5962-9311201MXX [CYPRESS]

PLL Based Clock Driver, 7B Series, 2 True Output(s), 0 Inverted Output(s), CMOS, CQCC32, CERAMIC, LCC-32;
5962-9311201MXX
型号: 5962-9311201MXX
厂家: CYPRESS    CYPRESS
描述:

PLL Based Clock Driver, 7B Series, 2 True Output(s), 0 Inverted Output(s), CMOS, CQCC32, CERAMIC, LCC-32

驱动 逻辑集成电路
文件: 总14页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7B991  
CY7B992  
Programmable Skew Clock Buffer  
functions. These multiple-output clock drivers provide the sys-  
tem integrator with functions necessary to optimize the timing  
of high-performance computer systems. Eight individual driv-  
ers, arranged as four pairs of user-controllable outputs, can  
each drive terminated transmission lines with impedances as  
low as 50while delivering minimal and specified output skews  
and full-swing logic levels (CY7B991 TTL or CY7B992 CMOS).  
Features  
• All output pair skew <100 ps typical (250 max.)  
• 3.75- to 80-MHz output operation  
• User-selectable output functions  
— Selectable skew to 18 ns  
— Inverted and non-inverted  
Each output can be hardwired to one of nine delay or function  
configurations. Delay increments of 0.7 to 1.5 ns are deter-  
mined by the operating frequency with outputs able to skew up  
to ±6 time units from their nominal “zero” skew position. The com-  
pletely integrated PLL allows external load and transmission line  
delay effects to be canceled. When this “zero delay” capability of the  
PSCB is combined with the selectable output skew functions, the  
user can create output-to-output delays of up to ±12 time units.  
1
1
— Operation at  
and  
input frequency  
4
2
— Operation at 2x and 4x input frequency (input as low  
as 3.75 MHz)  
• Zero input to output delay  
• 50% duty-cycle outputs  
Outputs drive 50 terminated lines  
• Low operating current  
• 32-pin PLCC/LCC package  
• Jitter < 200 ps peak-to-peak (< 25 ps RMS)  
• Compatible with a Pentium™-based processor  
Divide-by-two and divide-by-four output functions are provided  
for additional flexibility in designing complex clock systems.  
When combined with the internal PLL, these divide functions  
allow distribution of a low-frequency clock that can be multi-  
plied by two or four at the clock destination. This facility mini-  
mizes clock distribution difficulty while allowing maximum sys-  
tem clock speed and flexibility.  
Functional Description  
The CY7B991 and CY7B992 Programmable Skew Clock Buff-  
ers (PSCB) offer user-selectable control over system clock  
Logic Block Diagram  
Pin Configuration  
TEST  
PLCC/LCC  
PHASE  
FREQ  
DET  
FB  
VCO AND  
TIME UNIT  
GENERATOR  
FILTER  
REF  
4
3
2
1
32 31 30  
29  
FS  
2F0  
GND  
1F1  
1F0  
5
6
3F1  
4F0  
28  
27  
4Q0  
4Q1  
4F0  
4F1  
4F1  
7
8
9
SELECT  
INPUTS  
(THREE  
LEVEL)  
V
26  
25  
24  
23  
CCQ  
CY7B991  
CY7B992  
V
CCN  
SKEW  
SELECT  
MATRIX  
V
CCN  
3Q0  
3Q1  
3F0  
3F1  
4Q1  
10  
1Q0  
1Q1  
GND  
GND  
4Q0  
GND  
GND  
11  
12  
22  
21  
2Q0  
2Q1  
2F0  
2F1  
13  
14 15 16 17 18 19 20  
1Q0  
1Q1  
1F0  
1F1  
7B991–2  
7B991–1  
Pentium is a trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
November 1991 - Revised July 7, 1997  
CY7B991  
CY7B992  
Pin Definitions  
Signal  
Name  
I/O  
Description  
REF  
I
Reference frequency input. This input supplies the frequency and timing against which allfunctional  
variation is measured.  
FB  
I
PLL feedback input (typically connected to one of the eight outputs).  
Three-level frequency range select. See Table 1.  
Three-level function select inputs for output pair 1 (1Q0, 1Q1). See Table 2.  
Three-level function select inputs for output pair 2 (2Q0, 2Q1). See Table 2.  
Three-level function select inputs for output pair 3 (3Q0, 3Q1). See Table 2.  
Three-level function select inputs for output pair 4 (4Q0, 4Q1). See Table 2.  
Three-level select. See test mode section under the block diagram descriptions.  
Output pair 1. See Table 2.  
FS  
I
1F0, 1F1  
2F0, 2F1  
3F0, 3F1  
4F0, 4F1  
TEST  
I
I
I
I
I
1Q0, 1Q1  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
O
O
Output pair 2. See Table 2.  
O
Output pair 3. See Table 2.  
O
Output pair 4. See Table 2.  
V
V
PWR  
PWR  
PWR  
Power supply for output drivers.  
CCN  
CCQ  
Power supply for internal circuitry.  
GND  
Ground.  
(xF0, xF1) inputs. Table 2 below shows the nine possible out-  
Block Diagram Description  
put functions for each section as determined by the function  
select inputs. All times are measured with respect to the REF  
