CN8380EPF [CONEXANT]

integrated quad line interface unit unit for both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications; 集成的四线接口单元部为1.544 Mbps的(T1)和2.048 Mbps的( E1)的应用程序
CN8380EPF
型号: CN8380EPF
厂家: CONEXANT SYSTEMS, INC    CONEXANT SYSTEMS, INC
描述:

integrated quad line interface unit unit for both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications
集成的四线接口单元部为1.544 Mbps的(T1)和2.048 Mbps的( E1)的应用程序

文件: 总91页 (文件大小:813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Information  
This document contains information on a product under development. The parametric information  
contains target parameters that are subject to change.  
CN8380  
Quad T1/E1 Line Interface  
The CN8380 is a fully integrated quad line interface unit for both 1.544 Mbps (T1) and  
2.048 Mbps (E1) applications. It is designed to complement T1/E1 framers or operate as  
a stand-alone line interface to synchronous or plesiochronous mappers and  
multiplexers. The device can be controlled through a host mode serial port or by  
hardware mode operation, where device control and status are obtained through  
non-multiplexed dedicated pins. Many of these pins are also dedicated to individual  
channels for maximum flexibility and for use in redundant systems. Integrated in the  
CN8380 device is a clock rate adapter (CLAD), which provides various low-jitter  
programmable system clock outputs. The receive section of the CN8380 is designed to  
recover encoded signals from lines having up to 12 dB of attenuation. The transmit  
section consists of a programmable, precision pulse shaper.  
Distinguishing Features  
Four T1/E1 short haul line interfaces  
in a single chip  
On-chip CLAD /system synchronizer  
Digital (crystal-less) jitter attenuators  
selectable for transmitter/receiver on  
each line interface  
Meets AT&T pub 62411 jitter specs  
Meets ITU G.703, ETS 300 011  
(PSTNX) Connections  
AMI/B8ZS/HDB3 line codes  
Host serial port or hardware only  
control modes  
On-chip receive clock recovery  
Common transformers for 120/75 Ω  
E1 and 100 T1  
Low-power 3.3 V power supply  
Transmitter performance monitor  
Compatible with latest ANSI, ITU-T,  
and ETSI standards  
Functional Block Diagram  
128-pin MQFP package  
Remote and local loopbacks  
Clock  
and  
Data  
RPOSO[1]  
RTIP[1]  
Re-  
ceiver  
ZCS  
Decode  
RLOS  
Detect  
RNEGO[1]  
RCKO[1]  
RRING[1]  
Recovery  
Applications  
Jitter  
Attenuator  
SONET/SDH multiplexers  
T3 and E3/E4 (PDH) multiplexers  
ATM multiplexers  
Voice compression and voice  
processing equipment  
WAN routers and bridges  
Digital loop carrier terminals (DLC)  
HDSL terminal units  
TPOSI[1]  
TNEGI[1]  
TCLK[1]  
XTIP[1]  
Pulse  
Shaping  
ZCS  
Decode  
Driver  
TAIS  
XRING[1]  
LIU #1  
LIU #2  
LIU #3  
LIU #4  
Remote concentrators  
JTAG  
Test Port  
Clock Rate Adapter  
Control  
47  
Central office equipment  
PBXs and rural switches  
PCM/voice channel banks  
Digital access and cross-connect  
systems (DACS)  
4
5
JTAG  
Test  
Signals  
Control and Host  
Alarm Signals Serial  
10 MHz Variable 1.544 2.048 32.768 8 kHz–32 MHz  
Fixed Reference MHz MHz MHz Selectable  
Port Reference  
8380_001  
Data Sheet  
Advance Information  
N8380DSA  
April 26, 1999  
Ordering Information  
Model Number  
Package  
Operating Temperature  
CN8380EPF  
CN8398EVM  
128-pin MQFP  
–40 °C to +85 °C  
BT00–D660–001  
Revision History  
Revision  
Level  
Advance  
Date  
Description  
A
April 26, 1999  
Created  
Information provided by Conexant Systems, Inc. (Conexant) is believed to be accurate and reliable. However, no responsibility is  
assumed by Conexant for its use, nor any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent rights of Conexant other than for circuitry embodied in Conexant  
products. Conexant reserves the right to change circuitry at any time without notice. This document is subject to change without  
notice.  
Conexant and “What’s Next in Communications Technologies” are trademarks of Conexant Systems, Inc.  
Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered  
trademarks of their respective companies. All other marks mentioned herein are the property of their respective holders.  
© 1999 Conexant Systems, Inc.  
Printed in U.S.A.  
All Rights Reserved  
Reader Response: To improve the quality of our publications, we welcome your feedback. Please send comments or  
suggestions via e-mail to Conexant Reader Response@conexant.com. Sorry, we can't answer your technical  
questions at this address. Please contact your local Conexant sales office or local field applications engineer if you  
have technical questions.  
N8380DSA  
Conexant  
Advance Information  
CN8398EVM Octal T1/E1 Evaluation Module  
Eight RJ48C T1 or E1 Line Connections  
CN8380 Quad T1/E1 LIU  
CN8380 Quad T1/E1 LIU  
Microprocessor  
Control  
CN8398 Octal T1/E1 Framer  
Local PCM Highway (i.e., 2 @ 8192 kbps)  
8380_002  
Contact a Conexant representative for EVM availability and price.  
Detailed Feature Summary  
Interface Compatibility  
Line Codes  
Programmable input timing  
reference:  
T1.102–1993  
G.703 at 1.544 or 2.048 Mbps  
ITU-T Recommendation I.431  
Bipolar alternate mark inversion line  
coding  
Optional zero code suppression:  
Receive recovered clock from any  
channel  
Internal clock (REFCKI)  
CLADI  
Independent transmit and receive  
T1: B8ZS  
E1: HDB3  
Receive Line Interface  
Subrate CLADI timing reference:  
Line rate ÷2N, N = 0 to 7  
References as low as 8 kHz  
External Termination  
Equalizer compensation for – 20 dB  
bridged monitor levels  
Loopbacks  
Host Serial Interface  
Remote loopback towards line  
+ 3 dB to –12 dB receiver sensitivity  
With or without JAT  
Retains BPV transparency  
Compatible with existing framers  
Compatible with microprocessor  
serial ports  
Transmit Line Interface  
Local loopback towards system  
Pulse shapes for 0–655 ft., in 133 ft.  
steps (T1 DSX1)  
External termination for improved  
return loss  
Line driver enable/disable for  
protection switching  
Output short circuit protection (for  
BABT applications)  
Analog line loopback  
Local digital loopback  
Bit rates up to 8 Mbps  
Simultaneous local and remote line  
loopbacks  
In-Service Performance Monitoring  
Transmit alarm detectors:  
Loss of Transmit Clock (TLOC)  
Transmit Short Circuit (TSHORT)  
Clock Rate Adapter  
Outputs jitter attenuated line rate  
clock  
Receive alarm detectors:  
Loss of Signal (RLOS)  
Loss of Analog Input (RALOS)  
Bipolar/Line Code Violations  
Jitter Attenuator Elastic Store  
CLK1544 = 1544 k (T1)  
CLK2048 = 2048 k (E1)  
Receive or transmit direction  
8-, 16-, 32-, 64-, or 128-bit depth  
Automatic and manual centering  
CLAD output supports 14 output  
clock frequencies: 8 kHz to  
32,768 kHz  
Automatic and on-demand transmit  
alarms:  
AIS following TLOC  
Automatic AIS clock switching  
N8380DSA  
Conexant  
Advance Information  
N8380DSA  
Conexant  
Advance Information  
Table of Contents  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i  
1.0  
2.0  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Circuit Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.2 Configuration and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
Hardware Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Host Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Host Serial Control Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.2.4.1  
2.2.4.2  
2.2.4.3  
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Hard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Soft Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
2.3.1  
Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
2.3.1.1  
2.3.1.2  
2.3.1.3  
2.3.1.4  
Raw Receive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Bridge Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Loss Of Signal Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
2.3.2  
Clock Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
2.3.2.1  
2.3.2.2  
Phase Lock Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
2.3.3  
2.3.4  
2.3.5  
Receive Jitter Attenuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
RZCS Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Receive Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
2.3.5.1  
2.3.5.2  
Bipolar Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Unipolar Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
N8380DSA  
Conexant  
Advance Information  
v
Table of Contents  
CN8380  
Quad T1/E1 Line Interface  
2.4 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.4.1  
Transmit Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
2.4.1.1  
2.4.1.2  
Bipolar Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Unipolar Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
2.4.2  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
TZCS Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Transmit Jitter Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
All 1s AIS Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Pulse Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
2.4.6.1  
2.4.6.2  
Transmit Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
2.4.7  
Transmitter Output Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
2.4.7.1  
2.4.7.2  
Short Circuit Detect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
Driver Performance Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19  
2.5 Loopbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
2.5.1  
2.5.2  
2.5.3  
Local Analog Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Local Digital Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Remote Line Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21  
2.6 Jitter Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
2.7 Clock Rate Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25  
2.7.1  
2.7.2  
2.7.3  
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26  
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26  
Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26  
2.8 Test Access Port (JTAG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
2.8.1  
2.8.2  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
Device Identification Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
3.0  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1 Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.2 Global Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
00—Device Identification (DID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
01—Global Configuration (GCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
02—CLAD Configuration (CLAD_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
03—CLAD Frequency Select (CSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
04—CLAD Phase Detector Scale Factor (CPHASE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
05—CLAD Test (CTEST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
06—CLAD Status (CSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
07—(FREG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
08—(TESTA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
09—(TESTA2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
0A(FUSE_CH1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
0B(FUSE_CH2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
0C(FUSE_CH3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
0D(FUSE_CH4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
0E(FUSE_RES). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
0F(TESTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
vi  
Conexant  
Advance Information  
N8380DSA  
CN8380  
Table of Contents  
Quad T1/E1 Line Interface  
3.3 Per Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
10, 20, 30, 40—Jitter Attenuator Configuration (JAT_CR) . . . . . . . . . . . . . . . . . . . . . . . 3-10  
11, 21, 31, 41—Receiver Configuration (RLIU_CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
12, 22, 32, 42 —Transmitter Configuration (TLIU_CR) . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
13, 23, 33, 43—LIU Control (LIU_CTL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
15, 25, 35, 45—Alarm Status (ALARM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
16, 26, 36, 46—Interrupt Status Register (ISR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
17, 27, 37, 47—Interrupt Enable Register (IER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
3.4 Transmitter Shape Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
18 - 1FTransmit PULSE Shape CONFIGURATION (SHAPE1) . . . . . . . . . . . . . . . . . . . . 3-17  
28 - 2FTransmit PULSE Shape CONFIGURATION (SHAPE2) . . . . . . . . . . . . . . . . . . . . 3-17  
38 - 3FTransmit PULSE Shape CONFIGURATION (SHAPE3) . . . . . . . . . . . . . . . . . . . . 3-17  
48 - 4FTransmit PULSE Shape CONFIGURATION (SHAPE4) . . . . . . . . . . . . . . . . . . . . 3-17  
50—(TESTA3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
51—(TESTA4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
4.0  
Electrical/Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
4.3 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
4.4 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4.5 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4.6 Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13  
Appendix A: Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  
Appendix B: External Component Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1  
Appendix C: Acronym List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1  
N8380DSA  
Conexant  
Advance Information  
vii  
Table of Contents  
CN8380  
Quad T1/E1 Line Interface  
viii  
Conexant  
Advance Information  
N8380DSA  
CN8380  
List of Figures  
Quad T1/E1 Line Interface  
List of Figures  
Figure 1-1.  
Figure 1-2.  
Figure 1-3.  
Figure 2-1.  
Figure 2-2.  
Figure 2-3.  
Figure 2-4.  
Figure 2-5.  
Figure 2-6.  
Figure 2-7.  
Figure 2-8.  
Figure 2-9.  
Figure 2-10.  
Figure 4-1.  
Figure 4-2.  
Figure 4-3.  
Figure 4-4.  
Figure 4-5.  
Figure 4-6.  
Figure 4-7.  
Figure 4-8.  
Figure 4-9.  
Figure 4-10.  
Figure B-1.  
CN8380 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
CN8380 Logic Diagram (Host Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
CN8380 Logic Diagram (Hardware Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Host Serial Port Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Receiver Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
Raw Mode Receiver Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Transmitter Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Transmit Pulse Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Transmit Termination Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Receiver Input Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23  
Typical JAT Transfer Characteristics with Various JAT Sizes . . . . . . . . . . . . . . . . . . . . . . 2-24  
CLAD Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25  
XOE Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
RESET Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
CLAD Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
Receiver Signals Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
Transmitter Signals Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
Host Serial Port Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
Host Serial Port Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
Host Serial Port Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
JTAG Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
128-Pin MQFP Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13  
Minimum Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2  
N8380DSA  
Conexant  
Advance Information  
ix  
List of Figures  
CN8380  
Quad T1/E1 Line Interface  
x
Conexant  
Advance Information  
N8380DSA  
CN8380  
List of Tables  
Quad T1/E1 Line Interface  
List of Tables  
Table 1-1.  
Table 2-1.  
Table 2-2.  
Table 2-3.  
Table 2-4.  
Table 2-5.  
Table 2-6.  
Table 2-7.  
Table 2-8.  
Table 2-9.  
Hardware Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Line Compatible Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Transmitter Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Transmit Pulse Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
Transmit Termination Option A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Transmit Termination Option B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Transmit Termination Option C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Transmit Termination Option D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Transmit Termination Option E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
Loopback Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
Table 2-10. CLAD Outputs and Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26  
Table 2-11. CLAD Reference Frequencies and Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . 2-27  
Table 2-12. Sample Alternate Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28  
Table 2-13. JTAG Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
Table 2-14. Device Identification JTAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29  
Table 3-1.  
Table 3-2.  
Table 4-1.  
Table 4-2.  
Table 4-3.  
Table 4-4.  
Table 4-5.  
Table 4-6.  
Table 4-7.  
Table 4-8.  
Table 4-9.  
Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Transmitter Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
XOE Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
RESET Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
CLAD Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
