5962-9314402MUX [CYPRESS]

UV PLD, 59ns, CMOS, CQCC84, CERAMIC, LCC-84;
5962-9314402MUX
型号: 5962-9314402MUX
厂家: CYPRESS    CYPRESS
描述:

UV PLD, 59ns, CMOS, CQCC84, CERAMIC, LCC-84

时钟 输入元件 可编程逻辑
文件: 总15页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
41  
CY7C341  
192-Macrocell MAX® EPLD  
Features  
Programmable Interconnect Array  
• 192 macrocells in 12 logic array blocks (LABs)  
• Eight dedicated inputs, 64 bidirectional I/O pins  
• 0.8-micron double-metal CMOS EPROM technology  
• Programmable interconnect array  
The Programmable Interconnect Array (PIA) solves inter-  
connect limitations by routing only the signals needed by each  
logic array block. The inputs to the PIA are the outputs of every  
macrocell within the device and the I/O pin feedback of every  
pin on the device.  
• 384 expander product terms  
Unlike masked or programmable gate arrays, which induce  
variable delay dependent on routing, the PIA has a fixed delay.  
This eliminates undesired skews among logic signals, which  
may cause glitches in internal or external logic. The fixed  
delay, regardless of programmable interconnect array config-  
uration, simplifies design by assuring that internal signal  
skews or races are avoided. The result is ease of design imple-  
mentation, often in a single pass, without the multiple internal  
logic placement and routing iterations required for a program-  
mable gate array to achieve design timing objectives.  
• Available in 84-pin HLCC, PLCC, and PGA packages  
Functional Description  
The CY7C341 is an Erasable Programmable Logic Device  
(EPLD) in which CMOS EPROM cells are used to configure  
logic functions within the device. The MAX® architecture is  
100% user-configurable, allowing the devices to accom-  
modate a variety of independent logic functions.  
The 192 macrocells in the CY7C341 are divided into 12 LABs,  
16 per LAB. There are 384 expander product terms, 32 per  
LAB, to be used and shared by the macrocells within each  
LAB. Each LAB is interconnected with a programmable inter-  
connect array, allowing all signals to be routed throughout the  
chip.  
Timing Delays  
Timing delays within the CY7C341 may be easily determined  
using Warp, Warp Professional, or Warp Enterprise™  
software. The CY7C341 has fixed internal delays, allowing the  
user to determine the worst case timing delays for any design.  
The speed and density of the CY7C341 allows them to be  
used in a wide range of applications, from replacement of large  
amounts of 7400-series TTL logic, to complex controllers and  
multifunction chips. With greater than 37 times the function-  
ality of 20-pin PLDs, the CY7C341 allows the replacement of  
over 75 TTL devices. By replacing large amounts of logic, the  
CY7C341 reduces board space and part count, and increases  
system reliability.  
Design Recommendations  
For proper operation, input and output pins must be  
constrained to the range GND < (VIN or VOUT) < VCC. Unused  
inputs must always be tied to an appropriate logic level (either  
VCC or GND). Each set of VCC and GND pins must be  
connected together directly at the device. Power supply  
decoupling capacitors of at least 0.2 µF must be connected  
between VCC and GND. For the most effective decoupling,  
each VCC pin should be separately decoupled to GND, directly  
at the device. Decoupling capacitors should have good  
frequency response, such as monolithic ceramic types.  
Each LAB contains 16 macrocells. In LABs A, F, G, and L, eight  
macrocells are connected to I/O pins and eight are buried,  
while for LABs B, C, D, E, H, I, J, and K, four macrocells are  