input assuming that the output connected to the FB input has  
Phase Frequency Detector and Filter  
These two blocks accept inputs from the reference frequency  
(REF) input and the feedback (FB) input and generate correc-  
tion information to control the frequency of the Voltage-Con-  
trolled Oscillator (VCO). These blocks, along with the VCO,  
form a Phase-Locked Loop (PLL) that tracks the incoming  
REF signal.  
0t selected.  
U
[1]  
Table 2. Programmable Skew Configurations  
Function Selects  
Output Functions  
1F1,2F1, 1F0,2F0, 1Q0,1Q1,  
3F1, 4F1 3F0, 4F0 2Q0, 2Q1 3Q0, 3Q1 4Q0, 4Q1  
VCO and Time Unit Generator  
LOW  
LOW  
LOW  
MID  
LOW  
MID  
–4t  
–3t  
–2t  
–1t  
Divide by 2 Divide by 2  
U
U
U
U
The VCO accepts analog control inputs from the PLL filter  
block and generates a frequency that is used by the time unit  
generator to create discrete time units that are selected in the  
skew select matrix. The operational range of the VCO is de-  
–6t  
–4t  
–2t  
–6t  
–4t  
–2t  
U
U
U
U
U
U
HIGH  
LOW  
MID  
termined by the FS control pin. The time unit (t ) is determined  
U
by the operating frequency of the device and the level of the  
FS pin as shown in Table 1.  
MID  
0t  
0t  
0t  
U
U
U
MID  
HIGH  
LOW  
MID  
+1t  
+2t  
+3t  
+4t  
+2t  
+4t  
+6t  
+2t  
+4t  
+6t  
U
U
U
U
U
U
U
U
U
U
[1]  
Table 1. Frequency Range Select and t Calculation  
HIGH  
HIGH  
U
f
(MHz)  
NOM  
1
tU = -----------------------  
NOM × N  
Approximate  
HIGH  
HIGH  
Divide by 4 Inverted  
f
Frequency(MHz)At  
[2, 3]  
Notes:  
FS  
Min. Max.  
where N =  
Which t = 1.0 ns  
U
1. For all three-state inputs, HIGH indicates a connection to VCC, LOW  
indicates a connection to GND, and MID indicates an open connection.  
Internal termination circuitry holds an unconnected input to VCC/2.  
2. The level to be set on FS is determined by the “normal” operating fre-  
quency (fNOM) of the VCO and Time Unit Generator (see Logic Block  
Diagram). Nominal frequency (fNOM) always appears at 1Q0 and the  
other outputs when they are operated in their undivided modes (see  
Table 2). The frequency appearing at the REF and FB inputs will be fNOM  
when the output connected to FB is undivided. The frequency of the REF  
and FB inputs will be fNOM/2 or fNOM/4 when the part is configured for a  
frequency multiplication by using a divided output as the FB input.  
3. When the FS pin is selected HIGH, the REF input must not transition  
upon power-up until VCC has reached 4.3V.  
LOW  
MID  
15  
25  
40  
30  
50  
80  
44  
26  
16  
22.7  
38.5  
62.5  
HIGH  
Skew Select Matrix  
The skew select matrix is comprised of four independent sec-  
tions. Each section has two low-skew, high-fanout drivers  
(xQ0, xQ1), and two corresponding three-level function select  
2
CY7B991  
CY7B992  
FBInput  
REFInput  
1Fx  
2Fx  
3Fx  
4Fx  
(N/A)  
LM  
– 6t  
– 4t  
– 3t  
U
U
U
LL  
LH  
LM  
(N/A)  
LH  
ML  
ML  
– 2t  
– 1t  
U
U
(N/A)  
MM  
MH  
HL  
MM  
(N/A)  
MH  
0t  
U
U
U
U
+1t  
+2t  
+3t  
HM  
(N/A)  
HH  
HL  
HM  
+4t  
+6t  
U
U
(N/A)  
(N/A)  
(N/A)  
LL/HH  
HH  
DIVIDED  
INVERT  
7B991–3  
[4]  
Figure 1. Typical Outputs with FB Connected to a Zero-Skew Output  
Ambient Temperature with  
Test Mode  
Power Applied ............................................ –55°C to +125°C  
Supply Voltage to Ground Potential ...............–0.5V to +7.0V  
DC Input Voltage............................................–0.5V to +7.0V  
Output Current into Outputs (LOW)............................. 64 mA  
The TEST input is a three-level input. In normal system oper-  
ation, this pin is connected to ground, allowing the  
CY7B991/CY7B992 to operate as explained briefly above (for  
testing purposes, any of the three-level inputs can have a re-  
movable jumper to ground, or be tied LOW through a 100Ω  
resistor. This will allow an external tester to change the state  
of these pins.)  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Latch-Up Current..................................................... >200 mA  
If the TEST input is forced to its MID or HIGH state, the device  
will operate with its internal phase locked loop disconnected,  
and input levels supplied to REF will directly control all outputs.  
Relative output to output functions are the same as in normal  
mode.  
Operating Range  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
V
CC  
In contrast with normal operation (TEST tied LOW). All outputs  
will function based only on the connection of their own function  