Receiver Signals Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
Transmitter Signals Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
Table 4-10. Host Serial Port Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
Table 4-11. JTAG Interface Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
Table A-1.  
Table B-1.  
Table B-2.  
Applicable Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  
Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1  
REFCKI (10 MHz) Crystal Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1  
N8380DSA  
Conexant  
Advance Information  
ix  
List of Tables  
CN8380  
Quad T1/E1 Line Interface  
xii  
Conexant  
Advance Information  
N8380DSA  
1
1.0 Pin Descriptions  
The CN8380 is packaged in a 128-pin metric quad flat pack (MQFP). A pinout  
diagram is illustrated in Figure 1-1. Logic diagrams are illustrated in Figure 1-2  
and Figure 1-3. Pin labels and numbers, input/output functions, and descriptions  
are provided in Table 1-1.  
The following input pins contain an internal pull-up resistor (> 50 k) and  
may remain unconnected if unused or if the active high input state is desired:  
XOE [1:4]  
TAIS [1:4]  
RAWMD [1:4]  
RLOOP [1:4]  
LLOOP [1:4]  
HM  
UNIPOLAR  
JDIR/SCLK  
JSEL(2)/SDI  
JSEL(1)/CS  
JSEL(0)  
RESET  
HTERM  
CLK_POL  
PTS(2:0)  
TDI  
(Unused if JTAG not connected)  
(Disables JTAG if not connected)  
(Unused if JTAG not connected)  
(Unused if JTAG not connected)  
TMS  
TCK  
TRST  
N8380DSA  
Conexant  
Advance Information  
1-1  
1.0 Pin Descriptions  
CN8380  
Quad T1/E1 Line Interface  
Figure 1-1. CN8380 Pinout Diagram  
CLADI  
VAACL  
GNDCL  
REFCKI  
VSS  
1
2
3
4
5
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
TRST  
VAA  
GND  
RAWMD [4]  
RRING [4]  
RTIP [4]  
VAAT [4]  
GNDT [4]  
XRING [4]  
XTIP [4]  
XOE [4]  
VDD  
6
7
8
CLK32  
CLK1544  
CLK2048  
9
10  
11  
12  
13  
CLADO  
VSS  
85  
VDD  
RAWMD [3]  
RRING [3]  
RTIP [3]  
VAAT [3]  
GNDT [3]  
XRING [3]  
XTIP [3]  
XOE [3]  
RNEGO/BPV [4]  
RPOSO/RDATO [4]  
RCKO [4]  
14  
15  
16  
TNEGI [4]  
TPOSI/TDATI [4]  
TCLK [4]  
17  
18  
19  
20  
21  
CN8380  
RNEGO/BPV [3]  
RPOSO/RDATO [3]  
RCKO [3]  
GNDR  
128-Pin MQFP  
VAAR  
TNEGI [3]  
RAWMD [2]  
RRING [2]  
RTIP [2]  
VAAT [2]  
GNDT [2]  
XRING [2]  
XTIP [2]  
XOE [2]  
22  
23  
24  
TPOSI/TDATI [3]  
TCLK [3]  
VSS  
25  
26  
27  
28  
29  
VDD  
RNEGO/BPV [2]  
RPOSO/RDATO [2]  
RCKO [2]  
TNEGI [2]  
RAWMD [1]  
RRING [1]  
RTIP [1]  
VAAT [1]  
GNDT [1]  
XRING [1]  
XTIP [1]  
XOE [1]  
30  
31  
32  
TPOSI/TDATI [2]  
TCLK [2]  
RNEGO/BPV [1]  
RPOSO/RDATO [1]  
RCKO [1]  
33  
34  
35  
36  
37  
TNEGI [1]  
TPOSI/TDATI [1]  
TCLK [1]  
HM  
38  
LEGEND:  
[#] - Port Number  
(#) - Bit Number  
8380_003  
1-2  
Conexant  
Advance Information  
N8380DSA  
CN8380  
1.0 Pin Descriptions  
Quad T1/E1 Line Interface  
Figure 1-2. CN8380 Logic Diagram (Host Mode)  
Host Mode  
Hardware  
Control  
Hardware/Host Mode  
HM  
Interface  
Hardware Reset  
I
RESET  
IRQ  
O Interrupt Request  
RLOS[1:4]  
O
Receive Loss of Signal Status  
Local Loopback  
Remote Loopback  
I
I
LLOOP[1:4]  
RLOOP[1:4]  
Serial Port  
Interface  
Serial Data In  
I
I
I
SDI
SCLK  
SerialClockIn
Serial Data Out  
O
SDO  
(SERIO)  
Serial Chip Select  
CS
Receiver  
(RCVR)  
RCKO[1:4]  
O
Receive Clock  
Receive Tip  
I
I
RTIP[1:4]  
RPOSO[1:4]  
RNEGO[1:4]  
O
Receive Positive Rail  
Receive Ring  
RRING[1:4]
O
Receive Negative Rail  
Transmitter  
(XMTR)  
Transmit Clock PIO  
TCLK[1:4]  
Transmit Tip  
O
Transmit Positive Rail  
I
I
TPOSI[1:4]  
XTIP[1:4]  
TNEGI[1:4]  
Transmit Negative Rail  
XRING[1:4]  
O
Transmit Ring  
1544 kHz All 1s Clock  
I
I
I
I
TACKI  
2048 kHz All 1s Clock  
EACKI  
Transmit Output Enable  
XOE[1:4]  
Transmit All 1s  
TAIS[1:4]  
Clock Rate  
Adapter (CLAD)  
CLAD Input  
I
I
CLADI  
CLK32  
O 32.768 MHz Clock Out  
Refer  
e
n
c
e
C
l
oc  
k
REF  
C
K
I
C
L
K
1
5
44  
O ine RateClock Out  
T1L
O E1 Line Rate Clock Out  
CLK2048  
CLADO  
O
CLAD Output  
Boundary Scan  
TCK  
Test Clock In  
I
I
I
I
(JTAG)  
Test Mode Select  
TMS  
TDO  
O
Test Data Out  
Test Data In  
TDI  
TestResetIn
TRST  
I = Input, O = Output  
PIO = Programmable I/O  
8380_004  
N8380DSA  
Conexant  
Advance Information  
1-3  
1.0 Pin Descriptions  
CN8380  
Quad T1/E1 Line Interface  
Figure 1-3. CN8380 Logic Diagram (Hardware Mode)  
Hardware Mode  
Hardware  
Control  
VDD  
Interface  
Hardware/Host Mode  
Hardware Reset  
HM  
I
I
I
I
RESET  
Jitter Attenuator Path  
Jitter Attenuator Size  
Unipolar/Bipolar  
JDIR  
JSEL(2:0)  
UNIPOLAR  
HTERM  
IRQ  
JATERR[1:4]  
RLOS[1:4]  
O
O
O
Interrupt Request  
Transmitter Termination I  
Jitter Attenuator Error Status  
Receive Loss of Signal Status  
PTS(2:0)  
CLK_POL  
RAWMD[1:4]  
LLOOP[1:4]  
RLOOP[1:4]  
ZCS  
Transmit Pulse Template  
Clock Polarity  
I
I
I
I
I
I
Raw Mode Select  
Local Loopback  
Remote Loopback  
Zero Code Suppression  
Receiver  
(RCVR)  
RCKO[1:4]  
RPOSO[1:4]  
RNEGO[1:4]  
O
O
O
Receive Clock  
Receive Tip  
I
I
RTIP[1:4]  
Receive Positive Rail  
Receive Negative Rail  
Receive Ring  
RRING[1:4]  
Transmitter  
(XMTR)  
Transmit Clock  
I
TCLK[1:4]  
XTIP[1:4]  
Transmit Positive Rail I  
Transmit Negative Rail I  
TPOSI[1:4]  
TNEGI[1:4]  
O
O
Transmit Tip  
XRING[1:4]  
Transmit Ring  
1544 kHz All 1s Clock  
2048 kHz All 1s Clock  
Transmit Output Enable  
I
I
I
I
TACKI  
EACKI  
XOE[1:4]  
TAIS[1:4]  
Transmit All 1s  
Clock Rate  
Adapter (CLAD)  
CLK32  
CLK1544  
CLK2048  
CLADO  
O
O
O
O
32.768 MHz Clock Out  
T1 Line Rate Clock Out  
E1 Line Rate Clock Out  
8 KHz Clock Out  
CLAD Input  
I
I
CLADI  
Reference Clock  
REFCKI  
Boundary Scan  
(JTAG)  
Test Clock In  
Test Mode Select  
Test Data In  
I
I
I
I
TCK  
TMS  
TDI  
TDO  
O
Test Data Out  
Test Reset In  
TRST  
I = Input, O = Output  
PIO = Programmable I/O  
1-4  
Conexant  
Advance Information  
N8380DSA  
CN8380  
1.0 Pin Descriptions  
Quad T1/E1 Line Interface  
Table 1-1. Hardware Signal Definitions (1 of 5)  
Pin Label  
Signal Name  
I/O  
Definition  
Receiver  
RPOSO[1:4]  
RDATO[1:4]  
RX Positive Rail  
(Bipolar Mode)  
O
Line rate data output on the rising or falling edge of RCKO. The clock edge  
is determined by the CLK_POL pin in Hardware Mode or the CLK_POL  
register bit [RLIU_CR; addr n1] in Host Mode. In bipolar mode, a high  
signal indicates receipt of a positive AMI pulse on RTIP/RRING inputs. In  
unipolar mode, RPOSO is redefined as RDATO and a high signal indicates  
either a positive or negative AMI pulse on RTIP/RRING inputs.  
RPOSO/RDATO is three-stated during device reset.  
RX Data (Unipolar  
Mode)  
RNEGO[1:4]  
BPV[1:4]  
RX Negative Rail  
(Bipolar Mode)  
O
Line rate data output on rising or falling edge of RCKO. The clock edge is  
determined by the CLK_POL pin in Hardware Mode or the CLK_POL  
register bit [RLIU_CR; addr n1] in Host Mode. In bipolar mode, a high  
signal indicates receipt of a negative AMI pulse on RTIP/RRING inputs. In  
unipolar mode, RNEGO is redefined as BPV, and a high signal indicates the  
reception of a BPV which is not part of a ZCS code (B8ZS or HDB3).  
RNEGO/BPV is three-stated during device reset.  
Bipolar Violation  
(Unipolar Mode)  
RCKO[1:4]  
RX Clock Output  
O
I
Receive clock output. RCKO is the RPLL recovered line rate clock or jitter  
attenuated clock output, based on the programmed jitter attenuator  
selection. RCKO is three-stated during device reset.  
RTIP[1:4]  
Receive Tip  
Differential AMI data inputs for direct connection to receive transformer.  
RRING[1:4]  
Receive Ring  
Transmitter  
TPOSI[1:4]  
TDATI[1:4]  
Tx Positive Rail  
(Bipolar Mode)  
I
Positive rail, line rate data source for transmitted XTIP/XRING output  
pulses. Data is sampled on the falling edge of TCLK. In bipolar mode, a  
high on TPOSI causes a positive output pulse on XTIP/XRING; and a high  
on TNEGI causes a negative output pulse. In unipolar mode, TPOSI is  
redefined as TDATI and accepts single-rail NRZ data. TNEGI is not used in  
unipolar mode.  
Tx Data (Unipolar  
Mode)  
TNEGI[1:4]  
TCLK[1:4]  
Tx Negative Rail  
Input  
I
Negative rail, line rate data input on TCLK falling edge. Refer to TPOSI  
signal definition.  
TX Clock Input  
I/O  
Transmit line rate clock. TCLK is the transmit clock for TPOSI and TNEGI  
data inputs and for transmitter timing. Normally, TCLK is an input and  
samples TPOSI/TNEGI on the falling edge. In Host Mode, TCLK can be  
configured as an output to supply a line rate transmit clock from the  
CLAD. The timing reference for the TCLK output (and CLAD) can be  
selected from six sources.  
TACKI  
T1 AIS Clock  
E1 AIS Clock  
I
I
Alternate T1 and E1 transmit clock used to transmit AIS (all 1s alarm  
signal) when the primary transmit clock source, TCLK, fails. TACKI (T1) or  
EACKI (E1) is either manually or automatically switched to replace TCLK  
[LIU_CTL; addr n3]. Systems without an AIS clock should connect TACKI  
and EACKI to ground.  
EACKI  
IP  
IP  
XOE[1:4]  
TAIS[1:4]  
Transmit Output  
Enable  
A low signal enables XTIP and XRING output drivers. Otherwise outputs  
are high impedance.  
Transmit AIS  
Alarm  
In Hardware Mode, a low signal causes AIS (unframed all 1s)  
transmission on XTIP/XRING outputs. In Host Mode, these pins can be  
enabled or disabled [LIU_CTL; addr n3]. If disabled, they are not used and  
may be left unconnected.  
N8380DSA  
Conexant  
Advance Information  
1-5  
1.0 Pin Descriptions  
CN8380  
Quad T1/E1 Line Interface  
Table 1-1. Hardware Signal Definitions (2 of 5)  
Pin Label  
XTIP[1:4]  
Signal Name  
I/O  
Definition  
Transmit Tip  
O
Complementary AMI transmitter line outputs for direct connection to  
transmit transformer. Optionally, both outputs are three-stated when XOE  
is high.  
XRING[1:4]  
Transmit Ring  
Clock Rate Adapter (CLAD)  
CLADI  
CLAD Input  
I
I
CLAD input timing reference used to phase/frequency lock the CLAD  
outputs to an input clock frequency selected in the range of 8 kHz to  
32,768 kHz [CLAD_CR; addr 02]. Systems which do not use CLADI should  
connect CLADI to ground. In Hardware Mode, the CLAD timing reference  
automatically switches to internal free-run operation if clock edges are not  
detected on CLADI pin.  
REFCKI  
Reference Clock  
System must apply a 10 MHz ± 50 ppm (E1) or + 32 ppm (T1) clock signal  
to act as the frequency reference for the internal numerically controlled  
oscillator (NCO). REFCKI determines the frequency accuracy and stability  
of the CLAD output clocks when operating in free-run mode [CLAD_CR;  
addr 02]. REFCKI is the baseband reference for all CLAD/JAT functions  
and is used internally to generate clocks of various frequency locked to a  
selected receive or external clock.  
Note: REFCKI is always required.  
CLK32  
32 MHz Clock  
Output  
O
O
O
O
Fixed rate 32.768 MHz clock output provided by the CLAD. May be used  
by framers, such as the CN8398 octal T1/E1 framer, to provide system  
timing reference.  
CLK1544  
CLK2048  
CLADO  
T1 Clock Output  
E1 Clock Output  
CLAD Output  
Fixed rate 1.544 MHz T1 line rate clock output provided by the CLAD. May  
be used for TCLK or TACKI clock sources. This clock is locked to the  
selected CLAD timing reference.  
Fixed rate 2.048 MHz E1 line rate clock output provided by the CLAD. May  
be used for TCLK or EACKI clock sources. This clock is locked to the  
selected CLAD timing reference.  
In Hardware Mode, CLADO is a fixed rate 8 kHz clock output provided by  
the CLAD. In Host Mode, CLADO may be configured to operate at one of  
14 different clock frequencies [CSEL; addr 03] that include T1 or E1 line  
rates. CLADO is typically programmed to supply system clocks that are  
phase-locked to the selected receive or CLAD timing reference [CLAD_CR;  
addr 02].  
Hardware Control Signals  
IP  
HM  
Hardware Mode  
A high on HM places the device in Hardware Mode, enabling all hardware  
control pin functions. A low on HM places the device in Host Mode,  
disabling some hardware-mode-only pin functions and enabling the serial  
port signals on the dual function pins listed below. The serial port signals  
allow serial host access to the device registers. Refer to the Host Serial  
Control Signals section of this table.  
JSEL(1) / CS  
JDIR / SCLK  
JSEL(2) / SDI  
JATERR(1) / SDO  
IP  
RAWMD[1:4]  
Raw Mode  
Low selects receiver Raw mode. Applicable only in Hardware Mode. In  
Raw mode, RPOSO and RNEGO represent the data slicer outputs and  
RCKO is the logical OR of RPOSO and RNEGO.  
1-6  
Conexant  
Advance Information  
N8380DSA  
CN8380  
1.0 Pin Descriptions  
Quad T1/E1 Line Interface  
Table 1-1. Hardware Signal Definitions (3 of 5)  
Pin Label  
RESET  
Signal Name  
I/O  
Definition  
IP  
Hardware Reset  
Active low asynchronous hardware reset. A falling edge forces registers to  
their default, power-up state. Output pins are forced to the high impedance  
state while RESET is asserted. RESET is not mandatory at power-up  
because an internal power-on reset circuit performs an identical function.  
IP  
UNIPOLAR  
Unipolar Mode  
Select  
Applicable only in Hardware Mode. A high signal on UNIPOLAR configures  
all RPOSO outputs and TPOSI inputs to operate with unipolar, NRZ-  
formatted data. In this mode, RNEGO reports non-ZCS BPVs and TNEGI is  
not used. A low signal on UNIPOLAR configures all channels’  
RPOSO/RNEGO and TPOSI/TNEGI interfaces to operate with bipolar,  
dual-rail, NRZ formatted data.  
IP  
ZCS  
Zero Code  
Suppression  
Select  
Applicable only in Hardware Mode. A high signal on ZCS enables the  
transmit ZCS encoder and the receive ZCS decoder if unipolar mode is  
enabled (UNIPOLAR = 1). In Bipolar Mode (UNIPOLAR = 0), the ZCS  
encoder and decoder are disabled and ZCS is ignored.  
IP  
CLK_POL  
PTS(2:0)  
Rx Clock Polarity  
Select  
Applicable only in Hardware Mode. High sets RPOSO/RNEGO to be output  
on the falling edge of RCKO. Low sets RPOSO/RNEGO to be output on the  
rising edge of RCKO  
IP  
Transmit Pulse  
Template Select  
Applicable only in Hardware Mode. The PTS(2:0) control bus selects the  
transmit pulse template and the line rate (T1 or E1) globally for all  
channels. Refer to the description of HTERM in this table and to the  
transmit pulse configurations in Table 2-3.  
IP  
HTERM  
Transmitter  
Hardware  
Termination  
Applicable only in Hardware Mode. If an external transmit termination  
resistor is used to meet return loss specifications; a transformer with a 1:2  
turns ratio is used, and HTERM is set high to allow the transmitter to  
compensate for the increased load. Refer to the Transmitter section of this  
table and Tables 2-4 through 2-8 for transmitter termination configuration  
options.  
OD  
IRQ  
Interrupt Request  
Active low, open drain output. In Host Mode, IRQ indicates one or more  
pending interrupt requests ([ISR; addr n6] and [CSTAT; addr 06]). In  
Hardware Mode, IRQ is the logical NOR of the four internal transmitter  
driver performance monitor outputs.  
IP  
JSEL(2:0)  
Jitter Attenuator  
Select  
Applicable only in Hardware Mode. The JSEL and JDIR pins determine the  
JAT configuration. JSEL(2:0) enables and selects the JAT depth as shown  
in the table below. SDI/JSEL(2) and CS /JSEL(1) are dual function pins.  
JSEL(2:0)  
000  
JAT Mode  
8 bits  
001  
16 bits  
010  
32 bits  
011  
64 bits  
100  
111  
128 bits  
Disable JAT  
IP  
O
JDIR  
Jitter Attenuator  
Direction  
Applicable only in Hardware Mode. JDIR determines the path in which the  
JAT is inserted. If JDIR is low, the JAT (if enabled) is placed in the receive  
path; if high, the JAT (if enabled) is placed in the transmit path. Refer to  
the description for JSEL(2:0). SCLK/JDIR is a dual function pin.  
JATERR[1:4]  
Jitter Attenuator  
Error  
Applicable only in Hardware Mode. A high on JATERR indicates an  
overflow or underflow error in the jitter attenuator elastic store.  
JATERR(1) / SDO is a dual function pin.  
N8380DSA  
Conexant  
Advance Information  
1-7  
1.0 Pin Descriptions  
CN8380  
Quad T1/E1 Line Interface  
Table 1-1. Hardware Signal Definitions (4 of 5)  
Pin Label  
RLOS [1:4]  
Signal Name  
I/O  
Definition  
Receive Loss of  
Signal  
O
RLOS is asserted low when 100 (T1) or 32 (E1) consecutive 0s (no  
pulses) are received at the line interface or when the received signal level  
is approximately 18 dB below nominal for at least 1 ms.  
IP  
IP  
LLOOP [1:4]  
RLOOP [1:4]  
Local Loop  
These pins are always enabled in Hardware Mode and may be enabled or  
disabled in Host Mode [LIU_CTL; addr n3]. A low on LLOOP initiates Local  
Analog Loopback and a low on RLOOP initiates Remote Line Loopback.  
Local Digital Loopback is initiated if both signals are asserted together.  
Remote Loop  
Boundary Scan Signals (JTAG)  
TDO  
TDI  
Test Data Output  
Test Data Input  
Test Mode Select  
O
Test data output per IEEE Std. 1149.1-1990. Three-state output used for  
reading all serial configuration and test data from internal test logic.  
Updated on the falling edge of TCK.  
IP  
Test data input per IEEE Std. 1149.1-1990. Used for loading all serial  
instructions and data into internal test logic. Sampled on the rising edge of  
TCK. TDI may be left unconnected if not used.  
IP  
TMS  
Active-low test mode select input per IEEE Std 1149.1-1990. Internally  
pulled-up input signal used to control the test logic state machine.  
Sampled on the rising edge of TCK. TMS may be left unconnected if not  
used.  
IP  
IP  
TCK  
Test Clock  
Reset  
Test clock input per IEEE Std. 1149.1-1990. Used for all test interface and  