connected to I/O pins and 12 are buried. Moreover, in addition  
to the I/O and buried macrocells, there are 32 single product  
term logic expanders in each LAB. Their use greatly enhances  
the capability of the macrocells without increasing the number  
of product terms in each macrocell.  
Design Security  
The CY7C341 contains a programmable design security  
feature that controls the access to the data programmed into  
the device. If this programmable feature is used, a proprietary  
design implemented in the device cannot be copied or  
retrieved. This enables a high level of design control to be  
obtained since programmed data within EPROM cells is  
invisible. The bit that controls this function, along with all other  
program data, may be reset simply by erasing the device. The  
CY7C341 is fully functionally tested and guaranteed through  
complete testing of each programmable EPROM bit and all internal  
logic elements thus ensuring 100% programming yield.  
Logic Array Blocks  
There are 12 logic array blocks in the CY7C341. Each LAB  
consists of a macrocell array containing 16 macrocells, an  
expander product term array containing 32 expanders, and an  
I/O block. The LAB is fed by the programmable interconnect  
array and the dedicated input bus. All macrocell feedbacks go  
to the macrocell array, the expander array, and the program-  
mable interconnect array. Expanders feed themselves and the  
macrocell array. All I/O feedbacks go to the programmable  
interconnect array so that they may be accessed by macro-  
cells in other LABs as well as the macrocells in the LAB in  
which they are situated.  
The erasable nature of these devices allows test programs to  
be used and erased during early stages of the production flow.  
The devices also contain on-board logic test circuitry to allow  
verification of function and AC specification once encapsu-  
lated in non-windowed packages.  
Externally, the CY7C341 provides eight dedicated inputs, one  
of which may be used as a system clock. There are 64 I/O pins  
that may be individually configured for input, output, or bidirec-  
tional data flow.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-03034 Rev. *A  
Revised December 11, 2001  
CY7C341  
Selection Guide  
7C341-25  
25  
7C341-30  
30  
7C341-35  
35  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Commercial  
Industrial  
Military  
380  
380  
380  
mA  
480  
480  
480  
480  
480  
480  
Maximum Standby Current  
Commercial  
Industrial  
Military  
360  
360  
360  
mA  
435  
435  
435  
435  
435  
435  
Logic Block Diagram  
1 (A6)  
INPUT/CLK  
INPUT  
INPUT  
(C6) 84  
(C7) 83  
(L7) 44  
(J7) 43  
2 (A5)  
INPUT  
INPUT  
INPUT  
41 (K6)  
42 (J6)  
INPUT  
INPUT  
SYSTEMCLOCK  
LAB A  
LAB G  
MACROCELL97  
4
5
6
7
8
9
(C5)  
(A4)  
(B4)  
(A3)  
(A2)  
(B3)  
MACROCELL1  
46 (L6)  
MACROCELL2  
MACROCELL3  
MACROCELL4  
MACROCELL5  
MACROCELL6  
MACROCELL7  
MACROCELL8  
MACROCELL98  
MACROCELL99  
MACROCELL100  
MACROCELL101  
MACROCELL102  
MACROCELL103  
MACROCELL104  
47 (L8)  
48 (K8)  
49 (L9)  
50 (L10)  
51 (K9)  
52 (L11)  
53 (K10)  
10 (A1)  
11 (B2)  
MACROCELL 916  
MACROCELL 105112  
LAB B  
LAB H  
12 (C2)  
13 (B1)  
14 (C1)  
15 (D2)  
MACROCELL17  
MACROCELL18  
MACROCELL19  
MACROCELL20  
MACROCELL113  
MACROCELL114  
MACROCELL115  
MACROCELL116  
54 (J10)  
55 (K11)  
56 (J11)  
57 (H10)  
MACROCELL 2132  
MACROCELL 117128  
LAB C  
LAB I  
16 (D1)  
17 (E3)  
20 (F2)  
21 (F3)  
MACROCELL33  
MACROCELL34  
MACROCELL35  
MACROCELL36  
MACROCELL129  
MACROCELL130  
MACROCELL131  
MACROCELL132  
58 (H11)  
59 (F10)  
62 (G9)  
63 (F9)  
P
I
A
