRUNꢀZHHNVꢃꢀ  
7KHVHꢀLQGLYLGXDOꢀORWVꢀPXVWꢀEHꢀODEHOHGꢀRQꢀWKHꢀER[ꢄꢀPRLVWXUHꢀEDUULHUꢀEDJꢀDQGꢀUHHOꢃꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ3LQꢀꢁꢅꢀ7RSꢀ/HIWꢀ&RUQHUꢀ7RSꢀRIꢀSDFNDJHꢀWRZDUGꢀ6SURFNHWꢀ+ROHVꢀ  
ꢀ  
ꢀ  
ꢀ  
ꢀ  
Document No. 002-14859 Rev. *R  
Page 57 of 67  
CYW20733  
Figure 34. CYW20733 9 × 9 FBGA Package Tray (1 of 2)  
Document No. 002-14859 Rev. *R  
Page 58 of 67  
CYW20733  
Figure 35. CYW20733 9 × 9 FBGA Package Tray (2 of 2)  
Document No. 002-14859 Rev. *R  
Page 59 of 67  
CYW20733  
Figure 36. CYW20733 8 × 8 FBGA Package Tray (1 of 2)  
Document No. 002-14859 Rev. *R  
Page 60 of 67  
CYW20733  
Figure 37. CYW20733 8 × 8 FBGA Package Tray (2 of 2)  
NOTES:  
1. Tray shall conform to JEDEC CS-004 standard on thin matrix trays  
for MQFP package.  
2. Tray surfaces to be free of seams.  
3. IQA specification SAC-X042 shall apply.  
4. Material: MPPO, 150 degree C (max), Black,  
Stock Num 215-4004-508, 12X29 Matrix  
Document No. 002-14859 Rev. *R  
Page 61 of 67  
CYW20733  
5. Ordering Information  
Table 46. Ordering Information  
Part Number  
CYW20733A3KFB1G  
CYW20733A3KFB2G  
CYW20733A3KML1G  
Package  
Commercial 81-pin FBGA  
Commercial 121-pin FBGA  
Commercial 56-pin QFN  
Ambient Operating Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
6. IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website (http://  
community.cypress.com/).  
A. Acronyms and Abbreviations  
The following list of acronyms and abbreviations may appear in this document.  
For a more complete list of acronyms and other terms used in Cypress documents, go to:  
http://www.cypress.com/glossary  
Acronym  
Description  
ADC  
AFH  
AHB  
APB  
APU  
analog-to-digital converter  
adaptive frequency hopping  
advanced high-performance bus  
advanced peripheral bus  
audio processing unit  
ARM7TDMI-S™  
BSC  
BTC  
COEX  
DFU  
DMA  
EBI  
Acorn RISC Machine 7 Thumb instruction, Debugger, Multiplier, Ice, Synthesizable  
Broadcom Serial Control  
Bluetooth® controller  
coexistence  
device firmware update  
direct memory access  
external bus interface  
Host Control Interface  
high voltage  
HCI  
HV  
IDC  
initial digital calibration  
intermediate frequency  
interrupt request  
IF  
IRQ  
JTAG  
LCU  
LDO  
LHL  
Joint Test Action Group  
link control unit  
low drop-out  
lean high land  
LPO  
LV  
low power oscillator  
LogicVision™  
MIA  
multiple interface agent  
pulse code modulation  
phase locked loop  
PCM  
PLL  
PMU  
power management unit  
Document No. 002-14859 Rev. *R  
Page 62 of 67  
CYW20733  
Acronym  
Description  
POR  
power-on reset  
PWM  
QD  
pulse width modulation  
quadrature decoder  
random access memory  
radio frequency  
RAM  
RF  
ROM  
RX/TX  
SPI  
read-only memory  
receive, transmit  
serial peripheral interface  
software  
SW  
UART  
UPI  
universal asynchronous receiver/transmitter  
µ-processor interface  
universal serial bus  
watchdog  
USB  
WD  
Document No. 002-14859 Rev. *R  
Page 63 of 67  
CYW20733  
Document History  
Document Title: CYW20733 Single-Chip Bluetooth Transceiver Wireless Input Devices  
Document Number: 002-14859  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
20733-DS00-R  
Initial release  
**  
07/23/2010  
Updated:  
Table 10: “Pin Descriptions,” on page 35 and Table 11: “GPIO Pin Descriptions,” on  
page 38.  
Figure 13: “81-Pin FBGA Ball Map,” on page 44.  
Table 16: “Integrated Audio Amplifier Electrical Specifications,” on page 48.  
Table 25: “PCM Electrical Timing Slave—Short Frame Sync Characteristics,” on  
page 57.  
*A  
07/20/2010  
Table 26: “Values of PCM Electrical Timing Master—Short Frame Sync Character-  
istics,” on page 58.  
“PCM Interface Timing” on page 57.  
“I2S Timing” on page 63.  
20733-DS02-R  
Updated:  
“Microprocessor Unit” on page 13: ROM memory capacity.  
“Link Control Layer” on page 15: Bluetooth Link Controller tasks.  
“UART Interface” on page 17: normal baud rate mode.  
“GPIO Port” on page 23.  
“Theory of Operation” on page 25: mouse decoder PWMs.  
“ADC Port” on page 26: analog input channels.  
Table 7: “CYW20733 First SPI Set (Master Mode),” on page 28.  
Table 11: “Pin Descriptions,” on page 35 and Table 12: “GPIO Pin Descriptions,” on  
page 37.  
*B  
08/30/2010  
Figure 13: “81-Pin FBGA Ball Map,” on page 44.  
Added:  
“Peripheral UART Interface” on page 19.  
20733-DS03-R  
Updated:  
“General Description” and “Features” on page 1  
TBD for second package changed to 121-pin, 9 mm x 9 mm FBGA, throughout the  
document.  
Table 11: “Pin Descriptions,” on page 39 (added 121-pin info)  
Table 12: “GPIO Pin Descriptions,” on page 41 (added 121-pin info)  
Figure 14: “121-Pin FBGA Ball Map,” on page 49 (added)  
Figure 30: “81-Pin FBGA,” on page 73  
*C  
10/25/2010  
Figure 31: “121-Pin FBGA,” on page 74 (121-pin outline drawing, added)  
Table 38: “CYW20733 8 × 8 × 1.0 mm FBGA TBD Tape Reel Specifications,” on  
page 75  
Table 39: “CYW20733M 9 x 9 x 1.0 mm FBGA TBD Tape Reel Specifications,” on  
page 75  
Figure 33: “CYW20733 9×9 FBGA Package Tray (1 of 2),” on page 77  
Figure 35: “CYW20733 8×8 FBGA Package Tray (1 of 2),” on page 79  