internal test-logic operations. If not used, TCK should be pulled low.  
TRST  
Active low reset. TRST is pulled up internally and may be left unconnected  
if not used.  
Host Serial Control Signals  
IP  
CS  
Chip Select  
In Host Mode, CS is an active low input used to enable read/write access  
with the host serial control port. CS /JSEL(1) is a dual function pin.  
IP  
O
SDI  
Serial Data In  
Serial Data Out  
Serial Clock  
In Host Mode, SDI is the serial data input for the host serial control port.  
SDI/JSEL(2) is a dual function pin.  
SDO  
SCLK  
In Host Mode, SDO is the serial data output for the host serial control port.  
SDO/JATERR[1] is a dual function pin.  
IP  
In Host Mode, SCLK is the serial clock input for the host serial control  
port. SCLK/JDIR is a dual function pin.  
Power Supply Pins and No-Connect Pins  
VAA  
Analog Supply  
I
I
I
+3.3 V+ 5%. Power supply pair for the analog circuitry.  
GND  
Ground  
VAAT[1:4]  
Tx Driver Supply  
+3.3 V+ 5%. Power supply pairs for the transmitter driver circuitry. These  
pin pairs should each be bypassed with a tantalum capacitor value of at  
least 10 µF.  
GNDT[1:4]  
VAAR  
Ground  
Rx Analog Supply  
+ 3.3 V + 5%. Power supply pair for the analog receiver circuitry.  
GNDR  
Ground  
1-8  
Conexant  
Advance Information  
N8380DSA  
CN8380  
1.0 Pin Descriptions  
Quad T1/E1 Line Interface  
Table 1-1. Hardware Signal Definitions (5 of 5)  
Pin Label  
VAACL  
Signal Name  
I/O  
Definition  
CLAD Supply  
I
+ 3.3 V + 5%. Power supply pair for the CLAD PLL circuitry.  
GNDCL  
VDD  
Ground  
Digital Supply  
I
I
+ 3.3 V + 5%. Power supply pairs for the digital circuitry.  
VSS  
Ground  
VGG  
ESD Rail  
To insure 5 V tolerance in mixed + 5 V / + 3.3 V systems, this input must  
be connected to + 5 V. If all logic input signals are 3.3 V levels, then this  
pin may be connected to the 3.3 V supply.  
N.C.  
No Connect  
No-connect pins are reserved for future device compatibility and should  
be left unconnected.  
NOTE(S):  
1. I/O Types:  
I
= Standard input  
IP = Input with internal pull-up resister  
O = Standard output  
OD = Output with open drain  
2. Legend:  
[#] = Port number  
(#) = Bit number  
N8380DSA  
Conexant  
Advance Information  
1-9  
1.0 Pin Descriptions  
CN8380  
Quad T1/E1 Line Interface  
1-10  
Conexant  
Advance Information  
N8380DSA  
2
2.0 Circuit Description  
2.1 Overview  
The CN8380 includes four identical T1/E1 transceiver channels and a common  
CLAD packaged in a 128-pin MQFP carrier. It is designed to interface T1/E1  
framers, or to operate as a stand-alone line interface for synchronous or  
plesiochronous mappers and multiplexers. The CN8380 is ideal for high line  
density, short-haul applications that require low power (3.3 V supply) operation.  
The configurable T1/E1 operation and common line interface design allows  
support for single-board T1 and E1 designs.  
Customer premise applications are supported by an on-chip JAT which  
conforms to AT&T PUB 62411 and a selectable transmit pulse shape which  
conforms to FCC Part 68, Pulse Option A. Selectable unipolar or bipolar interface  
options and internal ZCS encoding and decoding are useful in many multiplexer  
and mapper applications.  
In the most simple configuration, Hardware Mode, the device is controlled  
using dedicated hardware control pins. In this mode, the four channels are  
configured globally to identical operating modes (T1, E1, transmit termination,  
jitter attenuators, and so on). Each channel has device pins dedicated for channel  
control and status, such as loopback controls, bipolar/unipolar interface modes,  
and loss of signal indicators. Hardware Mode is selected by pulling the HM pin  
high.  
Host Mode allows control of the device through a 4-line serial port. In this  
mode, all control and status functions can be accessed using internal registers.  
Several additional features are also available in Host Mode, such as individual  
channel operating mode configuration (T1/E1, transmit termination, jitter  
attenuators, etc.) and programmable CLAD output frequencies. Host Mode is  
selected by grounding the HM pin.  
The CN8380 incorporates printed circuit board testability circuits in  
compliance with IEEE Std P1149.1a–1993, IEEE Standard Test Access Port and  
Boundary–Scan Architecture, commonly known as JTAG (Joint Test Action  
Group). A detailed block diagram is displayed in Figure 2-1.  
N8380DSA  
Conexant  
Advance Information  
2-1  
2.0 Circuit Description  
2.1 Overview  
CN8380  
Quad T1/E1 Line Interface  
Figure 2-1. Detailed Block Diagram  
2-2  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
Quad T1/E1 Line Interface  
2.2 Configuration and Control  
2.2 Configuration and Control  
2.2.1 Hardware Mode  
In Hardware Mode, the device is controlled using dedicated hardware control  
pins. In this mode, the four channels are configured globally to identical  
operating modes (T1, E1, transmit termination, jitter attenuators, and so on). Each  
channel has device pins dedicated for channel control and status, such as  
loopback controls, bipolar/unipolar interface modes, and loss of signal indicators.  
Refer to Table 1-1, Hardware Signal Definitions, for a description of all hardware  
pins. Hardware Mode is selected by pulling the HM pin high.  
2.2.2 Host Mode  
In Host Mode, control of the device is through a four-line serial port. In this  
mode, all control and status functions can be accessed using internal registers.  
Refer to Chapter 3.0, Registers, for a description of each register. Host Mode is  
selected by grounding the HM pin.  
2.2.3 Host Serial Control Interface  
The CN8380 serial interface is a four-wire, slave interface which allows a host  
processor or framer with a compatible master serial port to communicate with the  
LIU. This interface allows the host to control and query the CN8380 status by  
writing and reading internal registers. One 8-bit register in the LIU can be written  
via the SDI pin or read from the SDO pin at the clock rate determined by SCLK.  
The serial port is enabled by pulling the chip select pin, CS, active (low) during  
the read and write cycles. Refer to Figure 2-2 for host serial port signals.  
The serial interface uses a 16-bit process for each write or read operation.  
During a write or read operation, an 8-bit control word, consisting of a read/write  
control bit (R/W) and a 7-bit LIU register address (A[6:0]) is transmitted to the  
LIU using the SDI pin. If the operation is a write operation (R/W = 0), an 8-bit  
register data (D[7:0]) byte follows the address on the SDI pin. This data is  
received by the CN8380 and stored in the addressed register. If the operation is a  
read operation (R/W = 1), the CN8380 outputs the addressed register contents on  
the SDO pin. The signal input on SDI is sampled on the SCLK falling edge, and  
data output on SDO changes on the SCLK rising edge.  
N8380DSA  
Conexant  
Advance Information  
2-3  
2.0 Circuit Description  
CN8380  
2.2 Configuration and Control  
Quad T1/E1 Line Interface  
Figure 2-2. Host Serial Port Signals  
Read Timing  
CS  
SCLK  
R/W  
SDI  
A0 A1 A2 A3 A4 A5 A6  
Address/Control Byte  
D0 D1 D2 D3 D4 D5 D6 D7  
Register Data Byte  
SDO  
Write Timing  
CS  
SCLK  
SDI  
R/W A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7  
Address/Control Byte Register Data Byte  
SDO  
8380_007  
2.2.4 Reset  
The CN8380 supports three reset methods: power-on reset, hard reset initiated by  
the RESET pin, and soft reset initiated by the RESET bit in the Global  
Configuration Register [GCR; addr 01]. In Host Mode, all three reset methods  
produce the same results as listed below. In Hardware Mode, power-on reset and  
hard reset produce the same results as shown; and soft reset is not applicable.  
After RESET is complete, the following is true:  
Hardware Mode  
Digital receiver outputs  
(RPOSO[1:4] and RNEGO[1:4],  
RCKO[1:4]) are enabled.  
Host Mode  
Digital receiver outputs (RPOSO[1:4]  
and RNEGO[1:4], RCKO[1:4]) are  
three-stated.  
Transmitter line outputs (XTIP[1:4] Transmitter line outputs (XTIP[1:4]  
and XRING[1:4]) are enabled  
(controlled by XOE).  
and XRING[1:4]) are three-stated.  
2-4  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
Quad T1/E1 Line Interface  
2.2 Configuration and Control  
Hardware Mode  
Host Mode  
CLK1544, CLK2048, and CLADO CLK1544, CLK2048, and CLADO  
clock outputs are enabled. clock outputs are three-stated.  
Transmitter clocks, TCLK[1:4], are Transmitter clocks, TCLK[1:4], are  
configured as inputs.  
configured as inputs.  
The IRQ pin is enabled (controlled  
by DPM).  
The IRQ pin is three-stated.  
All interrupt sources are disabled.  
All configuration registers are set to  
default values as listed in Section 3.1,  
Address Map.  
2.2.4.1 Power-on Reset  
2.2.4.2 Hard Reset  
An internal power-on reset process is initiated during power-up. When VDD has  
reached approximately 2.6 V, the internal reset process begins and continues for  
300 ms maximum if REFCLK is applied. If REFCLK is not present, the CN8380  
remains in the reset state.  
Hard reset is initiated by bringing the RESET pin active (low). Once initiated, the  
internal reset process completes in 5 µs maximum. If the RESET pin is held active  
continuously, the clock and data outputs and the IRQ pin remain three-stated. The  
following output pins are forced to high impedance while RESET is held active:  
RPOSO[1:4]  
CLADO  
RNEGO[1:4] TCLK[1:4]  
RCKO[1:4]  
XTIP[1:4]  
IRQ  
RLOS[1:4]  
XRING[1:4:] JATERR[1:4]  
CLK1544  
CLK2048  
SDO  
TDO  
2.2.4.3 Soft Reset  
In Host Mode, soft reset is initiated by writing a one to the RESET bit in the  
Global Configuration register [addr 01]. The RESET bit is self-clearing. Once  
initiated, the internal reset process completes in 5 µs maximum and the device  
enters normal operation.  
N8380DSA  
Conexant  
Advance Information  
2-5  
2.0 Circuit Description  
2.3 Receiver  
CN8380  
Quad T1/E1 Line Interface  
2.3 Receiver  
Bipolar AMI pulses are input on the receiver input pins, RTIP[n] and RRING[n].  
The receiver recovers clock and data from the AMI signal which has been  
attenuated and distorted due to the line characteristics. The AMI pulses are  
converted into bipolar or unipolar, NRZ data and output on RPOSO[n] and  
RNEGO[n], along with the recovered clock on RCKO[n]. Figure 2-3 illustrates  
the relationship between the AMI received signal, the recovered clock, and the  
data outputs. This section discusses each receiver block from the line input to the  
digital outputs.  
Figure 2-3. Receiver Signals  
Data Slicer Level  
(50% of Peak)  
Internal  
Equalized  
Received  
Signal  
RCKO  
BPV  
RPOSO  
(Bipolar)  
RNEGO  
(Bipolar)  
RDATO  
(Unipolar)  
1
1
1
0
1
1
0
1
1
BPV  
(Unipolar)  
2.3.1 Data Recovery  
The receiver recovers data by normalizing the input signal with an automatic gain  
control (AGC) circuit, removing distortion with an equalizer, and extracting the  
data using a data slicer. The transfer function of the equalizer is adjusted based on  
the average peak value of the input signal. The AGC maintains the equalizers  
average peak output level to a constant value. The data slicer compares the  
equalizer output to a threshold value equal to 50% of the average peak equalizer  
output level and produces both positive and negative pulse detect signals. The  
data slicer outputs are re-timed using the recovered clock and routed to the RZCS  
decoder (or to the JAT).  
2-6  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.3 Receiver  
Quad T1/E1 Line Interface  
2.3.1.1 Raw Receive  
Mode  
Optionally, the data slicer outputs, before re-timing, can be routed directly to the  
RPOSO and RNEGO digital output pins. This option (raw receive mode) is  
selected by asserting the RAWMD[n] pin in Hardware Mode or by asserting the  
RAWMD register bit [RLIU_CR; addr n1] in Host Mode. In raw receive mode,  
RCKO is replaced by the logical OR of the RPOSO and RNEGO output signals.  
This mode is useful in applications which provide external clock and data  
recovery. Figure 2-4 illustrates the raw mode receiver signals.  
Figure 2-4. Raw Mode Receiver Signals  
Data Slicer Level  
(50% of Peak)  
Internal  
Equalized  
Received  
Signal  
BPV  
RPOSO  
(RAW Mode)  
RNEGO  
(RAW Mode)  
RCKO  
(RAW Mode)  
8380_009  
2.3.1.2 Sensitivity  
The receiver is capable of recovering signals with cable attenuation in the range of  
+3 to –12 dB in E1 and T1 modes. The receiver is configured by setting register  
bits appropriately in Host Mode or by setting configuration pins in Hardware  
Mode. See Table 2-1for line compatible modes.  
Table 2-1. Line Compatible Modes  
RALOS  
Threshold  
Squelch  
Threshold  
RLOS  
Detect  
Mode  
Receiver Sensitivity  
T1  
+3 dB to –12 dB  
–17 dB to –26 dB  
–18 dB  
NA  
–18 dB  
NA  
100 zeros  
100 zeros  
T1/E1 20 dB  
Bridge  
E1  
+3 dB to –12 dB  
–18 dB  
–18 dB  
32 zeros  
2.3.1.3 Bridge Mode  
In Host Mode, the receiver allows interfacing to network test (MON) points  
which are resistively attenuated with resisters in series with transmit and receive  
Tip and Ring signals. The Bridge Monitor Level is –20 dB. Bridge operation is  
enabled by setting register bit ATTEN [addr n1] to 1. In this mode, RALOS  
detection and squelch operation are disabled.  
N8380DSA  
Conexant  
Advance Information  
2-7  
2.0 Circuit Description  
2.3 Receiver  
CN8380  
Quad T1/E1 Line Interface  
2.3.1.4 Loss Of Signal  
Detector  
The Receive Loss of Signal (RLOS) Detector monitors both consecutive 0s and  
signal level. Receive Analog Loss Of Signal (RALOS) is declared when  
RTIP/RRING input signal amplitude is a certain level (RALOS level) below the  
nominal receive level for at least 1 ms (2 ms maximum). RALOS status is cleared  
as soon as pulses above the RALOS level are detected.  
In Host Mode, the received data can be replaced with all 0s (squelched) if the  
receive level is also below the SQUELCH level. Squelch is enabled in register  
RLIU_CR [addr n1]. In Host Mode, RALOS real time status is reported in the  
ALARM [addr n5] register; and an interrupt status bit is available in the ISR [addr  
n6] register. Also, RALOS is indicated on the RLOS[n] pin, which is the logical  
NOR of the RLOS[n] status and RALOS[n] status.  
RLOS is declared when 100 (T1) or 32 (E1) consecutive bits with no pulses  
are detected. RLOS status is cleared when pulses are received with at least 12.5%  
pulse density (during a period of 192 bits starting with the receipt of a pulse) and  
where no occurrences of 100 or 32 consecutive bits with no pulses are detected.  
In Host Mode, RLOS real time status is reported in the ALARM register [addr  
n5]; and an interrupt status bit is available in the ISR register [addr n6]. Also,  
RLOS is indicated by a 0 level on the RLOS[n] pin, which is the logical NOR of  
the RLOS[n] status and RALOS[n] status.  
2.3.2 Clock Recovery  
2.3.2.1 Phase Lock Loop  
The Receive Phase Lock Loop (RPLL) recovers the line rate clock from the data  
slicer dual-rail outputs. The RPLL generates a recovered clock that tracks jitter in  
the data and sustains the data-to-clock phase relationship in the absence of  
incoming pulses. The RPLL is a digital PLL which adjusts its output phase in  
1/16 unit interval (UI) steps. Consequently, the RPLL adds approximately 0.12 UI  
peak-to-peak jitter to the recovered receive clock.  
During loss of signal (RLOS or RALOS), the RPLL maintains an output clock  
signal and smoothly transitions to a nominal line rate frequency determined by  
the CLAD input reference (selected by CMUX [GCR; addr 01] or FREE  
[CLAD_CR; addr 02]). If the CLAD reference is the recovered received clock  
from a channel which has detected RLOS, the CLAD outputs and the recovered  
received clock enter a “hold-over” state to maintain the average frequency that  
was present just before the RLOS was detected.  
2.3.2.2 Jitter Tolerance  
Figure 2-8, Receiver Input Jitter Tolerance, illustrates the receivers jitter  
tolerance for all jitter attenuator (JAT) configurations: JAT disabled and JAT  
enabled in the receive path with each JAT elastic store size. The jitter tolerance of  
the clock and data recovery circuit alone (not including the JAT) is illustrated by  
the curve labeled with “JAT Disabled.” The receiver meets jitter tolerance  
specifications TR62411, G.823, and G.824. In addition, the receiver meets jitter  
tolerance tests defined in ETS300 011: ISDN; Primary Rate User-Network  
Interface Layer 1 Specification and Test Principles.  
2.3.3 Receive Jitter Attenuator  
The data slicer outputs can be routed to the JAT before going to the RZCS  
decoder. The JAT attenuates clock and data jitter introduced by the line or added  
by the clock recovery circuit. The JAT can be placed in the receive path or  
transmit path, but not in both simultaneously. If the JAT is placed in the receive  
2-8  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.3 Receiver  
Quad T1/E1 Line Interface  
path, RCKO is replaced with the jitter attenuated clock. The JAT performance is  
discussed in Section 2.6, Jitter Attenuator.  
In Host Mode, the JAT is configured for each channel independently and is  
put in the receive path by setting JEN and JDIR register bits to 1 [JAT_CR; addr  
n0]. In Hardware Mode, the JAT is configured for all channels globally using the  
JSEL(2:0) and JDIR pins. Refer to Chapter 1.0, Pin Descriptions for details.  
2.3.4 RZCS Decoder  
The RZCS decoder decodes the dual-rail data from the data slicer or from the JAT.  