MACROCELL 3748  
MACROCELL 133144  
LAB D  
LAB J  
22 (G3)  
23 (G1)  
25 (F1)  
26 (H1)  
MACROCELL49  
MACROCELL50  
MACROCELL51  
MACROCELL52  
MACROCELL145  
MACROCELL146  
MACROCELL147  
MACROCELL148  
64 (F11)  
65 (E11)  
67 (E9)  
68 (D11)  
MACROCELL 5364  
MACROCELL 149160  
LAB E  
LAB K  
27 (H2)  
28 (J1)  
29 (K1)  
30 (J2)  
MACROCELL65  
MACROCELL66  
MACROCELL67  
MACROCELL68  
MACROCELL161  
MACROCELL162  
MACROCELL163  
MACROCELL164  
69 (D10)  
70 (C11)  
71 (B11)  
72 (C10)  
MACROCELL 6980  
MACROCELL 165176  
LAB F  
LAB L  
MACROCELL81  
MACROCELL82  
MACROCELL83  
MACROCELL84  
MACROCELL85  
MACROCELL86  
MACROCELL87  
MACROCELL88  
MACROCELL177  
MACROCELL178  
MACROCELL179  
MACROCELL180  
MACROCELL181  
MACROCELL182  
MACROCELL183  
MACROCELL184  
31 (L1)  
32 (K2)  
33 (K3)  
34 (L2)  
35 (L3)  
36 (K4)  
37 (L4)  
38 (J5)  
73 (A11)  
74 (B10)  
75 (B9)  
76 (A10)  
77 (A9)  
78 (B8)  
79 (A8)  
80 (B6)  
MACROCELL 185192  
MACROCELL 8996  
() PERTAIN TO 84-PIN PGA PACKAGE  
3, 24, 45, 66 (B5, G2, K7, E10)  
18, 19, 39, 40, 60, 61, 81, 82 (E1, E2, K5, L5, G10, G11, A7, B7)  
V
CC  
GND  
C341-1  
Document #: 38-03034 Rev. *A  
Page 2 of 15  
CY7C341  
Pin Configurations  
PGA  
Bottom View  
PLCC/HLCC  
Top View  
L
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O INPUT I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND INPUT  
V
CC  
I/O  
K
J
11 10  
2 1  
9
8
7
6
5
4
3
84 83 82 81 80 79 78 77 76 75  
74  
I/O  
I/O  
I/O  
I/O  
12  
13  
14  
15  
16  
17  
I/O  
INPUT INPUT  
I/O  
I/O  
73  
I/O  
I/O  
I/O  
72  
71  
70  
69  
68  
67  
I/O  
I/O  
I/O  
H
I/O  
I/O  
I/O  
I/O  
I/O  
V
I/O  
GND  
V
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
G
F
18  
19  
20  
21  
22  
23  
24  
GND  
I/O  
I/O  
66  
65  
64  
63  
62  
61  
60  
59  
58  
CC  
7C341  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
7C341  
I/O  
I/O  
GND GND  
V
CC  
I/O  
E
V
CC  
I/O  
25  
26  
27  
28  
29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D
C
I/O  
I/O  
I/O  
57  
56  
55  
54  
I/O  
INPUT INPUT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
30  
31  
32  
I/O  
I/O  
V
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
11  
B
A
CC  
INPUT  
5
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
INPUT/  
CLK  
I/O  
1
I/O  
2
I/O  
3
I/O  
4
GND  
7
I/O  
8
I/O  
9
I/O  
10  
C341-2  
6
C341-3  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
CONTROLDELAY  
INPUT/  
OUTPUT  
CLR  
INPUT  
t
INPUT  
DELAY  
LAC  
t
PRE  
t
OD  
XZ  
ZX  
t
IN  
t
LOGIC ARRAY  
DELAY  
t
t
RD  
t
RSU  
t
t
COMB  
LATCH  
t
RH  
t
LAD  
SYSTEM CLOCK DELAY t  
ICS  
CLOCK  
DELAY  
PIA  
DELAY  
t
t
IC  
PIA  
LOGIC ARRAY  
DELAY  
t
FD  
I/O DELAY  
t
IO  
C341-4  
Figure 1. CY7C341 Internal Timing Model  
Document #: 38-03034 Rev. *A  
Page 3 of 15  
CY7C341  
DC Output Current, per Pin........................ −25 mA to +25 mA  
DC Input Voltage[1]................................................−3.0V to +7.0V  
DC Program Voltage .................................................... 13.0V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .......................................−65°C to +150°C  
Static Discharge Voltage..................................................>1100V  
(per MIL-STD-883, method 3015)  
Ambient Temperature with  
Power Applied.................................................... 0°C to +70°C  
Operating Range  
Maximum Junction Temperature  
(Under Bias)................................................................. 150°C  
Range  
Commercial  
Industrial  
Military  
Ambient Temperature  
0°C to +70°C  
VCC  