select inputs (xF0 and xF1) and the waveform characteristics  
of the REF input.  
0°C to +70°C  
5V ± 10%  
5V ± 10%  
5V ± 10%  
–40°C to +85°C  
–55°C to +125°C  
[5]  
Military  
Maximum Ratings  
Notes:  
4. FB connected to an output selected for “zero” skew (i.e., xF1 = xF0 =  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
MID).  
5. Indicates case temperature.  
Storage Temperature .................................–65°C to +150°C  
3
CY7B991  
CY7B992  
[6]  
Electrical Characteristics Over the Operating Range  
CY7B991  
CY7B992  
Min. Max.  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
V
Output HIGH Voltage  
V
V
V
V
= Min., I  
= Min., I  
= 16 mA  
=–40 mA  
2.4  
V
OH  
CC  
CC  
CC  
CC  
OH  
OH  
V
–0.75  
CC  
V
Output LOW Voltage  
= Min., I = 46 mA  
0.45  
V
OL  
OL  
= Min., I = 46 mA  
0.45  
OL  
V
V
V
V
V
Input HIGH Voltage  
(REF and FB inputs only)  
2.0  
V
V
1.35  
V
CC  
V
V
IH  
CC  
CC  
Input LOW Voltage  
(REF and FB inputs only)  
–0.5  
0.8  
–0.5  
1.35  
IL  
Three-Level Input HIGH  
Voltage (Test, FS, xFn)  
Min. V Max.  
V
– 0.85  
V
V
– 0.85  
V
CC  
V
IHH  
IMM  
ILL  
CC  
CC  
CC  
CC  
[7]  
Three-Level Input MID  
Voltage (Test, FS, xFn)  
Min. V Max.  
V
/2 –  
V
/2 +  
V
/2 –  
V /2 +  
CC  
500 mV  
V
CC  
CC  
CC  
500 mV  
CC  
[7]  
500 mV  
500 mV  
Three-Level Input LOW  
Voltage (Test, FS, xFn)  
Min. V Max.  
0.0  
0.85  
0.0  
0.85  
V
CC  
[7]  
I
I
I
I
I
I
I
InputHIGH LeakageCurrent  
(REF and FB inputs only)  
V
V
V
V
V
V
= Max., V = Max.  
10  
10  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
IH  
CC  
CC  
IN  
Input LOW Leakage Current  
(REF and FB inputs only)  
= Max., V = 0.4V  
–500  
–50  
–500  
50  
IL  
IN  
Input HIGH Current  
(Test, FS, xFn)  
= V  
CC  
200  
50  
200  
50  
IHH  
IMM  
ILL  
IN  
Input MID Current  
(Test, FS, xFn)  
= V /2  
IN  
CC  
Input LOW Current  
(Test, FS, xFn)  
= GND  
–200  
–250  
–200  
N/A  
IN  
Output Short Circuit  
= Max., V  
OUT  
OS  
CCQ  
CC  
[8]  
Current  
= GND (25°C only)  
Operating Current Used by  
Internal Circuitry  
V
= V  
=
Com’l  
85  
90  
85  
90  
CCN  
CCQ  
Max., All Input  
Selects Open  
Mil/Ind  
I
Output Buffer Current per  
Output Pair  
V
= V = Max.,  
CCQ  
= 0 mA  
14  
19  
mA  
CCN  
CCN  
[9]  
I
OUT  
Input Selects Open, f  
MAX  
PD  
Power Dissipation per  
Output Pair  
V
= V  
= 0 mA  
= Max.,  
78  
104[11]  
mW  
CCN  
CCQ  
[10]  
I
OUT  
Input Selects Open, f  
MAX  
Notes:  
6. See the last page of this specification for Group A subgroup testing information.  
7. These inputs are normally wired to VCC, GND, or left unconnected (actual threshold voltages vary as a percentage of VCC). Internal termination resistors hold  
unconnected inputs at VCC/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional tLOCK time  
before all datasheet limits are achieved.  
8. CY7B991 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle. Room temperature only. CY7B992 outputs  
should not be shorted to GND. Doing so may cause permanent damage.  
9. Total output current per output pair can be approximated by the following expression that includes device current plus load current:  
CY7B991: ICCN = [(4 + 0.11F) + [((835 – 3F)/Z) + (.0022FC)]N] x 1.1  
CY7B992: ICCN = [(3.5+ 0.17F) + [((1160 – 2.8F)/Z) + (.0025FC)]N] x 1.1  
Where  
F = frequency in MHz  
C = capacitive load in pF  
Z = line impedance in ohms  
N = number of loaded outputs; 0, 1, or 2  
FC = F < C  
10. Total power dissipation per output pair can be approximated by the following expression that includes device power dissipation plus power dissipation due to  
the load circuit:  
CY7B991: PD = [(22 + 0.61F) + [((1550 – 2.7F)/Z) + (.0125FC)]N] x 1.1  
CY7B992: PD = [(19.25+ 0.94F) + [((700 + 6F)/Z) + (.017FC)]N] x 1.1  
See note 9 for variable definition.  
11. CMOS output buffer current and power dissipation specified at 50-MHz reference frequency.  
4
CY7B991  
CY7B992  
Capacitance[12]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
C
Input Capacitance  
T = 25°C, f = 1 MHz, V = 5.0V  
10  
pF  
IN  
A
CC  
Note:  
12. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
AC Test Loads and Waveforms  
5V  
3.0V  
2.0V  
=1.5V  
0.8V  
2.0V  
=1.5V  
0.8V  
R1=130  
R2=91  
R1  
R2  
V
th  
V
th  
C = 50 pF (C =30 pF for –2 and –5 devices)  
L
L
0.0V  
C
(Includes fixture and probe capacitance)  
L
1ns  
1ns  
7B991–4  
7B991–5  
TTL ACTest Load (CY7B991)  
TTL Input Test Waveform (CY7B991)  
V
CC  
V
CC  
R1=100  
R2=100  
80%  
80%  
= V /2  
20%  
R1  
=30 pF for –2 and –5 devices)  