In T1 mode, the RZCS decoder replaces received B8ZS codes with eight 0s. In E1  
mode, HDB3 codes are replaced with four 0s. The B8ZS code is 000VB0VB and  
the HDB3 code is X00V; where B is a normal AMI pulse, V is a bipolar violation,  
and X is a don't-care.  
ZCS decoding (and encoding) can be enabled only if the digital interface  
mode is unipolar. In Host Mode, RZCS decoding (and TZCS encoding) is enabled  
for each channel by setting the ZCS [RLIU_CR; addr n1] register bit to 1. In  
Hardware Mode, ZCS encoding/decoding is controlled globally for all channels  
by pulling the ZCS pin high. For the Hardware Mode pin definition, see  
Table 1-1.  
2.3.5 Receive Digital Interface  
The digital receiver outputs are provided on the RPOSO[n], RNEGO[n], and  
RCKO[n] pins, where [n] is channel number 1 to 4. The receiver outputs can be  
configured to operate in two modes: Bipolar NRZ format or unipolar NRZ  
format. In both modes, RPOSO[n] and RNEGO[n] outputs are clocked by  
RCKO[n], the recovered line rate clock, or the jitter attenuated clock if the JAT is  
enabled in the receive path. RCKO[n] polarity is configurable by the CLK_POL  
pin in Hardware Mode or register bit CLK_POL [RLIU_CR; addr n1] in Host  
Mode. RPOSO[n], RNEGO[n], and RCKO[n] are three-stated during device  
reset.  
2.3.5.1 Bipolar Mode  
In bipolar mode, RPOSO/RNEGO signals output received data in bipolar  
dual-rail format, where a high level on RPOSO indicates receipt of a positive  
AMI pulse, and a high level on RNEGO indicates receipt of a negative AMI pulse  
on RTIP/RING inputs. In bipolar mode, the RZCS decoder is not available. In  
Hardware Mode, bipolar operation is enabled globally for all channels by pulling  
the UNIPOLAR pin low. In Host Mode, bipolar operation is enabled per channel  
by writing a 0 to register bit UNIPOLAR [RLIU_CR; addr n1].  
2.3.5.2 Unipolar Mode  
In unipolar mode, RPOSO/RNEGO signals are replaced by RDATO/BPV signals.  
AMI encoded received data is decoded and output on RDATO in NRZ format,  
and BPV indicates that the currently received bit is a bipolar violation. If the  
RZCS decoder is enabled, the BPV pin indicates only bipolar violations which are  
not part of a ZCS code (B8ZS or HDB3). In Hardware Mode, unipolar operation  
is enabled by pulling the UNIPOLAR pin high. In Host Mode, unipolar operation  
is enabled by writing a 1 to register bit UNIPOLAR [RLIU_CR; addr n1].  
N8380DSA  
Conexant  
Advance Information  
2-9  
2.0 Circuit Description  
2.4 Transmitter  
CN8380  
Quad T1/E1 Line Interface  
2.4 Transmitter  
Bipolar or unipolar, NRZ digital transmit data are input on TPOSI and TNEGI  
using the transmit clock TCLK. Data are converted into AMI pulses, shaped  
according to required standards, and transmitted to the line. Figure 2-5 illustrates  
the relationship between the AMI transmitted signal, the transmit clock, and the  
data inputs. This section discusses each transmitter block, from the digital inputs  
to the line output.  
Figure 2-5. Transmitter Signals  
TCLK  
TPOSI  
(Bipolar)  
TNEGI  
(Bipolar)  
TDATI  
(Unipolar)  
1
1
0
1
1
0
0
1
Throughput  
Delay  
XTIP,  
XRING  
8380_010  
2.4.1 Transmit Digital Interface  
The digital transmitter inputs, TPOSI[n] and TNEGI[n], accept bipolar or  
unipolar NRZ formatted data for transmission and are sampled by the falling edge  
of TCLK[n], where [n] is channel number 1 to 4. TCLK[n] is the line rate  
transmit clock and is normally supplied externally from a line rate source, but can  
also be sourced internally (only in Host Mode) from the CLAD. If sourced  
internally, TCLK[n] is configured as an output to provide the line rate clock to  
external circuitry. TCLK[n] direction is configured globally for all channels by  
writing to register bit TCLK_I/O [GCR; addr 01].  
2.4.1.1 Bipolar Mode  
In bipolar mode, TPOSI/TNEGI inputs accept bipolar dual-rail transmit data  
where a high on TPOSI causes a positive output pulse and a high on TNEGI  
causes a negative output pulse on XTIP/XRING. In this mode, the TZCS encoder  
is not available. In Hardware Mode, bipolar operation is enabled globally for all  
channels by pulling the UNIPOLAR pin low. In Host Mode, bipolar operation is  
2-10  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.4 Transmitter  
Quad T1/E1 Line Interface  
enabled per channel by writing a 0 to register bit UNIPOLAR [RLIU_CR;  
addr n1].  
2.4.1.2 Unipolar Mode  
In unipolar mode, TPOSI is replaced with TDATI and accepts unipolar NRZ-  
formatted transmit data. TNEGI is not used in this mode. A high on TDATI  
causes an AMI pulse to be transmitted to the line. In this mode, the TZCS encoder  
can be enabled to provide B8ZS or HDB3 zero code suppression. In Hardware  
Mode, unipolar operation is enabled globally for all channels by pulling the  
UNIPOLAR pin high. In Host Mode, unipolar operation is enabled per channel  
by writing a 1 to register bit UNIPOLAR [RLIU_CR; addr n1].  
2.4.2 TZCS Encoder  
If enabled, the TZCS encoder encodes unipolar transmit data on TDATI with  
B8ZS (T1) or HDB3 (E1) line coding. In T1 mode, eight consecutive 0s are  
replaced with 000VB0VB; and in E1 mode, four consecutive 0s are replaced with  
X00V; where B is a normal AMI pulse, V is a bipolar violation, and X is a Don't  
Care. These are standard T1 and E1 line code options.  
ZCS encoding (and decoding) can be enabled only if the digital interface  
mode is unipolar. In Host Mode, TZCS encoding (and RZCS decoding) is enabled  
for each channel by setting the ZCS [RLIU_CR; addr n1] register bit to 1. In  
Hardware Mode, ZCS encoding/decoding is controlled globally for all channels  
by pulling the ZCS pin high. For the Hardware Mode pin definition, refer to  
Table 1-1.  
2.4.3 Transmit Jitter Attenuator  
Transmit data from the TZCS encoder can be routed to the JAT before going to  
the AIS Generator. The JAT attenuates clock and data jitter from the transmit  
inputs or from the receiver if Remote Line Loopback (RLL) is active. The JAT  
can be placed in the receive path or transmit path, but not both simultaneously. If  
the JAT is placed in the transmit path, the jitter attenuated clock becomes the  
transmit clock for downstream circuits.  
In Host Mode, the JAT is configured for each channel independently and is  
put in the transmit path by setting the JEN register bit to 1 and the JDIR register  
bit to 0 [JAT_CR; addr n0]. In Hardware Mode, the JAT is configured for all  
channels globally using the JSEL(2:0) and JDIR pins. For pin definitions, refer to  
Chapter 1.0, Pin Descriptions; for JAT transfer characteristics, refer to Figure 2-9;  
and for more information on loopbacks, refer to Section 2.5, Loopbacks.  
2.4.4 All 1s AIS Generator  
The transmit data can be replaced with unframed all 1s for transmitting the alarm  
indication signal (AIS). This includes replacing data supplied from  
TPOSI[n]/TNEGI[n] pins and from the receiver during RLL. AIS transmission  
does not affect transmit data that is looped back to the receiver during Local  
Digital Loopback (LDL). This allows LDL to be active simultaneously with the  
transmission of AIS. AIS is used to maintain a valid signal on the line and to  
inform downstream equipment that the transmit data source has been lost. AIS  
transmission can be done manually or automatically when loss of transmit clock  
is detected. A clock monitor circuit allows manual or automatic switching of the  
transmit clock to an alternate AIS clock.  
N8380DSA  
Conexant  
Advance Information  
2-11  
2.0 Circuit Description  
2.4 Transmitter  
CN8380  
Quad T1/E1 Line Interface  
In Hardware Mode, AIS can be controlled only manually by pulling the  
TAIS[n] hardware pin low. If TCLK[n] is present, then it is used to transmit AIS.  
If TCLK[n] is not present (for two clock periods), the alternate AIS clock on  
either TACKI (T1 Mode) or EACKI (E1 Mode) is used. The AIS transmit clock  
switches back to TCLK[n] when the TCLK[n] signal returns.  
In Host Mode, AIS can be transmitted using the TAIS[n] hardware pins or the  
TAIS register bit, or automatically by enabling the AUTO_AIS register bit. AIS  
clock switching can be enabled by using the AISCLK register bit. Setting  
AISCLK to 1 forces the use of the alternate AIS clock on either TACKI (T1  
Mode) or EACKI (E1 Mode) pins when transmitting AIS. If AUTO_AIS is set  
to 1, AIS is automatically transmitted when the clock monitor detects loss of  
clock on TCLK[n]. When using automatic AIS transmission, the user should also  
enable the AISCLK bit and provide an alternate clock source to insure that AIS  
will be transmitted. CLAD output clocks CLK2048 and CLK1544 can be  
connected externally to EACKI and TACKI alternate AIS clock inputs for this  
purpose. Setting register bit TAIS_PE to 1 disables the TAIS register bit and  
allows manual transmission of AIS using the TAIS[n] hardware pins. Refer to  
LIU_CTL [addr n3] in Chapter 3.0, Registers, and to Table 1-1, Hardware Signal  
Definitions.  
If TAIS is activated when Remote Line Loopback is active, AIS is transmitted  
using the received clock (or JCLK if the JAT is enabled in the receive direction).  
Table 2-2 lists transmitter operating modes resulting from various configuration  
settings and input conditions.  
Table 2-2. Transmitter Operating Modes  
Configuration and Input Status  
Transmitter Mode  
RLOOP  
(W/LLOOP=0)  
Transmit  
Data  
Transmit  
Clock  
TLOC  
TAIS  
AUTO_AIS  
AISCLK  
0
0
0
X
X
X
0
1
1
0
X
0
Tx Data  
TCLK  
X
X
AIS  
AIS  
TCLK  
1
TACKI/EACKI  
0
0
0
0
1
1
0
0
0
1
1
1
X
0
Tx Data  
AIS  
TCLK  
TCLK  
1
AIS  
TACKI/EACKI  
1
1
X
X
0
1
X
X
X
X
Rx Data  
AIS  
RCLK  
RCLK  
NOTE(S): X is dont-care.  
2-12  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.4 Transmitter  
Quad T1/E1 Line Interface  
2.4.5 Pulse Shaper  
All transmit pulse shaping to meet E1 and T1 transmission standards is done  
internally, eliminating the need for external shaping circuitry. The pulse shape  
block receives bipolar NRZ transmit data, produces a set of eight 5-bit values  
which define the pulse shape, and converts the shape values into an analog pulse  
using a DAC. Table 2-3 lists the transmit pulse template selections and  
applications.  
Table 2-3. Transmit Pulse Configurations  
Hardware Mode  
Configuration  
PTS(2:0)  
Host Mode Configuration  
[TLIU_CR; addr n2]  
PULSE(2:0)  
Application  
Line Rate  
Line Length  
T1  
T1  
T1  
T1  
T1  
E1  
0–133 ft.  
133–266 ft.  
266–399 ft.  
399–533 ft.  
533–655 ft.  
000  
001  
010  
011  
100  
101  
000  
001  
010  
011  
100  
101  
DSX-1  
T1.102  
CB119  
100 Twisted Pair  
ITUT G.703  
75 Coaxial Cable  
ITUT G.703  
120 Twisted Pair  
E1  
T1  
110  
111  
110  
111  
FCC Part 68 Opt A  
I.431  
100 Twisted Pair  
In Hardware Mode, standard pulse templates are selected globally for all  
channels using hardware pins PTS(2:0). Refer to the Chapter 1.0, Pin  
Descriptions, and Table 1-1, Hardware Signal Definitions.  
N8380DSA  
Conexant  
Advance Information  
2-13  
2.0 Circuit Description  
2.4 Transmitter  
CN8380  
Quad T1/E1 Line Interface  
In Host Mode, standard pulse templates are selected per channel by writing to  
register bits PULSE(2:0) [TLIU_CR; addr n2]. If desired, custom pulse shapes  
can be programmed for each channel using the SHAPEn [addr n8 – nF] registers  
and the PPT [TLIU_CR; addr n2] register bit. The data written into the SHAPEn  
registers is 5-bit magnitude only. The first four code values of the pulse define the  
first half of the symbol, and the last four values define the last half of the symbol.  
The last half symbol polarity is always forced to be opposite from the first half  
polarity. Figure 2-6 illustrates the shaped transmit signals.  
Figure 2-6. Transmit Pulse Shape  
TCLK  
8 x TCLK  
Shape Data  
Magnitude  
(0x00–0x1F)  
Digitized  
AMI Pulses  
Positive Pulse  
Negative Pulse  
8380_011  
2.4.6 Driver  
The transmit DAC converts digitally shaped AMI pulses into analog bipolar  
signals. The line driver provides a high impedance, current drive for the transmit  
DAC and outputs transmit signals to the XTIP[n] and XRING[n] output pins. The  
high impedance driver allows line impedance matching using external parallel  
resistors to meet return loss requirements. In applications which require surge  
protection, pulse amplitude compensation is provided if protection resistors are  
needed in series with XTIP[n] and XRING[n]. When a shorted line is detected,  
transmit monitor and protection circuits reduce the output current level to less  
than 50 mA peak. The standard transmit transformer for the CN8380 has a turns  
ratio of 1:2 (chip-side: line-side). To minimize power consumption, an alternate  
1:1.36 turns ratio transformer can be used in an unterminated configuration.  
2.4.6.1 Transmit  
Termination Options  
Various transmitter termination options are available to meet almost any interface  
requirement. Figure 2-7 illustrates the location of the transmit termination  
components. In this figure, Ct is a smoothing capacitor across XTIP and XRING.  
The recommended value for Ct is 150 pF. If other components are also connected  
to XTIP/XRING, such as surge protection diodes, Cts value should be adjusted to  
maintain a total parallel capacitance of approximately 150 pF.  
Rt is a parallel termination resistor selected to provide the required transmitter  
return loss, typically –18 dB. If an application does not have a return loss  
requirement, Rt can be omitted in order to reduce total power consumption.  
2-14  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.4 Transmitter  
Quad T1/E1 Line Interface  
The standard transformer recommended has a turns ratio of 1:2. This turns  
ratio is required if parallel termination (Rt) or series resistors (Rs) are desired.  
The alternate transformer has a turns ratio of 1:1.36. This transformer can be used  
only if all of the following are true:  
Parallel termination (Rt) is not used.  
Series resistors (Rs) are not used.  
T1 DSX-1 transmit pulse is not used.  
Refer to Option E in Table 2-7 below. Transmitter power consumption is  
reduced by approximately 30%, compared to the unterminated, standard  
transformer configuration.  
Resistors (Rs) in series with Tx TIP and Tx RING line connections are  
sometimes used with surge protection circuits. Without compensation, the  
addition of these resistors decreases the transmit pulse amplitude. The CN8380  
provides an option in Host Mode to boost the output level if resistors are installed.  
Compensation is optimized for the use of 5.6 Rs values. In Hardware Mode,  
these resistors are required.  
Figure 2-7. Transmit Termination Components  
1:N  
Rs  
Rs  
XTIP  
Tx TIP  
Ct  
Rt  
CN8380  
XRING  
Tx RING  
Transformer  
8380_012  
Tables 2-4 through 2-8 provide recommended termination component values  
and CN8380 configuration information for all termination options supported. The  
resulting return loss value is also listed. All five options are supported in Host  
Mode, whereas only options C and D are supported in Hardware Mode.  
Before selecting a termination option, refer to Table 2-3, Transmit Pulse  
Configurations, to select an application mode. Then refer to the Transmit  
Termination tables below to select a termination option.  
N8380DSA  
Conexant  
Advance Information  
2-15  
2.0 Circuit Description  
2.4 Transmitter  
CN8380  
Quad T1/E1 Line Interface  
Option A  
Option A uses the standard 1:2 transformer, no series protection resistors (Rs),  
and no parallel termination (Rt) for T1 applications. In E1 applications, Rt is  
included because it is usually required to provide a minimal level of line  
impedance matching.  
Table 2-4. Transmit Termination Option A  
Series Resistors  
(Rs)  
Parallel Termination  
Return Loss  
(dB)  
Application  
(Rt, )  
T1DSX-1  
None  
None  
None  
126.4  
0
–10  
E1—75 Ω  
None  
None  
204.4  
None  
–10  
0
E1—120 Ω  
T1— I.431  
NOTE(S):  
1. Standard Transformer (1:2 turns ratio)  
2. Hardware Mode: HTERM=0  
3. Host Mode: ALT_TR = 0, TERM = 0, T_BOOST = 0 [TLIU_CR; addr n2]  
Option B  
Option B uses the standard 1:2 transformer and no series protection resistors (Rs).  
A common parallel termination (Rt) for both T1 and E1 applications is included  
to provide line impedance matching.  
Table 2-5. Transmit Termination Option B  
Series Resistors  
(Rs)  
Parallel Termination  
Return Loss  
(dB)  
Application  
(Rt, )  
T1DSX-1  
None  
None  
23.7  
23.7  
–30  
–18  
E1—75 Ω  
None  
None  
23.7  
23.7  
–18  
–30  
E1—120 Ω  
T1— I.431  
NOTE(S):  
1. Standard Transformer (1:2 turns ratio)  
2. Hardware Mode: Not applicable  
3. Host Mode: ALT_TR = 0, TERM = 1, T_BOOST = 0 [TLIU_CR; addr n2]  
2-16  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.4 Transmitter  
Quad T1/E1 Line Interface  
Option C  
Option C uses the standard 1:2 transformer and no parallel termination (Rt) for  
T1 applications. In E1 applications, Rt is included because it is usually required to  
provide a minimal level of line impedance matching. Series protection resistors  
(Rs) are included. Option C is available only in Host Mode.  
Table 2-6. Transmit Termination Option C  
Series Resistors  
(Rs)  
Parallel Termination  
Return Loss  
(dB)  
Application  
(Rt, )  
T1DSX-1  
None  
114.8  
190.0  
None  
0
2 × 5.6 Ω  
2 × 5.6 Ω  
2 ×5.6 Ω  
2 × 5.6 Ω  
–10  
–10  
0
E1—75 Ω  
E1—120 Ω  
T1—I.431  
NOTE(S):  
1. Standard Transformer (1:2 turns ratio)  
2. Hardware Mode: HTERM = 0  
3. Host Mode: ALT_TR = 0, TERM = 0, T_BOOST = 1 [TLIU_CR; addr n2]  
Option D  
Option D uses the standard 1:2 transformer. A common parallel termination (Rt)  