Supply Voltage to Ground Potential .................−2.0V to +7.0V  
Maximum Power Dissipation...................................2500 mW  
DC VCC or GND Current......................................................500 mA  
5V ± 5%  
5V ± 10%  
5V ± 10%  
40°C to +85°C  
55°C to +125°C (Case)  
Electrical Characteristics Over the Operating Range[2]  
Parameter  
VOH  
Description  
Test Conditions  
VCC = Min., IOH = 4.0 mA  
Min.  
Max.  
Unit  
Output HIGH Voltage  
2.4  
V
VOL  
VIH  
VIL  
IIX  
Output LOW Voltage  
Input HIGH Level  
Input LOW Level  
Input Current  
VCC = Min., IOL = 8 mA  
0.45  
V
2.2  
0.3  
10  
40  
30  
VCC + 0.3  
0.8  
V
V
GND VIN VCC  
+10  
µA  
µA  
mA  
IOZ  
IOS  
Output Leakage Current VO = VCC or GND  
+40  
Output Short  
VCC = Max., VOUT = GND[3, 4]  
90  
Circuit Current  
ICC1  
Power Supply Current  
(Standby)  
VI = VCC or GND (No Load)  
Commercial  
360  
435  
380  
480  
100  
mA  
mA  
mA  
mA  
ns  
Military/Industrial  
Commercial  
ICC2  
Power Supply Current[5] VI = VCC or GND (No Load)  
f = 1.0 MHz[3, 5]  
Military/Industrial  
tR (Recom-  
mended)  
Input Rise Time  
Input Fall Time  
tF (Recom-  
mended)  
100  
ns  
Capacitance[6]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz, VCC = 5.0V  
Max.  
Unit  
pF  
CIN  
10  
20  
COUT  
pF  
Notes:  
1. Minimum DC input is 0.3V. During transitions, the inputs may undershoot to 2.0V for periods less than 20 ns.  
2. Typical values are for TA = 25°C and VCC = 5V.  
3. Guaranteed but not 100% tested.  
4. No more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT = 0.5V has been chosen to avoid  
test problems caused by tester ground degradation.  
5. This parameter is measured with device programmed as a 16-bit counter in each LAB and is tested periodically by sampling production material.  
6. Part (a) in AC Test Load and Waveforms is used for all parameters except tER and tXZ, which is used for part (b) in AC Test Load and Waveforms. All external timing  
parameters are measured referenced to external pins of the device.  
Document #: 38-03034 Rev. *A  
Page 4 of 15  
CY7C341  
AC Test Loads and Waveforms  
R1 464  
R1 464Ω  
5V  
5V  
OUTPUT  
ALL INPUT PULSES  
90%  
10%  
OUTPUT  
3.0V  
GND  
90%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
< 6 ns  
< 6 ns  
INCLUDING  
JIG AND  
SCOPE  
t
R
t
F
C341-5  
C341-6  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163Ω  
OUTPUT  
1.75V  
External Synchronous Switching Characteristics Over the Operating Range[6]  
7C341-25  
7C341-30  
7C341-35  
Parameter  
tPD1  
Description  
Min.  
Max  
25  
25  
40  
40  
37  
37  
52  
52  
25  
25  
25  
25  
14  
14  
30  
30  
Min.  
Max  
Min.  
Max  
Unit  
Dedicated Input to Combinatorial  
Output Delay[7]  
Coml  
Mil  
30  
30  
45  
45  
44  
44  
59  
59  
30  
30  
30  
30  
16  
16  
35  
35  
35  
35  
55  
55  
55  
55  
75  
75  
35  
35  
35  
35  
20  
20  
42  
42  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPD2  
tPD3  
tPD4  
tEA  
I/O Input to Combinatorial  
Output Delay[8]  
Coml  
Mil  
Dedicated Input to Combinatorial  
Coml  
Mil  
Output Delay with Expander Delay[9]  
I/O Input to Combinatorial Output  
Delay with Expander Delay[3, 10]  
Coml  
Mil  
Input to Output Enable Delay[3, 7]  
Coml  
Mil  
tER  
Input to Output Disable Delay[6]  
Coml  
Mil  
tCO1  
Synchronous Clock Input to  
Output Delay  
Coml  
Mil  
tCO2  
Synchronous Clock to Local  
Feedback to Combinatorial  
Output[3, 11]  
Coml  
Mil  
tS1  
Dedicated Input or Feedback Set-up Coml  
15  
15  
20  
20  
25  
25  
ns  
ns  
Time to Synchronous Clock  
Mil  
Output[6, 12]  
tS2  
I/O Input Set-up Time to  