C = 50 pF (C  
L
L
V
th  
= V /2  
V
CC  
th  
CC  
(Includes fixture and probe capacitance)  
20%  
0.0V  
C
L
R2  
3ns  
3ns  
7B991–6  
7B991–7  
CMOS AC Test Load (CY7B992)  
CMOS Input Test Waveform (CY7B992)  
5
CY7B991  
CY7B992  
[2, 13]  
Switching Characteristics Over the Operating Range  
[14]  
[14]  
CY7B991–2  
CY7B992–2  
Parameter  
Description  
FS = LOW  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit  
[1, 2]  
[1, 2]  
f
Operating Clock  
15  
25  
30  
50  
80  
15  
30  
50  
MHz  
NOM  
Frequency in MHz  
FS = MID  
25  
40  
[1, 2 , 3]  
[15]  
FS = HIGH  
40  
80  
t
t
t
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
5.0  
5.0  
5.0  
ns  
ns  
RPWH  
RPWL  
U
5.0  
See Table 1  
Zero Output Matched-Pair Skew  
0.05  
0.20  
0.05  
0.20  
ns  
SKEWPR  
[16, 17]  
(XQ0, XQ1)  
[16, 18,19]  
t
t
Zero Output Skew (All Outputs)  
0.1  
0.25  
0.5  
0.1  
0.25  
0.5  
ns  
ns  
SKEW0  
Output Skew (Rise-Rise, Fall-Fall, Same  
0.25  
0.25  
SKEW1  
[16, 20]  
Class Outputs)  
t
t
t
Output Skew (Rise-Fall, Nominal-Inverted,  
Divided-Divided)  
0.3  
0.25  
0.5  
0.5  
0.5  
0.9  
0.3  
0.25  
0.5  
0.5  
0.5  
0.7  
ns  
ns  
ns  
SKEW2  
SKEW3  
SKEW4  
[16, 20]  
Output Skew (Rise-Rise, Fall-Fall, Different  
[16, 20]  
Class Outputs)  
Output Skew (Rise-Fall, Nominal-Divided,  
[16, 20]  
Divided-Inverted)  
[14, 21]  
t
t
t
t
t
t
t
t
t
Device-to-Device Skew  
0.75  
+0.25  
+0.65  
2.0  
0.75  
+0.25  
+0.5  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
DEV  
Propagation Delay, REF Rise to FB Rise  
–0.25  
–0.65  
0.0  
0.0  
–0.25  
0.5  
0.0  
0.0  
PD  
[22]  
Output Duty Cycle Variation  
ODCV  
PWH  
PWL  
ORISE  
OFALL  
LOCK  
JR  
[23, 24]  
Output HIGH Time Deviation from 50%  
[23, 24]  
Output LOW Time Deviation from 50%  
1.5  
3.0  
[23, 25]  
Output Rise Time  
0.15  
0.15  
1.0  
1.0  
1.2  
0.5  
0.5  
2.0  
2.0  
2.5  
[23, 25]  
Output Fall Time  
1.2  
2.5  
[26]  
PLL Lock Time  
0.5  
0.5  
[14]  
Cycle-to-Cycle Output  
Jitter  
RMS  
25  
25  
[14]  
Peak-to-Peak  
200  
200  
Note:  
13. Test measurement levels for the CY7B991 are TTL levels (1.5V to 1.5V). Test measurement levels for the CY7B992 are CMOS levels (VCC/2 to VCC/2). Test  
conditions assume signal transition times of 2 ns or less and output loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
14. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
15. Except as noted, all CY7B992–2 and –5 timing parameters are specified to 80-MHz with a 30-pF load.  
16. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same tU delay has been selected when all are  
loaded with 50 pF and terminated with 50to 2.06V (CY7B991) or VCC/2 (CY7B992).  
17. tSKEWPR is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0tU.  
18. tSKEW0 is defined as the skew between outputs when they are selected for 0tU. Other outputs are divided or inverted but not shifted.  
19. CL=0 pF. For CL=30 pF, tSKEW0=0.35 ns.  
20. There are three classes of outputs: Nominal (multiple of tU delay), Inverted (4Q0 and 4Q1 only with 4F0 = 4F1 = HIGH), and Divided (3Qx and 4Qx only in Divide-by-2  
or Divide-by-4 mode).  
21. tDEV is the output-to-output skew between any two devices operating under the same conditions (VCC ambient temperature, air flow, etc.)  
22. tODCV is the deviation of the output from a 50% duty cycle. Output pulse width variations are included in tSKEW2 and tSKEW4 specifications.  
23. Specified with outputs loaded with 30 pF for the CY7B99X–2 and –5 devices and 50 pF for the CY7B99X–7 devices. Devices are terminated through 50to  
2.06V (CY7B991) or VCC/2 (CY7B992).  
24. tPWH is measured at 2.0V for the CY7B991 and 0.8 VCC for the CY7B992. tPWL is measured at 0.8V for the CY7B991 and 0.2 VCC for the CY7B992.  
25. tORISE and tOFALL measured between 0.8V and 2.0V for the CY7B991 or 0.8VCC and 0.2VCC for the CY7B992.  
26. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after VCC is stable and within normal operating limits. This parameter  
is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.  
6
CY7B991  
CY7B992  
[2, 13]  
Switching Characteristics Over the Operating Range  
(continued)  
CY7B991–5  
CY7B992–5  
Typ.  
Parameter  
Description  
FS = LOW  
Min.  
15  
Typ.  
Max.  
30  
Min.  
15  
Max.  
30  
Unit  
[1, 2]  
[1, 2]  
f
Operating Clock  
MHz  
NOM  
Frequency in MHz  
FS = MID  
25  
50  
25  
50  
[1, 2 , 3]  
[15]  
FS = HIGH  
40  
80  
40  
80  
t
t
t
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
RPWH  
RPWL  
U