for both T1 and E1 applications is included to provide line impedance matching.  
Series protection resistors (Rs) are also included. Option D is available in both  
Host Mode and Hardware Mode.  
Table 2-7. Transmit Termination Option D  
Series Resistors  
(Rs)  
Parallel Termination  
Return Loss  
(dB)  
Application  
(Rt, )  
T1DSX-1  
21  
21  
21  
21  
–30  
–18  
–18  
–30  
2 × 5.6 Ω  
2 × 5.6 Ω  
2 × 5.6 Ω  
2 × 5.6 Ω  
E1—75 Ω  
E1—120 Ω  
T1—I.431  
NOTE(S):  
1. Standard Transformer (1:2 turns ratio)  
2. Hardware Mode: HTERM = 1  
3. Host Mode: ALT_TR = 0, TERM = 1, T_BOOST = 1 [TLIU_CR; addr n2]  
N8380DSA  
Conexant  
Advance Information  
2-17  
2.0 Circuit Description  
2.4 Transmitter  
CN8380  
Quad T1/E1 Line Interface  
Option E  
Option E uses the alternate 1:1.36 transformer, no series protection resistors (Rs),  
and no parallel termination (Rt) for T1 applications. In E1 applications, Rt is  
included because it is usually required to provide a minimal level of line  
impedance matching. Option E is available only in Host Mode and cannot be used  
with DSX-1 applications.  
Table 2-8. Transmit Termination Option E  
Series Resistors  
(Rs)  
Parallel Termination  
Return Loss  
(dB)  
Application  
(Rt, )  
None  
None  
None  
68.1  
107.0  
None  
–10  
–10  
0
E1—75 Ω  
E1—120 Ω  
T1—I.431  
NOTE(S):  
1. Alternate transformer (1:1.36 turns ratio)  
2. Hardware Mode: Not Applicable  
3. Host Mode: ALT_TR = 1, TERM = 0, T_BOOST = 0 [TLIU_CR; addr n2]  
2.4.6.2 Output Disable  
The transmitter analog outputs, XTIP[n] and XRING[n], are enabled per channel  
by pulling the XOE[n] pins low and are three-stated by pulling the XOE[n] pins  
high. In Host Mode, the PDN [TLIU_CR; addr n2] register bit also controls the  
XTIP[n] and XRING[n] outputs. A device RESET sets the PDN bits, thereby  
disabling XTIP[n] and XRING[n]. User software must clear PDN to enable the  
transmitter outputs.  
In Hardware Mode, the transmitter outputs are disabled while RESET is held  
active (low). When RESET is deactivated, XOE[n] controls the transmitter outputs.  
If the transmit driver is disabled (XOE[n] = 1), the driver performance monitor  
(DPM) is available for monitoring a transmit signal from an external source.  
Refer to Section 2.4.7.2, Driver Performance Monitor.  
2-18  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.4 Transmitter  
Quad T1/E1 Line Interface  
2.4.7 Transmitter Output Monitoring  
2.4.7.1 Short Circuit  
Detect  
The transmitter output pulse is monitored and a short circuit is detected when the  
amplitude falls below an internally determined threshold for approximately 64-bit  
times. The short circuit state deactivates when the amplitude rises above a second  
threshold for 64-bit times.  
When a short is detected, the line driver current is reduced to approximately  
50 mA peak, as measured on the line side of the transformer. Typically, this is  
caused by a transmit cable short circuit or by a transmission line transient current  
surge. In Host Mode, short circuit activation sets the TSHORT bit in the Alarm  
Status register [ALARM; addr n5] and in the Interrupt Status Register [ISR; addr  
n6]. No indication of short circuit is available in Hardware Mode.  
2.4.7.2 Driver  
Performance Monitor  
The DPM monitors the line driver output signal for valid signaling activity. The  
output signal is monitored for pulse level, invalid AMI coding, pulse density, and  
stuck signals. In Host Mode, a DPM fault condition sets the TLOS bit in the  
Alarm Status register [ALARM; addr n5] and in the Interrupt Status Register  
[ISR; addr n6]. In Hardware Mode, the four internal DPM status indicators are  
combined (logical NOR) and output on the IRQ pin.  
If the transmit driver is disabled (XOE = 1), the DPM is available for  
monitoring a transmit signal from an external source. In this mode, XTIP[n] and  
XRING[n] are used as inputs and can be connected to the transmit outputs of  
another CN8380 channel or device.  
N8380DSA  
Conexant  
Advance Information  
2-19  
2.0 Circuit Description  
2.5 Loopbacks  
CN8380  
Quad T1/E1 Line Interface  
2.5 Loopbacks  
Three per-channel loopbacks are provided for system diagnostic testing: Local  
Analog Loopback, Local Digital Loopback, and Remote Line Loopback.  
Loopbacks can be controlled by either hardware pins or internal register bits. For  
hardware control, two dedicated pins—LLOOP and RLOOP—are provided. If  
configured in Host Mode, register bits are provided for loopback control. In  
addition, the LLOOP and RLOOP pins can be enabled by register bits so that  
loopbacks can be controlled by the hardware pins even in Host Mode. Loopback  
controls are detailed in Table 2-9. Refer also to register LIU_CTL [addr n3] in  
Chapter 3.0, Registers.  
Table 2-9. Loopback Control Pins  
LLOOP  
RLOOP  
Loopback  
1
1
0
0
1
0
1
0
None  
Remote Line Loop  
Local Analog Loop  
Local Digital Loop  
2.5.1 Local Analog Loopback  
Local Analog Loopback (LAL) causes the transmit data and clock inputs  
(TPOSI/TNEGI and TCLK) to be looped back to the receiver outputs  
(RPOSO/RNEGO and RCKO). This loopback connects an internal copy of the  
analog transmit signal (XTIP and XRING outputs) to the receiver input, so that  
virtually all of the device circuitry can be tested. While LAL is active, transmit  
data continues to be transmitted on XTIP and XRING, but RTIP and RRING  
inputs are ignored. Applying a high on the XOE pin when Local Analog Loopback  
is active disables the transmitter outputs and causes an RLOS.  
2.5.2 Local Digital Loopback  
Local Digital Loopback (LDL) causes the transmit data and clock inputs  
(TPOSI/TNEGI and TCLK) to be looped back to the receiver outputs  
(RPOSO/RNEGO and RCKO). This loopback includes the JAT (if enabled) but  
does not include the line transmit and receive circuitry. Consequently, XTIP and  
XRING transmitter outputs are unaffected, and receiver RTIP and RRING inputs  
remain connected to the line to monitor for RLOS. Also, the AIS (all 1s)  
generator is not included in the loopback path so that AIS can be transmitted  
toward the line while simultaneously providing a local loopback.  
2-20  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.5 Loopbacks  
Quad T1/E1 Line Interface  
2.5.3 Remote Line Loopback  
Remote Line Loopback (RLL) causes the received data on RTIP/RRING line  
inputs to be looped back and re-transmitted on XTIP/XRING line outputs. This  
loopback includes all receive and transmit circuitry and the JAT, but does not  
include the ZCS decoder and encoder. If the JAT is not enabled, RLL enables the  
JAT in the transmit direction for the duration of the loopback. In this case, the JAT  
elastic store size is 8 bits. The receiver outputs (RPOSO/RNEGO and RCKO)  
continue to output received data; transmit inputs (TPOSI/TNEGI and TCLK) are  
ignored.  
N8380DSA  
Conexant  
Advance Information  
2-21  
2.0 Circuit Description  
2.6 Jitter Attenuator  
CN8380  
Quad T1/E1 Line Interface  
2.6 Jitter Attenuator  
The jitter attenuator (JAT) attenuates jitter in the receive or transmit path, but not  
both simultaneously. The JAT path configuration and elastic store depth is  
controlled by the JDIR and JSEL(2:0) pins in Hardware Mode or by the JEN,  
JDIR, JCENTER, and JSIZE[2:0] bits in the Jitter Attenuator Configuration  
register [JAT_CR; addr n0] in Host Mode. The JAT can also be completely  
disabled.  
The elastic store is configurable using the JSEL(2:0) pins or the JSIZE[2:0]  
bits in the JAT_CR register. The elastic store sizes available are 8, 16, 32, 64, and  
128 bits. The 32-bit elastic store depth is sufficient to meet jitter tolerance  
requirements in all cases where the JAT cutoff frequency is 6 Hz or below, and  
when the selected clock reference is frequency-locked. The larger elastic store  
depths allow greater accumulated phase offsets. For example, the 128-bit depth  
can tolerate up to ±64 bits of accumulated phase offset. Because the elastic store  
is a fixed size, it can overflow and under-run. If either of these conditions occurs,  
a Jitter Attenuator Elastic Store Limit Error (JATERR) is reported. In Hardware  
Mode, JATERR[n] pins are provided, and in Host Mode, the JERR bit in the  
Interrupt Status Register [ISR; addr n6] is set.  
The elastic store is a circular buffer with independent read and write pointers.  
These pointers can be initialized manually using JCENTER in the JAT_CR  
register. JCENTER resets the write pointer and forces the elastic store read  
pointer to one half of the programmed JSIZE. Centering is automatic as a result of  
a JATERR condition, so manually centering is not required.  
The dejittered receiver recovered clock is output on the RCKO[n] pin if the  
JAT is configured in the receive path. The receiver input clock and data jitter  
tolerance and jitter transfer meet TR 62411-1990. Figures 2-8 and 2-9 illustrate  
jitter tolerance and JAT transfer characteristics.  
2-22  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.6 Jitter Attenuator  
Quad T1/E1 Line Interface  
Figure 2-8. Receiver Input Jitter Tolerance  
10000  
1000  
Typical Receiver Tolerance with  
JAT Disabled  
Typical Receiver Tolerance with  
Various JAT Sizes Selected  
138 UI  
128 bits  
64 bits  
32 bits  
100  
10  
1
TR 62411 (T1)  
Minimum Tolerance  
28 UI  
16 bits  
G.824 (T1)  
Minimum Tolerance  
8 bits  
5 UI  
Rec. G.823 (E1)  
Minimum Tolerance  
1.5 UI  
0.4 UI  
0.2 UI  
0.1 UI  
0.1  
0.1  
1
10  
100  
1000  
10000  
100000  
Sine Wave Jitter Frequency (Hz) [Log Scale]  
8380_013  
N8380DSA  
Conexant  
Advance Information  
2-23  
2.0 Circuit Description  
2.6 Jitter Attenuator  
CN8380  
Quad T1/E1 Line Interface  
Figure 2-9. Typical JAT Transfer Characteristics with Various JAT Sizes  
0
-10  
-20  
-30  
Rec G.735  
(Min. Atten Boundary)  
PUB 62411  
(Min. Atten. Boundary)  
-40  
PUB 62411  
(Max. Atten. Boundary)  
-50  
64  
32  
16  
8
JAT Size = 128  
-60  
1
10  
100  
1000  
10000  
100000  
Sine Wave Jitter Frequency (Hz) [Log Scale]  
2-24  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.7 Clock Rate Adapter  
Quad T1/E1 Line Interface  
2.7 Clock Rate Adapter  
The CLAD uses an input clock reference at a particular frequency (8 kHz to  
16,384 kHz) to synthesize output clocks at a different frequency (8 kHz to 16,384  
kHz). The CLAD outputs are frequency-locked to the selected timing reference.  
The CLAD can operate with input reference frequencies at multiples and  
submultiples of T1 or E1 line rates. The CLAD block diagram is illustrated in  
Figure 2-10.  
Figure 2-10. CLAD Block Diagram  
Clock Rate Adapter (CLAD)  
Clock  
CLADI  
Monitor  
RCKO[1]  
RCKO[2]  
RCKO[3]  
RCKO[4]  
[G_T1/E1N]  
[CPD_IE]  
[CPDERR]  
[CPD_INT]  
CLAD Control/  
Status  
÷ [RSCALE] Factor  
CLADR  
Phase  
Loop  
Filter  
[LFGAIN]  
NCO  
10 MHz  
REFCKI  
Detector  
[FREE]  
÷ [VSCALE] Factor  
CLADV  
32.768 MHz  
2.048 MHz  
1.544 MHz  
CLK32  
Device I/O Pin  
CLK2048  
CLK1544  
Divider Chain  
Labels in brackets [ ] refer  
to register bits.  
13  
Refer to the following registers:  
Global Configuration; addr 01  
CLAD Configuration; addr 02  
CLAD Frequency Select; addr 03  
CLAD Phase Detector Scale Factor; addr 04  
CLAD Status; addr 06  
CLADO  
14  
[CLK_OE]  
N8380DSA  
Conexant  
Advance Information  
2-25  
2.0 Circuit Description  
2.7 Clock Rate Adapter  
CN8380  
Quad T1/E1 Line Interface  
2.7.1 Inputs  
In Hardware Mode, the CLAD input timing reference is normally taken from a  
line rate (1,544 kHz—T1 or 2,048 kHz—E1) clock on the CLADI pin. The line  
rate is determined globally for all channels by settings on the PTS(2:0) pins. The  
CLAD can be set in free-run mode by removing the clock from CLADI (pull high  
or low). If clock edges are not present on CLADI, an internal clock monitor  
automatically switches the timing reference to use the 10 MHz, REFCKI  
reference. When clock edges are sensed on CLADI, the reference is switched  
back to CLADI.  
In Host Mode, the CLAD input timing reference can be selected from six  
sources. The source can be the received recovered clock (or jitter attenuated  
clock) output (RCKO[n]) from any of the four channels, the CLADI input pin, or  
the 10 MHz, REFCKI input (free-run mode). The CLAD reference is configured  
by writing to the CMUX[2:0] bits in the Global Control Register [GCR; addr 01].  
Free-run mode is selected by writing 1 to the FREE bit in the CLAD  
Configuration Register [CLAD_CR; addr 02].  
2.7.2 Outputs  
Four CLAD output pins are provided: CLADO, CLK32, CLK1544, and  
CLK2048. In Hardware Mode, the CLADO output provides only a fixed 8 kHz  
clock. In Host Mode, the CLADO frequency is programmable. Table 2-10 lists  
the CLAD outputs and frequencies. For pin definitions, refer to Table 1-1  
.
Table 2-10. CLAD Outputs and Frequencies  
CLAD Output  
CLADO  
Frequency  
Host Mode—Programmable to various frequencies in the range of  
8 kHz to 32,768 kHz.  
Hardware Mode—Fixed 8 kHz.  
CLK32  
Fixed 32,768 kHz  
Fixed 1,544 kHz  
Fixed 2,048 kHz  
CLK1544  
CLK2048  
2.7.3 Configuration Options  
CLAD modes are selected using the CLAD Configuration Register [CLAD_CR;  
addr 02]; the CLAD Frequency Select [CSEL; addr 03]; and the CLAD Phase  
Detector Scale Factor [CPHASE; addr 04]. The CLAD reference can be any of 41  
possible frequencies, as listed in Table 2-11.  
2-26  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.7 Clock Rate Adapter  
Quad T1/E1 Line Interface  
Table 2-11. CLAD Reference Frequencies and Configuration Examples (1 of 2)  
Phase  
Compare  
Frequency  
(kHz)  
CLAD  
Reference  
(kHz)  
CLADV  
(kHz)  
RSCALE  
VSCALE  
VSEL  
8
16  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
8
16  
111  
110  
101  
100  
011  
010  
001  
000  
000  
000  
000  
000  
000  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
2048  
4096  
8192  
16,384  
32,768  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0011  
0100  
0101  
0110  
32  
32  
64  
64  
128  
128  
256  
256  
512  
512  
1024  
2048  
4096  
8192  
16,384  
32,768  
1024  
2048  
4096  
8192  
16,384  
32,768  
12.0625  
24.125  
48.25  
96.5  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
12.0625  
24.125  
48.25  
96.5  
111  
110  
101  
100  
011  
010  
001  
000  
000  
000  
000  
000  
1544  
1544  
1544  
1544  
1544  
1544  
1544  
1544  
3088  
6176  
12,352  
24,704  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
1000  
1001  
1010  
1011  
193  
193  
386  
386  
772  
772  
1544  
1544  
3088  
3088  
6176  
6176  
12,352  
24,704  
12,352  
24,704  
12  
24  
000  
000  
000  
000  
000  
12  
24  
111  
110  
101  
100  
011  
1536  
1536  
1536  
1536  
1536  
1101  
1101  
1101  
1101  
1101  
48  
48  
96  
96  
192  
192  
N8380DSA  
Conexant  
Advance Information  
2-27  
2.0 Circuit Description  
2.7 Clock Rate Adapter  
CN8380  
Quad T1/E1 Line Interface  
Table 2-11. CLAD Reference Frequencies and Configuration Examples (2 of 2)  
Phase  
Compare  
Frequency  
(kHz)  
CLAD  
Reference  
(kHz)  
CLADV  
(kHz)  
RSCALE  
VSCALE  
VSEL  
384  
768  
000  
000  
000  
384  
768  
010  
001  
000  
1536  
1536  
1536  
1101  
1101  
1101  
1536  
1536  
20  
40  
000  
000  
000  
000  
000  
000  
000  
000  
20  
40  
111  
110  
101  
100  
011  
010  
001  
000  
2560  
2560  
2560  
2560  
2560  
2560  
2560  
2560  
1100  
1100  
1100  
1100  
1100  
1100  
1100  
1100  
80  
80  
160  
320  
640  
1280  
2560  
160  
320  
640  
1280  
2560  
To configure the CLAD:  
1. Choose a CLADO output frequency. Refer to the CLAD Frequency Select  
register [CSEL; addr 03] for a list of all possible CLADO output  
frequencies.  
2. Configure OSEL to select the CLADO output frequency.  
3. Select the desired CLAD timing reference frequency from Table 2-11.  
4. Configure RSCALE, VSCALE, VSEL from Table 2-11.  
Many RSCALE and VSCALE values other than those shown in Table 2-11 are  
applicable. For instance, an alternate configuration for an input reference  
frequency of 2048 kHz is displayed in Table 2-12.  
Table 2-12. Sample Alternate Configuration  
Phase  
CLAD  
Compare  
Frequency  
(kHz)  
CLADV  
(kHz)  
Reference  
(kHz)  
RSCALE  
VSCALE  
VSEL  
2048  
001  
1024  
011  
8192  
0100  
RSCALE is a programmable frequency divider which scales the CLAD  
reference clock frequency before it is applied to the CLADs phase detector.  
Similarly, VSCALE scales the CLADs internal feedback clock, CLADV. These  
two clocks must have the same frequency at the phase detectors inputs for the  
CLADs loop to properly lock. So the rule is:  
(CLAD reference freq.) ÷ (RSCALE factor) = (CLADV freq.) ÷ (VSCALE factor)  
2-28  
Conexant  
Advance Information  
N8380DSA  
CN8380  
2.0 Circuit Description  
2.8 Test Access Port (JTAG)  
Quad T1/E1 Line Interface  
2.8 Test Access Port (JTAG)  
The CN8380 incorporates printed circuit board testability circuits in compliance  
with IEEE Std P1149.1a–1993, IEEE Standard Test Access Port and  
Boundary–Scan Architecture, commonly known as JTAG (Joint Test Action  
Group).  
The JTAG includes a test access port (TAP) and several data registers. The  
TAP provides a standard interface through which instructions and test data are  
communicated. A Boundary Scan Description Language (BSDL) file for the  
CN8380 is available from the factory upon request.  
The test access port consists of the TRST, TDI, TCK, TMS, and TDO pins. An  
internal power on reset circuit or the TRST resets the JTAG port.  
2.8.1 Instructions  
In addition to the required BYPASS, SAMPLE/PRELOAD, and EXTEST  