Table 40: “Ordering Information,” on page 81  
20733-DS04-R  
Updated:  
Figure 1: “Functional Block Diagram,” on page 2  
“UART Interface” on page 19  
Table 1: “Common Baud Rate Examples,” on page 20  
Table 5: “XTAL Oscillator Characteristics,” on page 25  
“Port 0–Port 1, Port 8 – Port 18, Port 20 – Port 23, and Port 28 – Port 38” on page 26  
Table 6: “Sampling Rate and Effective Number of Bits,” on page 29  
Table 12: “GPIO Pin Descriptions,” on page 40  
Table 16: “ADC Specifications,” on page 50  
*D  
04/04/2011  
Table 19: “Current Consumption, Class 1,” on page 52  
Table 20: “Current Consumption, Class 2 (0 dBm),” on page 53 (added)  
Table 21: “Receiver RF Specifications” on page 54  
Table 22: “Transmitter RF Specifications,” on page 55  
Section 5: “Ordering Information,” on page 81  
Document No. 002-14859 Rev. *R  
Page 64 of 67  
CYW20733  
Document Title: CYW20733 Single-Chip Bluetooth Transceiver Wireless Input Devices  
Document Number: 002-14859  
20733-DS05-R  
Updated:  
Figure 1: “Functional Block Diagram,” on page 2  
“GPIO Port” on page 25  
“High Current I/O” on page 34  
Table 10: “Pin Descriptions,” on page 36  
Figure 13: “121-Pin FBGA Ball Map,” on page 46  
*E  
06/29/2011  
Table 15: “ADC Specifications,” on page 48  
Table 17: “Current Consumption, Class 1,” on page 49  
Table 18: “Current Consumption, Class 2 (0 dBm),” on page 51  
Added:  
Table 19: “Current Consumption,” on page 52Removed:  
“Integrated Filterless Class-D Audio Amplifier,” on page 35  
Table 16: “Integrated Audio Amplifier Electrical Specifications,” on p. 49.  
20733-DS06-R  
Updated:  
Table 7: “CYW20733 First SPI Set (Master Mode),” on page 32  
Table 10: “Pin Descriptions,” on page 38  
Table 11: “GPIO Pin Descriptions,” on page 41  
Table 15: “ADC Specifications,” on page 52  
Table 17: “Current Consumption, Class 1,” on page 53  
Table 18: “Current Consumption, Class 2 (0 dBm),” on page 55  
Notes in Table 20 on page 57 and Table 21 on page 59  
Table 23: “Values of SPI1 Timing Characteristics,” on page 61  
Table 39: “CYW20733 8 × 8 × 1.0 mm FBGA 81-Pin Tape Reel Specifications,” on  
page 80  
*F  
03/01/2012  
Table 40: “CYW20733 9 x 9 x 1.0 mm FBGA 121-Pin Tape Reel Specifications,” on  
page 80  
Added:  
Information related to the 56-pin QFN package on page 1  
“56-Pin QFN Diagram” on page 50  
Table 24: “Values of SPI2 Timing Characteristics,” on page 62  
Figure 32: “56-Pin QFN,” on page 79  
Table 41: “CYW20733 7 x 7 x 1.0 mm QFN 56-Pin Tape Reel Specifications,” on  
page 80  
Figure 33: “CYW20733 Reel/Labeling/Packaging Specification,” on page 81  
20733-DS07-R  
Updated:  
*G  
*H  
03/19/2012  
05/18/2012  
Notes in Table 23: “Values of SPI1 Timing Characteristics,” on page 65 and  
Table 24: “Values of SPI2 Timing Characteristics,” on page 66  
20733-DS08-R  
Updated:  
Table 8: “CYW20733 Second SPI Set (Master Mode),” on page 33.  
Table 9: “CYW20733 Second SPI Set (Slave Mode),” on page 34.  
20733-DS09-R  
Updated:  
Bluetooth HID profile version 1.0 to 1.1 on the cover page.  
“Calibration” on page 15.  
“Triac Control” on page 38.  
“Cypress Proprietary Control Signalling and Triggered Broadcom Fast Connect” on  
page 38.  
*I  
06/08/2012  
Table 15: “ADC Specifications,” on page 56 by fixing the Conditions for the  
Reference settling time and Input resistance parameters.  
Table 20: “Receiver RF Specifications” on page 59 by updating Df to uf in the inter-  
modulation performance row.  
“SPI Timing” on page 63.  
20733-DS10-R  
*J  
08/30/2012  
10/01/2012  
Updated:  
Table 43: “Ordering Information,” on page 89.  
20733-DS11-R  
Updated:  
Cover page features to include Class-D audio amplifier.  
Figure 1: “Functional Block Diagram,” on page 2 by adding Class-D audio driver.  
Table 11: “Pin Descriptions,” on page 43.  
Figure 14: “56-Pin QFN Diagram,” on page 55.  
Added:  
*K  
“Integrated Filterless Class-D Audio Amplifier” on page 40.  
Table 17: “Integrated Audio Amplifier Electrical Specifications,” on page 58  
Document No. 002-14859 Rev. *R  
Page 65 of 67  
CYW20733  
Document Title: CYW20733 Single-Chip Bluetooth Transceiver Wireless Input Devices  
Document Number: 002-14859  
20733-DS12-R  
Updated:  
*L  
11/26/2012  
Table 17: “Integrated Audio Amplifier Electrical Specifications,” on page 58.  
Table 21: “Current Consumption,” on page 61.  
20733-DS13-R  
*M  
*N  
*O  
*P  
01/21/2013  
05/31/2013  
08/12/2013  
09/25/2013  
Updated:  
Table 12: “GPIO Pin Descriptions,” on page 46.  
20733-DS14-R  
Updated:  
Table 45: “Ordering Information,” on page 91.  
20733-DS15-R  
Updated:  
Table 21: “Current Consumption,” on page 62.  
20733-DS16-R  
Updated:  
Table 4: “Reference Crystal Electrical Specifications,” on page 26.  
20733-DS17-R  
*Q  
*R  
07/10/2015  
10/21/2016  
Updated document status.  
Updated to Cypress Template  
Added Cypress part numbering scheme  
5487130  
UTSV  
Document No. 002-14859 Rev. *R  
Page 66 of 67  
CYW20733  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
67  
© Cypress Semiconductor Corporation, 2010-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document No. 002-14859 Rev. *R  
Revised October 21, 2016  
Page 67 of 67  