See Table 1  
Zero Output Matched-Pair Skew  
0.1  
0.25  
0.1  
0.25  
ns  
SKEWPR  
[16, 17]  
(XQ0, XQ1)  
[16, 18]  
t
t
Zero Output Skew (All Outputs)  
0.25  
0.6  
0.5  
0.7  
0.25  
0.6  
0.5  
0.7  
ns  
ns  
SKEW0  
Output Skew (Rise-Rise, Fall-Fall, Same  
SKEW1  
[16, 20]  
Class Outputs)  
t
t
t
Output Skew (Rise-Fall, Nominal-Inverted,  
Divided-Divided)  
0.5  
0.5  
0.5  
1.0  
0.7  
1.0  
0.6  
0.5  
0.6  
1.5  
0.7  
1.7  
ns  
ns  
ns  
SKEW2  
SKEW3  
SKEW4  
[16, 20]  
Output Skew (Rise-Rise, Fall-Fall, Different  
[16, 20]  
Class Outputs)  
Output Skew (Rise-Fall, Nominal-Divided,  
[16, 20]  
Divided-Inverted)  
[14, 21]  
t
t
t
t
t
t
t
t
t
Device-to-Device Skew  
1.25  
+0.5  
+1.0  
2.5  
3
1.25  
+0.5  
+1.2  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
DEV  
Propagation Delay, REF Rise to FB Rise  
–0.5  
–1.0  
0.0  
0.0  
–0.5  
–1.2  
0.0  
0.0  
PD  
[22]  
Output Duty Cycle Variation  
ODCV  
PWH  
PWL  
ORISE  
OFALL  
LOCK  
JR  
[23, 24]  
Output HIGH Time Deviation from 50%  
[23, 24]  
Output LOW Time Deviation from 50%  
4.0  
[23, 25]  
Output Rise Time  
0.15  
0.15  
1.0  
1.0  
1.5  
1.5  
0.5  
25  
0.5  
0.5  
2.0  
2.0  
3.5  
[23, 25]  
Output Fall Time  
3.5  
[26]  
PLL Lock Time  
0.5  
[14]  
Cycle-to-Cycle Output  
Jitter  
RMS  
25  
[14]  
Peak-to-Peak  
200  
200  
7
CY7B991  
CY7B992  
[2, 13]  
Switching Characteristics Over the Operating Range  
(continued)  
CY7B991–7  
CY7B992–7  
Typ.  
Parameter  
Description  
Operating Clock FS = LOW  
Min.  
Typ.  
Max.  
30  
Min.  
15  
Max.  
Unit  
[1, 2]  
[1, 2]  
f
15  
25  
30  
50  
MHz  
NOM  
Frequency in MHz  
[1, 2]  
FS = MID  
50  
25  
[15]  
FS = HIGH  
40  
80  
40  
80  
t
t
t
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
RPWH  
RPWL  
U
See Table 1  
Zero Output Matched-Pair Skew  
0.1  
0.25  
0.1  
0.25  
ns  
SKEWPR  
[16, 17]  
(XQ0, XQ1)  
[16, 18]  
t
t
Zero Output Skew (All Outputs)  
0.3  
0.6  
0.75  
1.0  
0.3  
0.6  
0.75  
1.0  
ns  
ns  
SKEW0  
Output Skew (Rise-Rise, Fall-Fall, Same  
SKEW1  
[16, 20]  
Class Outputs)  
t
t
t
Output Skew (Rise-Fall, Nominal-Inverted,  
Divided-Divided)  
1.0  
0.7  
1.2  
1.5  
1.2  
1.7  
1.0  
0.7  
1.2  
1.5  
1.2  
1.7  
ns  
ns  
ns  
SKEW2  
SKEW3  
SKEW4  
[16, 20]  
Output Skew (Rise-Rise, Fall-Fall, Different  
[16, 20]  
Class Outputs)  
Output Skew (Rise-Fall, Nominal-Divided,  
[16, 20]  
Divided-Inverted)  
[14, 21]  
t
t
t
t
t
t
t
t
t
Device-to-Device Skew  
1.65  
+0.7  
+1.2  
3
1.65  
+0.7  
+1.5  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
DEV  
Propagation Delay, REF Rise to FB Rise  
–0.7  
–1.2  
0.0  
0.0  
0.7  
1.5  
0.0  
0.0  
PD  
[22]  
Output Duty Cycle Variation  
ODCV  
PWH  
PWL  
ORISE  
OFALL  
LOCK  
JR  
[23, 24]  
Output HIGH Time Deviation from 50%  
[23, 24]  
Output LOW Time Deviation from 50%  
3.5  
2.5  
2.5  
0.5  
25  
5.5  
[23, 25]  
Output Rise Time  
0.15  
0.15  
1.5  
1.5  
0.5  
0.5  
3.0  
3.0  
5.0  
[23, 25]  
Output Fall Time  
5.0  
[26]  
PLL Lock Time  
0.5  
[14]  
Cycle-to-Cycle Output  
Jitter  
RMS  
25  
[14]  
Peak-to-Peak  
200  
200  
8
CY7B991  
CY7B992  
AC Timing Diagrams  
t
t
RPWL  
REF  
t
RPWH  
REF  
t
t
ODCV  
PD  
t
ODCV  
FB  
Q
t
JR  
t
t
t
t
SKEWPR,  
SKEW0,1  
SKEWPR,  
SKEW0,1  
OTHERQ  
t
SKEW2  
t
SKEW2  
INVERTED Q  
t
SKEW3,4  
t
t
SKEW3,4  
t
SKEW3,4  
REF DIVIDED BY 2  
REF DIVIDED BY 4  
t
SKEW1,3, 4  
SKEW2,4  
7B991–8  
9
CY7B991  
CY7B992  
Operational Mode Descriptions  
REF  
LOAD  
Z
Z
0
L1  
L2  
FB  
SYSTEM  
CLOCK  
REF  
FS  
LOAD  
LOAD  
4Q0  
4Q1  
4F0  
4F1  
0
3Q0  
3Q1  
3F0  
3F1  
L3  
L4  
2F0  
2F1  
2Q0  
2Q1  
Z
0
1F0  
1F1  
1Q0  
1Q1  
LOAD  
TEST  
Z
0
LENGTH L1 = L2 = L3 = L4  
7B991–9  
Figure 2. Zero-Skew and/or Zero-Delay Clock Driver  
Figure 2 shows the PSCB configured as a zero-skew clock  
buffer. In this mode the 7B991/992 can be used as the basis  
for a low-skew clock distribution tree. When all of the function  
select inputs (xF0, xF1) are left open, the outputs are aligned  
and may each drive a terminated transmission line to an inde-  
pendent load. The FB input can be tied to any output in this  
configuration and the operating frequency range is selected  
with the FS pin. The low-skew specification, coupled with the  
ability to drive terminated transmission lines (with impedances  
as low as 50 ohms), allows efficient printed circuit board de-  
sign.  
REF  
LOAD  
Z
0
L1  
L2  
FB  
REF  
FS  
SYS–  
TEM  
CLOCK  
LOAD  
LOAD  
4Q0  
4Q1  
4F0  
4F1  
Z
0
3Q0  
3Q1  