instructions, IDCODE instruction is supported. There are also two private  
instructions. Table 2-13 lists the JTAG instructions and their codes.  
Table 2-13. JTAG Instructions  
Instructions  
Code  
BYPASS  
1111  
0001  
0000  
0010  
SAMPLE/PRELOAD  
EXTEST  
IDCODE  
2.8.2 Device Identification Register  
The JTAG ID register consists of a 4-bit version, a 16-bit part number, and an  
11-bit manufacturer number as listed in Table 2-14.  
Table 2-14. Device Identification JTAG Register  
Version Part Number  
Manufacturer ID  
0
0
0
0
1
0
0
0
0
0
1
1 1  
0x8380  
16 Bits  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
0
1
0x0  
4 Bits  
0x0D6  
11 Bits  
N8380DSA  
Conexant  
Advance Information  
2-29  
2.0 Circuit Description  
2.8 Test Access Port (JTAG)  
CN8380  
Quad T1/E1 Line Interface  
2-30  
Conexant  
Advance Information  
N8380DSA  
3
3.0 Registers  
3.1 Address Map  
The address map in Table 3-1 lists the three types of registers:  
• Global Control and Status Registers  
• Per Channel Registers  
• Transmitter Shape Registers  
Table 3-1. Address Map (1 of 2)  
Default  
Address (Hex)  
Acronym  
R/W  
Description  
Setting(1) (Hex)  
Global Control and Status Registers  
(2)  
00  
DID  
R
Device Identification  
01  
02  
03  
04  
06  
GCR  
CLAD_CR  
CSEL  
R/W  
R/W  
R/W  
R/W  
R
Global Configuration  
CLAD Configuration  
00  
00  
00  
00  
CLAD Frequency Select  
CLAD Phase Detector Scale Factor  
CLAD Status  
CPHASE  
CSTAT  
Per Channel Registers (n = channel number: 1–4)  
n0  
n1  
n2  
n3  
n4  
n5  
n6  
n7  
n8  
n9  
JAT_CR  
RLIU_CR  
TLIU_CR  
LIU_CTL  
UNUSED  
ALARM  
ISR  
R/W  
R/W  
R/W  
R/W  
Jitter Attenuator Configuration  
Receiver Configuration  
Transmitter Configuration  
Line Interface Unit Control  
00  
00  
00  
00  
00  
00  
00  
00  
R
Alarm Status  
R
Interrupt Status Register  
Interrupt Enable Register  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
IER  
R/W  
R/W  
R/W  
SHAPE0  
SHAPE1  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-1  
3.0 Registers  
CN8380  
3.1 Address Map  
Quad T1/E1 Line Interface  
Table 3-1. Address Map (2 of 2)  
Default  
Address (Hex)  
Acronym  
R/W  
Description  
Setting(1) (Hex)  
nA  
nB  
nC  
nD  
nE  
nF  
SHAPE2  
SHAPE3  
SHAPE4  
SHAPE5  
SHAPE6  
SHAPE7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
Transmit Pulse Shape Configuration  
00  
00  
00  
00  
00  
00  
Reserved Registers  
05  
07  
CTEST  
FREG  
R/W  
R/W  
R/W  
R/W  
R
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
(Factory use only)  
Reserved  
00  
00  
00  
00  
00  
00  
00  
08  
TESTA1  
09  
TESTA2  
0A  
FUSE_CH1  
FUSE_CH2  
FUSE_CH3  
FUSE_CH4  
FUSE_RES  
TESTD  
0B  
R
0C  
R
0D  
R
0E  
R
0F  
R/W  
R/W  
R/W  
50  
TESTA3  
51  
TESTA4  
52–7F  
Note(s):  
RESERVED  
(1) Registers shown with a default setting are reset to the indicated value during internal power on reset, software RESET, or  
hardware reset (RESET pin).  
(2) Value depends on the current device revision. Consult factory.  
3-2  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.2 Global Control and Status Registers  
3.2 Global Control and Status Registers  
00—Device Identification (DID)  
R
7
6
5
4
3
2
1
0
DID[7]  
DID[6]  
DID[5]  
DID[4]  
DID[3]  
DID[2]  
DID[1]  
DID[0]  
DID[7:4]  
DID[3:0]  
Device ID  
Device Revision  
01—Global Configuration (GCR)  
R/W  
7
6
5
4
3
2
1
0
RESET  
G_T1/E1N  
CLK_OE  
CPD_IE  
TCLK_I/O  
CMUX[2]  
CMUX[1]  
CMUX[0]  
RESET  
Global ResetWhen written to 1, initiates an internal global reset process which sets all  
configuration registers to their default values for all four ports. Also, several output pins are  
three-stated. After RESET is complete, the following is true:  
Digital receiver outputs (RPOSO[1:4], RNEGO[1:4], RCKO[1:4]) are three-stated.  
Transmitter line outputs (XTIP[1:4], XRING[1:4]) are three-stated.  
CLK1544, CLK2048, and CLADO clock outputs are three-stated.  
Transmitter clocks, TCLK[1:4] are configured as inputs.  
All interrupt sources are disabled.  
All configuration registers are set to default values.  
G_T1/E1N  
Global Clock ModeThis bit selects one of two CLAD operating modes. The CLAD can  
operate in a mode which insures the minimum output jitter on the CLK1544 output or the CLK  
2048 output.  
0 = CLK2048 output jitter minimized  
1 = CLK1544 output jitter minimized  
CLK_OE  
CPD_IE  
Clock Output EnableDetermines output state of CLK1544, CLK2048, and CLADO clock  
outputs.  
0 = Clock outputs are three-stated  
1 = Clock outputs are enabled  
CLAD Phase Detector Error Interrupt EnableEnables CLAD loss of lock detector,  
CPD_INT [CSTAT; addr 06], to generate an interrupt request.  
0 = Interrupt disabled  
1 = Interrupt enabled  
TCLK_I/O  
Transmit Clock Input/OutputDetermines whether TCLK[1:4] pins are inputs or outputs.  
0 = TCLK[1:4] pins are inputs  
1 = TCLK[1:4] pins are outputs  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-3  
3.0 Registers  
CN8380  
3.2 Global Control and Status Registers  
Quad T1/E1 Line Interface  
CMUX[2:0]  
CLAD Multiplexer SelectSelects the CLAD reference clock source input to the CLAD  
phase detector if FREE = 0 [CLAD_CR; addr 02]. The source can be the receive recovered  
clock output (RCKO) from any of the four channels or the CLAD input pin.  
000 = CLADI pin  
001 = RCKO[1] from channel #1  
010 = RCKO[2] from channel #2  
011 = RCKO[3] from channel #3  
100 = RCKO[4] from channel #4  
02—CLAD Configuration (CLAD_CR)  
R/W  
7
6
5
4
3
2
1
0
FREE  
RSCALE[2]  
RSCALE[1]  
RSCALE[0]  
LFGAIN[3]  
LFGAIN[2]  
LFGAIN[1]  
LFGAIN[0]  
FREE  
Free-Run CLADDisables the CLAD phase detector in the CLAD, which forces the  
numerically controlled oscillator (NCO) to free-run based on the 10 MHz REFCKI input clock  
accuracy.  
0 = normal (closed loop) CLAD operation  
1 = free run (open loop) NCO operation  
[RSCALE]  
RSCALE[2:0]  
CLAD Reference Scale Factor—Divides CLAD reference signal by 2  
to form  
CLADR input to the phase detector. Applicable only if FREE is 0. Allows the system to supply  
CLADI frequency, up to a maximum of 128 times the desired CLADR reference frequency.  
RSCALE  
000  
Scale Factor CLADR Reference  
CLADR = CLADI  
1
2
4
001  
010  
011  
100  
101  
110  
111  
CLADR = CLADI/2  
CLADR = CLADI/4  
CLADR = CLADI/8  
CLADR = CLADI/16  
CLADR = CLADI/32  
CLADR = CLADI/64  
CLADR = CLADI/128  
8
16  
32  
64  
128  
LFGAIN[3:0]  
Loop Filter Gain— Selects the NCO loop filter's proportional phase error gain. Lower gain  
values reduce phase response time, and higher gain values increase phase response time. Note  
that loop instability or acquisition failures may result from incorrectly programmed LFGAIN  
values.  
LFGAIN  
Proportional Gain  
0
0000  
|
1111  
1/2  
|
1/2  
15  
3-4  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.2 Global Control and Status Registers  
03—CLAD Frequency Select (CSEL)  
R/W  
7
6
5
4
3
2
1
0
VSEL[3]  
VSEL[2]  
VSEL[1]  
VSEL[0]  
OSEL[3]  
OSEL[2]  
OSEL[1]  
OSEL[0]  
VSEL[3:0]  
CLADV Frequency Select—Applicable only if FREE [CLAD_CR; addr 02] is 0. Picks one of  
13 CLAD divider chain frequencies to feed back to the phase detector. The selected CLADV  
frequency passes to VSCALE for further division before phase detector comparison. Setting  
VSEL to invalid values is undefined.  
VSEL  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
CLADV Frequency (kHz)  
<Invalid>  
1024  
2048  
4096  
1 x E1  
2 x E1  
4 x E1  
8 x E1  
16 x E1  
1 x T1  
2 x T1  
4 x T1  
8 x T1  
16 x T1  
8192  
16,384  
32,768  
1544  
3088  
6176  
12,352  
24,704  
2560  
1536  
1 x T1 (unframed)  
<Invalid>  
<Invalid>  
1111  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-5  
3.0 Registers  
CN8380  
3.2 Global Control and Status Registers  
Quad T1/E1 Line Interface  
OSEL[3:0]  
CLADO Frequency SelectPicks one of 14 CLAD divider chain frequencies to output on the  
CLADO pin.  
OSEL  
CLADO Frequency (kHz)  
8
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1024  
2048  
4096  
1 x E1  
2 x E1  
4 x E1  
8 x E1  
16 x E1  
1 x T1  
2 x T1  
4 x T1  
8 x T1  
16 x T1  
8192  
16,384  
32,768  
1544  
3088  
6176  
12,352  
24,704  
2560  
1536  
1 x T1(unframed)  
<Invalid>  
<Invalid>  
04—CLAD Phase Detector Scale Factor (CPHASE)  
R/W  
7
6
5
4
3
2
1
0
VSCALE[2]  
VSCALE[1]  
VSCALE[0]  
[VSCALE]  
VSCALE[2:0]  
CLAD Variable Scale FactorDivides CLADV signal by 2  
before use in the phase  
detector. Applicable only if FREE [CLAD_CR; addr 02] is 0. Allows the system to select  
CLADV frequency that is up to 128 times CLADR.  
VSCALE  
000  
Scale Factor  
Phase Detector Variable Input  
CLADV selected by VSEL [addr 03]  
CLADV/2  
1
2
001  
010  
4
CLADV/4  
011  
8
CLADV/8  
100  
101  
110  
111  
16  
32  
64  
128  
CLADV/16  
CLADV/32  
CLADV/64  
CLADV/128  
3-6  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.2 Global Control and Status Registers  
05—CLAD Test (CTEST)  
R/W  
7
6
5
4
3
2
1
0
CTEST[7]  
CTEST[6]  
CTEST[5]  
CTEST[4]  
CTEST[3]  
CTEST[2]  
CTEST[1]  
CTEST[0  
Factory use only. Must be remain at default value, 00.  
06—CLAD Status (CSTAT)  
R
7
6
5
4
3
2
1
0
CPDERR  
CPD_INT  
CPDERR  
CLAD Phase Detector ErrorReal-time indicator of the CLAD phase detector status.  
CPDERR indicates when the CLADO loses lock with respect to the selected CLADI reference  
clock.  
0 = CLAD Phase Detector is in lock  
1 = CLAD Phase Detector is out of lock  
CPD_INT  
CLAD Phase Detector Error Interrupt—Indicates a change in status of CPDERR. CPD_INT is  
latched high upon a change in status of CPDERR and held until read clear.  
07—(FREG)  
R/W  
7
6
5
4
3
2
1
0
F_OP[1]  
F_OP[0]  
F_ADDR[4]  
F_ADDR[3]  
F_ADDR[2]  
F_ADDR[1]  
F_ADDR[0]  
Factory use only. Must be remain at default value, 00.  
08—(TESTA1)  
R/W  
7
6
5
4
3
2
1
0
A_TEST[7]  
A_TEST[6]  
A_TEST[5]  
A_TEST[4]  
A_TEST[3]  
A_TEST[2]  
A_TEST[1]  
A_TEST[0]  
Factory use only. Must be remain at default value, 00.  
09—(TESTA2)  
R/W  
7
6
5
4
3
2
1
0
A_TEST[15]  
A_TEST[14]  
A_TEST[13]  
A_TEST[12]  
A_TEST[11]  
A_TEST[10]  
A_TEST[9]  
A_TEST[8]  
Factory use only. Must be remain at default value, 00.  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-7  
3.0 Registers  
CN8380  
3.2 Global Control and Status Registers  
Quad T1/E1 Line Interface  
0A(FUSE_CH1)  
R/W  
7
6
5
4
3
2
1
0
F_TR[5]  
F_TR[4]  
F_TR[3]  
F_TR[2]  
F_TR[1]  
F_TR[0]  
Factory use only. Must be remain at default value, 00.  
0B(FUSE_CH2)  
R/W  
7
6
5
4
3
2
1
0
F_TR[10]  
F_TR[9]  
F_TR[8]  
F_TR[7]  
F_TR[6]  
Factory use only. Must be remain at default value, 00.  
0C(FUSE_CH3)  
R/W  
7
6
5
4
3
2
1
0
F_TR[15]  
F_TR[14]  
F_TR[13]  
F_TR[12]  
F_TR[11]  
Factory use only. Must be remain at default value, 00.  
0D(FUSE_CH4)  
R/W  
7
6
5
4
3
2
1
0
F_TR[20]  
F_TR[19]  
F_TR[18]  
F_TR[17]  
F_TR[16]  
Factory use only. Must be remain at default value, 00.  
0E(FUSE_RES)  
R/W  
7
6
5
4
3
2
1
0
PREVIEW  
F_TR[26]  
F_TR[25]  
F_TR[24]  
F_TR[23]  
F_TR[22]  
F_TR[21]  
Factory use only. Must be remain at default value, 00.  
3-8  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.2 Global Control and Status Registers  
0F—(TESTD)  
R/W  
7
6
5
4
3
2
1
0
D_CTL[2]  
D_CTL[1]  
D_CTL[0]  
D_CH[1]  
D_CH[0]  
D_MD[2]  
D_MD[1]  
D_MD[0]  
Factory use only. Must be remain at default value, 00.  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-9  
3.0 Registers  
CN8380  
3.3 Per Channel Registers  
Quad T1/E1 Line Interface  
3.3 Per Channel Registers  
10, 20, 30, 40—Jitter Attenuator Configuration (JAT_CR)  
R/W  
7
6
5
4
3
2
1
0
T1/E1  
JEN  
JDIR  
JCENTER  
JSIZE[2]  
JSIZE[1]  
JSIZE[0]  
T1/E1  
T1/E1 SelectEnables receive and transmit circuits to operate at either the T1 or E1 line rate.  
All configuration register settings should be re-initialized after changing the T1/E1 control bit.  
T1/E1 selects the nominal line rate (shown below), while the exact receive and transmit line  
rate frequencies are independently determined by their respective input clock or data  
references. The actual receive and transmit line frequency can vary within defined tolerances.  
0 = 2.048 MHz line rate (E1)  
1 = 1.544 MHz line rate (T1)  
JEN  
Jitter Attenuator EnableJEN enables the JAT in the receive or the transmit path (determined  
by JDIR bit).  
0 = Disable JAT  
1 = Enable JAT  
JDIR  
Select JAT Path—Applicable only when the JAT is enabled (see JEN description). JAT elastic  
store is placed in either the receive or transmit path.  
0 = JAT in TX path  
1 = JAT in RX direction, jitter attenuated recovered clock output on RCKO  
JCENTER  
Force JAT to CenterWriting a 1 to JCENTER resets the elastic store write pointer and forces  
the elastic store read pointer to one-half the programmed JSIZE. JCENTER is typically written  
at power-up. JCENTER can optionally be asserted after recovery from a loss of signal (RLOS  
or RALOS) or in response to a transmit loss of clock (TLOC), or after recovering from a  
persistent JAT elastic store error (JERR). The JCENTER bit is self clearing.  
0 = normal operation  
1 = recenter JAT elastic store  
JSIZE[2:0]  
JAT Elastic Store Size—Selects the maximum depth of the JAT elastic store. The 32-bit depth  
is sufficient to meet jitter attenuation requirements in all cases where the JAT cutoff frequency  
is programmed at 6 Hz. However, in cases where an external reference is selected or a narrow  
loop bandwidth is programmed, the elastic store depth can tolerate up to ±64 UI (128 bits) of  
accumulated phase offset.  
JSIZE  
000  
Elastic Store Size  
8 Bits  
001  
16 Bits  
010  
32 Bits  
011  
64 Bits  
1xx  
128 Bits  
3-10  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.3 Per Channel Registers  
11, 21, 31, 41—Receiver Configuration (RLIU_CR)  
R/W  
7
6
5
4
3
2
1
0
UNIPOLAR  
ZCS  
CLK_POL  
RAWMD  
EQ_DIS  
ATTN  
SQUELCH  
UNIPOLAR  
Unipolar ModeSelects between unipolar and bipolar modes for digital transmit and receive  
signals.  
In unipolar mode, RPOSO/RNEGO signals are replaced by RDATO/BPV signals. AMI  
encoded received data is decoded and output on RDATO in unipolar, NRZ format; and BPV  
indicates that the currently received bit is a bipolar violation. TPOSI is replaced with TDATI  
and accepts unipolar, NRZ formatted transmit data. TNEGI is not used in this mode. In  
unipolar mode, ZCS can replace AMI encoding. Refer to the ZCS bit description below.  
In bipolar mode, RPOSO/RNEGO signals output received data in bipolar dual-rail format,  
where a high level on RPOSO indicates receipt of a positive AMI pulse, and a high level on  
RNEGO indicates receipt of a negative AMI pulse on RTIP/RING inputs. TPOSI/TNEGI  
inputs accept bipolar dual-rail transmit data, where a high on TPOSI causes a positive output  
pulse on XTIP/XRING, and a high on TNEGI causes a negative output pulse.  
0 = Digital transmit/receive signals are bipolar, dual-rail  
1 = Digital transmit/receive signals are unipolar, NRZ  
ZCS  
Zero Code Suppression EnableEnables HDB3 or B8ZS zero code suppression  
encoding/decoding on digital transmit and receive signals and is only applicable if unipolar  
mode is selected. In T1 mode (T1/E1 = 1) [addr n0], B8ZS encoding/decoding is selected. In  
E1 mode (T1/E1 = 0), HDB3 encoding/decoding is selected.  
In the transmit direction, the ZCS encoder replaces sequences of eight or four 0s with a  
recoverable code. In the receive direction, the ZCS decoder replaces received codes with eight  
0s in T1 mode, or four 0s in E1 mode. The B8ZS code is 000VB0VB and the HDB3 code is  
X00V; where B is a normal AMI pulse, V is a bipolar violation, and X is a “don't-care.” These  
are standard T1 and E1 line code options.  
0 = ZCS encode/decode disabled  
1 = ZCS encode/decode enabled  
CLK_POL  
RAWMD  
Clock PolaritySelects the digital receive data clocking edge. Normally, RPOSO/RNEGO is  
output on the rising edge of RCKO. If CLK_POL is set to 1, RPOSO/RNEGO is output on the  
falling edge of RCKO.  
0 = Data out on rising RCKO  
1 = Data out on falling RCKO  
Raw Receive ModeRPOSO/RNEGO data outputs are replaced by the data slicer output, and  
RCKO is replaced by the logical OR of RPOSO/RNEGO. A high on RPOSO indicates a  
positive pulse, and a high on RNEGO indicates a negative pulse on RTIP/RRING line inputs.  
0 = Normal receiver output  
1 = Slicer data output enabled  
EQ_DIS  
ATTN  
Equalizer DisableDisables the receiver equalizer. (Test mode only)  
0 = Equalizer enabled  
1 = Equalizer disabled  
Bridge AttenuationCompensates for 20 dB resistive signal attenuation caused by placement  
of bridge resistors in series with the normal receive termination resistance. Also, in this mode a  
lower threshold for RALOS is selected to compensate for the 20 db attenuation.  
0 = Normal receiver input levels  
1 = 20 dB compensation enabled  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-11  
3.0 Registers  
CN8380  
3.3 Per Channel Registers  
Quad T1/E1 Line Interface  
SQUELCH  
Enable Receive Signal SquelchThe digital receiver outputs, RPOSO/RNEGO, are forced to  
zero when RALOS is declared. SQUELCH is useful in attached framer applications to allow  
the framer to detect LOS during an RALOS condition.  
0 = Normal  
1 = Squelch RPOSO/RNEGO outputs upon RALOS detect  
12, 22, 32, 42 —Transmitter Configuration (TLIU_CR)  
R/W  
7
6
5
4
3
2
1
0
ALT_TR  
TERM  
PDN  
T_BOOST  
PPT  
PULSE[2]  
PULSE[1]  
PULSE[0]  
ALT_TR  
Alternate Transformer SelectAdjusts the transmit output level for one of two possible  
transmitter transformer turns ratios. Normally, a turns ratio of 1:2 for the transmitter is used.  