Coml  
30  
30  
39  
39  
45  
45  
Synchronous Clock Input[8]  
Mil  
Notes:  
7. This specification is a measure of the delay from input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes that  
no expander terms are used to form the logic function. When this note is applied to any parameter specification it indicates that the signal (data, asynchronous  
clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.  
If an input signal is applied to an I/O pin an additional delay equal to tPIA should be added to the comparable delay for a dedicated input. If expanders are used, add the  
maximum expander delay tEXP to the overall delay for the comparable delay without expanders.  
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used  
to form the logic function.  
9. This specification is a measure of the delay from an input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes  
expander terms are used to form the logic functions and includes the worst-case expander logic delay for one pass through the expander logic.  
10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used  
to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array  
and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB.  
This parameter is tested periodically by sampling production material.  
12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin set-up time minimums should be observed. These parameters are tS2 for  
synchronous operation and tAS2 for asynchronous operation.  
Document #: 38-03034 Rev. *A  
Page 5 of 15  
CY7C341  
External Synchronous Switching Characteristics Over the Operating Range[6] (continued)  
7C341-25 7C341-30  
Min. Max  
7C341-35  
Min. Max  
Parameter  
Description  
Min.  
0
Max  
Unit  
tH  
Input Hold Time from  
Coml  
Mil  
0
0
0
ns  
Synchronous Clock Input[6]  
0
0
tWH  
tWL  
tRW  
tRO  
tRR  
tPW  
tPR  
Synchronous Clock Input  
High Time  
Coml  
Mil  
8
10  
10  
10  
10  
30  
30  
12.5  
12.5  
12.5  
12.5  
35  
ns  
ns  
8
Synchronous Clock Input  
Low Time  
Coml  
Mil  
8
8
Asynchronous Clear Width[3, 6]  
Coml  
Mil  
25  
25  
ns  
35  
Asynchronous Clear to  
Coml  
Mil  
25  
25  
30  
30  
35  
35  
ns  
Registered Output Delay[5]  
Asynchronous Clear Recovery[3, 7]  
Asynchronous Preset Width[3, 6]  
Coml  
Mil  
25  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
35  
35  
35  
35  
35  
35  
ns  
Coml  
Mil  
ns  
Asynchronous Preset Recovery  
Time[3, 6]  
Coml  
Mil  
ns  
tPO  
Asynchronous Preset to  
Coml  
Mil  
25  
25  
3
30  
30  
3
35  
35  
5
ns  
Registered Output Delay[6]  
tCF  
Synchronous Clock to Local  
Feedback Input[3, 13]  
Coml  
Mil  
ns  
3
3
5
tP  
External Synchronous Clock Period Coml  
16  
20  
20  
25  
25  
ns  
[3]  
(1/fMAX3  
)
Mil  
16  
fMAX1  
External Feedback Maximum  
Frequency (1/(tCO1 +tS1))[3, 14]  
Coml  
Mil  
34.5  
34.5  
55.5  
55.5  
27.7  
27.7  
43  
22.2  
22.2  
33  
MHz  
MHz  
fMAX2  
Internal Local Feedback Maximum  
Coml  
Mil  
Frequency, lesser of (1/(tS1 + tCF))  
43  
33  
[3, 15]  
or (1/tCO1  
)
fMAX3  
DataPathMaximumFrequency,least Coml  
62.5  
62.5  
50  
50  
40.0  
40.0  
MHz  
of 1/(tWL + tWH), 1/(tS1 + tH),  
Mil  
[3, 16]  
or (1/tCO1  
)
fMAX4  
Maximum Register Toggle Frequency Coml  
62.5  
62.5  
3
50  
50  
3
40.0  
40.0  
3
MHz  
ns  
(1/(tWL + tWH))[3, 17]  
Mil  
tOH  
Output Data Stable Time from Syn- Coml  
chronous Clock Input[3, 18]  
Mil  
3
3
3
Notes:  
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array  
input. This delay plus the register set-up time, tS1, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within  