3F0  
3F1  
L3  
L4  
2F0  
2F1  
2Q0  
2Q1  
Z
0
1F0  
1F1  
1Q0  
1Q1  
LOAD  
TEST  
Z
0
LENGTH L1 = L2  
L3 < L2 by 6 inches  
L4 > L2 by 6 inches  
7B991–10  
Figure 3. Programmable-Skew Clock Driver  
Figure 3 shows a configuration to equalize skew between met-  
al traces of different lengths. In addition to low skew between  
outputs, the PSCB can be programmed to stagger the timing  
of its outputs. The four groups of output pairs can each be  
programmed to different output timing. Skew timing can be  
adjusted over a wide range in small increments with the appro-  
priate strapping of the function select pins. In this configuration  
the 4Q0 output is fed back to FB and configured for zero skew.  
The other three pairs of outputs are programmed to yield dif-  
ferent skews relative to the feedback. By advancing the clock  
signal on the longer traces or retarding the clock signal on  
shorter traces, all loads can receive the clock pulse at the  
same time.  
In this illustration the FB input is connected to an output with  
0-ns skew (xF1, xF0 = MID) selected. The internal PLL syn-  
chronizes the FB and REF inputs and aligns their rising edges  
to insure that all outputs have precise phase alignment.  
Clock skews can be advanced by ±6 time units (t ) when using  
U
an output selected for zero skew as the feedback. A wider range of  
delays is possible if the output connected to FB is also skewed.  
Since “Zero Skew”, +t , and –t are defined relative to output  
U
U
groups, and since the PLL aligns the rising edges of REF and FB,  
it is possible to create wider output skews by proper selection of the  
xFn inputs. For example a +10 t between REF and 3Qx can be  
U
achieved by connecting 1Q0 to FB and setting 1F0 = 1F1 = GND,  
10  
CY7B991  
CY7B992  
3F0 = MID, and 3F1 = High. (Since FB aligns at –4 t and 3Qx  
form at these outputs. Note that the 20- and 40-MHz clocks fall  
U
skews to +6 t , a total of +10 t skew is realized.) Many other con-  
figurations can be realized by skewing both the output used as the  
FB input and skewing the other outputs.  
simultaneously and are out of phase on their rising edge. This  
U
U
1
will allow the designer to use the rising edges of the  
fre-  
2
1
quency and  
frequency outputs without concern for ris-  
4
ing-edge skew. The 2Q0, 2Q1, 1Q0, and 1Q1 outputs run at  
80 MHz and are skewed by programming their select inputs  
accordingly. Note that the FS pin is wired for 80-MHz operation  
because that is the frequency of the fastest output.  
REF  
FB  
REF  
REF  
FS  
4Q0  
4Q1  
4F0  
4F1  
FB  
REF  
20 MHz  
FS  
3Q0  
3Q1  
3F0  
3F1  
10 MHz  
4Q0  
4F0  
4Q1  
4F1  
2Q0  
2Q1  
2F0  
2F1  
5 MHz  
3Q0  
3Q1  
3F0  
3F1  
1Q0  
1Q1  
1F0  
1F1  
20 MHz  
2Q0  
2Q1  
2F0  
2F1  
TEST  
1F0  
1F1  
1Q0  
1Q1  
7B991–11  
Figure 4. Inverted Output Connections  
TEST  
7B991–13  
Figure 4 shows an example of the invert function of the PSCB.  
In this example the 4Q0 output used as the FB input is pro-  
grammed for invert (4F0 = 4F1 = HIGH) while the other three  
pairs of outputs are programmed for zero skew. When 4F0 and  
4F1 are tied high, 4Q0 and 4Q1 become inverted zero phase  
outputs. The PLL aligns the rising edge of the FB input with the  
rising edge of the REF. This causes the 1Q, 2Q, and 3Q out-  
puts to become the “inverted” outputs with respect to the REF  
input. By selecting which output is connect to FB, it is possible  
to have 2 inverted and 6 non-inverted outputs or 6 inverted and  
2 non-inverted outputs. The correct configuration would be de-  
termined by the need for more (or fewer) inverted outputs. 1Q,  
2Q, and 3Q outputs can also be skewed to compensate for  
varying trace delays independent of inversion on 4Q.  
Figure 6. Frequency Divider Connections  
Figure 6 demonstrates the PSCB in a clock divider application.  
2Q0 is fed back to the FB input and programmed for zero  
skew. 3Qx is programmed to divide by four. 4Qx is pro-  
grammed to divide by two. Note that the falling edges of the  
4Qx and 3Qx outputs are aligned. This allows use of the rising  
1
1
edges of the frequency and frequency without concern  
2
4
for skew mismatch. The 1Qx outputs are programmed to zero  
skew and are aligned with the 2Qx outputs. In this example,  
the FS input is grounded to configure the device in the 15- to  
30-MHz range since the highest frequency output is running at  
20 MHz.  
Figure 7 shows some of the functions that are selectable on  
the 3Qx and 4Qx outputs. These include inverted outputs and  