An alternate transformer with turns ratio of 1:1.36 can be selected to minimize power  
dissipation  
0 = Normal transformer (1:2)  
1 = Alternate transformer (1:1.36)  
TERM  
Transmitter Termination SelectAdjusts the transmit XTIP/XRING output amplitude to  
compensate for the presence of an optional external termination resistor. The external resistor  
is placed in parallel across XTIP/XRING on systems that must meet transmitter return loss  
requirements. Refer to Figure 2-7, Transmit Termination Components, for resistor placement.  
Refer to Tables 2-4 through 2-8 for return loss values.  
0 = no external transmit termination resistor used  
1 = external transmit termination resistor used  
PDN  
Power DownUnused channels can be put into a low power mode in order to minimize power  
dissipation. In low power mode, XTIP/XRING, RPOSO/RNEGO, and RCKO outputs are  
three-stated. All other receiver functions are not affected.  
0 = Channel is disabled, low power mode  
1 = Channel is enabled, normal operation  
T_BOOST  
Transmit Level BoostAdjusts the transmit output level to compensate for series resistance  
added to the output by surge protection circuitry. Typical resistance values are 5.6 ohms in  
series with line side XTIP and XRING signals.  
0 = No compensation  
1 = Compensation enabled  
PPT  
Programmed Pulse TemplateEnables custom transmit pulse transmission. The programmed  
pulse shape stored in the corresponding shape register, SHAPEn [addr n8 – nF], is used for  
transmission.  
0 = Pulse template selected by PULSE(2:0)  
1 = Programmed pulse template selected  
3-12  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.3 Per Channel Registers  
PULSE[2:0]  
Transmit Pulse Template SelectEach positive or negative pulse output on XTIP/XRING is  
shaped to meet the transmit pulse template according to the selected cable length and type.  
Custom shape programming for alternative cable types or pulse templates can be set using the  
SHAPE0–SHAPE7 registers [addr n8 – nF].  
PULSE  
000  
001  
010  
011  
100  
101  
110  
111  
Cable Length  
0–133 ft.  
Cable Type  
Application  
T1 DSX  
T1 DSX  
T1 DSX  
T1 DSX  
T1 DSX  
E1  
100 Twisted Pair  
100 Twisted Pair  
100 Twisted Pair  
100 Twisted Pair  
100 Twisted Pair  
75 Coaxial Cable  
120 Twisted Pair  
100 Twisted Pair  
133–266 ft.  
266–399 ft.  
399–533 ft.  
533–655 ft.  
ITU–T G.703  
ITU–T G.703  
I.431 ISDN  
E1  
T1 CSU/NCTE  
13, 23, 33, 43—LIU Control (LIU_CTL)  
R/W  
7
6
5
4
3
2
1
0
AISCLK  
AUTO_AIS  
TAIS  
LLOOP  
RLOOP  
TAIS_PE  
LLOOP_PE  
RLOOP_PE  
AISCLK  
Enable Automatic ACKI SwitchingIf AISCLK is active, the transmitter clock is  
automatically switched to reference TACKI (T1) or EACKI (E1) instead of TCLK when  
transmitting AIS (all 1s) data. Set AISCLK only if the system supplies an alternate line rate  
clock on the TACKI or EACKI pins. Also refer to description of AUTO_AIS/TAIS below.  
0 = TACKI/EACKI is not used to transmit AIS  
1 = TACKI/EACKI is used to transmit AIS  
AUTO_AIS  
TAIS  
Automatic Transmit Alarm Indication Signal  
Manual Transmit Alarm Indication SignalWhen activated manually (TAIS) or automatically  
(AUTO_AIS), the AIS generator replaces all data output on XTIP/XRING with an unframed  
all-1s signal (AIS). This includes replacing data supplied from TPOSI/TNEGI and from the  
receiver during Remote Line Loopback. Automatic mode sends AIS for the duration of  
transmit loss of clock [TLOC; addr n5]. If AISCLK is enabled, the transmit clock is switched  
to use TACKI or EACKI to transmit AIS.  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-13  
3.0 Registers  
CN8380  
3.3 Per Channel Registers  
Quad T1/E1 Line Interface  
AIS transmission does not affect transmit data that is looped back to the receiver during  
Local Digital Loopback. This allows Local Digital Loopback to be active simultaneously with  
the transmission of AIS. If TAIS is activated when RLOOP is enabled, AIS is transmitted using  
the jitter-attenuated received clock. Refer to the descriptions of RLOOP and LLOOP below.  
Table 3-2 lists transmitter operating modes resulting from various configuration settings and  
input conditions.  
Table 3-2. Transmitter Operating Modes  
Configuration and Input Status  
Transmitter Mode  
Transmit  
Data  
Transmit  
Clock  
RLOOP  
TLOC  
TAIS  
AUTO_AIS  
AISCLK  
0
0
0
0
0
0
1
1
X
X
X
0
0
1
1
0
0
0
0
1
0
X
0
Tx Data  
TCLK  
X
X
1
AIS  
TCLK  
1
AIS  
TACKI/EACKI  
TCLK  
X
0
Tx Data  
AIS  
1
1
TCLK  
1
1
1
AIS  
TACKI/EACKI  
RCLK  
X
X
X
X
X
X
Rx Data  
AIS  
RCLK  
Note: X is dont-care.  
LLOOP  
RLOOP  
Local Analog Loopback—Bipolar data from XTIP/XRING is internally connected to  
RTIP/RRING inputs. Externally applied data on RTIP/RRING inputs is ignored.  
XTIP/XRING output data is unaffected. Asserting both LLOOP and RLOOP activates Local  
Digital Loopback. Refer to the RLOOP description below.  
Remote Line Loopback—Dual-rail bipolar data from the receiver (or receive JAT) is internally  
connected to the transmitter (or transmit JAT). The recovered clock from the RPLL (or JCLK)  
is also looped to provide the transmit clock. Loopback data retains BPV transparency.  
Received data is allowed to pass to the RZCS decoder, and digital outputs are unaffected.  
Asserting both LLOOP and RLOOP activates LDL. Dual-rail bipolar data from the TZCS  
encoder (or transmit jitter attenuator) is internally connected to the RZCS decoder (or receive  
jitter attenuator) inputs. The transmit clock, TCLK, is also looped to provide the receive clock,  
RCKO. Externally applied data on RTIP/RRING inputs are blocked; however, RLOS and  
RALOS detect circuitry continues to operate and report receive signal status. XTIP/XRING  
output data is unaffected.  
LLOOP  
RLOOP  
Loopback  
0
0
1
1
0
1
0
1
No loopback  
Remote Line Loopback  
Local Analog Loopback  
Local Digital Loopback  
TAIS_PE  
TAIS Pin Enable—Allows the use of the TAIS hardware pin instead of the TAIS register bit to  
manually transmit AIS.  
0 = Use TAIS register bit  
1 = Use TAIS pin  
3-14  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.3 Per Channel Registers  
LLOOP_PE  
RLOOP_PE  
LLOOP Pin Enable—Allows the use of the LLOOP hardware pin instead of the LLOOP  
register bit to control loopbacks.  
0 = Use LLOOP register bit  
1 = Use LLOOP pin  
RLOOP Pin Enable—Allows the use of the RLOOP hardware pin instead of the RLOOP  
register bit to control loopbacks.  
0 = Use RLOOP register bit  
1 = Use RLOOP pin  
15, 25, 35, 45—Alarm Status (ALARM)  
R
7
6
5
4
3
2
1
0
RALOS  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
RALOS  
Receive Analog Loss of Signal Detect—Indicates receiver analog loss of signal.  
Receive Loss of Signal Detect—Indicates receiver loss of signal.  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
Transmit Loss of Clock Detect—Indicates loss of transmit clock, TCLK.  
Transmit Loss of Signal Detect—Indicates a transmitter signal fault detected by the DPM.  
Transmit Short Circuit Detect—Indicates transmitter output overload.  
Jitter Attenuator Error Detect—Indicates jitter attenuator FIFO overflow or underrun.  
Bipolar Violation Detect—Indicates a bipolar violation error. If ZCS encoding/decoding is  
enabled, BPV is asserted only for bipolar violations which are not part of the ZCS code.  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-15  
3.0 Registers  
CN8380  
3.3 Per Channel Registers  
Quad T1/E1 Line Interface  
16, 26, 36, 46—Interrupt Status Register (ISR)  
An Interrupt Status register (ISR) bit is latched active (high) whenever its corresponding interrupt source  
[ALARM; addr n5] reports an interrupt event. All latched ISR bits are cleared when ISR is read. If the  
corresponding interrupt enable [IER; addr n7] is active (high), each interrupt event forces the IRQ output pin  
active (low).  
ISR reports an interrupt event when an alarm status [ALARM; addr n5] changes from inactive to active  
(rising edge) or from active to inactive (falling edge). The associated real-time alarm status must be read to  
determine the current alarm state.  
R
7
6
5
4
3
2
1
0
RALOS  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
RALOS  
Receive Analog Loss of Signal—Indicates receiver analog loss of signal status change.  
Receive Loss of Signal—Indicates receiver loss of signal status change.  
Transmit Loss of Clock—Indicates transmitter loss of clock status change.  
Transmit Loss of Signal—Indicates transmitter output signal fault status change.  
Transmit Short Circuit—Indicates transmitter loss of analog signal status change.  
Jitter Attenuator Error— Indicates JAT FIFO empty/full status change.  
Bipolar Violation— Indicates a non-zero code bipolar violation status change.  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
17, 27, 37, 47—Interrupt Enable Register (IER)  
R/W  
7
6
5
4
3
2
1
0
RALOS  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
RALOS  
Enables Receive Analog Loss Of Signal  
Enables Receive Loss Of Signal  
Enables Transmit Loss Of Clock  
Enables Transmit Loss Of Signal  
Enables Transmit Short Circuit  
Enables Jitter Attenuator Error  
Enables Bipolar Violation  
RLOS  
TLOC  
TLOS  
TSHORT  
JERR  
BPV  
3-16  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
CN8380  
3.0 Registers  
Quad T1/E1 Line Interface  
3.4 Transmitter Shape Registers  
3.4 Transmitter Shape Registers  
The following SHAPE registers allow custom programming of the transmit signal pulse shapes. Each set of  
eight registers determines the shape for its corresponding channel. A channel [n] is configured to use custom  
shapes by first programming the eight SHAPE[n] registers, then setting register bit PPT [addr n1]. For more  
information on transmitter functionality, refer to Section 2.4, Transmitter.  
18 - 1F—Transmit PULSE Shape CONFIGURATION (SHAPE1)  
R/W  
7
6
5
4
3
2
1
0
SHAPE[4]  
SHAPE[3]  
SHAPE[2]  
SHAPE[1]  
SHAPE[0]  
28 - 2F—Transmit PULSE Shape CONFIGURATION (SHAPE2)  
R/W  
7
6
5
4
3
2
1
0
SHAPE[4]  
SHAPE[3]  
SHAPE[2]  
SHAPE[1]  
SHAPE[0]  
38 - 3F—Transmit PULSE Shape CONFIGURATION (SHAPE3)  
R/W  
7
6
5
4
3
2
1
0
SHAPE[4]  
SHAPE[3]  
SHAPE[2]  
SHAPE[1]  
SHAPE[0]  
48 - 4F—Transmit PULSE Shape CONFIGURATION (SHAPE4)  
R/W  
7
6
5
4
3
2
1
0
SHAPE[4]  
SHAPE[3]  
SHAPE[2]  
SHAPE[1]  
SHAPE[0]  
50—(TESTA3)  
R/W  
7
6
5
4
3
2
1
0
A_TEST[23]  
A_TEST[22]  
A_TEST[21]  
A_TEST[20]  
A_TEST[19]  
A_TEST[18]  
A_TEST[17]  
A_TEST[16]  
Factory use only. Must be remain at default value, 00.  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
3-17  
3.0 Registers  
CN8380  
3.4 Transmitter Shape Registers  
Quad T1/E1 Line Interface  
51—(TESTA4)  
R/W  
7
6
5
4
3
2
1
0
A_TEST[31]  
A_TEST[30]  
A_TEST[29]  
A_TEST[28]  
A_TEST[17]  
A_TEST[16]  
A_TEST[15]  
A_TEST[14]  
Factory use only. Must be remain at default value, 00.  
3-18  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
4
4.0 Electrical/Mechanical  
Specifications  
This chapter contains the following sections:  
Absolute Maximum Ratings  
Recommended Operating Conditions  
DC Characteristics  
Performance Characteristics  
AC Characteristics  
Packaging  
4.1 Absolute Maximum Ratings  
Table 4-1. Absolute Maximum Ratings  
Symbol  
Parameter  
Power Supply (measured to GND)  
Voltage Differential (between any 2 VDD pins)  
Constant Voltage on any Signal Pin  
Minimum  
Maximum  
5.0  
Units  
V
V
–0.5  
DD  
V  
0.5  
V
DD  
V
–1.0  
–10  
VDD + 0.5  
V
i
ESD  
Transient Voltage on any Signal Pin  
HBM rating  
CDM rating  
±2  
± 700  
±200  
kV  
V
V
MMM rating  
Ii  
Constant Current on any Signal Pin  
+10  
mA  
LATCHUP  
Transient Current on any Signal Pin  
Digital Pins  
–400  
–400  
+400  
+400  
mA  
mA  
Analog Pins (TIP, RING)  
°C  
°C  
T
Storage Temperature  
–65  
–40  
150  
125  
220  
36  
s
T
Junction Temperature: (θjA x VDD x IDD) + T  
amb  
j
°C  
Tvsol  
Vapor Phase Soldering Temperature (1 minute)  
Thermal Resistance (128 MQFP), Still Air  
°C /W  
θJA  
Stresses above those listed here may cause permanent damage to the device. This is a stress rating only,  
and functional operation of the device at these or any other conditions beyond those indicated in the other  
sections of this document is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
N8380DSA  
Conexant  
Advance Information  
4-1  
4.0 Electrical/Mechanical Specifications  
4.2 Recommended Operating Conditions  
CN8380  
Quad T1/E1 Line Interface  
4.2 Recommended Operating Conditions  
Table 4-2. Recommended Operating Conditions  
Symbol Parameter  
Minimum  
Maximum  
Units  
VDD,  
V
V
Supply voltage  
3.14  
3.47  
V
AA, AAT,  
AAR, V  
AACC  
V
(1)  
ESD Rail  
3.14  
5.25  
V
VGG  
°C  
V
T
Ambient operating temperature  
Input high voltage  
+85  
40  
amb  
(1)  
2.0  
VGG + 0.5  
V
ih  
V
Input low voltage  
0.8  
V
0.5  
il  
NOTE(S):  
(1) VGG is normally connected to V  
VGG is connected to + 5 V supply if input signals are 5 V logic.  
DD.  
4-2  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.3 DC Characteristics  
Quad T1/E1 Line Interface  
4.3 DC Characteristics  
Table 4-3. DC Characteristics  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
IDD  
Supply current (all channels in low power  
mode, PDN [TLIU_CR; addr n2])  
60  
mA  
Supply current (50% 1s, all channels  
enabled, includes transmit load current)  
0.2  
200  
650  
mA  
mA  
W
Supply current (all 1s, all channels enabled,  
includes transmit load current)  
PD  
Device power dissipation (all channels in low  
power mode, PDN [TLIU_CR; addr n2])  
Device power dissipation (50% 1s, all  
channels enabled)  
0.5  
W
Device power dissipation (all 1s, all channels  
enabled)  
1.25  
W
V
2.5  
100  
1
1.0  
V
V
V
V
Output high voltage (Ioh = – 400 µA)  
Output low voltage (Ioh = – 400 µA)  
Input high voltage  
oh  
V
ol  
V
2.0  
–0.5  
40  
VGG + 0.5  
0.8  
ih  
V
Input low voltage  
il  
Ipr  
Il  
Resistive pull-up current  
Input leakage current  
500  
10  
µA  
µA  
µA  
pF  
10  
10  
Ioz  
Three-state leakage current  
Input capacitance (f = 1 MHz)  
Output capacitance  
1
10  
C
2
5
in  
C
2
5
pF  
out  
C
Capacitive loading (test condition)  
70  
50  
85  
pF  
ld  
Iosc  
Short circuit output current (except  
XTIP/XRING)  
37  
160  
mA  
N8380DSA  
Conexant  
Advance Information  
4-3  
4.0 Electrical/Mechanical Specifications  
4.4 Performance Characteristics  
CN8380  
Quad T1/E1 Line Interface  
4.4 Performance Characteristics  
Table 4-4. Performance Characteristics  
Parameter  
Minimum  
Receiver  
Typical  
Maximum  
Units  
T1 receiver sensitivity (attenuation @ 772 kHz)  
E1 receiver sensitivity (attenuation @ 1024 kHz)  
+3  
+3  
dB  
dB  
12  
12  
RTIP[n]. RRING[n] inputs:  
Input impedance (unterminated)  
Peak-to-peak voltage (differential)  
Return loss  
10  
6
TBD  
12  
10  
kΩ  
V
dB  
Receive clock recovery (PLL)  
Consecutive zeros tolerance before loss of lock  
T1 frequency lock range  
23  
0.1  
0.4  
75  
100  
+0.3  
+0.4  
bits  
kHz  
kHz  
E1 frequency lock range  
Receive noise immunity (SNR)  
Near-end crosstalk (215 PRBS)  
60 Hz longitudinal  
Gaussian white noise  
15  
18  
TBD  
18  
20  
TBD  
dB  
dB  
dB  
RCKO intrinsic jitter with JAT disabled  
RCKO intrinsic jitter with JAT enabled  
0.125  
0.05  
UI P-P  
UI P-P  
Transmitter  
Transmitter XTIP[n], XRING[n] outputs:  
Output impedance (XOE = 1, high impedance)  
Output impedance (XOE = 0, unterminated)  
Short circuit current into 1 load  
10  
100  
1
2
50  
kΩ  
kΩ  
mA  
V
T1 pulse amplitude, 100 UTP(1)  
E1 pulse amplitude, 75 coax(1)  
E1 pulse amplitude, 120 UTP(1)  
Positive/negative pulse imbalance  
Return loss  
2.7  
3.0  
3.3  
2.14  
2.7  
10  
2.37  
3.0  
2.6  
3.3  
+10  
V
V
%
TBD  
dB  
Transmitter signal power level (3 kHz band):  
Power @ 772 kHz  
12  
25  
15  
36  
+19  
dBm  
dB  
Power @ 1544 kHz (relative to power @ 772 kHz)  
Transmitter output intrinsic jitter with JAT disabled  
Transmitter output intrinsic jitter with JAT enabled  
NOTE(S):  
0.125  
0.05  
UI  
UI  
(1) These values are measured on the line side of the transformer with an appropriate value load resister in place of a cable.  
4-4  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
Quad T1/E1 Line Interface  
4.5 AC Characteristics  
This section provides details about the following timing features:  
XOE  
RESET  
CLAD  
Receiver signals  
Transmitter signals  
Host serial port  
JTAG interface  
Table 4-5. XOE Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
2
XOE[n] high to XTIP[n]/XRING[n] three-state  
XOE[n] low to XTIP[n]/XRING[n] active  
20  
20  
ns  
ns  
NOTE(S): See Figure 4-1.  
Figure 4-1. XOE Timing Diagram  
XOE [n]  
1
2
XTIP[n],  
XRING[n]  
8380_016  
N8380DSA  
Conexant  
Advance Information  
4-5  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
CN8380  
Quad T1/E1 Line Interface  
Table 4-6. RESET Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
RESET pulse width  
500  
ns  
ns  
ns  
2
3
RESET low to output signals three-state  
RESET[n] high to output signals active  
20  
20  
NOTE(S):  
1. Output signals: RCKO[n], RPOSO[n], RNEGO[n], XTIP[n], XRING[n], CLK1544, CLK2048, CLADO, RLOS[n], JATERR[n],  
TDO, SDO, IRQ  
2. See Figure 4-2.  
Figure 4-2. RESET Timing Diagram  
1
RESET  
2
3
Three-State  
Output  
Signals  
8380_017  
4-6  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
Quad T1/E1 Line Interface  
Table 4-7. CLAD Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
2
REFCKI frequency  
CLADI frequency  
9.999  
8
10.001  
16,384  
60  
MHz  
kHz  
%
Duty cycle  
40  
REFCKI, CLADI  
3
Rise/fall time (10% to 90%)  