the same LAB. This parameter is tested periodically by sampling production material.  
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can  
operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same  
LAB.  
15. This specification indicates the guaranteed maximum frequency at which a state machine, with internal-only feedback, can operate. If register output states  
must also control external points, this frequency can still be observed as long as this frequency is less than 1/tCO1  
.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data  
input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, tS2 is the appropriate tS for calculation.  
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycle by a clock  
signal applied to the dedicated clock input pin.  
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.  
Document #: 38-03034 Rev. *A  
Page 6 of 15  
CY7C341  
External Synchronous Switching Characteristics Over the Operating Range[6] (continued)  
7C341-25 7C341-30  
7C341-35  
Parameter  
tACO1  
Description  
Min.  
Max  
Min.  
Max  
30  
Min.  
Max  
Unit  
Dedicated Asynchronous Clock Input Coml  
25  
25  
40  
40  
35  
35  
55  
55  
ns  
to Output Delay[6]  
Mil  
30  
tACO2  
Asynchronous Clock Input to Local  
Feedback to Combinatorial Output[19]  
Coml  
46  
ns  
ns  
Mil  
46  
tAS1  
Dedicated Input or Feedback Set-up Coml  
5
5
6
6
8
Time to Asynchronous Clock Input[6]  
Mil  
8
tAS2  
I/O Input Set-Up Time to  
Coml  
Mil  
20  
20  
6
27  
27  
8
30  
30  
10  
10  
16  
16  
14  
14  
ns  
Asynchronous Clock Input[6]  
tAH  
Input Hold Time from  
Coml  
Mil  
ns  
Asynchronous Clock Input[6]  
6
8
tAWH  
tAWL  
tACF  
tAP  
Asynchronous Clock Input  
HIGH Time[6]  
Coml  
Mil  
11  
11  
9
14  
14  
11  
11  
ns  
Asynchronous Clock Input  
LOW Time[6, 20]  
Coml  
Mil  
ns  
9
Asynchronous Clock to  
Local Feedback Input[21]  
Coml  
Mil  
15  
15  
18  
18  
22  
22  
ns  
External Asynchronous  
Coml  
Mil  
20  
20  
25  
25  
27  
27  
30  
30  
23  
23  
ns  
Clock Period (1/fMAX4  
)
fMAXA1  
External Feedback Maximum Fre-  
Coml  
Mil  
33.3  
33.3  
MHz  
quency in Asynchronous Mode  
[22]  
1/(tACO1 + tAS1  
)
fMAXA2  
fMAXA3  
fMAXA4  
Maximum Internal  
Coml  
Mil  
50  
50  
40  
40  
50  
50  
15  
15  
40  
40  
33.3  
33.3  
28.5  
28.5  
33.3  
33.3  
15  
MHz  
MHz  
MHz  
ns  
Asynchronous Frequency[23]  
Data Path Maximum Frequency in  
Asynchronous Mode[24]  
Coml  
Mil  
33.3  
33.3  
40  
Maximum Asynchronous Register  
Toggle Frequency 1/(tAWH + tAWL  
Coml  
Mil  
[25]  
)
40  
tAOH  
Output Data Stable Time from Asyn- Coml  
15  
chronous Clock Input[26]  
Mil  
15  
15  
Notes:  
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB  
logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input.  
The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production  
material.  
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative-edge triggering, the tAWH and tAWL parameters must be swapped. If  
a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL  
.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay  
plus the asynchronous register set-up time, tAS1, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for  
feedback within the same LAB, and assumes there is no expander logic in the clock path and the clock input signal is applied to a dedicated input pin. This parameter is tested  
periodically by sampling production material.  
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the  
clock signal path or data path.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.  