相关型号:

BCM20733A3KFB1G

Single-Chip Bluetooth Transceiver Wireless Input Devices
CYPRESS

BCM20733A3KFB2G

Single-Chip Bluetooth Transceiver Wireless Input Devices
CYPRESS

BCM20733A3KML1G

Single-Chip Bluetooth Transceiver Wireless Input Devices
CYPRESS

BCM20734

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

BCM20734UA1KFFB3G

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

BCM20736

Single-Chip Bluetooth Low Energy System-On-Chip
CYPRESS

BCM20736A1KML2G

Single-Chip Bluetooth Low Energy System-On-Chip
CYPRESS

BCM20736A1KWBGT

Single-Chip Bluetooth Low Energy System-On-Chip
CYPRESS

BCM20736S

Telecom Circuit, 1-Func, HALOGEN FREE AND ROHS COMPLIANT, LGA-48
CYPRESS

BCM20737

Single-Chip Bluetooth Low Energy-Only System-On-Chip with Support for Wireless Charging
CYPRESS

BCM20737A1KML2G

Single-Chip Bluetooth Low Energy-Only System-On-Chip with Support for Wireless Charging
CYPRESS

BCM20737S

Telecom Circuit, 1-Func, PBGA48, 6.50 X 6.50 MM, 1.20 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, LGA-48
CYPRESS