REFCKI, CLADI  
8
20  
ns  
1
1
CLADO frequency  
CLK32 frequency  
16,384  
MHz  
MHz  
32.768  
(Locked to CLAD reference)  
1
1
2
3
CLK1544 frequency  
CLK2048 frequency  
1.544  
MHz  
MHz  
%
(Locked to CLAD reference)  
2.048  
(Locked to CLAD reference)  
Duty cycle  
CLADO, CLK32, CLK1544, CLK2048  
45  
55  
Rise/fall time  
20  
ns  
CLADO, CLK32, CLK1544, CLK2048  
NOTE(S): See Figure 4-3.  
Figure 4-3. CLAD Timing Diagram  
1
2
2
90%  
10%  
3
8380_018  
N8380DSA  
Conexant  
Advance Information  
4-7  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
CN8380  
Quad T1/E1 Line Interface  
Table 4-8. Receiver Signals Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
RCKO[n] frequency  
RCKO[n] duty cycle  
1,544 or 2,048  
(Locked to line rate)  
kHz  
2/1  
45  
55  
20  
%
ns  
Rise/fall time (10% to 90%)  
RCKO[n], RPOSO[n], RNEGO[n], RDATO[n], BPV[n]  
3
RCKO[n] (rising or falling edge) to data valid  
20  
ns  
NOTE(S): See Figure 4-4.  
Figure 4-4. Receiver Signals Timing Diagram  
1
RCKO[n]  
(CLK_POL = 0)  
2
3
RPOSO[n],  
RNEGO[n],  
RDATO[n],  
BPV[n]  
RCKO[n]  
(CLK_POL = 1)  
8380_019  
4-8  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
Quad T1/E1 Line Interface  
Table 4-9. Transmitter Signals Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
TCLK[n] frequency (input or output)  
TCLK[n] duty cycle (input)  
1.5  
20  
45  
2.1  
80  
55  
20  
MHz  
%
2/1  
2/1  
TCLK[n] duty cycle (output)  
%
Rise/fall time (10% to 90%)  
ns  
TCLK[n], TPOSI[n], TNEGI[n], TDATI[n]  
3
4
Data Input to TCLK[n] falling edge setup time  
TCLK[n] falling edge to data input hold time  
5
5
ns  
ns  
NOTE(S): See Figure 4-5.  
Figure 4-5. Transmitter Signals Timing Diagram  
1
TCLK[n]  
2
3
4
TPOSI[n],  
TNEGI[n],  
TDATI[n]  
8380_020  
N8380DSA  
Conexant  
Advance Information  
4-9  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
CN8380  
Quad T1/E1 Line Interface  
Table 4-10. Host Serial Port Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
2, 3  
2
CS Setup Before SCLK Rising Edge  
SCLK Frequency  
10  
50  
50  
10  
5
8
ns  
MHz  
ns  
SCLK High Pulse Width  
50  
20  
3
SCLK Low Pulse Width  
ns  
4
SDI to SCLK Rising Edge Setup Time  
SCLK Rising Edge to SDI Hold Time  
SCLK Rising Edge to CS Hold Time  
CS Inactive Cycle Time  
ns  
5
ns  
6
5
ns  
7
100  
100  
ns  
8
CS Inactive to SDO Three-State  
SCLK Falling Edge to SDO Valid Time  
ns  
9
ns  
Rise/Fall Time (10% to 90%)  
SCLK, SDI, SDO  
ns  
NOTE(S): See Figures 4-6 through 4-8.  
Figure 4-6. Host Serial Port Timing Diagram  
Read Timing  
CS  
SCLK  
SDI  
R/W A0 A1 A2 A3 A4 A5 A6  
1
Address/Control Byte  
SDO  
D0 D1 D2 D3 D4 D5 D6 D7  
Register Data Byte  
Write Timing  
CS  
SCLK  
SDI  
R/W A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7  
0
Address/Control Byte  
Register Data Byte  
SDO  
8380_021  
4-10  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
Quad T1/E1 Line Interface  
Figure 4-7. Host Serial Port Write Timing  
CS  
1
4
2
3
6
7
SCLK  
SDI  
5
0
A0  
A1  
D5  
D6  
D7  
Address/Command  
Byte  
Write Data Byte  
8380_022  
Figure 4-8. Host Serial Port Read Timing  
CS  
1
4
2
3
7
SCLK  
SDI  
5
1
A0  
A1  
Address/Command  
Byte  
9
8
SDO  
D5  
D6  
D7  
Read Data Byte  
8380_023  
N8380DSA  
Conexant  
Advance Information  
4-11  
4.0 Electrical/Mechanical Specifications  
4.5 AC Characteristics  
CN8380  
Quad T1/E1 Line Interface  
Table 4-11. JTAG Interface Timing Parameters  
Symbol  
Parameter  
Minimum  
Maximum  
Units  
1
2
3
4
5
6
7
8
TCK pulse width high  
TCK pulse width low  
80  
80  
20  
20  
0
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TMS, TDI setup to TCK rising edge  
TMS, TDI hold after TCK high  
TDO hold after TCK falling edge  
TDO delay after TCK low  
2
TDO enable (Low Z) after TCK falling edge  
TDO disable (High Z) after TCK low  
NOTE(S): See Figure 4-9.  
Figure 4-9. JTAG Interface Timing Diagram  
TDO  
7
5
8
1
6
TCK  
3
4
2
TDI  
TMS  
8380_024  
4-12  
Conexant  
Advance Information  
N8380DSA  
CN8380  
4.0 Electrical/Mechanical Specifications  
4.6 Packaging  
Quad T1/E1 Line Interface  
4.6 Packaging  
Figure 4-10. 128-Pin MQFP Mechanical Drawing  
E
E
1
E
2
2.00  
PIN 1  
REF  
2.00  
D
2
D
D
D
1
1
PIN 1 REF MARK  
e
b
S
Y
M
B
O
L
ALL DIMENSIONS  
IN MILLIMETERS  
DETAIL A  
MIN.  
MAX  
3.40  
NOM.  
3.04  
A
A
A
0.25  
2.57  
0.33  
1
2
E
1
2.87  
2.71  
D
D
D
E
E
23.20 REF.  
20.0 REF.  
18.5 REF  
17.20 RE.  
14.0 REF  
12.5 REF  
0.88  
1
2
A
A
2
1
2
c
E
L
L
0.73  
1.03  
1.6 REF  
0.50 BSC  
----  
1
A
1
L
e
b
c
0.13  
0.13  
0.28  
0.23  
L
1
DETAIL A  
----  
Ref. 128-PIN MQFP (GP00-D448)  
8380_027  
N8380DSA  
Conexant  
Advance Information  
4-13  
4.0 Electrical/Mechanical Specifications  
4.6 Packaging  
CN8380  
Quad T1/E1 Line Interface  
4-14  
Conexant  
Advance Information  
N8380DSA  
A
Appendix A: Applicable Standards  
Table A-1. Applicable Standards (1 of 2)  
Standard  
Title  
ANSI  
T1.101-1987  
T1.102-1993  
T1.403-1995  
T1.408-1990  
Digital Hierarchy—Timing Synchronization  
Digital Hierarchy—Electrical Interfaces  
Network to Customer Installation—DS1 Metallic Interface  
ISDN Primary Rate—Customer Installation Metallic Interfaces  
AT&T  
TR 41449-1986  
TR 43801(A)-1985  
TR 62411-1990  
CB 119  
ISDN Primary Rate Interface Specification  
Digital Channel Bank—Requirements and Objectives  
Accunet T1.5 Service Description and Interface Specification  
Compatibility Bulletin  
Bellcore  
TR-TSY-000008 Issue 2, 1987  
Digital Interface Between the SLC 96 Digital Loop Carrier System and a Local  
Digital Switch  
TR-TSY-000009 Issue 1, 1986  
TR-NPL-000054 Issue 1, 1989  
TR-NWT-000057 Issue 2, 1993  
TR-TSY-000170 Issue 2, 1993  
TR-TSY-000191 Issue 1, 1986  
TR-TSY-000303 Issue 2, 1992  
TR-NPL-000320 Issue 1, 1988  
TA-TSY-000435 Issue 1, 1987  
TR-NWT-000499 Issue 5, 1993  
SR-NWT-002343 Issue 1, 1993  
Asynchronous Digital Multiplexer Requirements and Objectives  
High-Capacity Digital Service (HCDS) Interface Generic Requirements  
Functional Criteria for Digital Loop Carrier Systems  
Digital Cross-Connect System (DCS) Requirements and Objectives  
Alarm Indication Signal (AIS) Requirements and Objectives  
Integrated Digital Loop Carrier (IDLC) System Generic Requirements  
Fundamental Generic Requirements for Metallic Digital Signal Cross-connect Systems  
DS1 Automatic Facility Protection Switching (AFPS) Rqts. and Objectives  
Transport Systems Generic Requirements  
ISDN Primary Rate Interface Guidelines for Customer Premises Equipment  
ETSI  
ETS 300 011 (4/92)  
ETS 300 233  
ISDN Primary Rate User-Network Interface Specification and Test Principles  
Access Digital Section for ISDN Primary Rate  
N8380DSA  
Conexant  
Advance Information  
A-1  
Appendix A : Applicable Standards  
CN8380  
Quad T1/E1 Line Interface  
Table A-1. Applicable Standards (2 of 2)  
Standard  
Title  
ITU-T  
Recommendation G.703 (1991)  
Recommendation G.704 (1991)  
Recommendation G.706 (1991)  
Recommendation G.732  
Physical/Electrical Characteristics of Hierarchical Digital Interfaces  
Synchronous Frame Structures used at Primary Hierarchical Levels  
Frame Alignment and CRC Procedures Relating to G.704 Frame Structures  
Characteristics of Primary PCM Multiplex Equipment at 2048 kbps  
Characteristics of Primary PCM Multiplex Equipment at 1544 kbps  
Characteristics of Synchronous Digital Multiplex Equipment at 1544 kbps  
Recommendation G.733  
Recommendation G.734  
Recommendation G.735  
Characteristics of Primary PCM Multiplex Equipment at 2048 kbps; offering  
Synchronous Digital Access at 384 kbps and/or 64 kbps  
Recommendation G.736  
Recommendation G.737  
Characteristics of Synchronous Digital Multiplex Equipment at 2048 kbps  
Characteristics of External Access Equipment at 2048 kbps; offering Synchronous  
Digital Access at 384 kbps and/or 64 kbps  
Recommendation G.738  
Characteristics of Primary PCM Multiplex Equipment at 2048 kbps; offering  
Synchronous Digital Access at 320 kbps and/or 64 kbps  
Draft Recommendation G.775  
Recommendation G.821  
Recommendation G.823 (3/93)  
Recommendation G.824 (3/93)  
Recommendation I.431  
Recommendation K.10  
Recommendation K.20  
Recommendation M.3604  
IEEE Std 1149.1a-1993  
FCC Part 68.302 (d)  
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection  
Error Performance Monitoring on International Connections  
Control of Jitter and Wander in Digital Networks based on 2048 kbps  
Control of Jitter and Wander in Digital Networks based on 1544 kbps  
Primary Rate User-Network Interface—Layer 1 Specification  
Unbalance about Earth of Telecommunication Installations  
Resistibility of Switching Equipment to Overvoltages and Overcurrents  
Application of Maintenance Principles to ISDN Primary Rate Access  
IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)  
Environment Simulation Metallic Voltage Surge  
FCC Part 68.308  
Signal Power Limitations  
A-2  
Conexant  
Advance Information  
N8380DSA  
B
Appendix B: External Component  
Specifications  
Table B-1 lists the transformer specifications. Table B-2 lists the REFCKI crystal  
oscillator specifications. Figure B-1 illustrates the minimum hardware configuration.  
Table B-1. Transformer Specifications  
Parameter  
RX Value  
2:1 CT  
TX Value  
Turns Ratio  
1:2  
Pulse (1) T1124  
Pulse Engineering Part Number:  
Temp. 0 °C to 70 °C  
Octal SMT  
Serial Resistance  
Primary Inductance  
Isolation Voltage  
1 maximum  
OCL 1.2 mH @ 25 °C  
1500 V  
rms  
Leakage Inductance  
0.8 µH  
Note(s):  
(1) Contact Pulse Engineering for other part numbers:  
Phone (619) 674-8100  
Web: http://www.pulseeng.com  
Table B-2. REFCKI (10 MHz) Crystal Oscillator Specifications  
Parameter  
Value  
Nominal Frequency  
10 MHz  
Frequency Accuracy (E1)  
Frequency Accuracy (T1)  
±50 ppm  
±32 ppm  
Output Level (1)  
Aging  
3.3 V Logic, CMOS or TTL  
2 ppm/year, 10 ppm maximum  
Note(s):  
(1) If the VGG pin is connected to +5 V supply, 5 V logic output may be used. Refer to the  
GG pin description in Chapter 1.0, Pin Descriptions .  
V
N8380DSA  
Conexant  
Advance Information  
B-1  
B
Figure B-1. Minimum Hardware Configuration  
VDD  
Hardware Mode  
65  
48  
43  
44  
45  
46  
114  
49  
62  
63  
64  
50  
47  
53  
34  
33  
35  
HM  
RESET  
JDIR  
JSEL(2)  
JSEL(1)  
JSEL(0)  
UNIPOLAR  
HTERM  
PTS(2)  
PTS(1)  
PTS(0)  
CLK_POL  
IRQ  
Host Mode  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
(4)  
(4)  
(4)  
Channel 1 Line Interface  
Fixed Receive  
Programmable  
Receive Termination  
(1)  
(2)  
Termination  
ZCS  
470  
470  
71  
RPOSO[1]  
RNEGO[1]  
RCKO[1]  
RTIP[1]  
RX  
100  
0.1  
123  
119  
73  
42  
108  
115  
72  
66  
NC  
NC  
NC  
NC  
NC  
NC  
RLOOP[1]  
LLOOP[1]  
RAWMD[1]  
JATERR[1]*  
RLOS[1]  
RRING[1]  
XOE[1]  
1:2  
1:2  
RX  
TX  
Channel 1 Digital  
Interface  
RJ48C  
or  
BANTAM  
TAIS[1]  
(5)  
(5)  
5.6  
67  
68  
XTIP[1]  
Optional  
Common  
Mode Choke  
37  
36  
38  
TPOSI[1]  
TNEGI[1]  
TCLK[1]  
150 pF  
21  
5.6  
TX  
XRING[1]  
Smoothing  
Capacitor  
Octal Transformer  
Pulse – T1124  
Fixed  
Transmit  
Termination  
(3)  
CN8394  
Quad T1/E1  
Framer  
CN8380  
Quad T1/E1  
LIU  
Channel 2 Line Interface  
Channel 3 Line Interface  
Channel 4 Line Interface  
Channel 2 Digital Interface  
Channel 3 Digital Interface  
Channel 4 Digital Interface  
VDD  
VAA  
VAAT[1:4]  
VAAR  
+3.3 V  
VAACL  
VGG  
42  
44  
43  
45  
1
4
127  
128  
(4)  
SDO  
SDI  
VSS  
GND  
GNDT[1:4]  
GNDR  
(4)  
Host Mode  
Serial Port  
(4)  
SCLK  
(4)  
CS  
NC  
CLADI  
REFCKI  
EACKI  
TACKI  
GNDCL  
10 MHz  
Oscillator  
Note(s):  
(1) Optional programmable receive termination: 75/100/120 Ω  
(2) Required fixed receive termination. The parallel combination of the fixed termination and programmable termination must match the line impedance.  
(3) Optional fixed transmit termination. The value shown provides acceptable transmit return loss for T1 and E1 applications. (See Table 2-7, Transmit Termination Option D.)  
(4) Pins shown twice for Hardware Mode and Host Mode.  
(5) In Hardware Mode, 5.6 line feed resistors are required. In Host Mode, they are optional.  
C
Appendix C: Acronym List  
Acronym Definition  
AGC  
AIS  
automatic gain control  
alarm indication signal  
AMI  
alternate mark inversion  
ANSI  
B8ZS  
BABT  
BPV  
American National Standards Institute  
binary with 8-zero substitution  
British Approvals Board for Telecommunications  
bipolar violation  
BSDL  
CCIR  
CIF  
boundary scan description language  
International Radio Communications Committee  
common interchange format  
clock rate adapter  
CLAD  
CMOS  
CRC  
complementary metal-oxide semiconductor  
cyclic redundancy check  
CSU  
channel service unit  
DAC  
DMA  
DPM  
DSX  
digital-to-analog converter  
direct memory access  
driver performance monitor  
digital signal cross connect  
ETSI  
FCC  
European Telecommunications Standards Institute  
Federal Communications Commission  
first-in first-out buffer  
FIFO  
GPIO  
HDB3  
HDSL  
general purpose input/output  
high-density bipolar of order 3  
high bit-rate digital subscriber line  
inter-integrated circuit  
2
I C  
ISDN  
ITU–T  
JAT  
Integrated Services Digital Network  
International Telegraph and Telephone Consultative Committee  
jitter attenuator  
JTAG  
LAL  
Joint Test Action Group  
local analog loopback  
N8380DSA  
4/21/99  
Conexant  
Advance Information  
C-1  
Appendix C : Acronym List  
CN8380  
Quad T1/E1 Line Interface  
LDL  
local digital loopback  
line interface unit  
LIU  
LOS  
loss of signal  
MSB  
NCO  
NCTE  
NRZ  
PCI  
most significant bit  
numerically controlled oscillator  
network channel-terminating equipment  
non-return to zero  
peripheral component interconnect  
pulse code modulation  
phase locked loop  
PCM  
PLL  
MQFP  
PRBS  
PRI  
metric quad flat pack  
pseudo-random bit sequence  
primary rate interface  
receive loss of analog input  
remote line loopback  
RALOS  
RLL  
RLOS  
RPLL  
RZCS  
SDH  
SONET  
TAP  
receive loss of signal  
receive phase lock loop  
receive zero code suppression  
Synchronous Digital Hierarchy  
Synchronous Optical Network  
test access port  
TLOC  
TLOS  
TZCS  
UI  
transmit loss of clock  
transmit loss of signal  
transmit zero code suppression  
unit interval  
UTP  
unshielded twisted pair  
zero code suppression  
ZCS  
C-2  
Conexant  
Advance Information  
N8380DSA  
4/21/99  
0.0 Sales Offices  
Further Information  
Hong Kong  
literature@conexant.com  
1-800-854-8099 (North America)  
33-14-906-3980 (International)  
Phone: (852) 2827 0181  
Fax: (852) 2827 6488  
India  
Web Site  
Phone: (91 11) 692 4780  
www.conexant.com  
Fax: (91 11) 692 4712  
Korea  
Phone: (82 2) 565 2880  
Fax: (82 2) 565 1440  
World Headquarters  
Conexant Systems, Inc.  
4311 Jamboree Road  
P. O. Box C  
Phone: (82 53) 745 2880  
Fax: (82 53) 745 1440  
Newport Beach, CA  
92658-8902  
Phone: (949) 483-4600  
Fax: (949) 483-6375  
Europe Headquarters  
Conexant Systems France  
Les Taissounieres B1  
1681 Route des Dolines  
BP 283  
U.S. Florida/South America  
Phone: (727) 799-8406  
Fax: (727) 799-8306  
06905 Sophia Antipolis Cedex  
FRANCE  
Phone: (33 4) 93 00 33 35  
Fax: (33 4) 93 00 33 03  
U.S. Los Angeles  
Phone: (805) 376-0559  
Fax: (805) 376-8180  
Europe Central  
Phone: (49 89) 829 1320  
Fax: (49 89) 834 2734  
U.S. Mid-Atlantic  
Phone: (215) 244-6784  
Fax: (215) 244-9292  
Europe Mediterranean  
Phone: (39 02) 9317 9911  
Fax: (39 02) 9317 9913  
U.S. North Central  
Phone: (630) 773-3454  
Fax: (630) 773-3907  
Europe North  
Phone: (44 1344) 486 444  
Fax: (44 1344) 486 555  
U.S. Northeast  
Phone: (978) 692-7660  
Fax: (978) 692-8185  
Europe South  
Phone: (33 1) 41 44 36 50  
Fax: (33 1) 41 44 36 90  
U.S. Northwest/Pacific West  
Phone: (408) 249-9696  
Fax: (408) 249-7113  
Middle East Headquarters  
Conexant Systems  
Commercial (Israel) Ltd.  
P. O. Box 12660  
U.S. South Central  
Phone: (972) 733-0723  
Fax: (972) 407-0639  
Herzlia 46733, ISRAEL  
Phone: (972 9) 952 4064  
Fax: (972 9) 951 3924  
U.S. Southeast  
Phone: (919) 858-9110  
Fax: (919) 858-8669  
Japan Headquarters  
Conexant Systems Japan Co., Ltd.  
Shimomoto Building  
1-46-3 Hatsudai,  
U.S. Southwest  
Phone: (949) 483-9119  
Fax: (949) 483-9090  
Shibuya-ku, Tokyo  
151-0061 JAPAN  
Phone: (81 3) 5371-1567  
Fax: (81 3) 5371-1501  
APAC Headquarters  
Conexant Systems Singapore, Pte.  
Ltd.  
1 Kim Seng Promenade  
Great World City  
#09-01 East Tower  
SINGAPORE 237994  
Phone: (65) 737 7355  
Fax: (65) 737 9077  
Taiwan Headquarters  
Conexant Systems, Taiwan Co., Ltd.  
Room 2808  
International Trade Building  
333 Keelung Road, Section 1  
Taipei 110, TAIWAN, ROC  
Phone: (886 2) 2720 0282  
Fax: (886 2) 2757 6760  
Australia  
Phone: (61 2) 9869 4088  
Fax: (61 2) 9869 4077  
China  
Phone: (86 2) 6361 2515  
Fax: (86 2) 6361 2516  

相关型号:

CN8394KTF

Framer/Formatter
ETC

CN8398EVM

integrated quad line interface unit unit for both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications
CONEXANT

CN8398KBG

Framer/Formatter
ETC

CN8398KPF

Framer/Formatter
ETC

CN8471A

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8471AEBG

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8471AEPF

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8471AKPF

Industrial Control IC
ETC

CN8472A

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8472AEBG

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8472AEPF

Multichannel Synchronous Communications Controller (MUSYCC?)
CONEXANT

CN8472AKPF

Industrial Control IC
ETC