This parameter is determined by the lesser of (1/tACF + tAS1)) or (1/(tAWH +tAWL)). If register output states must also control external points, this frequency can still be  
observed as long as this frequency is less than 1/tACO1  
.
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined  
by the least of 1/(tAWH + tAWL), 1/(tAS1 + tAH) or 1/tACO1. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.  
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode  
by a clock signal applied to an external dedicated input pin.  
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied  
to an external dedicated input pin.  
Document #: 38-03034 Rev. *A  
Page 7 of 15  
CY7C341  
Internal Switching Characteristics Over the Operating Range[2]  
7C341-25  
Min. Max  
7C341-30  
Min. Max  
7C341-35  
Min. Max  
Parameter  
tIN  
Description  
Dedicated Input Pad and  
Buffer Delay  
Unit  
Coml  
Mil  
5
5
7
7
9
ns  
9
tIO  
I/O Input Pad and Buffer Delay  
Coml  
Mil  
6
6
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
9
tEXP  
tLAD  
tLAC  
tOD  
Expander Array Delay  
Coml  
Mil  
12  
12  
12  
12  
10  
10  
5
14  
14  
14  
14  
12  
12  
5
20  
20  
16  
16  
13  
13  
6
Logic Array Data Delay  
Coml  
Mil  
Logic Array Control Delay  
Output Buffer and Pad Delay  
Output Buffer Enable Delay[27]  
Output Buffer Disable Delay  
Coml  
Mil  
Coml  
Mil  
5
5
6
tZX  
Coml  
Mil  
10  
10  
10  
10  
11  
11  
11  
11  
13  
13  
13  
13  
tXZ  
Coml  
Mil  
tRSU  
Register Set-Up Time Relative to Coml  
Clock Signal at Register  
6
6
6
6
8
8
8
8
10  
10  
10  
10  
Mil  
tRH  
Register Hold Time Relative to  
Clock Signal at Register  
Coml  
Mil  
tLATCH  
Flow-Through Latch Delay  
Register Delay  
Coml  
Mil  
3
3
1
1
3
3
4
4
2
2
4
4
4
4
2
2
4
4
tRD  
Coml  
Mil  
tCOMB  
Transparent Mode Delay[28]  
Clock High Time  
Coml  
Mil  
tCH  
Coml  
Mil  
8
8
8
8
10  
10  
10  
10  
12.5  
12.5  
12.5  
12.5  
tCL  
Clock Low Time  
Coml  
Mil  
tIC  
Asynchronous Clock Logic Delay Coml  
14  
14  
2
16  
16  
2
18  
18  
3
Mil  
tICS  
Synchronous Clock Delay  
Feedback Delay  
Coml  
Mil  
2
2
3
tFD  
Coml  
Mil  
1
1
2
1
1
2
tPRE  
Asynchronous Register Preset  
Time  
Coml  
Mil  
5
6
7
5
6
7
Document #: 38-03034 Rev. *A  
Page 8 of 15  
CY7C341  
Internal Switching Characteristics Over the Operating Range[2] (continued)  
7C341-25  
7C341-30  
Min. Max  
7C341-35  
Min. Max  
Parameter  
tCLR  
Description  
Min.  
Max  
5
Unit  
Asynchronous Register Clear  
Time  
Coml  
6
6
7
7
ns  
Mil  
5
tPCW  
Asynchronous Preset and Clear Coml  
5
5
5
5
6
6
6
6
7
7
7
7
ns  
ns  
ns  
Pulse Width  
Mil  
tPCR  
Asynchronous Preset and Clear Coml  
Recovery Time  
Mil  
tPIA  
Programmable Interconnect  
Array Delay  
Coml  
14  
16  
16  
20  
20  
Mil  
Notes:  
27. Sample tested only for an output change of 500 mV.  
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combi-  
natorial operation.  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
t
/t  
PD1 PD2  
COMBINATORIAL  
OUTPUT  
tER  
COMBINATORIAL  
REGISTERED OUTPUT  
HIGH-IMPEDANCE  
3-STATE  
tEA  
HIGH IMPEDANCE  
3-STATE  
VALID OUTPUT  
C341-7  
External Synchronous  
DEDICATED INPUT/  
[7]  
I/O INPUT  
t
H
t
t
WL  
WH  
t
S1  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t /t  
RR PR  
CO1  
RW PW  
t
OH  
ASYNCHRONOUS  
CLEAR/PRESET  
[7]  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[10]  
REGISTERED FEEDBACK  
C341-8  
Document #: 38-03034 Rev. *A  
Page 9 of 15  
CY7C341  
Switching Waveforms (continued)  
External Asynchronous  
DEDICATEDINPUT/  
[7]  
I/OINPUT  
t
t
t
AWL  
AH  
AWH  
t
AS1  
ASYNCHRONOUS  
CLOCK INPUT  
t
t
/t  
t /t  
RR PR  
ACO1  
RW PW  
t
AOH  
ASYNCHRONOUS  