outputs that offer divide-by-2 and divide-by-4 timing. An invert-  
ed output allows the system designer to clock different sub-  
systems on opposite edges, without suffering from the pulse  
asymmetry typical of non-ideal loading. This function allows  
the two subsystems to each be clocked 180 degrees out of  
phase, but still to be aligned within the skew spec.  
REF  
FB  
20 MHz  
REF  
FS  
40 MHz  
4Q0  
4Q1  
4F0  
4F1  
The divided outputs offer a zero-delay divider for portions of  
the system that need the clock to be divided by either two or  
four, and still remain within a narrow skew of the “1X” clock.  
Without this feature, an external divider would need to be add-  
ed, and the propagation delay of the divider would add to the  
skew between the different clock signals.  
20 MHz  
80 MHz  
3Q0  
3Q1  
3F0  
3F1  
2F0  
2F1  
2Q0  
2Q1  
1Q0  
1Q1  
1F0  
1F1  
These divided outputs, coupled with the Phase Locked Loop,  
allow the PSCB to multiply the clock rate at the REF input by  
either two or four. This mode will enable the designer to dis-  
tribute a low-frequency clock between various portions of the  
system, and then locally multiply the clock rate to a more suit-  
able frequency, while still maintaining the low-skew character-  
istics of the clock driver. The PSCB can perform all of the func-  
tions described above at the same time. It can multiply by two  
and four or divide by two (and four) at the same time that it is  
shifting its outputs over a wide range or maintaining zero skew  
between selected outputs.  
TEST  
7B991–12  
Figure 5. Frequency Multiplier with Skew Connections  
Figure 5 illustrates the PSCB configured as a clock multiplier.  
The 3Q0 output is programmed to divide by four and is fed  
back to FB. This causes the PLL to increase its frequency until  
the 3Q0 and 3Q1 outputs are locked at 20 MHz while the 1Qx  
and 2Qx outputs run at 80 MHz. The 4Q0 and 4Q1 outputs are  
programmed to divide by two, which results in a 40-MHz wave-  
11  
CY7B991  
CY7B992  
REF  
LOAD  
Z
0
80-MHz  
INVERTED  
FB  
REF  
FS  
20–MHz  
DISTRIBUTION  
CLOCK  
LOAD  
LOAD  
4Q0  
4Q1  
4F0  
4F1  
20-MHz  
Z
0
3Q0  
3Q1  
2Q0  
2Q1  
3F0  
3F1  
2F0  
2F1  
80-MHz  
ZERO SKEW  
Z
0
1Q0  
1Q1  
1F0  
LOAD  
80-MHz  
SKEWED –3.125 ns (–4tU)  
1F1  
TEST  
Z
0
7B991–14  
Figure 7. Multi-Function Clock Driver  
LOAD  
LOAD  
REF  
Z
0
L1  
FB  
SYSTEM  
CLOCK  
REF  
FS  
4F0  
4F1  
L2  
Z
0
4Q0  
4Q1  
3Q0  
3Q1  
3F0  
3F1  
LOAD  
L3  
2F0  
2F1  
2Q0  
2Q1  
Z
0
1F0  
1F1  
1Q0  
1Q1  
L4  
FB  
REF  
TEST  
FS  
LOAD  
4Q0  
4Q1  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
Z
0
3Q0  
3Q1  
2Q0  
2Q1  
LOAD  
1F0  
1Q0  
1Q1  
1F1  
TEST  
7B991–15  
Figure 8. Board-to-Board Clock Distribution  
Figure 8 shows the CY7B991/992 connected in series to con-  
struct a zero-skew clock distribution tree between boards. De-  
lays of the downstream clock buffers can be programmed to  
compensate for the wire length (i.e., select negative skew  
equal to the wire delay) necessary to connect them to the mas-  
ter clock source, approximating a zero-delay clock tree. Cas-  
caded clock buffers will accumulate low-frequency jitter be-  
cause of the non-ideal filtering characteristics of the PLL filter.  
It is recommended that not more than two clock buffers be  
connected in series.  
12  
CY7B991  
CY7B992  
Ordering Information  
Accuracy  
Package  
Name  
Operating  
Range  
(ps)  
250  
500  
Ordering Code  
Package Type  
CY7B991–2JC  
CY7B991–5JC  
CY7B991–5JI  
CY7B991–7JC  
CY7B991–7JI  
CY7B991–7LMB  
CY7B992–2JC  
CY7B992–5JC  
CY7B992–5JI  
CY7B992–7JC  
CY7B992–7JI  
CY7B992–7LMB  
J65  
J65  
J65  
J65  
J65  
L55  
J65  
J65  
J65  
J65  
J65  
L55  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Industrial  
750  
Commercial  
Industrial  
32-Pin Rectangular Leadless Chip Carrier Military  
250  
500  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
Commercial  
Commercial  
Industrial  
750  
Commercial  
Industrial  
32-Pin Rectangular Leadless Chip Carrier Military  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Parameter  
Subgroups  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
V
OH  
V
OL  
V
IH  
V
IL  
V
IHH  
V
IMM  
V
ILL  
IH  
I
I
IL  
I
IHH  
I
IMM  
I
ILL  
I
CCQ  
I
CCN  
Document #: 38–00513–A  
13  
CY7B991  
CY7B992  
Package Diagrams  
32-Lead Plastic Leaded Chip Carrier  
32-Pin Rectangular Leadless Chip Carrier  
MIL-STD-1835 C-12  
© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