CLEAR/PRESET  
[7]  
t
/t  
RO PO  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
ACO2  
COMBINATORIAL OUTPUT  
FROM ASYNCH. REGISTERED  
FEEDBACK  
C341-9  
Internal Combinatorial  
t
IN  
INPUT PIN  
t
PIA  
t
IO  
I/O PIN  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
C341-10  
Document #: 38-03034 Rev. *A  
Page 10 of 15  
CY7C341  
Switching Waveforms (continued)  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
C341-11  
Internal Synchronous  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IH  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
C341-12  
Internal Synchronous  
CLOCK FROM  
LOGIC ARRAY  
t
OD  
t
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
XZ  
t
ZX  
HIGH IMPEDANCE  
STATE  
OUTPUT PIN  
C341-13  
Document #: 38-03034 Rev. *A  
Page 11 of 15  
CY7C341  
Ordering Information  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
25  
CY7C341-25HC/HI  
CY7C341-25JC/JI  
CY7C341-25RC/RI  
CY7C341-30HC/HI  
CY7C341-30JC/JI  
CY7C341-30RC/RI  
CY7C341-30HMB  
CY7C341-30RMB  
CY7C341-35HC/HI  
CY7C341-35JC/JI  
CY7C341-35RC/RI  
CY7C341-35HMB  
CY7C341-35RMB  
H84  
J83  
84-Lead Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
84-Lead Windowed Pin Grid Array  
84-Lead Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
84-Lead Windowed Pin Grid Array  
84-Lead Windowed Leaded Chip Carrier  
84-Lead Windowed Pin Grid Array  
84-Lead Windowed Leaded Chip Carrier  
84-Lead Plastic Leaded Chip Carrier  
84-Lead Windowed Pin Grid Array  
84-Lead Windowed Leaded Chip Carrier  
84-Lead Windowed Pin Grid Array  
Commercial/Industrial  
R84  
H84  
J83  
30  
35  
Commercial/Industrial  
R84  
H84  
R84  
H84  
J83  
Military  
Commercial/Industrial  
R84  
H84  
R84  
Military  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameter  
VOH  
Subgroups  
1, 2, 3  
Parameter  
tPD1  
Subgroups  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
VOL  
VIH  
VIL  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
tPD2  
tPD3  
tCO1  
tS1  
IIX  
IOZ  
ICC1  
tH  
tACO1  
tACO2  
tAS1  
tAH  
Document #: 38-03034 Rev. *A  
Page 12 of 15  
CY7C341  
Package Diagrams  
84-Leaded Windowed Leaded Chip Carrier H84  
51-80081  
Document #: 38-03034 Rev. *A  
Page 13 of 15  
CY7C341  
Package Diagrams (continued)  
84-Lead Plastic Leaded Chip Carrier J83  
51-85006-A  
84-Lead Windowed Pin Grid Array R84  
51-80026-*B  
MAX is a registered trademark of Altera Corporation. Warp, Warp Professional, and Warp Enterprise are trademarks of Cypress  
Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective  
holders.  
Document #: 38-03034 Rev. *A  
Page 14 of 15  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C341  
Document Title: CY7C341 192-Macrocell MAX® EPLD  
Document Number: 38-03034  
Orig. of  
REV.  
**  
ECN NO.  
106379  
111355  
Issue Date  
06/18/01  
12/17/01  
Change  
Description of Change  
Change from Spec#: 38-00499 to 38-03034  
PGA package diagram dimensions were updated  
SZV  
*A  
MYN  
Document #: 38-03034 Rev. *A  
Page 15 of 15  

相关型号:

5962-9314402MXX

UV-Erasable/OTP Complex PLD
ETC

5962-9314402MYX

UV-Erasable/OTP Complex PLD
ETC

5962-9314402MZC

UV PLD, 59ns, CMOS, CPGA100,
WEDC

5962-9314402MZX

UV-Erasable/OTP Complex PLD
ETC

5962-9314701Q2X

Octal D-Type Flip-Flop
ETC

5962-9314701QRX

Octal D-Type Flip-Flop
ETC

5962-9314701QSX

Octal D-Type Flip-Flop
ETC

5962-9314801M2X

Octal D-Type Flip-Flop
ETC

5962-9314801MRX

Octal D-Type Flip-Flop
ETC

5962-9314801MSX

Octal D-Type Flip-Flop
ETC

5962-9314801Q2A

OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLOCK ENABLE
TI

5962-9314801Q2C

Octal D-Type Flip-Flop
ETC