5962-9311501MXX

9-Bit Bus Transceiver
ETC

5962-9311601MXA

DUAL 9-BIT BOUNDARY SCAN DRIVER, TRUE OUTPUT, CDFP56, 0.025 INCH PITCH, CERPACK-56
TI

5962-9311601MXA

Boundary Scan Bus Driver, SCAN/JTAG/3J Series, 2-Func, 9-Bit, True Output, CMOS, CDFP56, CERAMIC, FP-56
FAIRCHILD

5962-9311601MXA

IC DUAL 9-BIT BOUNDARY SCAN DRIVER, TRUE OUTPUT, CDFP56, 0.025 INCH PITCH, CERPACK-56, Bus Driver/Transceiver
NSC

5962-9311601MXX

DUAL 9-BIT BOUNDARY SCAN DRIVER, TRUE OUTPUT, CDFP56, 0.025 INCH PITCH, CERPACK-56
TI

5962-9311601MXX

Boundary Scan Bus Driver, SCAN/JTAG/3J Series, 2-Func, 9-Bit, True Output, CMOS, CDFP56, CERAMIC, FP-56
FAIRCHILD

5962-9311701M2A

Operational Amplifier, 1 Func, 19000uV Offset-Max
WEDC

5962-9311701M2X

Single Video Amplifier
ETC

5962-9311701MEA

IC OP-AMP, Operational Amplifier
WEDC

5962-9311701MEX

Single Video Amplifier
ETC

5962-9311801MXX

9-Bit D-Type Latch
ETC

5962-9311901MYA

IC 2 A SWITCHING REGULATOR, 100 kHz SWITCHING FREQ-MAX, MBFM2, METAL CAN, TO-3, 4 PIN, Switching Regulator or Controller
Linear